WO2020171175A1 - FeNi ORDERED ALLOY, METHOD FOR PRODUCING FeNi ORDERED ALLOY, AND MAGNETIC MATERIAL CONTAINING FeNi ORDERED ALLOY - Google Patents

FeNi ORDERED ALLOY, METHOD FOR PRODUCING FeNi ORDERED ALLOY, AND MAGNETIC MATERIAL CONTAINING FeNi ORDERED ALLOY Download PDF

Info

Publication number
WO2020171175A1
WO2020171175A1 PCT/JP2020/006853 JP2020006853W WO2020171175A1 WO 2020171175 A1 WO2020171175 A1 WO 2020171175A1 JP 2020006853 W JP2020006853 W JP 2020006853W WO 2020171175 A1 WO2020171175 A1 WO 2020171175A1
Authority
WO
WIPO (PCT)
Prior art keywords
feni
ordered alloy
particles
alloy
insulating coating
Prior art date
Application number
PCT/JP2020/006853
Other languages
French (fr)
Japanese (ja)
Inventor
良太 篠▲崎▼
裕彰 藏
甫根 金
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020171175A1 publication Critical patent/WO2020171175A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition

Definitions

  • the present disclosure discloses an L1 0 type FeNi (iron-nickel) ordered alloy having an L1 0 type (erwan zero type) ordered structure, and a method for producing such an L1 0 type FeNi ordered alloy, and further L1 0. Type FeNi ordered alloy.
  • L1 0 type FeNi ordered alloy is expected as a magnet material and magnetic recording material uses no rare earth and precious metals.
  • Such L1 0 type FeNi ordered alloy there is disclosed in Patent Document 1.
  • Patent Document 1 after performing a nitriding treatment for nitriding a powder sample of a FeNi disordered alloy, a denitrification treatment for removing nitrogen from the nitrided FeNi disordered alloy is performed to obtain L1 having a high degree of order S1.
  • a 0- type FeNi ordered alloy is obtained.
  • Patent Document 1 since it is a state in which the surface of the particles of the L1 0 type FeNi ordered alloy obtained is exposed, it will be described in the following (1) to (4) issues Was found to occur.
  • the L1 0 type FeNi ordered alloy is used as a magnetic material such as a magnet, for example, and magnetic interaction is caused by contact of magnetic powder particles composed of particles of the L1 0 type FeNi ordered alloy. .. This interaction causes a problem that the coercive force is reduced and the magnet characteristics are deteriorated.
  • the magnet surface has high weather resistance and high chemical stability against corrosive gas such as water, salt and acid. but the chemical stability of the L1 0 type FeNi ordered alloy is not high.
  • the present disclosure it is possible to suppress the deterioration of magnetic properties, also good wettability to the composite material as was applied to the bonded magnet, and, L1 0 type FeNi ordered alloy having excellent chemical stability, its preparation Methods and magnetic materials comprising FeNi ordered alloys.
  • FeNi ordered alloy in one aspect of the present disclosure have a particle of L1 0 type ordered structure surrounding said particles are coated with an insulating coating.
  • another method of manufacturing an FeNi ordered alloy according to another aspect of the present disclosure is to prepare powder of an FeNi ordered alloy and perform an insulating coating forming process of covering the periphery of the particles of the FeNi ordered alloy powder with an insulating coating. To obtain an L1 0 type FeNi ordered alloy in which the particles are covered with an insulating coating.
  • a method of manufacturing an FeNi ordered alloy includes performing an insulating coating forming process of covering the periphery of particles of a powder of an FeNi disordered alloy with an insulating coating, and Densification of the powder particles by heat treatment and nitriding treatment of nitriding the densified FeNi disordered alloy particles, and then removing nitrogen from the nitrided FeNi disordered alloy particles by performing the denitrification, and includes a to obtain particles of L1 0 type FeNi ordered alloy ambient is covered with an insulating coating, the.
  • FIG. 1 It is a sectional view showing a state of particles of a FeNi regular alloy explained in a 1st embodiment.
  • 2 is a flowchart showing a manufacturing process of the FeNi ordered alloy shown in FIG. 1.
  • 3 is a table showing a list of solvents used for forming an insulating coating, a material source of the insulating coating, and types of additives. It is sectional drawing which showed the mode of the particle
  • the first embodiment will be described.
  • the L1 0 type FeNi ordered alloy according to this embodiment that is, the FeNi superlattice, is applied to magnetic materials such as magnet materials and magnetic recording materials.
  • the L1 0 type ordered structure is composed of a lattice structure based on a face-centered cubic lattice. Then, an infinite number of FeNi ordered alloy particles 10 having an L1 0 type ordered structure as shown in FIG. 1 are collected and applied to a magnetic material.
  • the particle 10 has a particle size of about 200 to 500 nm and an average particle size of about 250 nm.
  • each particle 10 is composed of a single crystal and is composed of a single magnetic domain. Even if it is composed of a plurality of magnetic domains, the composition is as small as possible. It is good to have been. If the particle size of the particles 10 is less than 200 nm, the coercive force is transmitted due to the effect of thermal fluctuation, and the magnet characteristics deteriorate. Further, if the particle size of the particles 10 exceeds 500 nm, it is difficult to form a single magnetic domain, and multiple domains are formed.
  • the particle size of the particles 10 is set to about 200 to 500 nm.
  • An insulating film 12 corresponding to an insulating coating is formed on the surface of the particles 10.
  • the material for forming the insulating film 12 for example, silica, titania, zirconia, yttria, alumina, or other oxides of Group III to VII or XIII to XVI elements can be used, and other insulating materials such as nitride films You may use the film comprised by.
  • the thickness of the insulating film 12 is arbitrary, it is preferably 1 nm or more in order to obtain a sufficient insulating property, and is, for example, 10 to 20 nm.
  • the volume density of the FeNi ordered alloy in the particles 10 and the insulating film 12 of the L1 0 type FeNi ordered alloy is reduced. For this reason, the magnetic characteristics per weight or volume of the FeNi ordered alloy powder covering the surface of the particles 10 with the insulating film 12 are reduced, so that the film thickness of the insulating film 12 is increased so as to obtain the required magnetic characteristics.
  • the upper limit of should be set.
  • L1 0 type FeNi ordered alloy particles 10 and the insulating film 12 the volume density of the FeNi ordered alloy is 80% or more in the, i.e. the volume density of the insulating film 12 may be such that more than 20%.
  • the surface state of the particles 10 can be brought into a state capable of solving the above-mentioned problems (1) to (4). This will be described below.
  • the particles 10 of the FeNi ordered alloy as in the present embodiment are magnetic powder particles having high electric conductivity. Therefore, if an electric conduction path is formed by the contact between the magnetic powder particles composed of the particles 10, it will cause generation of an eddy current, leading to deterioration in characteristics as a magnet. Contact between them is suppressed. Therefore, the problem (2) can be solved.
  • the magnetic powder if solidify the magnetic powder in the composite material such as a resin forming the bonded magnet, so that it can suppress the separation of the magnetic powder and the composite material, the magnetic powder
  • the surface is required to have a good wettability with respect to the composite material. Therefore, in the state where the surface of the particle 10 is covered with the insulating film 12 as in the present embodiment, the insulating film 12 may have a good wettability to the composite material.
  • the insulating film 12 composed of oxides of III-VII group and XIII-XVI group elements has a surface state having a large number of hydroxyl groups and is in a chemical state that is easily chemically modified. There is.
  • the insulating film 12 has better wettability with a commonly used composite material such as polyamide or phenol resin than the FeNi disordered alloy. Therefore, it is possible to solve the problem of (3) without performing the step of directly surface-treating the exposed surface of the particles 10 of the FeNi disordered alloy.
  • the magnet surface has high weather resistance and high chemical stability against corrosive gas such as water, salt and acid. , chemical stability of L1 0 type FeNi ordered alloy is not high.
  • the insulating film 12 when the surface of the particle 10 is covered with the insulating film 12 having high weather resistance and high chemical stability as in the present embodiment, the insulating film 12 causes the particle 10 itself to have water or salt content, and further, a corrosion resistant gas. It is possible to suppress the contact with, and as a result, it is possible to enhance the chemical stability of the particles 10. Therefore, the problem (4) can be solved.
  • the particles 10 are covered with the insulating film 12 which is non-magnetic, has an insulating property, is easily chemically modified, and has high chemical stability.
  • the insulating film 12 which is non-magnetic, has an insulating property, is easily chemically modified, and has high chemical stability.
  • it is possible to suppress the deterioration of the magnetic properties, and even if it is applied to a bonded magnet, it is possible to obtain a FeNi disordered alloy which has good wettability with respect to the composite material and excellent chemical stability. Therefore, it becomes an FeNi ordered alloy having an L1 0 type ordered structure with good magnet characteristics and can be used as a magnetic material with good magnet characteristics.
  • the magnet body can have strong magnetic properties.
  • Such L1 0 type FeNi ordered alloy for example, after the nitriding process of nitriding the FeNi disordered alloy performs denitrification process for removing nitrogen from nitriding treated FeNi disordered alloy, further particles It is obtained by covering the periphery of 10 with the insulating film 12.
  • step S100 of FIG. 2 is prepared a powder of FeNi ordered alloy L1 0 ordered structure.
  • the L1 0 ordered structure FeNi ordered alloy can be produced using a known method such as shown in Patent Document 1.
  • a powder of FeNi disordered alloy is prepared by a thermal plasma method, a flame spraying method, a coprecipitation method, or the like.
  • the FeNi for powder particles irregularly alloys're finally turned to a particle size of about 200 ⁇ 500 nm similarly to the L1 0 type FeNi ordered alloy to be obtained is preferable.
  • a nitriding denitrification process is performed.
  • This nitriding and denitrifying method can be performed by using a nitriding and denitrifying apparatus as disclosed in, for example, Patent Document 1 described above.
  • the nitriding denitrification treatment apparatus includes a tubular furnace as a heating furnace that is heated by a heater, and a glove box for installing a sample in the tubular furnace.
  • the nitriding denitrification treatment device is equipped with a gas introduction part for switching Ar (argon) as a purge gas, NH 3 for nitriding treatment, and H 2 (hydrogen) for denitrification treatment into the tubular furnace. ing.
  • Ar argon
  • NH 3 for nitriding treatment
  • H 2 hydrogen
  • a sample of prepared FeNi disordered alloy powder is placed in a tubular furnace. Then, nitriding treatment is performed. In this nitriding treatment, NH 3 gas is introduced into the tubular furnace to create an NH 3 atmosphere in the tubular furnace, and the FeNi disordered alloy is heated and nitrided at a predetermined temperature for a predetermined time. At this time, N is incorporated into FeNi by the nitriding treatment, so that crystal ordering occurs.
  • FeNiN which is a FeNi compound, it is possible to obtain the structure of the metallic element arrangement of the FeNi ordered alloy at the stage of the nitriding treatment.
  • denitrification treatment is performed.
  • H 2 gas is introduced into a heating furnace to create an H 2 atmosphere in the tubular furnace, and the nitrided FeNi disordered alloy is heated at a predetermined temperature for a predetermined time to remove nitrogen. By removing this way nitrogen, powder L1 0 type FeNi ordered alloy is obtained.
  • steps S110 to S140 an insulating coating formation process is performed.
  • step S110 performs a coating process for coating an insulating film 12 around the particles 10 of the powder of L1 0 type FeNi ordered alloy as an insulating coating.
  • the insulating film 12 as described above, for example, an oxide film of silica, titania, zirconia, yttria, alumina or the like can be used, and a film made of an insulating material such as a nitride film may be used. ..
  • the constituent material and formation of the insulating film 12 for example, the combination of the solvent, the material source of the insulating coating and the additive shown in FIG. 3 may be applied.
  • the insulating film 12 is made of silica
  • FeNi ordered alloy powder is mixed with a solvent of water or ethanol to which tetraethoxysilane, which is a material source of the insulating coating, is added, and further mixed with an additive.
  • Aqueous ammonia (NH 3 ) aqueous solution is poured in.
  • NH 3 tetraethoxysilane reacts with NH 3 to generate silica
  • the periphery of the particles 10 of the FeNi ordered alloy powder is coated with silica having a thickness of 10 to 20 nm, for example. In this way, the insulating film 12 can be formed around the particles 10.
  • the FeNi ordered alloy powder is mixed with water that is a solvent, to which sodium silicate that is a material source of the insulating coating is added, and hydrochloric acid (HCl) that is an additive is poured.
  • HCl hydrochloric acid
  • sodium silicate and HCl react with each other to generate silica, and the periphery of the FeNi ordered alloy powder particles 10 is coated with silica having a thickness of, for example, 10 to 20 nm. Even in this case, the insulating film 12 can be formed around the particles 10.
  • ethanol can be used as a solvent, titanium tetraisopropoxide as a material source of the insulating coating, and NH 3 as an additive.
  • alumina water can be used as a solvent, aluminum nitrate hexahydrate as a material source of the insulating coating, and NH 3 as an additive.
  • zirconia it is possible to use water or ethanol as a solvent, zirconium ethoxide as a material source of the insulating coating, and NH 3 as an additive.
  • water can be used as a solvent, yttrium chloride hexahydrate as a material source of the insulating coating, and sodium hydroxide as an additive.
  • the insulating film 12 by using other materials, a general method known as a production method is applied, and FeNi ordered alloy powder is mixed at the time of the production to form various materials.
  • the insulating film 12 composed of is formed.
  • step S120 a cleaning process is performed in step S120.
  • the cleaning process when the insulating film 12 is formed to cover the FeNi ordered alloy particles 10, the unnecessary coating material formed at the same time is removed.
  • the reaction for forming the insulating film 12 is performed by centrifugation to collect the solid content
  • the solvent at the time of the reaction is added to the solid content, the mixture is stirred, and then the solid content is recovered by centrifugation again.
  • the unnecessary coating material is removed by repeating the above process a plurality of times. As a result, only the FeNi ordered alloy particles 10 covered with the insulating film 12 are selected.
  • a firing process is performed in step S130.
  • the FeNi ordered alloy in which the particles 10 are covered with the insulating film 12 is heated at a predetermined temperature for a predetermined time, whereby the insulating film 12 is fired.
  • the crystallinity of the insulating film 12 may not be good.
  • the coating of the particles 10 may be present in a hydroxide state only by the coating process of step S110, and this is converted into an oxide by firing. Then, the insulating film 12 is made to have a more preferable crystal structure.
  • a non-defective product and a defective product are selected by performing an evaluation process in step S140. For example, whether the insulating film 12 evenly covers the particles 10 or whether the insulating film 12 has good film thickness and crystallinity is evaluated by a quality evaluation by a scanning electron microscope (SEM) or X-ray diffraction (XRD). Then, the material evaluated to be good is used as the magnetic material. In this way, the insulating coating forming process is completed.
  • SEM scanning electron microscope
  • XRD X-ray diffraction
  • the L1 0 type FeNi ordered alloy of the present embodiment Particles 10 of such and L1 0 type FeNi ordered alloy, prepared is a non-magnetic, an insulating, in an easy chemical state chemically modified, and are covered by the high dielectric film 12 is also chemical stability .. For this reason, it is possible to suppress the deterioration of the magnetic properties, and it is possible to obtain a FeNi disordered alloy having good wettability to the composite material and excellent chemical stability even when applied to a bonded magnet. Therefore, it becomes an FeNi ordered alloy having an L1 0 type ordered structure with good magnet characteristics and can be used as a magnetic material with good magnet characteristics.
  • the insulating film 12 is used as an example of the insulating coating, but in the present embodiment, a powdery material is used.
  • the present embodiment in a state of surrounding the particles 10 of FeNi ordered alloy L1 0 ordered structure is covered by an insulator 13 of powdery substance made of an insulating coating.
  • the particles 10 may be covered with the insulator 13 composed of such a powdery material.
  • the entire area around the particle 10 cannot be completely covered by the insulator 13, and the weather resistance and the chemical stability of the portion of the particle 10 exposed from the insulator 13 may be reduced.
  • it since it is covered with the insulator 13 over a wide area around the particle 10 even if it is not over the entire area, weather resistance and chemical stability are also improved as compared with the case where the particles are not covered with the insulator 13. It becomes possible.
  • the following processing may be performed as the coating processing in the insulating coating forming processing.
  • the FeNi ordered alloy powder prepared in step S100 of FIG. 3 described in the first embodiment is mixed into a solution in which a powder of an insulating coating material is mixed with a solvent.
  • a powder of an insulating coating material is mixed with a solvent.
  • the powder of the FeNi ordered alloy may be directly sprinkled with the powder of the insulating coating material to cover the particles 10 with the insulator 13. ..
  • a third embodiment will be described.
  • the manufacturing method of the FeNi ordered alloy is changed from the first and second embodiments, and the other points are the same as those in the first and second embodiments. Only parts different from the form will be described. Note that here, the case where the present embodiment is applied to the case where the insulating film 12 is applied as in the first embodiment will be described as an example, but the insulator 13 formed of a powdery material as in the second embodiment will be described. The present embodiment can be applied when applied.
  • the insulating film 12 is formed at the stage of the FeNi disordered alloy used to manufacture the FeNi ordered alloy, and the FeNi disordered alloy is manufactured from there.
  • a method of manufacturing such a FeNi disordered alloy will be described with reference to a flowchart showing the manufacturing process shown in FIG. 5 and a diagram showing a particle cross-sectional structure corresponding to each process of FIG. 5 shown in FIG.
  • FIG. 6 shows the particle cross-sectional structure, hatching is not partly shown in order to make the crystal structure easy to see.
  • FeNi disordered alloy powder is prepared by a known method.
  • the particles 20 of the FeNi disordered alloy powder having the state shown in the state (a) of FIG. 6 can be obtained.
  • the particles 20 are polycrystalline, and many grain boundaries are present in the crystals.
  • the particle size of the particles 20, what is ultimately similar to the L1 0 type FeNi ordered alloy to be obtained becomes to a particle size of about 200 ⁇ 500 nm is preferred. However, since the particle size may change due to densification or the like due to the heat treatment described later, the particle size does not necessarily have to be 200 to 500 nm.
  • step S210 an insulation coating forming process is performed. Specifically, as the insulating coating formation process, each process of steps S110 to S140 of FIG. 3 described in the first embodiment is sequentially performed. Thereby, as shown in the state (b) of FIG. 6, the periphery of the particles 20 can be covered with the insulating film 12.
  • step S220 heat treatment is performed.
  • heat treatment is performed for 1 hour at a temperature of 200 to 800° C. using hydrogen as an atmosphere gas.
  • step S210 described above, each particle 20 is covered with the insulating film 12. Therefore, even if the heat treatment is performed, the adjacent particles 20 can be isolated from each other, and as shown in the state (c) of FIG. 6, the insulating film 12 is densified and has a crystal structure with few grain boundaries. It is possible to obtain the particles 20 of the FeNi disordered alloy which are preferably single crystals.
  • the "isolated state" here means that the particles 20 are not stuck and integrated with each other, and are physically independent and can be separated from each other. ..
  • nitriding denitrification treatment is performed.
  • This nitriding denitrification method may be performed by the same method as step S110 of FIG. 3 described in the first embodiment.
  • the nitride denitrification treatment as shown in the state of FIG. 6 (d), L1 0 type FeNi ordered alloy of the structure shown in FIG. 1 That is, it becomes the particles 10 of the FeNi superlattice.
  • it since it is nitrided denitrification to the particle 20 of FeNi disordered alloy of isolated state, for the particles 10 of L1 0 type FeNi ordered alloy, and a state between particles 10 adjacent isolated become.
  • L1 0 type FeNi ordered alloy according to the embodiment is applied to a magnetic material such as magnetic materials and magnetic recording materials, the scope of the FeNi ordered alloy is not limited to a magnetic material ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The present invention has a structure wherein the periphery of a particle (10) that has an L10 ordered structure is covered by an insulating cover (12, 13) that is composed of an insulating body.

Description

FeNi規則合金、FeNi規則合金の製造方法、および、FeNi規則合金を含む磁性材料FeNi ordered alloy, method for producing FeNi ordered alloy, and magnetic material containing FeNi ordered alloy 関連出願への相互参照Cross-reference to related application
 本出願は、2019年2月22日に出願された日本特許出願番号2019-30741号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2019-30741 filed on February 22, 2019, the description of which is incorporated herein by reference.
 本開示は、L1型(エルワンゼロ型)の規則構造を有するL1型のFeNi(鉄-ニッケル)規則合金、および、このようなL1型のFeNi規則合金の製造方法、さらには、L1型のFeNi規則合金を含む磁性材料に関するものである。 The present disclosure discloses an L1 0 type FeNi (iron-nickel) ordered alloy having an L1 0 type (erwan zero type) ordered structure, and a method for producing such an L1 0 type FeNi ordered alloy, and further L1 0. Type FeNi ordered alloy.
 L1型のFeNi規則合金は、レアアースや貴金属を全く使用しない磁石材料および磁気記録材料として期待されている。このようなL1型のFeNi規則合金として、特許文献1に示されるものがある。この特許文献1では、FeNi不規則合金の粉末試料を窒化する窒化処理を行った後、窒化処理されたFeNi不規則合金から窒素を除去する脱窒素処理を行うことにより、規則度Sが高いL1型のFeNi規則合金を得ている。 L1 0 type FeNi ordered alloy is expected as a magnet material and magnetic recording material uses no rare earth and precious metals. Such L1 0 type FeNi ordered alloy, there is disclosed in Patent Document 1. In Patent Document 1, after performing a nitriding treatment for nitriding a powder sample of a FeNi disordered alloy, a denitrification treatment for removing nitrogen from the nitrided FeNi disordered alloy is performed to obtain L1 having a high degree of order S1. A 0- type FeNi ordered alloy is obtained.
特開2018-109238号公報Japanese Patent Laid-Open No. 2018-109238
 しかしながら、上記特許文献1の記載された方法では、得られるL1型のFeNi規則合金の粒子の表面が露出した状態となっていることから、下記の(1)~(4)において説明する課題が発生することが判った。 However, in the method described in Patent Document 1, since it is a state in which the surface of the particles of the L1 0 type FeNi ordered alloy obtained is exposed, it will be described in the following (1) to (4) issues Was found to occur.
 (1)L1型のFeNi規則合金については、例えば磁石などの磁性材料として用いられるが、L1型のFeNi規則合金の粒子により構成される磁粉粒子が接触することで磁気的相互作用を引き起こす。この相互作用は、保磁力を減少させる要因となって、磁石特性の低下を招くという問題を発生させる。 (1) The L1 0 type FeNi ordered alloy is used as a magnetic material such as a magnet, for example, and magnetic interaction is caused by contact of magnetic powder particles composed of particles of the L1 0 type FeNi ordered alloy. .. This interaction causes a problem that the coercive force is reduced and the magnet characteristics are deteriorated.
 (2)電気伝導性の高い磁粉粒子では、磁粉粒子間の接触によって電気伝導パスが形成されると、渦電流発生の要因になり、磁石としての特性低下を招くという問題を発生させる。 (2) In magnetic powder particles with high electric conductivity, when an electric conduction path is formed due to contact between magnetic powder particles, it causes an eddy current and causes a problem that characteristics of the magnet deteriorate.
 (3)L1型のFeNi規則合金の粒子を磁粉として用い、樹脂などの複合材で磁粉を固めてボンド磁石を形成する場合、磁粉と複合材との剥離を抑制できるように、磁粉の表面が複合材に対して濡れ性の良い状態であることが求められる。このため、そのような表面状態とするための表面処理が行われるが、FeNi不規則合金の粒子の露出表面を直接表面処理することは難しい。 (3) When particles of an L1 0 type FeNi ordered alloy are used as magnetic powder and the magnetic powder is hardened with a composite material such as a resin to form a bonded magnet, the surface of the magnetic powder can be suppressed so that separation of the magnetic powder and the composite material can be suppressed. Is required to have a good wettability with respect to the composite material. For this reason, a surface treatment is performed to obtain such a surface state, but it is difficult to directly perform the surface treatment on the exposed surface of the particles of the FeNi disordered alloy.
 (4)磁石の使用環境を広げるためには、磁石表面の耐候性が高く、水や塩分、さらには酸などの腐食性ガスに対しての高い化学的安定性を有していることが望ましいが、L1型のFeNi規則合金の化学的安定性は高くはない。
 本開示は、磁石特性の低下を抑制できると共に、ボンド磁石に適用されたとしても複合材に対する濡れ性が良好で、かつ、優れた化学的安定性を有するL1型のFeNi規則合金、その製造方法、および、FeNi規則合金を含む磁性材料を提供することを目的とする。
(4) In order to expand the usage environment of the magnet, it is desirable that the magnet surface has high weather resistance and high chemical stability against corrosive gas such as water, salt and acid. but the chemical stability of the L1 0 type FeNi ordered alloy is not high.
The present disclosure, it is possible to suppress the deterioration of magnetic properties, also good wettability to the composite material as was applied to the bonded magnet, and, L1 0 type FeNi ordered alloy having excellent chemical stability, its preparation Methods and magnetic materials comprising FeNi ordered alloys.
 本開示の1つの観点におけるFeNi規則合金は、L1型の規則構造の粒子を有し、該粒子の周囲が絶縁被覆物によって被覆されている。 FeNi ordered alloy in one aspect of the present disclosure, have a particle of L1 0 type ordered structure surrounding said particles are coated with an insulating coating.
 このように、L1型の規則構造の粒子の周囲が絶縁被覆物によって被覆された構造としている。これにより、磁石特性の低下を抑制できると共に、ボンド磁石に適用されたとしても複合材に対する濡れ性が良好で、かつ、優れた化学的安定性を有するFeNi規則合金にできる。 Thus, and with the surrounding particles of L1 0 type ordered structure is covered with an insulating coating structure. As a result, it is possible to obtain a FeNi ordered alloy that can suppress deterioration of magnet characteristics, has good wettability to a composite material even when applied to a bonded magnet, and has excellent chemical stability.
 また、本開示のもう1つの観点におけるFeNi規則合金の製造方法は、FeNi規則合金の粉末を用意することと、FeNi規則合金の粉末の粒子の周囲を絶縁被覆物で覆う絶縁被覆物形成処理を行うことにより、粒子が絶縁被覆物によって覆われたL1型のFeNi規則合金を得ることと、を含んでいる。また、本開示のさらにもう1つの観点におけるFeNi規則合金の製造方法は、FeNi不規則合金の粉末の粒子の周囲を絶縁被覆物で覆う絶縁被覆物形成処理を行うことと、FeNi不規則合金の粉末の粒子を加熱処理によって緻密化することと、緻密化が行われたFeNi不規則合金の粒子を窒化する窒化処理を行った後、窒化処理されたFeNi不規則合金の粒子から窒素を除去する脱窒素処理を行うことにより、周囲が絶縁被覆物で覆われたL1型のFeNi規則合金の粒子を得ることと、を含んでいる。 In addition, another method of manufacturing an FeNi ordered alloy according to another aspect of the present disclosure is to prepare powder of an FeNi ordered alloy and perform an insulating coating forming process of covering the periphery of the particles of the FeNi ordered alloy powder with an insulating coating. To obtain an L1 0 type FeNi ordered alloy in which the particles are covered with an insulating coating. Further, a method of manufacturing an FeNi ordered alloy according to still another aspect of the present disclosure includes performing an insulating coating forming process of covering the periphery of particles of a powder of an FeNi disordered alloy with an insulating coating, and Densification of the powder particles by heat treatment and nitriding treatment of nitriding the densified FeNi disordered alloy particles, and then removing nitrogen from the nitrided FeNi disordered alloy particles by performing the denitrification, and includes a to obtain particles of L1 0 type FeNi ordered alloy ambient is covered with an insulating coating, the.
 これらの製造方法により、L1型の規則構造の粒子を有し、該粒子の周囲が絶縁被覆物によって被覆されたL1型のFeNi規則合金を製造することができる。 By these production methods, it is possible to produce an L1 0 type FeNi ordered alloy having particles having an L1 0 type ordered structure and the periphery of the particles being covered with an insulating coating.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference numerals in parentheses attached to the respective constituent elements and the like indicate an example of a correspondence relationship between the constituent elements and the like and concrete constituent elements and the like described in the embodiments described later.
第1実施形態で説明するFeNi規則合金の粒子の様子を示した断面図である。It is a sectional view showing a state of particles of a FeNi regular alloy explained in a 1st embodiment. 図1に示すFeNi規則合金の製造工程を示したフローチャートである。2 is a flowchart showing a manufacturing process of the FeNi ordered alloy shown in FIG. 1. 絶縁被覆物の形成に用いる溶媒、絶縁被覆物の材料源、添加剤の種類の一覧を示した図表である。3 is a table showing a list of solvents used for forming an insulating coating, a material source of the insulating coating, and types of additives. 第2実施形態で説明するFeNi規則合金の粒子の様子を示した断面図である。It is sectional drawing which showed the mode of the particle|grains of the FeNi regular alloy demonstrated in 2nd Embodiment. 第3実施形態で説明するFeNi規則合金の製造工程を示したフローチャートである。It is a flow chart showing a manufacturing process of a FeNi regular alloy explained in a 3rd embodiment. 図5の各工程と対応する粒子断面構造を示した断面図である。It is sectional drawing which showed the particle|grain cross-section structure corresponding to each process of FIG.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, an embodiment of the present disclosure will be described based on the drawings. In each of the following embodiments, the same or equivalent portions will be denoted by the same reference numerals for description.
 (第1実施形態)
 第1実施形態について説明する。本実施形態にかかるL1型のFeNi規則合金、すなわちFeNi超格子は、磁石材料および磁気記録材料等の磁性材料に適用されるものである。
(First embodiment)
The first embodiment will be described. The L1 0 type FeNi ordered alloy according to this embodiment, that is, the FeNi superlattice, is applied to magnetic materials such as magnet materials and magnetic recording materials.
 L1型規則構造は、面心立方格子を基本とした格子構造で構成される。そして、図1に示されるようなL1型規則構造のFeNi規則合金の粒子10が無数に集められることで磁性材料に適用される。 The L1 0 type ordered structure is composed of a lattice structure based on a face-centered cubic lattice. Then, an infinite number of FeNi ordered alloy particles 10 having an L1 0 type ordered structure as shown in FIG. 1 are collected and applied to a magnetic material.
 粒子10は、粒径が200~500nm程度、平均粒径が例えば250nm程度となっている。各粒子10は、結晶構造については任意であるが、好ましくは単結晶で構成され、単一の磁区で構成されていると良く、複数の磁区で構成されていたとしてもできるだけ磁区が少ない構成とされていると良い。粒子10の粒径が200nm未満になると、熱揺らぎの効果により保磁力が伝承し、磁石特性が低下する。また、粒子10の粒径が500nmを超えると、単一の磁区にすることが難しく、多磁区化してしまう。多磁区化すると、磁壁移動により磁化反転が生じるため保磁力が減少し、上記と同様に磁石特性の低下を招くことになる。このため、粒子10の粒径を200~500nm程度としている。 The particle 10 has a particle size of about 200 to 500 nm and an average particle size of about 250 nm. Although the crystal structure of each particle 10 is arbitrary, it is preferable that each particle 10 is composed of a single crystal and is composed of a single magnetic domain. Even if it is composed of a plurality of magnetic domains, the composition is as small as possible. It is good to have been. If the particle size of the particles 10 is less than 200 nm, the coercive force is transmitted due to the effect of thermal fluctuation, and the magnet characteristics deteriorate. Further, if the particle size of the particles 10 exceeds 500 nm, it is difficult to form a single magnetic domain, and multiple domains are formed. When the magnetic domain is made multi-domain, the magnetization reversal occurs due to the domain wall movement, so that the coercive force is reduced and the magnet characteristics are deteriorated as in the above case. Therefore, the particle size of the particles 10 is set to about 200 to 500 nm.
 また、粒子10の表面には、絶縁被覆物に相当する絶縁膜12が形成されている。絶縁膜12を構成する材料としては、例えば、シリカ、チタニア、ジルコニア、イットリア、アルミナなど、III~VII族、XIII~XVI族元素の酸化物を用いることができ、その他、窒化膜などの絶縁材料で構成される膜を用いても良い。絶縁膜12の膜厚は、任意であるが、十分な絶縁性を得るために1nm以上であることが好ましく、例えば10~20nmとされている。また、絶縁膜12が厚すぎると、L1型のFeNi規則合金の粒子10および絶縁膜12中におけるFeNi規則合金の体積密度が減少する。このため、絶縁膜12で粒子10の表面を覆ったFeNi規則合金の粉末の重量もしくは体積当たりの磁気特性が目減りしてしまうため、要求する磁気特性が得られるように、絶縁膜12の膜厚の上限値を設定すれば良い。好ましくは、L1型のFeNi規則合金の粒子10および絶縁膜12中におけるFeNi規則合金の体積密度が80%以上、つまり絶縁膜12の体積密度が20%以下になるようにすると良い。 An insulating film 12 corresponding to an insulating coating is formed on the surface of the particles 10. As the material for forming the insulating film 12, for example, silica, titania, zirconia, yttria, alumina, or other oxides of Group III to VII or XIII to XVI elements can be used, and other insulating materials such as nitride films You may use the film comprised by. Although the thickness of the insulating film 12 is arbitrary, it is preferably 1 nm or more in order to obtain a sufficient insulating property, and is, for example, 10 to 20 nm. Further, when the insulating film 12 is too thick, the volume density of the FeNi ordered alloy in the particles 10 and the insulating film 12 of the L1 0 type FeNi ordered alloy is reduced. For this reason, the magnetic characteristics per weight or volume of the FeNi ordered alloy powder covering the surface of the particles 10 with the insulating film 12 are reduced, so that the film thickness of the insulating film 12 is increased so as to obtain the required magnetic characteristics. The upper limit of should be set. Preferably, L1 0 type FeNi ordered alloy particles 10 and the insulating film 12 the volume density of the FeNi ordered alloy is 80% or more in the, i.e. the volume density of the insulating film 12 may be such that more than 20%.
 このような絶縁膜12を形成していることによって、粒子10の表面状態を上記した(1)~(4)の課題を解決できる状態にすることができる。以下、これについて説明する。 By forming such an insulating film 12, the surface state of the particles 10 can be brought into a state capable of solving the above-mentioned problems (1) to (4). This will be described below.
 まず、粒子10の表面に非磁性である絶縁膜12が形成されていることから、本実施形態のL1型のFeNi規則合金を磁石などの磁性材料として用いる場合、粒子10により構成される磁粉粒子同士が直接接触することが抑制される。このため、磁粉粒子が接触することで磁気的相互作用を抑制できるため、磁石特性の向上を図ることが可能となる。これにより、(1)の問題を解決することが可能となる。 First, because it is an insulating film 12 is a non-magnetic form on the surface of the particle 10, the case of using an L1 0 type FeNi ordered alloy of the present embodiment as a magnetic material such as a magnet, the magnetic powder composed of particles 10 Direct contact between particles is suppressed. For this reason, it is possible to suppress the magnetic interaction due to the contact of the magnetic powder particles, so that it is possible to improve the magnet characteristics. This makes it possible to solve the problem (1).
 また、本実施形態のようなFeNi規則合金の粒子10は、電気伝導性の高い磁粉粒子となる。このため、粒子10により構成される磁粉粒子間の接触によって電気伝導パスが形成されると、渦電流発生の要因になり、磁石としての特性低下を招くが、絶縁性の絶縁膜12によって磁粉粒子間の接触が抑制される。このため、(2)の問題を解決することが可能となる。 Moreover, the particles 10 of the FeNi ordered alloy as in the present embodiment are magnetic powder particles having high electric conductivity. Therefore, if an electric conduction path is formed by the contact between the magnetic powder particles composed of the particles 10, it will cause generation of an eddy current, leading to deterioration in characteristics as a magnet. Contact between them is suppressed. Therefore, the problem (2) can be solved.
 次に、L1型のFeNi規則合金の粒子10を磁粉として用い、樹脂などの複合材で磁粉を固めてボンド磁石を形成する場合、磁粉と複合材との剥離を抑制できるように、磁粉の表面が複合材に対して濡れ性の良い状態であることが求められる。したがって、本実施形態のように粒子10の表面を絶縁膜12で覆った状態において、絶縁膜12が複合材に対して濡れ性の良い状態であれば良い。これに対して、III~VII族、XIII~XVI族元素の酸化物などで構成される絶縁膜12については、水酸基を多く持つ表面状態を有しており、化学修飾し易い化学状態となっている。このため、絶縁膜12は、一般的に使用される複合材、例えばポリアミドやフェノール樹脂などに対する濡れ性がFeNi不規則合金よりも良好になっている。したがって、FeNi不規則合金の粒子10の露出表面を直接表面処理するような工程を行わなくても済み、(3)の課題を解決することが可能となる。 Next, using particles 10 of L1 0 type FeNi ordered alloy as a magnetic powder, if solidify the magnetic powder in the composite material such as a resin forming the bonded magnet, so that it can suppress the separation of the magnetic powder and the composite material, the magnetic powder The surface is required to have a good wettability with respect to the composite material. Therefore, in the state where the surface of the particle 10 is covered with the insulating film 12 as in the present embodiment, the insulating film 12 may have a good wettability to the composite material. On the other hand, the insulating film 12 composed of oxides of III-VII group and XIII-XVI group elements has a surface state having a large number of hydroxyl groups and is in a chemical state that is easily chemically modified. There is. Therefore, the insulating film 12 has better wettability with a commonly used composite material such as polyamide or phenol resin than the FeNi disordered alloy. Therefore, it is possible to solve the problem of (3) without performing the step of directly surface-treating the exposed surface of the particles 10 of the FeNi disordered alloy.
 さらに、磁石の使用環境を広げるためには、磁石表面の耐候性が高く、水や塩分、さらには酸などの腐食性ガスに対しての高い化学的安定性を有していることが望ましいが、L1型のFeNi規則合金の化学的安定性は高くはない。一方、本実施形態のように粒子10の表面を耐候性が高く化学的安定性の高い絶縁膜12で覆っていれば、絶縁膜12によって粒子10自体が水や塩分、さらには耐腐食性ガスに触れることが抑制され、結果的に粒子10の化学的安定性を高めることが可能となる。このため、(4)の課題を解決することができる。 Further, in order to expand the use environment of the magnet, it is desirable that the magnet surface has high weather resistance and high chemical stability against corrosive gas such as water, salt and acid. , chemical stability of L1 0 type FeNi ordered alloy is not high. On the other hand, when the surface of the particle 10 is covered with the insulating film 12 having high weather resistance and high chemical stability as in the present embodiment, the insulating film 12 causes the particle 10 itself to have water or salt content, and further, a corrosion resistant gas. It is possible to suppress the contact with, and as a result, it is possible to enhance the chemical stability of the particles 10. Therefore, the problem (4) can be solved.
 このように、非磁性で、絶縁性で、化学修飾し易い化学状態で、かつ、化学的安定性も高い絶縁膜12によって粒子10を覆っている。これにより、磁石特性の低下を抑制できると共に、ボンド磁石に適用したとしても、複合材に対する濡れ性が良好で、かつ優れた化学的安定性を有するFeNi不規則合金とすることが可能となる。したがって、磁石特性の良好なL1型規則構造のFeNi規則合金となり、磁石特性の良好な磁性材料として用いることが可能となる。 As described above, the particles 10 are covered with the insulating film 12 which is non-magnetic, has an insulating property, is easily chemically modified, and has high chemical stability. As a result, it is possible to suppress the deterioration of the magnetic properties, and even if it is applied to a bonded magnet, it is possible to obtain a FeNi disordered alloy which has good wettability with respect to the composite material and excellent chemical stability. Therefore, it becomes an FeNi ordered alloy having an L1 0 type ordered structure with good magnet characteristics and can be used as a magnetic material with good magnet characteristics.
 すなわち、このようなL1型規則構造のFeNi規則合金の粒子10を無数に集めて、焼結させたり、樹脂などの複合材と混ぜて成型により固めたりして磁石体を製造すれば、より強力な磁気特性を有する磁石体とすることができる。 That is, such L1 0 ordered structure FeNi rules particles 10 innumerable gathered alloy, or by sintering, with or solidified by molding mixed with composite material such as a resin when producing the magnet, and more The magnet body can have strong magnetic properties.
 このようなL1型のFeNi規則合金については、例えば、FeNi不規則合金を窒化する窒化処理を行った後、窒化処理されたFeNi不規則合金から窒素を除去する脱窒素処理を行い、さらに粒子10の周囲を絶縁膜12で被覆することにより得られる。 Such L1 0 type FeNi ordered alloy, for example, after the nitriding process of nitriding the FeNi disordered alloy performs denitrification process for removing nitrogen from nitriding treated FeNi disordered alloy, further particles It is obtained by covering the periphery of 10 with the insulating film 12.
 以下、このL1型のFeNi規則合金の製造方法について、図2に示される製造工程を示したフローチャートを参照して説明する。 Hereinafter, a method for producing the L1 0 type FeNi ordered alloy will be described with reference to a flowchart showing the manufacturing process shown in FIG.
 まず、図2のステップS100に示すように、L1型規則構造のFeNi規則合金の粉末を用意する。L1型規則構造のFeNi規則合金については、特許文献1に示されているような公知の方法を用いて生成することができる。 First, as shown in step S100 of FIG. 2, is prepared a powder of FeNi ordered alloy L1 0 ordered structure. The L1 0 ordered structure FeNi ordered alloy can be produced using a known method such as shown in Patent Document 1.
 例えば、まずは熱プラズマ法、火炎噴霧法あるいは共沈法などによりFeNi不規則合金の粉末を作成する。このFeNi不規則合金の粉末の粒子については、最終的に得たいL1型のFeNi規則合金と同様に200~500nm程度の粒径になっているのが好ましい。 For example, first, a powder of FeNi disordered alloy is prepared by a thermal plasma method, a flame spraying method, a coprecipitation method, or the like. The FeNi for powder particles irregularly alloys're finally turned to a particle size of about 200 ~ 500 nm similarly to the L1 0 type FeNi ordered alloy to be obtained is preferable.
 次に、窒化脱窒素処理を行う。この窒化脱窒素法については、例えば上記した特許文献1に示されるように、窒化脱窒素処理装置などを用いて行うことができる。図示しないが、窒化脱窒素処理装置は、ヒータにより加熱される加熱炉としての管状炉と、管状炉内に試料を設置するためのグローブボックスと、を備えている。また、窒化脱窒素処理装置は、パージガスとしてのAr(アルゴン)、窒化処理用のNH、および、脱窒素処理用のH(水素)を、切り替えて管状炉へ導入するガス導入部を備えている。このような窒化脱窒素処理装置を用いて、次のようにして窒化脱窒素処理が行われる。 Next, a nitriding denitrification process is performed. This nitriding and denitrifying method can be performed by using a nitriding and denitrifying apparatus as disclosed in, for example, Patent Document 1 described above. Although not shown, the nitriding denitrification treatment apparatus includes a tubular furnace as a heating furnace that is heated by a heater, and a glove box for installing a sample in the tubular furnace. Further, the nitriding denitrification treatment device is equipped with a gas introduction part for switching Ar (argon) as a purge gas, NH 3 for nitriding treatment, and H 2 (hydrogen) for denitrification treatment into the tubular furnace. ing. Using such a nitriding denitrification processing apparatus, nitriding denitrification processing is performed as follows.
 まず、管状炉中に、用意したFeNi不規則合金の粉末の試料を設置しておく。そして、窒化処理を行う。この窒化処理では、NHガスを管状炉に導入して管状炉内をNH雰囲気とし、所定温度で所定時間、FeNi不規則合金を加熱して窒化する。このとき、窒化処理によってFeNiにNが取り込まれることで結晶の規則化が起きる。好ましくは、FeNi化合物となるFeNiNが生成されるようにすると、窒化処理の段階でFeNi規則合金の金属元素配置の構造を得ることができる。 First, a sample of prepared FeNi disordered alloy powder is placed in a tubular furnace. Then, nitriding treatment is performed. In this nitriding treatment, NH 3 gas is introduced into the tubular furnace to create an NH 3 atmosphere in the tubular furnace, and the FeNi disordered alloy is heated and nitrided at a predetermined temperature for a predetermined time. At this time, N is incorporated into FeNi by the nitriding treatment, so that crystal ordering occurs. Preferably, when FeNiN, which is a FeNi compound, is generated, it is possible to obtain the structure of the metallic element arrangement of the FeNi ordered alloy at the stage of the nitriding treatment.
 その後、脱窒素処理を行う。脱窒素処理では、Hガスを加熱炉に導入して管状炉内をH雰囲気とし、所定温度で所定時間、窒化処理されたFeNi不規則合金を加熱して窒素を除去する。このように窒素を除去することで、L1型のFeNi規則合金の粉末が得られる。そして、ステップS110~ステップS140において、絶縁被覆物形成処理を行う。 After that, denitrification treatment is performed. In the denitrification treatment, H 2 gas is introduced into a heating furnace to create an H 2 atmosphere in the tubular furnace, and the nitrided FeNi disordered alloy is heated at a predetermined temperature for a predetermined time to remove nitrogen. By removing this way nitrogen, powder L1 0 type FeNi ordered alloy is obtained. Then, in steps S110 to S140, an insulating coating formation process is performed.
 ステップS110では、L1型のFeNi規則合金の粉末の粒子10の周囲を絶縁被覆物となる絶縁膜12によって被覆する被覆処理を行う。絶縁膜12としては、上記したように、例えば、シリカ、チタニア、ジルコニア、イットリア、アルミナなどの酸化膜を用いることができ、その他、窒化膜などの絶縁材料で構成される膜を用いても良い。絶縁膜12の構成材料と形成については、例えば、図3に示す溶媒、絶縁被覆物の材料源、添加剤の組み合わせを適用すれば良い。 In step S110, performs a coating process for coating an insulating film 12 around the particles 10 of the powder of L1 0 type FeNi ordered alloy as an insulating coating. As the insulating film 12, as described above, for example, an oxide film of silica, titania, zirconia, yttria, alumina or the like can be used, and a film made of an insulating material such as a nitride film may be used. .. Regarding the constituent material and formation of the insulating film 12, for example, the combination of the solvent, the material source of the insulating coating and the additive shown in FIG. 3 may be applied.
 具体的には、絶縁膜12をシリカで構成する場合、水やエタノールの溶媒に絶縁被覆物の材料源となるテトラエトキシシランを添加したものにFeNi規則合金の粉末を混合し、さらに添加剤となるアンモニア(NH)水溶液を流し入れる。これにより、テトラエトキシシランとNHが反応してシリカが生成され、FeNi規則合金の粉末の粒子10の周囲が例えば10~20nmの厚みのシリカで被覆される。このようにして、粒子10の周囲に絶縁膜12を形成することができる。 Specifically, when the insulating film 12 is made of silica, FeNi ordered alloy powder is mixed with a solvent of water or ethanol to which tetraethoxysilane, which is a material source of the insulating coating, is added, and further mixed with an additive. Aqueous ammonia (NH 3 ) aqueous solution is poured in. As a result, tetraethoxysilane reacts with NH 3 to generate silica, and the periphery of the particles 10 of the FeNi ordered alloy powder is coated with silica having a thickness of 10 to 20 nm, for example. In this way, the insulating film 12 can be formed around the particles 10.
 また、溶媒となる水に絶縁被覆物の材料源となるケイ酸ナトリウムを添加したものにFeNi規則合金の粉末を混合し、さらに添加剤となる塩酸(HCl)を流し入れる。これにより、ケイ酸ナトリウムとHClが反応してシリカが生成され、FeNi規則合金の粉末の粒子10の周囲が例えば10~20nmの厚みのシリカで被覆される。このようにしても、粒子10の周囲に絶縁膜12を形成することができる。 Also, the FeNi ordered alloy powder is mixed with water that is a solvent, to which sodium silicate that is a material source of the insulating coating is added, and hydrochloric acid (HCl) that is an additive is poured. As a result, sodium silicate and HCl react with each other to generate silica, and the periphery of the FeNi ordered alloy powder particles 10 is coated with silica having a thickness of, for example, 10 to 20 nm. Even in this case, the insulating film 12 can be formed around the particles 10.
 同様に、絶縁膜12をチタニアで構成する場合には、溶媒としてエタノール、絶縁被覆物の材料源としてチタンテトライソプロポキシド、添加剤としてNHを用いることができる。絶縁膜12をアルミナで構成する場合には、溶媒として水、絶縁被覆物の材料源として硝酸アルミニウム6水和物、添加剤としてNHを用いることができる。絶縁膜12をジルコニアで構成する場合には、溶媒として水やエタノール、絶縁被覆物の材料源としてジルコニウムエトキシド、添加剤としてNHを用いることができる。絶縁膜12をイットリアで構成する場合には、溶媒として水、絶縁被覆物の材料源として塩化イットリウム6水和物、添加剤として水酸化ナトリウムを用いることができる。 Similarly, when the insulating film 12 is composed of titania, ethanol can be used as a solvent, titanium tetraisopropoxide as a material source of the insulating coating, and NH 3 as an additive. When the insulating film 12 is made of alumina, water can be used as a solvent, aluminum nitrate hexahydrate as a material source of the insulating coating, and NH 3 as an additive. When the insulating film 12 is made of zirconia, it is possible to use water or ethanol as a solvent, zirconium ethoxide as a material source of the insulating coating, and NH 3 as an additive. When the insulating film 12 is made of yttria, water can be used as a solvent, yttrium chloride hexahydrate as a material source of the insulating coating, and sodium hydroxide as an additive.
 なお、この他の材料によって絶縁膜12を形成する場合についても、生成方法として知られている一般的な方法を適用し、その生成の際にFeNi規則合金の粉末を混合することで、各種材料で構成される絶縁膜12を形成できる。 In addition, also in the case of forming the insulating film 12 by using other materials, a general method known as a production method is applied, and FeNi ordered alloy powder is mixed at the time of the production to form various materials. The insulating film 12 composed of is formed.
 この後、ステップS120において、洗浄処理を行う。洗浄処理では、FeNi規則合金の粒子10を覆うために絶縁膜12を形成した際に、同時に形成された不要被覆材料を取り除く。ここでは、絶縁膜12を形成するための反応後に遠心分離を行って、固体分を回収した後、固体分に反応時の溶媒を加えて攪拌し、さらに再度遠心分離して固形分を回収するという作業を複数回繰り返すことで、不要被覆材料を取り除いている。これにより、絶縁膜12で覆われたFeNi規則合金の粒子10のみが選別される。 After that, a cleaning process is performed in step S120. In the cleaning process, when the insulating film 12 is formed to cover the FeNi ordered alloy particles 10, the unnecessary coating material formed at the same time is removed. Here, after the reaction for forming the insulating film 12 is performed by centrifugation to collect the solid content, the solvent at the time of the reaction is added to the solid content, the mixture is stirred, and then the solid content is recovered by centrifugation again. The unnecessary coating material is removed by repeating the above process a plurality of times. As a result, only the FeNi ordered alloy particles 10 covered with the insulating film 12 are selected.
 続いて、ステップS130において焼成処理を行う。例えば、絶縁膜12で粒子10を覆ったFeNi規則合金に対して所定温度で所定時間の加熱を行うことで、絶縁膜12を焼成する。粒子10を絶縁膜12で覆っただけの状態では、絶縁膜12の結晶性が良好でない場合がある。例えば、絶縁膜12を酸化物で構成したい場合、粒子10の被覆物がステップS110の被覆処理のみでは水酸化物の状態で存在していることもあり得、これを焼成によって酸化物にすることで、絶縁膜12をより好ましい結晶構造にする。 Subsequently, a firing process is performed in step S130. For example, the FeNi ordered alloy in which the particles 10 are covered with the insulating film 12 is heated at a predetermined temperature for a predetermined time, whereby the insulating film 12 is fired. When the particles 10 are simply covered with the insulating film 12, the crystallinity of the insulating film 12 may not be good. For example, when it is desired to form the insulating film 12 with an oxide, the coating of the particles 10 may be present in a hydroxide state only by the coating process of step S110, and this is converted into an oxide by firing. Then, the insulating film 12 is made to have a more preferable crystal structure.
 この後、ステップS140において評価処理を行うことで、良品と不良品の選定を行う。例えば、走査電子顕微鏡(SEM)もしくはX線回折(XRD)による出来映え評価により、絶縁膜12が粒子10を均等に覆っているか、絶縁膜12の膜厚や結晶性が良好であるかなどの評価を行い、良品と評価されたものを磁性材料として使用する。このようにして、絶縁被覆物形成処理が終了となる。 After that, a non-defective product and a defective product are selected by performing an evaluation process in step S140. For example, whether the insulating film 12 evenly covers the particles 10 or whether the insulating film 12 has good film thickness and crystallinity is evaluated by a quality evaluation by a scanning electron microscope (SEM) or X-ray diffraction (XRD). Then, the material evaluated to be good is used as the magnetic material. In this way, the insulating coating forming process is completed.
 以上のようにして、本実施形態のL1型のFeNi規則合金を製造することができる。このようして製造したL1型のFeNi規則合金の粒子10は、非磁性で、絶縁性で、化学修飾し易い化学状態で、かつ、化学的安定性も高い絶縁膜12によって覆われている。このため、磁石特性の低下を抑制できると共に、ボンド磁石に適用したとしても、複合材に対する濡れ性が良好で、かつ優れた化学的安定性を有するFeNi不規則合金とすることが可能となる。したがって、磁石特性の良好なL1型規則構造のFeNi規則合金となり、磁石特性の良好な磁性材料として用いることが可能となる。 As described above, it is possible to manufacture the L1 0 type FeNi ordered alloy of the present embodiment. Particles 10 of such and L1 0 type FeNi ordered alloy, prepared is a non-magnetic, an insulating, in an easy chemical state chemically modified, and are covered by the high dielectric film 12 is also chemical stability .. For this reason, it is possible to suppress the deterioration of the magnetic properties, and it is possible to obtain a FeNi disordered alloy having good wettability to the composite material and excellent chemical stability even when applied to a bonded magnet. Therefore, it becomes an FeNi ordered alloy having an L1 0 type ordered structure with good magnet characteristics and can be used as a magnetic material with good magnet characteristics.
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対して絶縁被覆物の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second embodiment)
The second embodiment will be described. In the present embodiment, the configuration of the insulating coating is changed from that of the first embodiment, and the other points are the same as those of the first embodiment, so only the portions different from the first embodiment will be described.
 上記第1実施形態では、絶縁被覆物として絶縁膜12を例に挙げたが、本実施形態では、粉状物を用いる。 In the first embodiment described above, the insulating film 12 is used as an example of the insulating coating, but in the present embodiment, a powdery material is used.
 図4に示すように、本実施形態では、L1型規則構造のFeNi規則合金の粒子10の周囲が絶縁被覆物となる粉状物の絶縁体13によって覆われた状態となっている。このような粉状物で構成される絶縁体13によって粒子10を覆うようにしても良い。その場合、絶縁体13によって粒子10の周囲の全域を完全に覆うことができず、粒子10のうち絶縁体13から露出した部分において耐候性、化学的安定性が低下し得る。しかしながら、全域ではなくても粒子10の周囲の広範囲に渡って絶縁体13で覆われることになるため、絶縁体13で覆っていない場合と比較すれば、耐候性、化学的安定性も向上することが可能となる。 As shown in FIG. 4, in the present embodiment, in a state of surrounding the particles 10 of FeNi ordered alloy L1 0 ordered structure is covered by an insulator 13 of powdery substance made of an insulating coating. The particles 10 may be covered with the insulator 13 composed of such a powdery material. In that case, the entire area around the particle 10 cannot be completely covered by the insulator 13, and the weather resistance and the chemical stability of the portion of the particle 10 exposed from the insulator 13 may be reduced. However, since it is covered with the insulator 13 over a wide area around the particle 10 even if it is not over the entire area, weather resistance and chemical stability are also improved as compared with the case where the particles are not covered with the insulator 13. It becomes possible.
 このように粒子10を粉状物で構成される絶縁体13で覆うようにするには、絶縁被覆物形成処理における被覆処理として、次のような処理を行えば良い。 In order to cover the particles 10 with the insulator 13 composed of a powdery material in this way, the following processing may be performed as the coating processing in the insulating coating forming processing.
 例えば、第1実施形態で説明した図3のステップS100で用意したFeNi規則合金の粉末を、溶媒に絶縁被覆材料の粉状物を混合した溶液に混入する。これにより、粒子10の周囲を絶縁体13で覆うことができる。また、溶媒に絶縁被覆材料の粉状物を混合しなくても、FeNi規則合金の粉末に絶縁被覆材料の粉状物を直接まぶすことにより、粒子10の周囲を絶縁体13で覆うこともできる。 For example, the FeNi ordered alloy powder prepared in step S100 of FIG. 3 described in the first embodiment is mixed into a solution in which a powder of an insulating coating material is mixed with a solvent. Thereby, the periphery of the particles 10 can be covered with the insulator 13. Further, even if the powder of the insulating coating material is not mixed with the solvent, the powder of the FeNi ordered alloy may be directly sprinkled with the powder of the insulating coating material to cover the particles 10 with the insulator 13. ..
 その後は、絶縁被覆物形成処理の残りの各処理、すなわち図3のステップS120の洗浄処理、ステップS130の焼成処理、ステップS140の評価処理を経て、本実施形態にかかるL1型規則構造のFeNi規則合金を得ることができる。 Thereafter, each remaining processing of the insulating coating-forming process, i.e. the washing process in step S120 in FIG. 3, the firing process in the step S130, through the evaluation process in step S140, FeNi of L1 0 ordered structure according to this embodiment An ordered alloy can be obtained.
 (第3実施形態)
 第3実施形態について説明する。本実施形態は、第1、第2実施形態に対してFeNi規則合金の製造方法を変更したものであり、その他については第1、第2施形態と同様であるため、第1、第2実施形態と異なる部分についてのみ説明する。なお、ここでは第1実施形態のように絶縁膜12を適用する場合について本実施形態を適用した場合を例に挙げるが、第2実施形態のように粉状物で構成される絶縁体13を適用する場合にも本実施形態を適用できる。
(Third Embodiment)
A third embodiment will be described. In the present embodiment, the manufacturing method of the FeNi ordered alloy is changed from the first and second embodiments, and the other points are the same as those in the first and second embodiments. Only parts different from the form will be described. Note that here, the case where the present embodiment is applied to the case where the insulating film 12 is applied as in the first embodiment will be described as an example, but the insulator 13 formed of a powdery material as in the second embodiment will be described. The present embodiment can be applied when applied.
 本実施形態では、FeNi規則合金を製造するために用いるFeNi不規則合金の段階で絶縁膜12を形成し、そこからFeNi不規則合金を製造する。このようなFeNi不規則合金の製造方法について、図5に示される製造工程を示したフローチャートおよび図6に示す図5の各工程と対応する粒子断面構造を示した図を参照して説明する。なお、図6は粒子断面構造を示しているが、結晶構造を見やすくするために、一部ハッチングを示していない。 In the present embodiment, the insulating film 12 is formed at the stage of the FeNi disordered alloy used to manufacture the FeNi ordered alloy, and the FeNi disordered alloy is manufactured from there. A method of manufacturing such a FeNi disordered alloy will be described with reference to a flowchart showing the manufacturing process shown in FIG. 5 and a diagram showing a particle cross-sectional structure corresponding to each process of FIG. 5 shown in FIG. Although FIG. 6 shows the particle cross-sectional structure, hatching is not partly shown in order to make the crystal structure easy to see.
 まず、図5のステップS200では、上記した図3のステップS100で説明したように、周知の方法によりFeNi不規則合金の粉末を作成する。これにより、FeNi不規則合金の粉末の粒子20として、図6の状態(a)に示す状態のものを得ることができる。この粒子20は、多結晶となっており、結晶中に多くの粒界が存在した状態となっている。この粒子20の粒径については、最終的に得たいL1型のFeNi規則合金と同様に200~500nm程度の粒径になっているのが好ましい。ただし、後述する加熱処理などで緻密化などが行われ、粒径が変化し得ることから、必ずしも200~500nmの粒径になっている必要はない。 First, in step S200 of FIG. 5, as described in step S100 of FIG. 3 above, FeNi disordered alloy powder is prepared by a known method. As a result, the particles 20 of the FeNi disordered alloy powder having the state shown in the state (a) of FIG. 6 can be obtained. The particles 20 are polycrystalline, and many grain boundaries are present in the crystals. The particle size of the particles 20, what is ultimately similar to the L1 0 type FeNi ordered alloy to be obtained becomes to a particle size of about 200 ~ 500 nm is preferred. However, since the particle size may change due to densification or the like due to the heat treatment described later, the particle size does not necessarily have to be 200 to 500 nm.
 次に、ステップS210に示すように、絶縁被覆物形成処理を行う。具体的には、絶縁被覆物形成処理としては、第1実施形態で説明した図3のステップS110~S140の各処理を順に行う。これにより、図6の状態(b)に示すように、粒子20の周囲を絶縁膜12で覆うことができる。 Next, as shown in step S210, an insulation coating forming process is performed. Specifically, as the insulating coating formation process, each process of steps S110 to S140 of FIG. 3 described in the first embodiment is sequentially performed. Thereby, as shown in the state (b) of FIG. 6, the periphery of the particles 20 can be covered with the insulating film 12.
 続いて、ステップS220に示すように、加熱処理を行う。例えば、水素を雰囲気ガスとして用い、温度を200~800℃とした加熱処理を1時間行う。このとき、上記したステップS210において、各粒子20を絶縁膜12で被覆している。このため、加熱処理を行っても隣接する粒子20同士が孤立した状態にでき、図6の状態(c)に示すように、絶縁膜12の内部において緻密化され、粒界の少ない結晶構造、好ましくは単結晶になったFeNi不規則合金の粒子20を得ることができる。なお、ここでいう「孤立した状態」とは、粒子20同士が引っ付いて一体化した状態になっておらず物理的に独立していて、互いに離れることができる状態であることを意味している。 Subsequently, as shown in step S220, heat treatment is performed. For example, heat treatment is performed for 1 hour at a temperature of 200 to 800° C. using hydrogen as an atmosphere gas. At this time, in step S210 described above, each particle 20 is covered with the insulating film 12. Therefore, even if the heat treatment is performed, the adjacent particles 20 can be isolated from each other, and as shown in the state (c) of FIG. 6, the insulating film 12 is densified and has a crystal structure with few grain boundaries. It is possible to obtain the particles 20 of the FeNi disordered alloy which are preferably single crystals. The "isolated state" here means that the particles 20 are not stuck and integrated with each other, and are physically independent and can be separated from each other. ..
 この後、ステップS230に示すように、窒化脱窒素処理を行う。この窒化脱窒素法については、第1実施形態で説明した図3のステップS110と同様の方法で行えば良い。このようにして、窒化脱窒素処理を行うことで、L1型のFeNi規則合金の粉末が得られる。すなわち、絶縁膜12によって覆われたFeNi不規則合金の粒子20が、窒化脱窒素処理により、図6の状態(d)に示すように、図1に示した構造のL1型のFeNi規則合金、つまりFeNi超格子の粒子10となる。また、孤立した状態のFeNi不規則合金の粒子20に対して窒化脱窒素処理を行っていることから、L1型のFeNi規則合金の粒子10についても、隣接する粒子10同士が孤立した状態となる。 Thereafter, as shown in step S230, nitriding denitrification treatment is performed. This nitriding denitrification method may be performed by the same method as step S110 of FIG. 3 described in the first embodiment. In this way, by performing the nitriding denitrification, powder L1 0 type FeNi ordered alloy is obtained. That is, FeNi disordered alloy particles 20 covered with insulating film 12, the nitride denitrification treatment, as shown in the state of FIG. 6 (d), L1 0 type FeNi ordered alloy of the structure shown in FIG. 1 That is, it becomes the particles 10 of the FeNi superlattice. Further, since it is nitrided denitrification to the particle 20 of FeNi disordered alloy of isolated state, for the particles 10 of L1 0 type FeNi ordered alloy, and a state between particles 10 adjacent isolated Become.
 以上のように、FeNi不規則合金の粒子20を絶縁膜12で覆ってから、窒化脱窒素処理を行うようにして、L1型のFeNi規則合金を製造しても良い。このようにしても、第1実施形態と同様の効果を得ることができる。さらに、加熱処理によってFeNi不規則合金の緻密化を行ってから、窒化脱窒素処理を行うことになるため、出来上がったFeNi規則合金に含まれる気孔の体積分率を低下させることが可能となり、より磁石特性の向上を図ることが可能となる。 As described above, since covering the particles 20 of FeNi disordered alloy with an insulating film 12, so as to perform the nitriding denitrification may produce L1 0 type FeNi ordered alloy. Even in this case, the same effect as that of the first embodiment can be obtained. Furthermore, since the FeNi disordered alloy is densified by the heat treatment and then the nitriding denitrification treatment is performed, it is possible to reduce the volume fraction of the pores contained in the finished FeNi ordered alloy. It is possible to improve the magnet characteristics.
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
Although the present disclosure has been described based on the above-described embodiment, the present disclosure is not limited to the embodiment and includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more, or less than them are also within the scope and spirit of the present disclosure.
 例えば、上記各実施形態では窒化処理、脱窒素処理、被覆物形成処理、加熱処理の条件の一例について説明した。しかしながら、ここで説明したのは各条件の一例を示したに過ぎない。 For example, in each of the above-described embodiments, an example of conditions for nitriding treatment, denitrifying treatment, coating forming treatment, and heat treatment has been described. However, what has been described here is merely an example of each condition.
 さらに、上記実施形態にかかるL1型のFeNi規則合金は、磁石材料や磁気記録材料等の磁性材料に適用されるが、このFeNi規則合金の適用範囲は、磁性材料に限定されるものではない。 Further, L1 0 type FeNi ordered alloy according to the embodiment is applied to a magnetic material such as magnetic materials and magnetic recording materials, the scope of the FeNi ordered alloy is not limited to a magnetic material ..

Claims (8)

  1.  L1型の規則構造の粒子(10)を有し、該粒子の周囲が絶縁被覆物(12、13)によって被覆されているFeNi規則合金。 L1 0 type have a particle ordered structure (10) of, FeNi ordered alloy surrounding said particles are coated with an insulating coating (12, 13).
  2.  前記絶縁被覆物は、絶縁膜(12)である請求項1に記載のFeNi規則合金。 The FeNi ordered alloy according to claim 1, wherein the insulating coating is an insulating film (12).
  3.  前記絶縁被覆物は、粉状物の絶縁体(13)である請求項1に記載のFeNi規則合金。 The FeNi ordered alloy according to claim 1, wherein the insulating coating is a powdery insulator (13).
  4.  前記絶縁被覆物は、III~VII族、XIII~XVI族元素の酸化物である請求項1ないし3のいずれか1つに記載のFeNi規則合金。 The FeNi ordered alloy according to any one of claims 1 to 3, wherein the insulating coating is an oxide of a group III-VII group or a group XIII-XVI element.
  5.  請求項1ないし4のいずれか1つに記載のFeNi規則合金を含んでなる磁性材料。 A magnetic material comprising the FeNi ordered alloy according to any one of claims 1 to 4.
  6.  L1型の規則構造を有するFeNi規則合金の製造方法であって、
     FeNi規則合金の粉末を用意することと、
     前記FeNi規則合金の粉末の粒子(10)の周囲を絶縁被覆物(12、13)で覆う絶縁被覆物形成処理を行うことにより、前記粒子が前記絶縁被覆物によって覆われたL1型のFeNi規則合金を得ることと、を含むFeNi規則合金の製造方法。
    A method of manufacturing a FeNi ordered alloy having an L1 0 type ordered structure,
    Preparing FeNi ordered alloy powder,
    An L1 0 type FeNi in which the particles are covered with the insulating coating is formed by performing an insulating coating forming process in which the particles of the FeNi ordered alloy powder (10) are covered with an insulating coating (12, 13). A method for producing an FeNi ordered alloy, comprising: obtaining an ordered alloy.
  7.  前記絶縁被覆物形成処理として、前記絶縁被覆物の材料源が添加された溶媒中に、前記FeNi規則合金の粉末を混合し、さらに前記材料源と反応して前記絶縁被覆物を生成する添加剤を加えることにより、前記粒子を前記絶縁被覆物にて覆う、請求項6に記載のFeNi規則合金の製造方法。 As the insulating coating forming treatment, an additive that mixes the powder of the FeNi ordered alloy in a solvent to which the material source of the insulating coating is added, and further reacts with the material source to form the insulating coating. The method for producing an FeNi ordered alloy according to claim 6, wherein the particles are covered with the insulating coating by adding.
  8.  L1型の規則構造を有するFeNi規則合金の製造方法であって、
     FeNi不規則合金の粉末の粒子(20)の周囲を絶縁被覆物(12、13)で覆う絶縁被覆物形成処理を行うことと、
     前記FeNi不規則合金の粉末の粒子を加熱処理によって緻密化することと、
     前記緻密化が行われた前記FeNi不規則合金の粒子を窒化する窒化処理を行った後、前記窒化処理された前記FeNi不規則合金の粒子から窒素を除去する脱窒素処理を行うことにより、周囲が前記絶縁被覆物で覆われたL1型のFeNi規則合金の粒子(10)を得ることと、を含むFeNi規則合金の製造方法。
    A method of manufacturing a FeNi ordered alloy having an L1 0 type ordered structure,
    Performing an insulating coating forming process of covering the periphery of the powder particles (20) of the FeNi disordered alloy with the insulating coating (12, 13);
    Densifying particles of the powder of the FeNi disordered alloy by heat treatment;
    After performing a nitriding treatment for nitriding the densified particles of the FeNi disordered alloy, a denitrification treatment for removing nitrogen from the nitrided particles of the FeNi disordered alloy is performed to There manufacturing method of FeNi ordered alloy comprising, a to obtain particles (10) of the L1 0 type FeNi ordered alloy covered with the insulating coating.
PCT/JP2020/006853 2019-02-22 2020-02-20 FeNi ORDERED ALLOY, METHOD FOR PRODUCING FeNi ORDERED ALLOY, AND MAGNETIC MATERIAL CONTAINING FeNi ORDERED ALLOY WO2020171175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-030741 2019-02-22
JP2019030741A JP7243282B2 (en) 2019-02-22 2019-02-22 FeNi ordered alloy, method for producing FeNi ordered alloy, and magnetic material containing FeNi ordered alloy

Publications (1)

Publication Number Publication Date
WO2020171175A1 true WO2020171175A1 (en) 2020-08-27

Family

ID=72144495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006853 WO2020171175A1 (en) 2019-02-22 2020-02-20 FeNi ORDERED ALLOY, METHOD FOR PRODUCING FeNi ORDERED ALLOY, AND MAGNETIC MATERIAL CONTAINING FeNi ORDERED ALLOY

Country Status (2)

Country Link
JP (1) JP7243282B2 (en)
WO (1) WO2020171175A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098384A (en) * 2011-11-01 2013-05-20 Sumitomo Electric Ind Ltd Dust core
JP2014105376A (en) * 2012-11-29 2014-06-09 Kyushu Univ METHOD OF MANUFACTURING L10 TYPE FeNi REGULAR ALLOY AND L10 TYPE FeNi REGULAR ALLOY
JP2016063170A (en) * 2014-09-22 2016-04-25 株式会社東芝 Magnetic member, manufacturing method thereof, and inductor element
JP2017075388A (en) * 2015-10-14 2017-04-20 株式会社デンソー FeNi REGULAR ALLOY, MANUFACTURING METHOD OF FeNi REGULAR ALLOY AND MAGNETIC MATERIAL CONTAINING FeNi REGULAR ALLOY
JP2018195804A (en) * 2017-05-17 2018-12-06 株式会社デンソー MAGNETIC MATERIAL CONTAINING FeNi ORDERED ALLOY AND MANUFACTURING METHOD OF THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098384A (en) * 2011-11-01 2013-05-20 Sumitomo Electric Ind Ltd Dust core
JP2014105376A (en) * 2012-11-29 2014-06-09 Kyushu Univ METHOD OF MANUFACTURING L10 TYPE FeNi REGULAR ALLOY AND L10 TYPE FeNi REGULAR ALLOY
JP2016063170A (en) * 2014-09-22 2016-04-25 株式会社東芝 Magnetic member, manufacturing method thereof, and inductor element
JP2017075388A (en) * 2015-10-14 2017-04-20 株式会社デンソー FeNi REGULAR ALLOY, MANUFACTURING METHOD OF FeNi REGULAR ALLOY AND MAGNETIC MATERIAL CONTAINING FeNi REGULAR ALLOY
JP2018195804A (en) * 2017-05-17 2018-12-06 株式会社デンソー MAGNETIC MATERIAL CONTAINING FeNi ORDERED ALLOY AND MANUFACTURING METHOD OF THE SAME

Also Published As

Publication number Publication date
JP2020132977A (en) 2020-08-31
JP7243282B2 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
JP5099480B2 (en) Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder
TWI360139B (en)
WO2012132783A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
JP2009194262A (en) Method for manufacturing rare earth magnet
KR20180103771A (en) Dust Core
JP2008277775A (en) Dust core and its manufacturing method
JP6461828B2 (en) Method for producing magnetic particles
JP6337963B2 (en) Magnetic material carrying magnetic alloy particles and method for producing the magnetic material
WO2020171175A1 (en) FeNi ORDERED ALLOY, METHOD FOR PRODUCING FeNi ORDERED ALLOY, AND MAGNETIC MATERIAL CONTAINING FeNi ORDERED ALLOY
JP2022008547A (en) Si-CONTAINING Fe-BASED ALLOY POWDER PROVIDED WITH SiO2-CONTAINING COATING FILM AND MANUFACTURING METHOD THEREOF
JPH04229510A (en) Substrate for ceramic superconductor having nickel as basic material
WO2020171174A1 (en) FeNi ORDERED ALLOY, METHOD FOR MANUFACTURING FeNi ORDERED ALLOY, AND MAGNETIC MATERIAL INCLUDING FeNi ORDERED ALLOY
JP2007324210A (en) Soft magnetic material and dust core
JP2005303006A (en) Method of manufacturing dust core and dust core
JP2007273929A (en) Insulation coating soft magnetic metallic powder, pressed powder core, and their manufacturing method
JP5472694B2 (en) Composite sintered body of aluminum oxide and iron, and method for producing the same
EP3511960B1 (en) Compressed powder magnetic core and magnetic core powder, and production method therefor
WO2017110545A1 (en) Powder for dust cores, method for producing same, dust core and method for producing dust core
KR20130111309A (en) Method of forming ferrite thin film and ferrite thin film obtained by the method
JPH04160102A (en) Composite material and its production
KR101972656B1 (en) Preparation method for metal and metal ceramic phase separated composite structured ferrite
JP2005200286A (en) Method of manufacturing boron nitride cluster and boron nitride microbody
JP7493717B2 (en) Soft Magnetic Alloy Powder
CN111261358A (en) Insulating coated soft magnetic alloy powder
JP6634371B2 (en) MgO-based ceramic film, member for semiconductor manufacturing equipment, and method of manufacturing MgO-based ceramic film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759811

Country of ref document: EP

Kind code of ref document: A1