JPH04160102A - Composite material and its production - Google Patents

Composite material and its production

Info

Publication number
JPH04160102A
JPH04160102A JP2285638A JP28563890A JPH04160102A JP H04160102 A JPH04160102 A JP H04160102A JP 2285638 A JP2285638 A JP 2285638A JP 28563890 A JP28563890 A JP 28563890A JP H04160102 A JPH04160102 A JP H04160102A
Authority
JP
Japan
Prior art keywords
metal
powder
oxide
composite material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2285638A
Other languages
Japanese (ja)
Inventor
Osamu Inoue
修 井上
Yasuhiro Sugaya
康博 菅谷
Takeshi Hirota
健 廣田
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2285638A priority Critical patent/JPH04160102A/en
Publication of JPH04160102A publication Critical patent/JPH04160102A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain high insulating property while maintaining the amt. of insulating material small by forming a thin layer on the surface of metal powder particle in a manner that the thin layer consists of insulating oxide of such metal the oxide of which has lower free formation energy than the metal of the powder particle to obtain a composite powder, and then compacting the powder to specified relative density or higher. CONSTITUTION:When Fe-Si-Al alloy is used, a spherical powder of this alloy is treated at specified temp. in an Ar gas atmosphere containing a proper amt. of O2 gas to form a film on the powder surface. This film formed on the powder consists of an insulating oxide material containing not only Al and O but a considerable amt. of Fe and partly contains iron oxide. This composite powder is subjected to hot press sintering in an Ar gas atmosphere or the like under specified conditions to obtain a molded body having >=95% relative density.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子部品・電子機器において使用される複合
材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to composite materials used in electronic parts and equipment.

従来の技術 従来より電子部品・電子機器には樹脂を母相材料として
セラミックスを充填材としたものや、金属な母相材料と
してセラミックス等を複合材としたもの等の複合材料が
用いられてきた。これらのなかで、金属を分散粒子とし
て絶縁体で分離した複合材料は、例えば高飽和磁束密度
金属/絶縁体系のように、電気抵抗を大きくして高周波
領域の渦電流損失を低減させる等、金属と絶縁体の性質
を合わせ持つ、従来にない特性の新材料を作製しようと
するものであった。
Conventional technology Traditionally, composite materials have been used for electronic parts and devices, such as those with resin as a matrix material and ceramics as a filler, and composite materials with ceramics as a metallic matrix material. . Among these, composite materials in which metal is separated as dispersed particles by an insulator are used, for example, high saturation magnetic flux density metal/insulator systems, which increase electrical resistance and reduce eddy current loss in the high frequency region. The aim was to create a new material with unprecedented properties that had both the properties of an insulator and an insulator.

発明が解決しようとする課題 しかしながら従来の金属/絶縁体系複合材料は、絶縁性
を充分にとるためには、母相となる絶縁体連続相の量を
多くしなければならず、金属粒子の間隔が大きいもので
あった。このような構成では、例えば前述の複合磁性体
材料で磁芯に利用する場合、磁性金属の持つ高い磁束密
度が絶縁材料により薄められてしまい、かつ絶縁材料の
磁気抵抗のために透磁率も大幅に低下するという問題点
があった。
Problems to be Solved by the Invention However, with conventional metal/insulator composite materials, in order to obtain sufficient insulation properties, it is necessary to increase the amount of the insulator continuous phase that serves as the matrix, and the spacing between metal particles is reduced. was a big one. In such a configuration, for example, if the aforementioned composite magnetic material is used for the magnetic core, the high magnetic flux density of the magnetic metal will be diluted by the insulating material, and the magnetic permeability will also significantly increase due to the magnetic resistance of the insulating material. There was a problem that the value decreased.

そこで金属粒子の表面に絶縁体をこく薄くコーティング
した後これを高密度に充填することにより、金属本来の
特性が損なわれないようにする事も試みられているが、
絶縁体の割合が少なくなるほど、また高密度となるほど
分散粒子同士の直接接触が生じ易くなり、絶縁性が低下
して期待した特性が得られていなかった。さらに、ある
程度高電気抵抗の試料が得られた場合でも、これを熱処
理すると、抵抗低下が生しるという問題点があった。
Therefore, attempts have been made to coat the surface of metal particles with a thin layer of insulator and then fill it with high density to prevent the inherent properties of the metal from being impaired.
As the proportion of the insulator decreases and as the density increases, direct contact between dispersed particles becomes more likely to occur, resulting in a decrease in insulation properties and the failure to obtain the expected characteristics. Furthermore, even if a sample with a certain degree of high electrical resistance is obtained, heat treatment of this sample results in a decrease in resistance.

本発明は、絶縁体の含有量を低くおさえたまま、高絶縁
性と高密度を合わせ持ち、また、熱処理を受けても電気
抵抗低下が生じにくい、複合材料およびその製造方法を
提供する事を目的とする。
The present invention aims to provide a composite material that has both high insulation properties and high density while keeping the content of insulators low, and that does not easily cause a decrease in electrical resistance even when subjected to heat treatment, and a method for manufacturing the same. purpose.

課題を解決するための手段 本発明は、粒子状の金属または合金Aの表面が、金属ま
たは合金Aに含まれる成分の中で最も酸化物の生成自由
エネルギーの大きい金属元素よりも、より小さい酸化物
の生成自由エネルギーを持つ金属Bを含む絶縁性酸化物
で実質上覆われた事を特徴とする複合材料である。
Means for Solving the Problems The present invention provides that the surface of the particulate metal or alloy A has an oxidation layer smaller than that of the metal element having the largest free energy of oxide formation among the components contained in the metal or alloy A. This is a composite material characterized by being substantially covered with an insulating oxide containing a metal B that has the free energy of forming a substance.

また、本発明は、粉末粒子状の金属の表面に、その金属
よりも酸化物の生成自由エネルギーの小さい金属の絶縁
性酸化物の薄層をほぼ均一に覆うように形成して複合粉
末とし、この粉末を、高温高圧力下で、相対密度95パ
ーセント以上に成形する事を特徴とする複合材料の製造
方法である。
In addition, the present invention provides a composite powder by forming a thin layer of an insulating oxide of a metal whose oxide formation free energy is smaller than that of the metal on the surface of a metal in the form of powder particles so as to almost uniformly cover the surface of the metal. This method of manufacturing a composite material is characterized by molding this powder to a relative density of 95% or more under high temperature and high pressure.

作用 本発明は、粒子状の金属または合金への表面が、金属ま
たは合金Aに含まれる成分の中で最も酸化物の生成自由
エネルギーの大きい金属元素よりも、より小さい酸化物
の生成自由エネルギーを持つ金属Bを含む絶縁性酸化物
で実質上覆われているので、酸化皮膜自身が絶縁皮膜が
破損して露出した箇所の金属表面にwI索を与える役割
をし、皮膜を修復する事により、絶縁性を保ったまま複
合材料を高密度化出来るものと考えられる。また、熱処
理による抵抗低下は、試料内部での皮膜の焼結等による
金属表面の露出と拡散等によるその接触によって生じる
と考えられるが、やはり同様に、皮膜が酸素を供給して
補修する効果があり、抵抗低下しにくい。
Effect of the present invention The surface of the particulate metal or alloy has a lower free energy of oxide formation than the metal element which has the largest free energy of oxide formation among the components contained in the metal or alloy A. Since it is substantially covered with an insulating oxide containing metal B, the oxide film itself serves to provide a wire to the metal surface where the insulation film is damaged and exposed, and by repairing the film, It is thought that it is possible to increase the density of composite materials while maintaining their insulation properties. In addition, the decrease in resistance due to heat treatment is thought to be caused by exposure of the metal surface due to sintering of the film inside the sample and contact with it due to diffusion, etc., but it is also believed that the film has a repairing effect by supplying oxygen. Yes, resistance is less likely to decrease.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

本発明に於て粉末粒子状金属をFe−5i−Al、Fe
−Ni、  Fe−5i、  Fe−AL  No−N
i−Fe等の磁性体を用いると、高周波においても高い
飽和磁束密度を有する複合磁性材料となる。一方、Al
、Si等とすると、IC基板等に有用な、高熱伝導性と
絶縁性を合わせ持った材料となる。以下、これらの材料
を例にとって本発明を説明する。
In the present invention, the powder particulate metal is Fe-5i-Al, Fe
-Ni, Fe-5i, Fe-AL No-N
When a magnetic material such as i-Fe is used, a composite magnetic material having a high saturation magnetic flux density even at high frequencies can be obtained. On the other hand, Al
, Si, etc., it becomes a material that has both high thermal conductivity and insulation properties and is useful for IC boards and the like. The present invention will be explained below using these materials as examples.

実施例1 組成がFe−84wt%、Si−10wt%、Al−6
wt%、のFe−5i−Al合金(センダスト合金)の
球状粉末(平均粒子径約20μm)を、700℃で0.
01%02ガス−残A「ガス雰囲気化または20%02
ガス−残Arガス雰囲気化で種々の時間処理し、その表
面に酸化膜を種々の厚みで形成させた。酸化膜の組成を
、熱処理時の重量増加およびオージェ分光分析/ A 
rスパッターによるデプスプロファイルにより評価した
。その結果、酸素濃度0.01%の雰囲気ガス中で熱処
理した膜は膜厚とは関係なくAlと0のみが検出され、
酸化膜中に他の金属成分は含まれておらず、酸化アルミ
ニウム皮膜となっていた。一方酸素濃度20%では、酸
化膜中にAlとO以外にFeがかなりの置台まれており
、一部鉄酸化物を含む皮膜となっていた。
Example 1 Composition is Fe-84wt%, Si-10wt%, Al-6
wt% of Fe-5i-Al alloy (Sendust alloy) spherical powder (average particle diameter of about 20 μm) was heated at 700°C with 0.
01%02 gas - Remaining A "Gas atmosphere or 20%02
The samples were treated in a gas-remaining Ar gas atmosphere for various times to form oxide films with various thicknesses on the surfaces. The composition of the oxide film was determined by weight increase during heat treatment and Auger spectroscopy/A
Evaluation was made by depth profile obtained by r sputtering. As a result, only Al and 0 were detected in the film heat-treated in an atmospheric gas with an oxygen concentration of 0.01%, regardless of the film thickness.
The oxide film contained no other metal components and was an aluminum oxide film. On the other hand, at an oxygen concentration of 20%, a considerable amount of Fe was present in addition to Al and O in the oxide film, resulting in a film containing a portion of iron oxide.

これらの粉末を成形し、1000℃、1000J/c+
n2の圧力で2時閏、A「ガス雰囲気下ホットプレス焼
結を行い、相対密度約98%(気孔率約2%)の高密度
複合体を作製した。
These powders were molded and heated at 1000℃ and 1000J/c+.
Hot press sintering was performed in a gas atmosphere at a pressure of n2, and a high-density composite with a relative density of about 98% (porosity of about 2%) was produced.

得られた焼結体より、2XIX12mmの柱状試料を切
り出し、電気抵抗(テスターによる)、磁気特性を測定
した。また、これらの試料を950℃で1気圧のArガ
ス中で20時間熱処理し、再度抵抗を測定した。結果を
表1に示した。
A columnar sample of 2XIX12 mm was cut out from the obtained sintered body, and its electrical resistance (using a tester) and magnetic properties were measured. Further, these samples were heat treated at 950° C. in 1 atm Ar gas for 20 hours, and the resistance was measured again. The results are shown in Table 1.

(以下余白) 表1(複合体の緒特性) 表1より明かなように、高い酸素濃度で熱処理した、鉄
酸化物を含む粉末を緻密化したものは、AlとOのみの
絶縁膜を持つものよりも、同程度の酸化膜厚で比較した
場合、高い電気抵抗が得られ易く、この傾向は膜厚が薄
い場合はど高かった。
(Left below) Table 1 (Characteristics of the composite) As is clear from Table 1, the densified powder containing iron oxide, which has been heat-treated at a high oxygen concentration, has an insulating film consisting only of Al and O. When compared with the same oxide film thickness, it is easier to obtain high electrical resistance, and this tendency is even higher when the film thickness is thinner.

この結果、その比透磁率は、Fe含有膜被覆粉末より作
製した試料の方が、その測定周波数依存性が弱くなり、
膜厚55−1On程度でI MHzまで、はぼ1000
程度の比透磁率を示した。一方、Al−0系皮膜の物で
は、510nI11程度の膜厚では、まだ電気抵抗が十
分高くないために、渦電流損失によると考えられる、高
周波での透磁率の低下が顕著であフた。なお、飽和磁束
密度については、いずれの試料でもほとんど差が見られ
なかった。
As a result, the dependence of the relative magnetic permeability on the measurement frequency is weaker in the sample made from the Fe-containing film-coated powder,
Up to I MHz with a film thickness of about 55-1 On, approximately 1000
It showed a relative magnetic permeability of about On the other hand, in the case of the Al-0 based film, at a film thickness of about 510 nI11, the electrical resistance was not yet sufficiently high, so the magnetic permeability at high frequencies was significantly reduced, which is thought to be due to eddy current loss. Note that there was almost no difference in saturation magnetic flux density between the samples.

次にそれぞれの試料を、熱処理した結果では、酸化皮膜
にFe成分を含まない試料のほうが、抵抗低下が顕著で
あった。
Next, each sample was heat-treated, and the results showed that the resistance drop was more remarkable in the sample whose oxide film did not contain Fe components.

実施例2 平均粒径約10μ剛のSi金属粉末を1100℃で空気
中10時間熱処理し、その表面に酸化膜を形成させた。
Example 2 Si metal powder having an average particle size of about 10 μm was heat treated in air at 1100° C. for 10 hours to form an oxide film on its surface.

また一方、Al、TiのイソプロポキシドおよびFe、
Coのアセチルアセトナートをそれぞれエタノールに溶
解した溶液を用意し、これらの溶液にSi粉末を投入し
て攪拌した後乾燥し、。
On the other hand, Al, Ti isopropoxide and Fe,
A solution of Co acetylacetonate dissolved in ethanol was prepared, and Si powder was added to these solutions, stirred, and then dried.

さらに600℃で空気中加熱処理した。この溶液処理/
熱処理は数回繰り返した行った。
Further, heat treatment was performed in air at 600°C. This solution treatment/
The heat treatment was repeated several times.

これら5種類の粉末の表面近傍の組成を実施例1と同様
にオージェ分光分析/ A rスパッターによるデプス
プロファイルにより評価した。その結果、1100℃熱
処理の粉末では、その表面に5i02膜が、約0.21
1mの厚さで形成されていた。一方、有機金属溶液処理
/熱処理粉末の、オージェ分光分析では、表面層はそれ
ぞれの金属とOが主成分であり、これにSlも少置台ま
れていた。これらの粉末については、溶液処理/熱処理
の回数を変える事により、その厚さを酸化処理のみ場合
の膜厚約0.2μmにほぼ等しくなるように調整した。
The composition near the surface of these five powders was evaluated by Auger spectroscopy/depth profile by Ar sputtering in the same manner as in Example 1. As a result, the powder heat-treated at 1100°C has a 5i02 film on the surface of about 0.21
It was formed with a thickness of 1 m. On the other hand, Auger spectroscopic analysis of the organometallic solution-treated/heat-treated powder revealed that the main components of the surface layer were the respective metals and O, with a small amount of Sl also present. The thickness of these powders was adjusted to be approximately equal to the film thickness of approximately 0.2 μm in the case of only oxidation treatment by changing the number of times of solution treatment/heat treatment.

これらの粉末、および比較のため無処理のSi粉末を1
370℃でI 000 kg/cm2の圧力、A「雰囲
気中で5時間ホットプレス焼結した。得られた焼結体よ
り、2XIX12mmの柱状試料を切り出し、その比重
、電気抵抗(テスターによる)を測定し、結果を表2に
示した。
These powders and untreated Si powder for comparison
Hot press sintering was carried out at 370°C under a pressure of I 000 kg/cm2 in an atmosphere of A for 5 hours. From the obtained sintered body, a 2XIX 12mm columnar sample was cut out and its specific gravity and electrical resistance (using a tester) were measured. The results are shown in Table 2.

(以下余白) 表2(複合体の緒特性) 表2より明らかなように、相対密度は無処理の物を除き
、いずれも96%前後であまり差がみられなかった。一
方、電気抵抗は、無処理の物が0.1Ω以下ときわめて
低かったのに対し、5i02のみの酸化皮膜の場合、お
よびT1またはAlを含む酸化皮膜の場合に約100Ω
程度で高くなったが、Coを含む酸化皮膜の場合に32
0にΩ、Feを含む酸化皮膜の場合は20j’lΩ以上
とさらに高くな□ った。このように、Siよりも酸化物生成自由エネルギ
ーの小さいFeやCoを含む酸化膜とした場合に、より
高い電気抵抗のものが得られた。なお、これらの試料の
熱膨張係数及び熱伝導率は、いずれも金属S1と同程度
であり、かつ高電気抵抗の材料であった。
(Margins below) Table 2 (Characteristics of composites) As is clear from Table 2, the relative densities were around 96% for all samples, with the exception of the untreated sample, with little difference observed. On the other hand, the electrical resistance was extremely low at 0.1 Ω or less for the untreated product, whereas it was approximately 100 Ω for the 5i02-only oxide film and the oxide film containing T1 or Al.
However, in the case of an oxide film containing Co, it was 32
In the case of an oxide film containing 0Ω and Fe, it was even higher to 20j'lΩ or more. In this way, when an oxide film containing Fe or Co, which has a smaller free energy of oxide formation than Si, was used, a higher electrical resistance was obtained. Note that the coefficient of thermal expansion and thermal conductivity of these samples were both comparable to those of metal S1, and the materials had high electrical resistance.

次に、試料作製条件のうち、ホットプレス時間を短くす
ることによって焼結密度を92%程度に低下させ、これ
によっていずれの試料においても電気抵抗を20MΩ以
上とした後、真空条件下で1200℃で10時間熱処理
したところ、SiのみおよびAl、Ti処理した試料で
はいずれも数十にΩまて抵抗が低下したが、FeやCo
を含む酸化膜とした場合には、20MΩ以上であっり、
抵抗低下は見られなかった。
Next, among the sample preparation conditions, the sintered density was reduced to about 92% by shortening the hot pressing time, thereby making the electrical resistance of all samples 20 MΩ or higher, and then heated to 1200°C under vacuum conditions. When heat-treated for 10 hours at
In the case of an oxide film containing
No decrease in resistance was observed.

実施例3 平均粒径約201IIllのAl金属粉末を400℃で
空気中2時間熱処理し、その表面に酸化膜を形成させた
。また一方、Siエトキシドの0.01モル%エタノー
ル溶液1001を準備し、この溶液にAl粉末を投入し
、70℃で加熱還流しながら、水/エタノール1/3混
合溶液を、水の量が0.002モルとなるまで適下し、
3時間加熱還流した。
Example 3 Al metal powder having an average particle size of about 201IIll was heat treated in air at 400°C for 2 hours to form an oxide film on its surface. On the other hand, a 0.01 mol% ethanol solution 1001 of Si ethoxide was prepared, Al powder was added to this solution, and while heating and refluxing at 70°C, a 1/3 mixed solution of water/ethanol was added until the amount of water was 0. Drop by drop until it becomes .002 mol,
The mixture was heated under reflux for 3 hours.

終了後、生成物をろ過し、得られた粉末を150℃で乾
燥させた後、空気中400℃で1時間熱処理した。これ
らの粉末を実施例1と同様に、オージェ分光分析/ A
 rスパッターによるデプスプロファイルにより評価し
た。その結果、空気中熱処理のみの粉末はAlとOのみ
が検出され、酸化アルミニウムの皮膜が生成していた。
After completion, the product was filtered, and the resulting powder was dried at 150°C and then heat treated in air at 400°C for 1 hour. These powders were subjected to Auger spectroscopy/A in the same manner as in Example 1.
Evaluation was made by depth profile obtained by r sputtering. As a result, only Al and O were detected in the powder heat-treated in air, and an aluminum oxide film was formed.

後者のSiエトキシド処理した粉末では、表面皮膜にA
lとともにSiが含まれていた。これらの粉末を800
℃で1000 kg/cwt2の圧力でホットプレス焼
結した。
In the latter powder treated with Si ethoxide, the surface film has A
Si was included along with l. 800 of these powders
Hot press sintering was carried out at a pressure of 1000 kg/cwt2 at °C.

これらの焼結体より、2XIX12mmの柱状試料を切
り出し、その比重、電気抵抗(テスターによる)、熱伝
導率を測定した。その結果、相対密度はどちらも97%
であったが、酸化アルミニウム皮膜の試料では、電気抵
抗は100Ω程度と低かったのに対して、酸化珪素を含
む皮膜の試料では20MΩ以上であった。またその熱伝
導率は180 W/m−degであり、金属アルミニウ
ムに近い値であった。
From these sintered bodies, 2XIX12 mm columnar samples were cut out, and their specific gravity, electrical resistance (using a tester), and thermal conductivity were measured. As a result, the relative density of both is 97%.
However, in the sample with the aluminum oxide film, the electrical resistance was as low as about 100Ω, whereas in the sample with the film containing silicon oxide, it was 20MΩ or more. Moreover, its thermal conductivity was 180 W/m-deg, a value close to that of metal aluminum.

発明者等は、上記実施例以外にも種々の粉末組成・膜厚
・膜質で同様の実験を行ったが、やはり母相金属粒子よ
りも酸化物生成エネルギーの小さい成分を含む絶縁皮膜
組成とする事により、同一の絶縁体含有量では、従来よ
りもより1−2桁程度以上高い電気抵抗の試料を作製す
ることが可能であり、また、熱処理に対する安定性も高
いものとなった。その結果、従来得られていなかった優
れた特性の複合材料を合成することが可能であった。
The inventors conducted similar experiments with various powder compositions, film thicknesses, and film qualities in addition to the above-mentioned examples, but they still chose an insulating film composition containing a component with lower oxide formation energy than the matrix metal particles. As a result, with the same insulator content, it is possible to produce a sample with an electrical resistance that is 1-2 orders of magnitude higher than that of the conventional method, and it also has high stability against heat treatment. As a result, it was possible to synthesize a composite material with excellent properties not previously available.

金属粉体の表面が完全に絶縁体で覆われていても、これ
を加圧してほぼ100パーセント密度の成形体とする場
合、表面積の変化が生じて一部絶縁体膜が存在しない部
分が生じ、ために金属粒子同士が直接接触して電気抵抗
が低下すると考えられる。本発明の方法では、酸化皮膜
自身が絶縁皮膜が破損して露出した箇所の金属表面に酸
素を与える役割をし、皮膜を修復する事により、絶縁性
を保ったまま複合材料を高密度化出来るものと考えられ
る。また、熱処理による抵抗低下は、試料内部での皮膜
の焼結等による金属表面の露出と拡散等によるその接触
によって生じると考えられるが、やはり同様に、皮膜が
酸素を供給して補修する効果があり、抵抗低下しにくい
物と考えられる。
Even if the surface of the metal powder is completely covered with an insulator, when it is pressurized to form a compact with almost 100% density, the surface area will change and some parts will be missing the insulator film. , it is thought that the metal particles come into direct contact with each other and the electrical resistance decreases. In the method of the present invention, the oxide film itself serves to supply oxygen to the exposed metal surface due to damage to the insulation film, and by repairing the film, the composite material can be densified while maintaining insulation properties. considered to be a thing. In addition, the decrease in resistance due to heat treatment is thought to be caused by exposure of the metal surface due to sintering of the film inside the sample and contact with it due to diffusion, etc., but it is also believed that the film has a repairing effect by supplying oxygen. Therefore, it is considered to be a material that is difficult to reduce resistance.

従ってAl/Fe2o3系のように、母相金属粒子と皮
膜形成金属の酸化物生成自由エネルギー差が大きいほど
この効果は顕著であった。
Therefore, as in the Al/Fe2o3 system, this effect was more pronounced as the difference in free energy of oxide formation between the matrix metal particles and the film-forming metal was larger.

このように、発明者等は、金属粒子の表面に絶縁体をご
く薄くコーティングした後これを高密度に成形するとい
う従来の方法で作製した2種類の物質を含む複合材料に
ついて分析を行った。その結果、高密度化する最終の過
程で金属粒子の変形に伴う表面積拡大により絶縁体膜が
破損し、これによって絶縁破壊が生じ易い事を見いだし
、これに対して、最終的な緻密化の段階でも絶縁破壊を
生しにくい、また得られた複合焼結体が、熱処理に対し
て従来の物よりも安定である本発明を完成させた。
In this way, the inventors analyzed a composite material containing two types of materials that was produced using the conventional method of coating the surface of metal particles with an extremely thin layer of insulator and then molding it into a high density material. As a result, it was found that in the final process of densification, the insulator film is damaged due to the expansion of the surface area accompanying the deformation of the metal particles, which tends to cause dielectric breakdown. However, the present invention has been completed in which dielectric breakdown is less likely to occur, and the obtained composite sintered body is more stable against heat treatment than conventional products.

発明の効果 本発明は、粒子状の金属または合金Aの表面が、金属A
に含まれる成分の中で最も酸化物の生成自由エネルギー
の大きい金属元素よりも、より小さい酸化物の生成自由
エネルギーを持つ金属Bを含む絶縁性酸化物で実質上覆
われる事により、金属または合金Aの粒子同士が実質上
接触することが無いので、絶縁体の含有量を低くおさえ
たまま、高絶縁性と高密度を合わせ持つことが出来る。
Effects of the Invention The present invention provides that the surface of particulate metal or alloy A is
The metal or alloy is substantially covered with an insulating oxide containing metal B, which has a smaller free energy of oxide formation than the metal element with the largest free energy of oxide formation among the components contained in the metal. Since the particles of A do not substantially come into contact with each other, it is possible to have both high insulation properties and high density while keeping the content of the insulator low.

また、本発明は、熱処理を受けても電気抵抗低下が生じ
にくいという長所を有する。
Further, the present invention has the advantage that electrical resistance does not easily decrease even when subjected to heat treatment.

特に金属として磁性体を用いた場合、本発明の複合材料
は、優れた特性の磁芯用材料となる。
In particular, when a magnetic material is used as the metal, the composite material of the present invention becomes a magnetic core material with excellent characteristics.

代理人 弁理士 松 1)正 道Agent Patent Attorney Matsu 1) Tadashi Michi

Claims (1)

【特許請求の範囲】 (1)粒子状の金属または合金Aの表面が、その金属ま
たは合金Aに含まれる成分の中で最も酸化物の生成自由
エネルギーの大きい金属元素よりも、より小さい酸化物
の生成自由エネルギーを持つ金属Bを含む絶縁性酸化物
で実質上覆われた事を特徴とする複合材料。(2)相対
密度が95%以上であることを特徴とする請求項1記載
の複合材料。 (3)粉末粒子状の金属が磁性体である事を特徴とする
請求項1または2記載の複合材料。 (4)粉末粒子状の金属がAlを含む事を特徴とする請
求項1または2記載の複合材料。(5)絶縁性金属酸化
物がFeを含む事を特徴とする請求項1または2記載の
複合材料。(6)粉末粒子状の金属がAlを含み、絶縁
性金属酸化物がFeを含む事を特徴とする請求項1また
は2記載の複合材料。 (7)粉末粒子状の金属の表面に、その金属よりも酸化
物の生成自由エネルギーの小さい金属の絶縁性酸化物の
薄層をほぼ均一に覆うように形成して複合粉末とし、こ
の粉末を、高温高圧力下で、相対密度95パーセント以
上に成形する事を特徴とする複合材料の製造方法。
[Scope of Claims] (1) The surface of the particulate metal or alloy A is an oxide that is smaller than the metal element that has the largest oxide formation free energy among the components contained in the metal or alloy A. A composite material characterized in that it is substantially covered with an insulating oxide containing a metal B having a free energy of formation. (2) The composite material according to claim 1, having a relative density of 95% or more. (3) The composite material according to claim 1 or 2, wherein the metal in the form of powder particles is a magnetic material. (4) The composite material according to claim 1 or 2, wherein the metal in the form of powder particles contains Al. (5) The composite material according to claim 1 or 2, wherein the insulating metal oxide contains Fe. (6) The composite material according to claim 1 or 2, wherein the metal in the form of powder particles contains Al, and the insulating metal oxide contains Fe. (7) Form a thin layer of an insulating oxide of a metal whose oxide formation free energy is smaller than that of the metal on the surface of a powdered metal to form a composite powder, and make this powder into a composite powder. , a method for producing a composite material characterized by molding it to a relative density of 95% or more under high temperature and high pressure.
JP2285638A 1990-10-22 1990-10-22 Composite material and its production Pending JPH04160102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2285638A JPH04160102A (en) 1990-10-22 1990-10-22 Composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2285638A JPH04160102A (en) 1990-10-22 1990-10-22 Composite material and its production

Publications (1)

Publication Number Publication Date
JPH04160102A true JPH04160102A (en) 1992-06-03

Family

ID=17694125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2285638A Pending JPH04160102A (en) 1990-10-22 1990-10-22 Composite material and its production

Country Status (1)

Country Link
JP (1) JPH04160102A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179911A (en) * 1993-06-30 1995-07-18 Samsung Electro Mech Co Ltd Production of powder for mpp core and production of mpp core from this powder
US7270718B2 (en) 2003-11-20 2007-09-18 Denso Corporation Method for manufacturing a soft magnetic powder material
JP2007254256A (en) * 2005-04-28 2007-10-04 Hitachi Maxell Ltd Hydrogen generating material, method for producing the same, method and apparatus for producing hydrogen, and fuel cell
JP2011246820A (en) * 2004-02-27 2011-12-08 Hitachi Metals Ltd Iron-based nanosize particle and method for producing the same
JP2015088529A (en) * 2013-10-28 2015-05-07 株式会社豊田中央研究所 Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2019210507A (en) * 2018-06-04 2019-12-12 デンカ株式会社 Insulation coated metal particle
JP2020145405A (en) * 2019-02-28 2020-09-10 太陽誘電株式会社 Soft magnetic alloy powder and method for manufacturing same, as well as coil component made from soft magnetic alloy powder and circuit board carrying same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179911A (en) * 1993-06-30 1995-07-18 Samsung Electro Mech Co Ltd Production of powder for mpp core and production of mpp core from this powder
US7270718B2 (en) 2003-11-20 2007-09-18 Denso Corporation Method for manufacturing a soft magnetic powder material
JP2011246820A (en) * 2004-02-27 2011-12-08 Hitachi Metals Ltd Iron-based nanosize particle and method for producing the same
JP2007254256A (en) * 2005-04-28 2007-10-04 Hitachi Maxell Ltd Hydrogen generating material, method for producing the same, method and apparatus for producing hydrogen, and fuel cell
JP4537337B2 (en) * 2005-04-28 2010-09-01 日立マクセル株式会社 Hydrogen generating material, method for producing hydrogen generating material, method for producing hydrogen, hydrogen producing apparatus and fuel cell
JP2015088529A (en) * 2013-10-28 2015-05-07 株式会社豊田中央研究所 Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2019210507A (en) * 2018-06-04 2019-12-12 デンカ株式会社 Insulation coated metal particle
JP2020145405A (en) * 2019-02-28 2020-09-10 太陽誘電株式会社 Soft magnetic alloy powder and method for manufacturing same, as well as coil component made from soft magnetic alloy powder and circuit board carrying same

Similar Documents

Publication Publication Date Title
US5183631A (en) Composite material and a method for producing the same
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
US7871474B2 (en) Method for manufacturing of insulated soft magnetic metal powder formed body
CN100514513C (en) Soft magnetic material, powder magnetic core and process for producing the same
JP7045905B2 (en) Soft magnetic powder and its manufacturing method
JP7283031B2 (en) dust core
WO2014157517A1 (en) Powder magnetic core for reactor
JP2010209469A (en) Iron based soft magnetic powder
JP2001011563A (en) Manufacture of composite magnetic material
WO2000048211A1 (en) Composite magnetic material
JPH04346204A (en) Compound material and manufacture thereof
JPH04160102A (en) Composite material and its production
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
US20020046782A1 (en) Soft magnetism alloy powder, treating method thereof, soft magnetism alloy formed body, and production method thereof
US5152959A (en) Sinterless powder metallurgy process for manufacturing composite copper strip
JPS63115309A (en) Magnetic alloy powder
JP2001085211A (en) Soft magnetic particle, soft magnetic molded body, and their manufacture
JP7338644B2 (en) Sintered compact and its manufacturing method
JP2011129857A (en) Method of manufacturing dust core and dust core obtained by the method
US5164264A (en) Composite substrate
Slovenský et al. Preparation and characterization of fe based soft magnetic composites coated by SiO2 layer prepared by Stöber method
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same
JP2005209753A (en) Soft magnetic flat powder
JP2002299113A (en) Soft magnetic powder and dust core using the same
JP2002275505A (en) Method for producing soft magnetic compact and soft magnetic compact