WO2020170882A1 - コイルデバイス、移相回路及び通信装置 - Google Patents

コイルデバイス、移相回路及び通信装置 Download PDF

Info

Publication number
WO2020170882A1
WO2020170882A1 PCT/JP2020/005091 JP2020005091W WO2020170882A1 WO 2020170882 A1 WO2020170882 A1 WO 2020170882A1 JP 2020005091 W JP2020005091 W JP 2020005091W WO 2020170882 A1 WO2020170882 A1 WO 2020170882A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
terminal side
coil conductor
input
conductor
Prior art date
Application number
PCT/JP2020/005091
Other languages
English (en)
French (fr)
Inventor
賢太郎 三川
英晃 小林
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202090000332.9U priority Critical patent/CN216528275U/zh
Priority to JP2021501874A priority patent/JP6904497B2/ja
Publication of WO2020170882A1 publication Critical patent/WO2020170882A1/ja
Priority to US17/368,903 priority patent/US11961651B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/06Broad-band transformers, e.g. suitable for handling frequencies well down into the audio range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Definitions

  • the present invention relates to a coil device having a phase shift characteristic, a phase shift circuit including the coil device, and a communication device including the coil device or the phase shift circuit.
  • Patent Document 1 discloses a coil device including a transformer having a first coil and a second coil that are magnetically coupled to each other, and a capacitor connected between the first coil and the second coil.
  • Patent Document 1 it is possible to obtain a coil device, a phase shift circuit, and a communication device that are advantageous in downsizing, loss reduction, and frequency dependency reduction of the amount of phase shift.
  • the capacitor connected between the first coil and the second coil acts as an impedance adjustment circuit that adjusts the impedance of the transformer.
  • this capacitor is composed of only the capacitance parasitically generated between the first coil and the second coil, the capacitance required for impedance adjustment may not be obtained.
  • it is necessary to specially form a conductor pattern other than the first coil and the second coil for example, planar conductor patterns that spread in a planar shape and face each other.
  • an object of the present invention is to avoid an increase in loss and an increase in size due to an increase in the number of coil windings, a coil device having a capacitor necessary for impedance adjustment, a phase shift circuit including the coil device, and the coil device or the phase shifter. It is to provide a communication device including a circuit.
  • a coil device as an example of the present disclosure is An insulating substrate, A first input/output terminal, a second input/output terminal, a common terminal, a first coil and a second coil, each formed on the insulating base; Equipped with The first coil is composed of a first coil conductor having a shape wound around a first winding axis, The second coil is composed of a second coil conductor having a shape wound around a second winding axis parallel to the first winding axis direction, The first coil is composed of a plurality of first coil conductors formed over a plurality of layers, and one end of each of the plurality of first coil conductors is connected to an input/output terminal.
  • the second coil is composed of a plurality of second coil conductors formed over a plurality of layers, and one end of each of the plurality of second coil conductors is connected to an input/output terminal.
  • the first coil conductor on the input/output terminal side is located between two second coil conductors of the plurality of second coil conductors in the direction of the second winding axis, and Viewed in a direction, overlapping the two second coil conductors, One of the two second coil conductors is the input/output terminal side second coil conductor,
  • the input/output terminal side second coil conductor is located between two first coil conductors of the plurality of first coil conductors in the direction of the first winding axis, and Viewed in a direction, overlapping the two first coil conductors, One of the two first coil conductors is the input/output terminal side first coil conductor, It is characterized by
  • the coil device which has the capacity
  • a communication device comprising is obtained.
  • FIG. 1 is a circuit diagram of a coil device 11 according to the first embodiment.
  • FIG. 2A and FIG. 2B are equivalent circuit diagrams of the transformer in the coil device 11.
  • FIG. 3 is an external perspective view of the coil device 11.
  • FIG. 4 is a plan view of each base material of the coil device 11.
  • FIG. 5 is an enlarged view of a part of FIG.
  • FIG. 6 is a vertical sectional view of the coil device 11.
  • FIG. 7A is a diagram showing frequency characteristics of the phase shift amount of the coil device 11.
  • FIG. 7B is a diagram showing frequency characteristics of insertion loss of the coil device 11.
  • FIG. 8 is a plan view of each base material of the coil device 12 according to the second embodiment.
  • FIG. 9 is a plan view of each base material of the coil device 13 according to the third embodiment.
  • FIG. 10 is a circuit diagram of the coil device 14 according to the fourth embodiment.
  • 11A and 11B are block diagrams showing the configurations of the phase shift circuits 30A and 30B according to the fifth embodiment.
  • FIG. 12 is a block diagram of the communication device 200 according to the sixth embodiment.
  • FIG. 13 is a circuit diagram of a part of the communication device according to the seventh embodiment.
  • a coil device includes an insulating base and a first input/output terminal, a second input/output terminal, a common terminal, a first coil and a second coil formed on the insulating base.
  • the first coil is composed of a first coil conductor having a shape wound around a first winding axis.
  • the second coil is composed of a second coil conductor having a shape wound around a second winding axis parallel to the first winding axis direction.
  • the first coil is composed of a plurality of first coil conductors formed over a plurality of layers.
  • the plurality of first coil conductors are input/output terminal side first coil conductors whose one ends are connected to input/output terminals.
  • the second coil includes a plurality of second coil conductors formed over a plurality of layers, and the plurality of second coil conductors have one end connected to the input/output terminal, and the second input/output terminal side second It has a coil conductor.
  • the input/output terminal side first coil conductor is located between two second coil conductors of the plurality of second coil conductors in the direction of the second winding axis, and is viewed in the direction of the second winding axis. Overlaps the two second coil conductors. One of the two second coil conductors is the input/output terminal side second coil conductor.
  • the second coil conductor on the input/output terminal side is located between two first coil conductors of the plurality of first coil conductors in the direction of the first winding axis, and in the direction of the first winding axis. As viewed, it overlaps the two first coil conductors. One of the two first coil conductors is the input/output terminal side first coil conductor.
  • the capacitance generated between the first coil and the second coil can be easily increased. Therefore, the capacitance required for adjusting the impedance of the coil device can be obtained.
  • the other of the two first coil conductors different from the input/output terminal side first coil conductor has a common terminal side first coil conductor whose one end is connected to the common terminal.
  • the other one different from the input/output terminal side second coil conductor is the common terminal side second coil conductor whose one end is connected to the common terminal.
  • the common terminal side first coil conductor, the input/output terminal side second coil conductor, the input/output terminal side first coil conductor, and the common terminal side are arranged in the first winding axis direction or the second winding axis direction.
  • the plurality of first coil conductors include a common terminal side first coil conductor whose one end is connected to a common terminal, an input/output terminal side first coil conductor, and a common terminal side.
  • a first coil conductor and an intermediate first coil conductor sandwiched in the direction of the first winding axis, and the other of the two first coil conductors different from the input/output terminal side first coil conductor is an intermediate first coil conductor. 1 coil conductor.
  • the plurality of second coil conductors includes a common terminal side second coil conductor whose one end is connected to the common terminal, an input/output terminal side second coil conductor and a common terminal side second coil conductor, and a second winding shaft.
  • an intermediate second coil conductor sandwiched in the direction of, the other of the two second coil conductors different from the input/output terminal side second coil conductor is the intermediate second coil conductor.
  • the common terminal side first coil conductor, the intermediate first coil conductor, the input/output terminal side second coil conductor, and the input/output terminal side first are arranged in the first winding axis direction or the second winding axis direction.
  • a coil device is configured in which the conductor, the intermediate first coil conductor, and the common terminal side first coil conductor are arranged in this order.
  • the line width of the input/output terminal side first coil conductor has a portion thicker than the line width of the common terminal side first coil conductor, and the input/output terminal side second coil
  • the line width of the conductor has a portion thicker than the line width of the second coil conductor on the common terminal side. According to this structure, the capacitance generated between the first coil conductor and the second coil conductor is effectively increased.
  • the number of turns of the input/output terminal side first coil conductor is greater than the number of turns of the common terminal side first coil conductor, and the number of turns of the input/output terminal side second coil conductor is greater than that of the common terminal side first coil conductor.
  • the number of turns is greater than the number of turns of the common terminal side second coil conductor.
  • the number of turns of the input/output terminal side first coil conductor is more than 1, and the interlayer connection conductor connected to the input/output terminal side first coil conductor is the input/output terminal side. Located within the coil opening of the second coil conductor. The number of turns of the input/output terminal side second coil conductor is greater than 1, and the interlayer connection conductor connected to the input/output terminal side second coil conductor is located in the coil opening of the input/output terminal side first coil conductor. ..
  • the ratio of the coil conductors that do not contribute to the magnetic field coupling is suppressed as compared with the structure in which the interlayer connection conductor is outside the coil opening (the magnetic flux due to the coil conductor is less likely to leak to the outside), and as a result, the low loss is achieved. It will be made smaller and smaller.
  • a phase shift circuit includes the coil device and a phase shift line connected in series with the phase shift amount of less than 90°.
  • a communication device includes a transmitter/receiver circuit and an antenna connected to the transmitter/receiver circuit, and the coil device or the phase shift circuit is provided between the transmitter/receiver circuit and the antenna.
  • a communication device includes a transmission/reception circuit and a diplexer connected to the transmission/reception circuit, and the coil device or the phase shift circuit is provided between the transmission/reception circuit and the diplexer.
  • FIG. 1 is a circuit diagram of a coil device 11 according to the first embodiment.
  • the coil device 11 includes a first input/output terminal T1, a second input/output terminal T2, a common terminal COM, a first coil L1, and a second coil L2.
  • the first coil L1 and the second coil L2 are magnetically coupled.
  • the first coil L1 and the second coil L2 form a transformer.
  • An input/output capacitor C12 is provided between the first coil L1 and the second coil L2.
  • FIG. 2A an ideal transformer IT, an inductor La connected in series to the primary side thereof, an inductor Lb connected in parallel to the primary side, and an inductor Lc connected in series to the secondary side. It is represented by.
  • FIG. 2B it is represented by an ideal transformer IT, two inductors La and Lc1 connected in series on the primary side thereof, and an inductor Lb connected in parallel on the primary side of the ideal transformer IT. ..
  • the transformer ratio is 1: ⁇ (L2/L1)
  • the coupling coefficient between the first coil L1 and the second coil L2 is k
  • the inductance of the first coil L1 is L1
  • the second coil When the inductance of L2 is represented by L2, the inductances of the inductors La, Lb, Lc and Lc1 have the following relationship.
  • the transformer ratio of the ideal transformer IT is the winding number ratio of the first coil L1 and the second coil L2.
  • the transformer has a series inductance (leakage inductance) component in addition to the parallel inductance (excitation inductance) component because the coupling coefficient k between the first coil L1 and the second coil L2 is less than 1. ..
  • FIG. 3 is an external perspective view of the coil device 11 of the present embodiment
  • FIG. 4 is a plan view of each base material of the coil device 11.
  • FIG. 5 is an enlarged view of a part of FIG. 6 is a vertical cross-sectional view of the coil device 11.
  • the coil device 11 includes a plurality of insulating base materials S1 to S8.
  • a laminate 100 (corresponding to an insulating substrate) is formed by laminating these base materials S1 to S8.
  • an insulating sheet for example, a ceramic green sheet such as a non-magnetic ceramic made of LTCC (Low Temperature Co-fired Ceramics) or the like.
  • Various conductor patterns are formed on the base materials S1 to S8.
  • the "various conductor patterns" include not only conductor patterns formed on the surface of the base material but also interlayer connection conductors.
  • the “interlayer connection conductor” includes not only the via conductor but also an end face electrode formed on the end face of the multilayer body 100.
  • the above various conductor patterns are made of a conductor material containing Ag or Cu as a main component and having a low specific resistance. If the base material layer is ceramic, it is formed by, for example, screen printing and firing a conductive paste containing Ag or Cu as a main component.
  • the base materials S1 to S8 are ceramic green sheets
  • the base materials S1 to S8 are laminated and fired to form a ceramic mother substrate, and a large number of laminated bodies 100 are obtained by dividing the ceramic mother substrate.
  • the coil device 11 is configured by forming end face electrodes on the outer surface of the stacked body 100.
  • the lower surface of the base material S8 corresponds to the lower surface of the laminated body 100 (mounting surface of the coil device 11).
  • a first input/output terminal T1, a second input/output terminal T2, a ground terminal GND as a common terminal, and an empty terminal NC are provided from the upper surface of the base material S1 to the lower surface of the base material S8 through the base materials S2 to S7. Has been formed.
  • a common terminal side first coil conductor LC1, an intermediate first coil conductor LM1, and an input/output terminal side first coil conductor LP1 are formed on the base materials S2, S3, and S5, respectively.
  • Via conductors V1A, V1B, and V1C are formed on the base materials S2, S3, and S4, respectively.
  • a first end of the common terminal side first coil conductor LC1 is connected to the ground terminal GND.
  • the second end of the common terminal side first coil conductor LC1 is connected to the first end of the intermediate first coil conductor LM1 via the via conductor V1A.
  • the second end of the common terminal side first coil conductor LC1 is connected to the first end of the input/output terminal side first coil conductor LP1 via the via conductors V1B and V1C.
  • the second end of the input/output terminal side first coil conductor LP1 is connected to the first input/output terminal T1.
  • the common terminal side first coil conductor LC1, the intermediate first coil conductor LM1, the input/output terminal side first coil conductor LP1 and the via conductors V1A, V1B, V1C correspond to the “first coil conductor” in the present invention.
  • the first coil L1 is configured by the first coil conductor.
  • a common terminal side second coil conductor LC2, an intermediate second coil conductor LM2, and an input/output terminal side second coil conductor LP2 are formed on the base materials S7, S6 and S4, respectively.
  • Via conductors V2A, V2B, and V2C are formed on the base materials S6, S5, and S4, respectively.
  • a first end of the common terminal side second coil conductor LC2 is connected to the ground terminal GND.
  • the second end of the common terminal side second coil conductor LC2 is connected to the first end of the intermediate second coil conductor LM2 via the via conductor V2A.
  • the second end of the intermediate second coil conductor LM2 is connected to the first end of the input/output terminal side second coil conductor LP2 via the via conductors V2B and V2C.
  • the second end of the input/output terminal side second coil conductor LP2 is connected to the second input/output terminal T2.
  • the common terminal side second coil conductor LC2, the intermediate second coil conductor LM2, the input/output terminal side second coil conductor LP2, and the via conductors V2A, V2B, V2C correspond to the “second coil conductor” in the present invention.
  • the second coil L2 is configured by the second coil conductor.
  • both the first coil conductor and the second coil conductor have a shape wound around the winding axis WA, and either the first coil L1 or the second coil L2.
  • the winding axis direction of the coil conductor is the Z-axis direction as shown in FIGS. 4 and 6.
  • the winding axis WA corresponds to the "first winding axis" and the "second winding axis" according to the present invention.
  • the winding axis of the first coil conductor (first winding axis) and the winding axis of the second coil conductor (second winding axis) coincide with each other.
  • winding axis of the first coil conductor (first winding axis) and the winding axis of the second coil conductor (second winding axis) do not have to coincide with each other, and may only be parallel to each other. .. In the present application, “parallel” also includes “match”. However, in the case of being “parallel”, the coil opening of the first coil conductor and the coil opening of the second coil conductor overlap each other when viewed in the winding axis direction.
  • the first coil conductor has a common terminal side first coil conductor LC1 having one end connected to the ground terminal GND, an intermediate first coil conductor LM1, and an input having one end connected to the first input/output terminal T1. And an output terminal side first coil conductor LP1.
  • the second coil conductor has a common terminal side second coil conductor LC2 whose one end is connected to the ground terminal GND, an intermediate second coil conductor LM2, and an input/output whose one end is connected to the second input/output terminal T2. And a terminal-side second coil conductor LP2.
  • the insulating base material is not limited to LTCC, and may be formed by repeatedly applying an insulating paste containing glass as a main component by screen printing. In this case, the various conductor patterns are formed on this base material by a photolithography process.
  • the input/output terminal side first coil conductor LP1 is located between the intermediate second coil conductor LM2 and the input/output terminal side second coil conductor LP2 in the winding axis direction of the first coil L1 (laminating direction of the base material). To do.
  • the input/output terminal side second coil conductor LP2 is formed of the intermediate first coil conductor LM1 and the input/output terminal side first coil conductor LP1. Located in between.
  • the intermediate first coil conductor and the intermediate second coil conductor may have a plurality of layers according to a desired inductance value.
  • the line width of the input/output terminal side first coil conductor LP1 has a portion thicker than the line width of the common terminal side first coil conductor LC1 and the intermediate first coil conductor LM1.
  • the line width of the first coil conductor LP1 on the input/output terminal side is thicker than the line width of the first coil conductor LC1 on the common terminal side. Therefore, the capacitance generated between the input/output terminal side first coil conductor LP1 and the input/output terminal side second coil conductor LP2, and the capacitance generated between the intermediate first coil conductor LM1 and the input/output terminal side second coil conductor LP2. Capacity, effectively increased.
  • the line width of the common terminal side first coil conductor LC1 is smaller than the line width of the input/output terminal side first coil conductor LP1, it is possible to increase the inductance of the first coil, which is not intended by the designer. Since the parasitic capacitance can be suppressed, a desired inductance value can be obtained.
  • the line width of the input/output terminal side second coil conductor LP2 has a portion thicker than the line widths of the common terminal side second coil conductor LC2 and the intermediate second coil conductor LM2.
  • the line width of the input/output terminal side second coil conductor LP2 is thicker than the line width of the common terminal side second coil conductor LC2. Therefore, the capacitance generated between the input/output terminal side second coil conductor LP2 and the input/output terminal side first coil conductor LP1 and the capacitance generated between the intermediate second coil conductor LM2 and the input/output terminal side first coil conductor LP1. Capacity, effectively increased.
  • the inductance of the second coil can be increased and is not intended by the designer. Since the parasitic capacitance can be suppressed, a desired inductance value can be obtained.
  • the number of turns of the input/output terminal side first coil conductor LP1 is larger than the number of turns of the common terminal side first coil conductor LC1.
  • the number of turns of the first coil conductor LP1 on the input/output terminal side is about 2 turns
  • the number of turns of the first coil conductor LC1 on the common terminal side is about 0.75 turns. Therefore, the capacitance generated between the input/output terminal side first coil conductor LP1 and the input/output terminal side second coil conductor LP2 is effectively increased.
  • the number of turns of the second coil conductor LP2 on the input/output terminal side is larger than the number of turns of the second coil conductor LC2 on the common terminal side.
  • the number of turns of the second coil conductor LP2 on the input/output terminal side is about 2 turns
  • the number of turns of the second coil conductor LC2 on the common terminal side is about 0.75 turns. Therefore, the capacitance generated between the input/output terminal side second coil conductor LP2 and the input/output terminal side first coil conductor LP1 is effectively increased.
  • the number of turns of the intermediate first coil conductor LM1 is less than the number of turns of the input/output terminal side first coil conductor LP1 and more than the number of turns of the common terminal side first coil conductor LC1.
  • the number of windings of the intermediate second coil conductor LM2 is smaller than the number of windings of the input/output terminal side second coil conductor LP2 and larger than the number of windings of the common terminal side second coil conductor LC2.
  • the input/output terminal side first coil conductor LP1 has the largest number of windings and the common terminal side first coil conductor LC1 has the smallest number of windings.
  • the input/output terminal side second coil conductor LP2 has the largest number of turns and the common terminal side second coil conductor LC2 has the smallest number of turns.
  • the number of windings of the input/output terminal side first coil conductor LP1 is more than 1, and the via conductor V1C connected to the input/output terminal side first coil conductor LP1 is in the coil opening CA2 of the input/output terminal side second coil conductor LP2. Located (see FIG. 5). According to this configuration, the input/output terminal side first coil conductor LP1 and the input/output terminal side second coil conductor LP2 can be wound relatively large as compared with the structure in which the via conductor V1C is outside the coil opening. The degree of freedom in designing the inductance value increases.
  • the via conductor when the via conductor is outside the coil opening, the magnetic flux generated from the via conductor spreads to the outside of the coil device, so that the magnetic flux is likely to be coupled to other devices arranged around. In that case, the coil device and other devices may interfere with each other and their characteristics may change.
  • the via conductor when the via conductor is arranged in the coil opening and is arranged closer to the center of the coil device as in the above-described configuration, the magnetic flux is less likely to leak to the outside of the coil device, which causes interference and characteristics with other devices. Change can be suppressed.
  • the via conductors when there are a plurality of via conductors, by arranging them in the coil opening, the via conductors can be easily arranged close to each other, and magnetic coupling and capacitive coupling can be enhanced.
  • the number of turns of the input/output terminal side second coil conductor LP2 is greater than 1, and the via conductor V2C connected to the input/output terminal side second coil conductor LP2 has a coil opening of the input/output terminal side first coil conductor LP1.
  • CA1 Located in CA1 (see FIG. 5).
  • the ratio of the coil conductors that do not contribute to the magnetic field coupling is suppressed (the magnetic flux due to the coil conductors is unlikely to leak to the outside), and as a result, low loss It will be made smaller and smaller.
  • Each base material layer of the laminated body 100 may be a resin laminated body made of a resin material such as polyimide or liquid crystal polymer, or a laminated body made of an insulating paste containing glass as a main component.
  • the base material layer is a non-magnetic material (because it is not a magnetic material ferrite), it can be used as a transformer and a phase shifter having a predetermined inductance and a predetermined coupling coefficient even in a high frequency band exceeding 700 MHz.
  • the conductor pattern and the interlayer connection conductor are formed by patterning a metal foil such as an Al foil or a Cu foil by etching or the like.
  • the base material layer is composed of an insulating paste containing glass as a main component, the above-mentioned various conductor patterns are formed by a photolithography process using a photosensitive conductive paste.
  • FIG. 7A is a diagram showing the frequency characteristic of the phase shift amount of the coil device 11 of this embodiment.
  • the horizontal axis represents frequency and the vertical axis represents phase shift amount.
  • the amount of phase shift is expressed in the range of ⁇ 180°.
  • the marker m1 indicates the amount of phase shift at a frequency of 1 GHz
  • the marker m2 indicates the amount of phase shift at a frequency of 1.9 GHz.
  • the absolute value of the reading value when the amount of phase shift is negative, the absolute value of the reading value, when the amount of phase shift is positive, the absolute value of the value obtained by subtracting 360° from the reading value is the amount of phase shift. Is. That is, the amount of phase shift is
  • 190° at 1 GHz and
  • 230° at 1.9 GHz.
  • the amount of phase shift is only about 40°, and the same amount of phase shift is maintained.
  • FIG. 7B is a diagram showing frequency characteristics of insertion loss of the coil device 11 of this embodiment. It is about -1 dB at a frequency of 1 GHz and about 0 dB at a frequency of 1.9 GHz, and a low insertion loss characteristic can be obtained.
  • the insertion loss is lower at the frequency of 1.9 GHz than at the frequency of 1 GHz because the signal that directly passes through the input/output capacitor C12 without passing through the transformer by the first coil L1 and the second coil L2. This is because the components increase.
  • the second embodiment shows an example of a coil device in which the coil conductors on the input/output terminal side have a plurality of layers.
  • FIG. 8 is a plan view of each base material of the coil device 12 according to the second embodiment.
  • the coil device 12 includes a plurality of insulating base materials S1 to S8.
  • the lower surface of the base material S8 corresponds to the mounting surface of the coil device 12.
  • a first input/output terminal T1, a second input/output terminal T2, a ground terminal GND as a common terminal, and an empty terminal NC are formed on the base material S8.
  • a common terminal side first coil conductor LC1, an intermediate first coil conductor LM1, and an input/output terminal side first coil conductor LP1 are formed on the base materials S2, S3, and S5, respectively.
  • Via conductors V1A, V1B, and V1C are formed on the base materials S2, S3, and S4, respectively.
  • a first end of the common terminal side first coil conductor LC1 is connected to the ground terminal GND.
  • the second end of the common terminal side first coil conductor LC1 is connected to the first end of the intermediate first coil conductor LM1 via the via conductor V1A.
  • the second end of the intermediate first coil conductor LM1 is connected to the first end of the input/output terminal side first coil conductor LP1 via the via conductors V1B and V1C.
  • the second end of the input/output terminal side first coil conductor LP1 is connected to the first input/output terminal T1.
  • the common terminal side first coil conductor LC1, the intermediate first coil conductor LM1, the input/output terminal side first coil conductor LP1 and the via conductors V1A, V1B, V1C correspond to the “first coil conductor” in the present invention.
  • the first coil L1 is configured by the first coil conductor.
  • a common terminal side second coil conductor LC2, an intermediate second coil conductor LM2, and an input/output terminal side second coil conductor LP2 are formed on the base materials S7, S6 and S4, respectively.
  • Via conductors V2A, V2B, and V2C are formed on the base materials S6, S5, and S4, respectively.
  • a first end of the common terminal side second coil conductor LC2 is connected to the ground terminal GND.
  • the second end of the common terminal side second coil conductor LC2 is connected to the first end of the intermediate second coil conductor LM2 via the via conductor V2A.
  • the second end of the intermediate second coil conductor LM2 is connected to the first end of the input/output terminal side second coil conductor LP2 via the via conductors V2B and V2C.
  • the second end of the input/output terminal side second coil conductor LP2 is connected to the second input/output terminal T2.
  • the common terminal side second coil conductor LC2, the intermediate second coil conductor LM2, the input/output terminal side second coil conductor LP2, and the via conductors V2A, V2B, V2C correspond to the “second coil conductor” in the present invention.
  • the second coil L2 is configured by the second coil conductor.
  • the intermediate first coil conductor LM1 and the intermediate second coil conductor LM2 are not limited to this, and may have a plurality of layers according to a desired inductance value.
  • the total facing area of the first coil conductor and the second coil conductor is larger than that of the example shown in the first embodiment, so that the area between the first coil L1 and the second coil L2 is increased. It is possible to further increase the capacity generated.
  • the third embodiment shows an example of a coil device in which both the common terminal side coil conductor and the input/output terminal side coil conductor are single layers.
  • FIG. 9 is a plan view of each base material of the coil device 13 according to the third embodiment.
  • the coil device 13 includes a plurality of insulating base materials S1 to S6.
  • the lower surface of the base material S8 corresponds to the mounting surface of the coil device 13.
  • a first input/output terminal T1, a second input/output terminal T2, a ground terminal GND as a common terminal, and an empty terminal NC are formed on the base material S8.
  • the common terminal side first coil conductor LC1 and the input/output terminal side first coil conductor LP1 are formed on the base materials S2 and S4, respectively. Via conductors V1B and V1C are formed on the base materials S2 and S3, respectively.
  • a first end of the common terminal side first coil conductor LC1 is connected to the ground terminal GND.
  • the second end of the common terminal side first coil conductor LC1 is connected to the first end of the input/output terminal side first coil conductor LP1 via the via conductors V1B and V1C.
  • the second end of the input/output terminal side first coil conductor LP1 is connected to the first input/output terminal T1.
  • the common terminal side first coil conductor LC1, the input/output terminal side first coil conductor LP1 and the via conductors V1B and V1C correspond to the “first coil conductor” in the present invention.
  • the first coil L1 is configured by the first coil conductor.
  • a common terminal side second coil conductor LC2 and an input/output terminal side second coil conductor LP2 are formed on the base materials S5 and S3, respectively. Via conductors V2B and V2C are formed on the base materials S4 and S3, respectively.
  • a first end of the common terminal side second coil conductor LC2 is connected to the ground terminal GND.
  • the second end of the common terminal side second coil conductor LC2 is connected to the first end of the input/output terminal side second coil conductor LP2 via the via conductors V2B and V2C.
  • the second end of the input/output terminal side second coil conductor LP2 is connected to the second input/output terminal T2.
  • the common terminal side second coil conductor LC2, the input/output terminal side second coil conductor LP2, and the via conductors V2B and V2C correspond to the “second coil conductor” in the present invention.
  • the second coil L2 is configured by the second coil conductor.
  • the coil device is as shown in the first and second embodiments.
  • the number of windings required for the first coil conductor and the second coil conductor is small, the number of layers of the coil conductor and the number of layers of the base material may be small as described above.
  • the line width of the first coil conductor LP1 on the input/output terminal side is preferably larger than the line width of the first coil conductor LC1 on the common terminal side.
  • the line width of the common terminal side first coil conductor LC1 is preferably smaller than the line width of the input/output terminal side first coil conductor LP1.
  • the line width of the input/output terminal side second coil conductor LP2 is preferably larger than the line width of the common terminal side second coil conductor LC2.
  • the line width of the common terminal side second coil conductor LC2 is preferably smaller than the line width of the input/output terminal side second coil conductor LP2. This can suppress the parasitic capacitance of the first coil L1 itself and the parasitic capacitance of the second coil L2 itself, while increasing the capacitance between the input and output of the first coil L1 and the second coil L2.
  • the fourth embodiment shows an example of a coil device including an impedance matching circuit.
  • FIG. 10 is a circuit diagram of the coil device 14 according to the fourth embodiment.
  • the coil device 14 includes a first coil L1, a second coil L2, a first capacitor C1, a second capacitor C2, and an input/output capacitor C12.
  • the first coil L1 and the second coil L2 form a transformer that is magnetically coupled to each other.
  • the first capacitor C1 is connected in parallel to the first coil L1, and the second capacitor C2 is connected in parallel to the second coil L2. Accordingly, the first capacitor C1 and the second capacitor C2 act as an impedance matching circuit of the input/output unit of the coil device 14.
  • the configurations of the first coil conductor pattern and the second coil conductor pattern are basically the same as the configurations shown in the first, second, and third embodiments.
  • the first capacitor C1 is composed of capacitance that is parasitically generated between the layers of the first coil conductor pattern and between the lines.
  • the second capacitor C2 is composed of a capacitance parasitically generated between the layers of the second coil conductor pattern and between the lines.
  • the fifth embodiment shows an example of a phase shift circuit.
  • the phase shift circuits 30A and 30B are connected between the power feeding circuit 9 and the antenna 1.
  • the phase shift circuit 30A includes the coil device 10 and the phase shift line 20 connected in series to the coil device 10.
  • the phase shift circuit 30B includes the phase shift line 20 and the coil device 10 connected in series to the phase shift line 20.
  • the basic structure of the coil device 10 is the same as the coil devices 11 to 14 shown in the first to fourth embodiments.
  • the phase shift line 20 is a phase shift line having a phase shift amount of less than 90°.
  • the phase shift circuits 30A and 30B have a phase difference between the input and output terminals by the phase angle obtained by adding the phase shift amount by the coil device 10 and the phase shift amount by the phase shift line 20.
  • phase shift line 20 By adding the phase shift line 20, it is possible to perform a phase shift that greatly exceeds 180°, and the overall phase shift amount can be finely adjusted by the phase shift amount by the coil device 10.
  • the phase shift line 20 may be provided integrally with the coil device 10, and the phase shift circuits 30A and 30B may be configured as a single component. Further, in FIGS. 11A and 11B, an antenna matching circuit may be provided between the phase shift circuits 30A and 30B and the antenna 1. Further, the phase shift line 20 may be one in which the amount of phase shift is set by determining the electrical length of the transmission line (50 ⁇ line), or a lumped constant element such as an inductor or a capacitor or an LC circuit may be added. Alternatively, the amount of phase shift may be adjusted.
  • FIG. 12 is a block diagram of the communication device 200 according to the sixth embodiment.
  • the communication device 200 of this embodiment includes an antenna 1, an antenna matching circuit 40, a phase shift circuit 30, a communication circuit 41, a baseband circuit 42, an application processor (APU) 43, and an input/output circuit 44.
  • the communication circuit 41 includes a transmission circuit TX and a reception circuit RX for a low band (700 MHz to 1.0 GHz) and a high band (1.4 GHz to 2.7 GHz), and an antenna duplexer.
  • the antenna 1 is a monopole antenna or an inverted F-type antenna corresponding to low band and high band.
  • the communication circuit 41 corresponds to the "transmission/reception circuit" in the present invention.
  • the above components are housed in a single housing.
  • the antenna matching circuit 40, the phase shift circuit 30, the communication circuit 41, the baseband circuit 42, and the application processor 43 are mounted on a printed wiring board, and the printed wiring board is housed in a housing.
  • the input/output circuit 44 is incorporated in the housing as a display/touch panel.
  • the antenna 1 is mounted on a printed wiring board or arranged on the inner surface or inside of the housing.
  • the phase shift circuit 30 does not affect the matching in the high band, and greatly shifts the signal in the low band, so that the antenna matching circuit 40 can easily realize the antenna matching. As a result, a communication device having an antenna that matches over a wide band can be obtained.
  • the phase shift circuit 30 has, for example, a low band (700 MHz to 1.0 GHz) and a high band (1.4 GHz to 2.7 GHz) in addition to the configuration inserted in the multi-band communication signal path. It may be applied to one of the lines.
  • the seventh embodiment shows another example of the communication device.
  • FIG. 13 is a circuit diagram of a part of the communication device according to the seventh embodiment.
  • the communication device of this embodiment includes an antenna 1, a diplexer 50, high frequency power amplifier circuits 51 and 52, and a phase shift circuit 30.
  • a high-band transmission circuit is connected to the input section of the high-frequency power amplification circuit 51, and a low-band transmission circuit is connected to the input section of the high-frequency power amplification circuit 52.
  • the high frequency power amplifier circuits 51 and 52 are equivalent to the "transmission/reception circuit" in this invention.
  • the output end of the high frequency power amplification circuit 51 appears equivalently open from the output end of the high frequency power amplification circuit 51, or the output end of the high frequency power amplification circuit 51 extends from the output end of the high frequency power amplification circuit 52. Equivalently, the amount of phase shift that appears to be open is shifted.
  • the winding axis of the first coil conductor (first winding axis) and the winding axis of the second coil conductor (second winding axis) do not have to coincide with each other.
  • the input/output terminal side first coil conductor is located between two second coil conductors in the direction of the second winding axis, and When viewed in the axial direction, the second coil conductor overlaps the two second coil conductors, the input/output terminal side second coil conductor is located between the two first coil conductors in the direction of the first winding axis, and It suffices if the relationship is such that the two first coil conductors overlap each other when viewed in the direction of the winding axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Details Of Aerials (AREA)
  • Filters And Equalizers (AREA)

Abstract

第1コイル(L1)は、グランド端子(GND)に接続された共通端子側第1コイル導体(LC1)、中間第1コイル導体(LM1)、第1入出力端子(T1)に接続された入出力端子側第1コイル導体(LP1)とで構成され、第2コイル(L2)は、グランド端子(GND)に接続された共通端子側第2コイル導体(LC2)、中間第2コイル導体(LM2)、第2入出力端子(T2)に接続された入出力端子側第2コイル導体(LP2)とで構成される。入出力端子側第1コイル導体(LP1)は、中間第2コイル導体(LM2)と入出力端子側第2コイル導体(LP2)との間に位置し、入出力端子側第2コイル導体(LP2)は、中間第1コイル導体(LM1)と入出力端子側第1コイル導体(LP1)との間に位置する。

Description

コイルデバイス、移相回路及び通信装置
 本発明は、移相特性を有するコイルデバイス、それを備える移相回路、及びこのコイルデバイス又は移相回路を備える通信装置に関する。
 特許文献1には、互いに磁界結合する第1コイル及び第2コイルを有するトランスと、第1コイルと第2コイルとの間に接続されるキャパシタと、を備えたコイルデバイスが示されている。
 特許文献1に示される構造によれば、小型化、低損失化、移相量の周波数依存性低減等に有利な、コイルデバイス、移相回路及び通信装置が得られる。
国際公開第2016/114181号
 特許文献1に記載のコイルデバイスでは、第1コイルと第2コイルとの間に接続されるキャパシタはトランスのインピーダンスを調整するインピーダンス調整用回路として作用する。しかし、このキャパシタを、第1コイルと第2コイルとの間に寄生的に生じる容量だけで構成すると、インピーダンス調整のために必要な容量が得られない場合がある。その場合には、インピーダンスを適切に調整するために、第1コイル及び第2コイル以外の導体パターン(例えば面状に拡がって互いに対向する面状導体パターン)を特別に形成する必要がある。ところが、このような面状導体パターンを第1コイル及び第2コイルと共にコイルデバイス内に配置すると、第1コイル及び第2コイルが発生する磁界が面状導体パターンによって妨げられるので、励磁インダクタンスの低下、第1コイル-第2コイル間の磁界結合係数の低下、といった課題が生じる。そして、必要な励磁インダクタンスや磁界結合係数を得るために、第1コイル及び第2コイルの巻回数を増やすと損失の増大、大型化(積層数の増加)といった新たな課題が生じる。
 そこで、本発明の目的は、コイル巻回数の増加による損失の増大や大型化を避け、インピーダンス調整のために必要なキャパシタを有するコイルデバイス、それを備える移相回路、及びこのコイルデバイス又は移相回路を備える通信装置を提供することにある。
 本開示の一例としてのコイルデバイスは、
 絶縁基体と、
 それぞれ前記絶縁基体に形成された、第1入出力端子、第2入出力端子、共通端子、第1コイル及び第2コイルと、
 を備え、
 前記第1コイルは、第1巻回軸まわりに巻回された形状の第1コイル導体で構成され、
 前記第2コイルは、前記第1巻回軸方向に平行な第2巻回軸まわりに巻回された形状の第2コイル導体で構成され、
 前記第1コイルは、複数層に亘って形成された複数の第1コイル導体で構成され、前記複数の第1コイル導体は、一端が入出力端子に接続された、入出力端子側第1コイル導体を有し、
 前記第2コイルは、複数層に亘って形成された複数の第2コイル導体で構成され、前記複数の第2コイル導体は、一端が入出力端子に接続された、入出力端子側第2コイル導体を有し、
 前記入出力端子側第1コイル導体は、前記第2巻回軸の方向において、前記複数の第2コイル導体のうち2つの第2コイル導体の間に位置し、かつ前記第2巻回軸の方向に視て、前記2つの第2コイル導体に重なり、
 前記2つの第2コイル導体のうち、一方は前記入出力端子側第2コイル導体であり、
 前記入出力端子側第2コイル導体は、前記第1巻回軸の方向において、前記複数の第1コイル導体のうち2つの第1コイル導体の間に位置し、かつ前記第1巻回軸の方向に視て、前記2つの第1コイル導体に重なり、
 前記2つの第1コイル導体のうち、一方は前記入出力端子側第1コイル導体である、
 ことを特徴とする。
 本発明によれば、コイル巻回数の増加による損失の増大や大型化が無く、インピーダンス調整のために必要な容量を有するコイルデバイス、それを備える移相回路、及びこのコイルデバイス又は移相回路を備える通信装置が得られる。
図1は第1の実施形態に係るコイルデバイス11の回路図である。 図2(A)、図2(B)は、コイルデバイス11におけるトランスの等価回路図である。 図3はコイルデバイス11の外観斜視図である。 図4はコイルデバイス11の各基材の平面図である。 図5は図4の一部の拡大図である。 図6はコイルデバイス11の縦断面図である。 図7(A)はコイルデバイス11の移相量の周波数特性を示す図である。図7(B)はコイルデバイス11の挿入損失の周波数特性を示す図である。 図8は第2の実施形態に係るコイルデバイス12の各基材の平面図である。 図9は第3の実施形態に係るコイルデバイス13の各基材の平面図である。 図10は第4の実施形態に係るコイルデバイス14の回路図である。 図11(A)、図11(B)は第5の実施形態に係る移相回路30A,30Bの構成を示すブロック図である。 図12は第6の実施形態に係る通信装置200のブロック図である。 図13は第7の実施形態に係る通信装置の一部の回路図である。
 まず、本発明に係るコイルデバイスにおける幾つかの態様について列挙する。
 本発明に係る第1の態様のコイルデバイスは、絶縁基体と、この絶縁基体に形成された、第1入出力端子、第2入出力端子、共通端子、第1コイル及び第2コイルと、を備える。第1コイルは、第1巻回軸まわりに巻回された形状の第1コイル導体で構成される。第2コイルは、前記第1巻回軸方向に平行な第2巻回軸まわりに巻回された形状の第2コイル導体で構成される。第1コイルは、複数層に亘って形成された複数の第1コイル導体で構成され、複数の第1コイル導体は、一端が入出力端子に接続された、入出力端子側第1コイル導体を有し、第2コイルは、複数層に亘って形成された複数の第2コイル導体で構成され、複数の第2コイル導体は、一端が入出力端子に接続された、入出力端子側第2コイル導体を有する。入出力端子側第1コイル導体は、第2巻回軸の方向において、複数の第2コイル導体のうち2つの第2コイル導体の間に位置し、かつ第2巻回軸の方向に視て、2つの第2コイル導体に重なる。この2つの第2コイル導体のうち、一方は入出力端子側第2コイル導体である。また、入出力端子側第2コイル導体は、第1巻回軸の方向において、複数の第1コイル導体のうち2つの第1コイル導体の間に位置し、かつ第1巻回軸の方向に視て、2つの第1コイル導体に重なる。この2つの第1コイル導体のうち、一方は入出力端子側第1コイル導体である。
 上記構成によれば、第1コイル導体と第2コイル導体との対向総面積が大きいので、第1コイルと第2コイルとの間に生じる容量を容易に大きくできる。そのため、コイルデバイスのインピーダンス調整のために必要な容量が得られる。
 本発明に係る第2の態様のコイルデバイスでは、2つの第1コイル導体のうち入出力端子側第1コイル導体とは異なる他方は、一端が共通端子に接続された共通端子側第1コイル導体であり、2つの第2コイル導体のうち入出力端子側第2コイル導体とは異なる他方は、一端が共通端子に接続された共通端子側第2コイル導体である。この構成によれば、第1巻回軸方向又は第2巻回軸方向に、共通端子側第1コイル導体、入出力端子側第2コイル導体、入出力端子側第1コイル導体、共通端子側第2コイル導体の順、または、共通端子側第2コイル導体、入出力共通端子側第1コイル導体、入出力端子側第2コイル導体、共通端子側第2コイル導体の順に配置されたコイルデバイスが構成される。
 本発明に係る第3の態様のコイルデバイスでは、複数の第1コイル導体は、一端が共通端子に接続された共通端子側第1コイル導体と、入出力端子側第1コイル導体と共通端子側第1コイル導体とで第1巻回軸の方向に挟まれた中間第1コイル導体と、を含み、2つの第1コイル導体のうち入出力端子側第1コイル導体とは異なる他方は中間第1コイル導体である。また、複数の第2コイル導体は、一端が共通端子に接続された共通端子側第2コイル導体と、入出力端子側第2コイル導体と共通端子側第2コイル導体とで第2巻回軸の方向に挟まれた中間第2コイル導体と、を含み、2つの第2コイル導体のうち入出力端子側第2コイル導体とは異なる他方は中間第2コイル導体である。この構成によれば、第1巻回軸方向又は第2巻回軸方向に、共通端子側第1コイル導体、中間第1コイル導体、入出力端子側第2コイル導体、入出力端子側第1コイル導体、中間第2コイル導体、共通端子側第2コイル導体の順、または共通端子側第2コイル導体、中間第2コイル導体、入出力端子側第1コイル導体、入出力端子側第2コイル導体、中間第1コイル導体、共通端子側第1コイル導体の順に配置されたコイルデバイスが構成される。
 本発明に係る第4の態様のコイルデバイスでは、入出力端子側第1コイル導体の線幅は共通端子側第1コイル導体の線幅よりも太い部分を有し、入出力端子側第2コイル導体の線幅は共通端子側第2コイル導体の線幅よりも太い部分を有する。この構成によれば、第1コイル導体と第2コイル導体との間に生じる容量が効果的に高まる。
 本発明に係る第5の態様のコイルデバイスでは、入出力端子側第1コイル導体の巻回数は、共通端子側第1コイル導体の巻回数よりも多く、入出力端子側第2コイル導体の巻回数は、共通端子側第2コイル導体の巻回数よりも多い。この構成によれば、第1コイル導体と第2コイル導体との間に生じる容量が効果的に高まる。
 本発明に係る第6の態様のコイルデバイスでは、入出力端子側第1コイル導体の巻回数は1より多く、入出力端子側第1コイル導体に接続される層間接続導体は、入出力端子側第2コイル導体のコイル開口内に位置する。また、入出力端子側第2コイル導体の巻回数は1より多く、入出力端子側第2コイル導体に接続される層間接続導体は、入出力端子側第1コイル導体のコイル開口内に位置する。この構成によれば、層間接続導体がコイル開口の外側にある構造に比べて、磁界結合に寄与しないコイル導体の割合が抑えられ(コイル導体による磁束が外部に漏れにくく)、その結果、低損失化及び小型化される。
 本発明に係る第7の態様の移相回路は、上記コイルデバイスと、それに直列接続された、移相量が90°未満の移相線路とを備える。
 本発明に係る第8の態様の通信装置は、送受信回路と、この送受信回路に接続されるアンテナと、を備え、送受信回路とアンテナとの間に、上記コイルデバイス又は移相回路を備える。
 本発明に係る第9の態様の通信装置は、送受信回路と、この送受信回路に接続されるダイプレクサと、を備え、送受信回路とダイプレクサとの間に、上記コイルデバイス又は移相回路を備える。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を説明の便宜上、複数の実施形態に分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1は第1の実施形態に係るコイルデバイス11の回路図である。コイルデバイス11は、第1入出力端子T1と、第2入出力端子T2と、共通端子COMと、第1コイルL1と、第2コイルL2と、を備える。第1コイルL1と第2コイルL2とは磁界結合する。この第1コイルL1と第2コイルL2とでトランスが構成されている。
 第1コイルL1と第2コイルL2との間には入出力間キャパシタC12が設けられている。
 図2(A)、図2(B)は、上記トランスの等価回路図である。トランスの等価回路は幾つかの形式で表現できる。図2(A)の表現では、理想トランスITと、その1次側に直列接続されたインダクタLaと、1次側に並列接続されたインダクタLbと、2次側に直列接続されたインダクタLcとで表される。
 図2(B)の表現では、理想トランスITと、その1次側に直列接続された2つのインダクタLa,Lc1と、理想トランスITの1次側に並列接続されたインダクタLbとで表される。
 ここで、トランスのトランス比を1:√(L2 / L1)、第1コイルL1と第2コイルL2(図1参照)との結合係数をk、第1コイルL1のインダクタンスをL1、第2コイルL2のインダクタンスをL2でそれぞれ表すと、上記インダクタLa,Lb,Lc,Lc1のインダクタンスは次の関係にある。
 La:L1(1 - k)
 Lb:k * L1
 Lc:L2(1 - k)
 Lc1:L1(1 - k)
 理想トランスITのトランス比は第1コイルL1と第2コイルL2との巻回数比である。
 いずれにせよ、上記トランスは、第1コイルL1と第2コイルL2との結合係数kが1未満であることに伴い、並列インダクタンス(励磁インダクタンス)成分以外に、直列インダクタンス(漏れインダクタンス)成分が生じる。
 図3は本実施形態のコイルデバイス11の外観斜視図であり、図4はコイルデバイス11の各基材の平面図である。図5は図4の一部の拡大図である。また、図6はコイルデバイス11の縦断面図である。
 コイルデバイス11は複数の絶縁性の基材S1~S8を備えている。これら基材S1~S8の積層により積層体100(絶縁基体に相当)が構成されている。基材S1~S8の積層圧着前の状態では絶縁性シート、例えば、LTCC(LowTemperature Co-fired Ceramics:低温同時焼成セラミックス)等で構成された非磁性セラミック等のセラミックグリーンシート、である。基材S1~S8には各種導体パターンが形成されている。「各種導体パターン」には、基材の表面に形成された導体パターンだけでなく、層間接続導体を含む。ここで「層間接続導体」はビア導体だけでなく、積層体100の端面に形成される端面電極を含む。
 上記各種導体パターンは、AgやCuを主成分とする比抵抗の小さな導体材料によって構成される。基材層がセラミックであれば、例えば、AgやCuを主成分とする導電性ペーストのスクリーン印刷及び焼成により形成される。
 基材S1~S8がセラミックグリーンシートの場合は、これら基材S1~S8を積層し、焼成することで、セラミックマザー基板を形成し、これを分割することで多数の積層体100を得る。そして、積層体100の外面に端面電極を形成することでコイルデバイス11を構成する。
 基材S8の下面は積層体100の下面(コイルデバイス11の実装面)に相当する。基材S1の上面から基材S2~S7を介し基材S8の下面までに亘って、第1入出力端子T1、第2入出力端子T2、共通端子としてのグランド端子GND、及び空き端子NCが形成されている。
 基材S2,S3,S5には、共通端子側第1コイル導体LC1、中間第1コイル導体LM1、入出力端子側第1コイル導体LP1がそれぞれ形成されている。基材S2,S3,S4にはビア導体V1A,V1B,V1Cがそれぞれ形成されている。共通端子側第1コイル導体LC1の第1端はグランド端子GNDに接続される。共通端子側第1コイル導体LC1の第2端はビア導体V1Aを介して中間第1コイル導体LM1の第1端に接続される。共通端子側第1コイル導体LC1の第2端はビア導体V1B,V1Cを介して入出力端子側第1コイル導体LP1の第1端に接続される。入出力端子側第1コイル導体LP1の第2端は第1入出力端子T1に接続される。
 上記共通端子側第1コイル導体LC1、中間第1コイル導体LM1、入出力端子側第1コイル導体LP1及びビア導体V1A,V1B,V1Cは本発明における「第1コイル導体」に相当する。この第1コイル導体によって第1コイルL1が構成される。
 基材S7,S6,S4には、共通端子側第2コイル導体LC2、中間第2コイル導体LM2、入出力端子側第2コイル導体LP2がそれぞれ形成されている。基材S6,S5,S4にはビア導体V2A,V2B,V2Cがそれぞれ形成されている。共通端子側第2コイル導体LC2の第1端はグランド端子GNDに接続される。共通端子側第2コイル導体LC2の第2端はビア導体V2Aを介して中間第2コイル導体LM2の第1端に接続される。中間第2コイル導体LM2の第2端はビア導体V2B,V2Cを介して入出力端子側第2コイル導体LP2の第1端に接続される。入出力端子側第2コイル導体LP2の第2端は第2入出力端子T2に接続される。
 上記共通端子側第2コイル導体LC2、中間第2コイル導体LM2、入出力端子側第2コイル導体LP2及びビア導体V2A,V2B,V2Cは本発明における「第2コイル導体」に相当する。この第2コイル導体によって第2コイルL2が構成される。
 図4、図6に表れているように、第1コイル導体、第2コイル導体のいずれも巻回軸WAのまわりに巻回された形状を有し、第1コイルL1、第2コイルL2いずれもコイル導体の巻回軸方向は図4、図6に示す軸でZ軸方向である。巻回軸WAは本発明に係る「第1巻回軸」及び「第2巻回軸」に対応する。本実施形態においては第1コイル導体の巻回軸(第1巻回軸)と第2コイル導体の巻回軸(第2巻回軸)とは一致している。また、第1コイル導体の巻回軸(第1巻回軸)と第2コイル導体の巻回軸(第2巻回軸)とは一致していなくてもよく、互いに平行であるだけでもよい。本願において「平行」とは「一致」も含まれる。ただし、「平行」である場合には、第1コイル導体のコイル開口と、第2コイル導体のコイル開口とは、巻回軸方向から見て重なっている。
 このように、第1コイル導体は、一端がグランド端子GNDに接続された共通端子側第1コイル導体LC1と、中間第1コイル導体LM1と、一端が第1入出力端子T1に接続された入出力端子側第1コイル導体LP1と、を有する。
 同様に、第2コイル導体は、一端がグランド端子GNDに接続された共通端子側第2コイル導体LC2と、中間第2コイル導体LM2と、一端が第2入出力端子T2に接続された入出力端子側第2コイル導体LP2と、を有する。
 また、上記絶縁性の基材はLTCCに限らず、ガラスを主成分とした絶縁ペーストをスクリーン印刷により塗布することを繰り返して形成してもよい。この場合、フォトリソグラフィ工程により、この基材に上記各種導体パターンを形成する。
 以降、第1コイル導体及び第2コイル導体の特徴的な構成を列挙する。
[各コイル導体パターンの積層方向における位置関係]
 第1コイルL1の巻回軸方向(基材の積層方向)において、入出力端子側第1コイル導体LP1は、中間第2コイル導体LM2と入出力端子側第2コイル導体LP2との間に位置する。
 同様に、第2コイルL2の巻回軸方向(基材の積層方向)において、入出力端子側第2コイル導体LP2は、中間第1コイル導体LM1と入出力端子側第1コイル導体LP1との間に位置する。
 このように、第1コイルL1の構成要素である第1コイル導体の一部と、第2コイルL2の構成要素である第2コイル導体の一部とが、互いに相手側のコイル導体で挟まれる関係となる。このことにより、第1コイル導体と第2コイル導体との対向総面積が大きくなる。第1コイル導体と第2コイル導体との対向総面積とは、換言すれば、積層方向からみて第1コイル導体と第2コイル導体とが互いに重なっている部分の面積である。これにより、第1コイルL1と第2コイルL2との間に生じる容量を容易に大きくでき、コイルデバイス11のインピーダンス調整のために必要な容量が得られる。また、中間第1コイル導体、中間第2コイル導体は所望のインダクタンス値に応じて複数層あってもよい。
[各コイル導体パターンの線幅]
 入出力端子側第1コイル導体LP1の線幅は、共通端子側第1コイル導体LC1、中間第1コイル導体LM1の線幅よりも太い部分を有する。この例では、入出力端子側第1コイル導体LP1の線幅は、共通端子側第1コイル導体LC1の線幅より太い。そのため、入出力端子側第1コイル導体LP1と入出力端子側第2コイル導体LP2との間に生じる容量、及び中間第1コイル導体LM1と入出力端子側第2コイル導体LP2との間に生じる容量、が効果的に高まる。また、共通端子側第1コイル導体LC1の線幅が、入出力端子側第1コイル導体LP1の線幅より細いことで、第1コイルのインダクタンスを大きくすることができ、また設計者の意図しない寄生容量を抑制できるため、所望のインダクタンス値が得られる。
 同様に、入出力端子側第2コイル導体LP2の線幅は、共通端子側第2コイル導体LC2、中間第2コイル導体LM2の線幅よりも太い部分を有する。この例では、入出力端子側第2コイル導体LP2の線幅は、共通端子側第2コイル導体LC2の線幅より太い。そのため、入出力端子側第2コイル導体LP2と入出力端子側第1コイル導体LP1との間に生じる容量、及び中間第2コイル導体LM2と入出力端子側第1コイル導体LP1との間に生じる容量、が効果的に高まる。また、共通端子側第2コイル導体LC2の線幅が、入出力端子側第2コイル導体LP2の線幅より細いことで、第2コイルのインダクタンスを大きくすることができ、また設計者の意図しない寄生容量を抑制できるため、所望のインダクタンス値が得られる。
[各コイル導体パターンの巻回数]
 入出力端子側第1コイル導体LP1の巻回数は、共通端子側第1コイル導体LC1の巻回数よりも多い。図4に示した例では、入出力端子側第1コイル導体LP1の巻回数は約2ターンであり、共通端子側第1コイル導体LC1の巻回数は約0.75ターンである。そのため、入出力端子側第1コイル導体LP1と入出力端子側第2コイル導体LP2との間に生じる容量が効果的に高まる。
 同様に、入出力端子側第2コイル導体LP2の巻回数は、共通端子側第2コイル導体LC2の巻回数よりも多い。図4に示した例では、入出力端子側第2コイル導体LP2の巻回数は約2ターンであり、共通端子側第2コイル導体LC2の巻回数は約0.75ターンである。そのため、入出力端子側第2コイル導体LP2と入出力端子側第1コイル導体LP1との間に生じる容量が効果的に高まる。
 なお、中間第1コイル導体LM1の巻回数は、入出力端子側第1コイル導体LP1の巻回数より少なく、共通端子側第1コイル導体LC1の巻回数より多い。同様に、中間第2コイル導体LM2の巻回数は、入出力端子側第2コイル導体LP2の巻回数より少なく、共通端子側第2コイル導体LC2の巻回数より多い。
 各基材に形成された第1コイル導体パターンのうち、入出力端子側第1コイル導体LP1の巻回数が最も多く、共通端子側第1コイル導体LC1の巻回数が最も少ない。同様に、各基材に形成された第2コイル導体パターンのうち、入出力端子側第2コイル導体LP2の巻回数が最も多く、共通端子側第2コイル導体LC2の巻回数が最も少ない。
[コイル導体パターンを接続するビア導体の位置]
 入出力端子側第1コイル導体LP1の巻回数は1より多く、入出力端子側第1コイル導体LP1に接続されるビア導体V1Cは、入出力端子側第2コイル導体LP2のコイル開口CA2内に位置する(図5参照)。この構成によれば、ビア導体V1Cがコイル開口の外側にある構造に比べて、入出力端子側第1コイル導体LP1と入出力端子側第2コイル導体LP2を比較的大きく巻くことができるため、インダクタンス値の設計自由度が高まる。また、ビア導体がコイル開口の外側にある場合には、ビア導体から発生する磁束がコイルデバイスの外部にまで広がるため、その磁束が周囲に配置される他のデバイスと結合されやすくなる。その場合、コイルデバイスとその他のデバイスとが干渉し、互いに特性が変化するおそれがある。しかし、上記構成のように、ビア導体がコイル開口内に配置され、コイルデバイスのより中心側に配置されている場合は、コイルデバイスの外部に磁束が漏れにくく、他のデバイスとの干渉及び特性変化を抑制できる。さらに、ビア導体が複数ある場合は、それらをコイル開口内に配置されることで、ビア導体同士を近接配置しやすくなり、磁界結合及び容量結合を高めることができる。
 同様に、入出力端子側第2コイル導体LP2の巻回数は1より多く、入出力端子側第2コイル導体LP2に接続されるビア導体V2Cは、入出力端子側第1コイル導体LP1のコイル開口CA1内に位置する(図5参照)。この構成によれば、ビア導体V2Cがコイル開口の外側にある構造に比べて、磁界結合に寄与しないコイル導体の割合が抑えられ(コイル導体による磁束が外部に漏れにくく)、その結果、低損失化及び小型化される。
 なお、積層体100の各基材層はポリイミドや液晶ポリマ等の樹脂材料で構成した樹脂積層体やガラスを主成分とした絶縁ペーストで構成された積層体であってもよい。このように、基材層が非磁性体であることにより(磁性体フェライトではないので)、700MHzを超える高周波数帯でも所定インダクタンス、所定結合係数のトランス及び移相器として用いることができる。
 上記導体パターン及び層間接続導体は、基材層が樹脂であれば、例えば、Al箔やCu箔等の金属箔がエッチング等によりパターニングされることにより形成される。また、基材層がガラスを主成分とした絶縁ペーストで構成される場合には、感光性導電ペーストを用いたフォトリソグラフィ工程により、上記、各種導体パターンを形成する。
 図7(A)は本実施形態のコイルデバイス11の移相量の周波数特性を示す図である。この図において、横軸は周波数、縦軸は移相量である。移相量は±180°の範囲で表している。この例では、マーカーm1は周波数1GHzにおける移相量、マーカーm2は周波数1.9GHzにおける移相量、をそれぞれ示している。図7(A)の表記では、移相量がマイナスの場合には読み取り値の絶対値、移相量がプラスの場合には、読み取り値から360°を引いた値の絶対値が移相量である。すなわち、移相量は1GHzで|170°-360°|=190°、1.9GHzで|130°-360°|=230°である。
 このように、周波数が約2倍異なっていても、移相量は約40°になるだけであり、同程度の移相量の大きさを維持している。
 図7(B)は本実施形態のコイルデバイス11の挿入損失の周波数特性を示す図である。周波数1GHzで約-1dB、周波数1.9GHzで約0dBであり、低挿入損失特性が得られる。この例で、周波数1GHzよりも周波数1.9GHzで挿入損失がより低下しているのは、第1コイルL1及び第2コイルL2によるトランスを介さずに、入出力間キャパシタC12を直接通過する信号成分が増大するためである。
《第2の実施形態》
 第2の実施形態では、入出力端子側コイル導体が複数層である、コイルデバイスの例を示す。
 図8は第2の実施形態に係るコイルデバイス12の各基材の平面図である。コイルデバイス12は複数の絶縁性の基材S1~S8を備えている。
 基材S8の下面はコイルデバイス12の実装面に相当する。基材S8には第1入出力端子T1、第2入出力端子T2、共通端子としてのグランド端子GND、及び空き端子NCが形成されている。
 基材S2,S3,S5には、共通端子側第1コイル導体LC1、中間第1コイル導体LM1、入出力端子側第1コイル導体LP1がそれぞれ形成されている。基材S2,S3,S4にはビア導体V1A,V1B,V1Cがそれぞれ形成されている。共通端子側第1コイル導体LC1の第1端はグランド端子GNDに接続される。共通端子側第1コイル導体LC1の第2端はビア導体V1Aを介して中間第1コイル導体LM1の第1端に接続される。中間第1コイル導体LM1の第2端はビア導体V1B,V1Cを介して入出力端子側第1コイル導体LP1の第1端に接続される。入出力端子側第1コイル導体LP1の第2端は第1入出力端子T1に接続される。
 上記共通端子側第1コイル導体LC1、中間第1コイル導体LM1、入出力端子側第1コイル導体LP1及びビア導体V1A,V1B,V1Cは本発明における「第1コイル導体」に相当する。この第1コイル導体によって第1コイルL1が構成される。
 基材S7,S6,S4には、共通端子側第2コイル導体LC2、中間第2コイル導体LM2、入出力端子側第2コイル導体LP2がそれぞれ形成されている。基材S6,S5,S4にはビア導体V2A,V2B,V2Cがそれぞれ形成されている。共通端子側第2コイル導体LC2の第1端はグランド端子GNDに接続される。共通端子側第2コイル導体LC2の第2端はビア導体V2Aを介して中間第2コイル導体LM2の第1端に接続される。中間第2コイル導体LM2の第2端はビア導体V2B,V2Cを介して入出力端子側第2コイル導体LP2の第1端に接続される。入出力端子側第2コイル導体LP2の第2端は第2入出力端子T2に接続される。
 上記共通端子側第2コイル導体LC2、中間第2コイル導体LM2、入出力端子側第2コイル導体LP2及びビア導体V2A,V2B,V2Cは本発明における「第2コイル導体」に相当する。この第2コイル導体によって第2コイルL2が構成される。また、中間第1コイル導体LM1、中間第2コイル導体LM2はこれに限らず所望のインダクタンス値に応じて複数層あってもよい。
 コイルデバイスのその他の構成は第1の実施形態で示したとおりである。本実施形態のコイルデバイス12では、入出力端子側第1コイル導体LP1に近接した中間第1コイル導体LM1と、入出力端子側第2コイル導体LP2に近接した中間第2コイル導体LM2とも巻回数が1以上になっている。
 本実施形態によれば、第1の実施形態で示した例より、第1コイル導体と第2コイル導体との対向総面積がより大きくなるので、第1コイルL1と第2コイルL2との間に生じる容量を更に大きくできる。
《第3の実施形態》
 第3の実施形態では、共通端子側コイル導体及び入出力端子側コイル導体のいずれもが一層である、コイルデバイスの例を示す。
 図9は第3の実施形態に係るコイルデバイス13の各基材の平面図である。コイルデバイス13は複数の絶縁性の基材S1~S6を備えている。
 基材S8の下面はコイルデバイス13の実装面に相当する。基材S8には第1入出力端子T1、第2入出力端子T2、共通端子としてのグランド端子GND、及び空き端子NCが形成されている。
 基材S2,S4には、共通端子側第1コイル導体LC1、入出力端子側第1コイル導体LP1がそれぞれ形成されている。基材S2,S3にはビア導体V1B,V1Cがそれぞれ形成されている。共通端子側第1コイル導体LC1の第1端はグランド端子GNDに接続される。共通端子側第1コイル導体LC1の第2端はビア導体V1B,V1Cを介して入出力端子側第1コイル導体LP1の第1端に接続される。入出力端子側第1コイル導体LP1の第2端は第1入出力端子T1に接続される。
 上記共通端子側第1コイル導体LC1、入出力端子側第1コイル導体LP1及びビア導体V1B,V1Cは本発明における「第1コイル導体」に相当する。この第1コイル導体によって第1コイルL1が構成される。
 基材S5,S3には、共通端子側第2コイル導体LC2、入出力端子側第2コイル導体LP2がそれぞれ形成されている。基材S4,S3にはビア導体V2B,V2Cがそれぞれ形成されている。共通端子側第2コイル導体LC2の第1端はグランド端子GNDに接続される。共通端子側第2コイル導体LC2の第2端はビア導体V2B,V2Cを介して入出力端子側第2コイル導体LP2の第1端に接続される。入出力端子側第2コイル導体LP2の第2端は第2入出力端子T2に接続される。
 上記共通端子側第2コイル導体LC2、入出力端子側第2コイル導体LP2及びビア導体V2B,V2Cは本発明における「第2コイル導体」に相当する。この第2コイル導体によって第2コイルL2が構成される。
 コイルデバイスのその他の構成は第1、第2の実施形態で示したとおりである。本実施形態では、中間第1コイル導体や中間第2コイル導体に相当するコイル導体が形成される基材、及び中間第1コイル導体や中間第2コイル導体が形成される基材がない。第1コイル導体及び第2コイル導体に要する巻回数が少ない場合には、このようにコイル導体の層数や基材の層数が少なくてもよい。この例の場合においても、入出力端子側第1コイル導体LP1の線幅は、共通端子側第1コイル導体LC1の線幅よりも太い方が好ましい。換言すれば、共通端子側第1コイル導体LC1の線幅は、入出力端子側第1コイル導体LP1の線幅よりも細い方が好ましい。同様に、入出力端子側第2コイル導体LP2の線幅は、共通端子側第2コイル導体LC2の線幅よりも太い方が好ましい。換言すれば、共通端子側第2コイル導体LC2の線幅は、入出力端子側第2コイル導体LP2の線幅よりも細い方が好ましい。これによって、第1コイルL1と第2コイルL2との入出力間の容量を高めながら、第1コイルL1自体の寄生容量及び第2コイルL2自体の寄生容量を抑制できる。
《第4の実施形態》
 第4の実施形態では、インピーダンス整合回路を備えるコイルデバイスの例を示す。
 図10は第4の実施形態に係るコイルデバイス14の回路図である。このコイルデバイス14は、第1コイルL1、第2コイルL2、第1キャパシタC1、第2キャパシタC2及び入出力間キャパシタC12を備えている。
 第1コイルL1と第2コイルL2とは、互いに磁界結合するトランスを構成する。
 第1キャパシタC1は第1コイルL1に並列接続されていて、第2キャパシタC2は第2コイルL2に並列接続されている。これにより、第1キャパシタC1及び第2キャパシタC2は、コイルデバイス14の入出力部のインピーダンス整合回路として作用する。
 第1コイル導体パターン及び第2コイル導体パターンの構成は第1、第2、第3の実施形態で示した構成と基本的には同じである。
 第1キャパシタC1は、第1コイル導体パターンの層間及び線間に寄生的に生じる容量で構成される。同様に、第2キャパシタC2は、第2コイル導体パターンの層間及び線間に寄生的に生じる容量で構成される。
《第5の実施形態》
 第5の実施形態では移相回路の例を示す。
 図11(A)、図11(B)は第5の実施形態に係る移相回路30A,30Bの構成を示すブロック図である。移相回路30A,30Bは給電回路9とアンテナ1との間に接続されている。移相回路30Aは、コイルデバイス10と、コイルデバイス10に対して直列に接続された移相線路20とで構成されている。また、移相回路30Bは、移相線路20と、移相線路20に対して直列に接続されたコイルデバイス10とで構成されている。コイルデバイス10の基本構成は第1~第4の各実施形態で示したコイルデバイス11~14と同じである。移相線路20は移相量90°未満の移相線路である。
 移相回路30A,30Bはコイルデバイス10による移相量と移相線路20による移相量とを加算した位相角だけ、入出力端子間に位相差をもたせる。
 このように、移相線路20を付加することで180°を大きく超える移相を行うことができ、コイルデバイス10による移相量で全体の移相量を微調整できる。
 なお、移相線路20をコイルデバイス10に一体的に設けて、移相回路30A,30Bを単一の部品として構成してもよい。また、図11(A)、図11(B)において、移相回路30A,30Bとアンテナ1との間にアンテナ整合回路が設けられていてもよい。また、移相線路20は、伝送線路(50Ω線路)の電気長を定めることによって移相量を設定したものであってもよいし、インダクタやキャパシタ等の集中定数素子又はLC回路を付加することで移相量を調整したものであってもよい。
《第6の実施形態》
 第6の実施形態では通信装置の例について示す。図12は第6の実施形態に係る通信装置200のブロック図である。本実施形態の通信装置200は、アンテナ1、アンテナ整合回路40、移相回路30、通信回路41、ベースバンド回路42、アプリケーションプロセッサ(APU)43及び入出力回路44を備える。通信回路41はローバンド(700MHz~1.0GHz)とハイバンド(1.4GHz~2.7GHz)についての送信回路TX及び受信回路RX、さらにはアンテナ共用器を備えている。アンテナ1は、ローバンドとハイバンドに対応するモノポールアンテナ又は逆F型アンテナである。通信回路41は本発明における「送受信回路」に相当する。
 上記構成要素は1つの筐体内に収納されている。例えば、アンテナ整合回路40、移相回路30、通信回路41、ベースバンド回路42、アプリケーションプロセッサ43はプリント配線板に実装され、プリント配線板は筐体内に収納される。入出力回路44は表示・タッチパネルとして筐体に組み込まれる。アンテナ1はプリント配線板に実装されるか、筐体の内面又は内部に配置される。
 移相回路30は、ハイバンドのマッチングに影響を与えず、ローバンドの信号を大きく移相させることにより、アンテナ整合回路40によって容易にアンテナマッチングを実現できる。このことにより、広帯域に亘って整合するアンテナを備える通信装置が得られる。
 なお、図12に示したように、移相回路30はマルチバンドの通信信号経路に挿入する構成以外に、例えば、ローバンド(700MHz~1.0GHz)及びハイバンド(1.4GHz~2.7GHz)の一方のラインに適用してもよい。
《第7の実施形態》
 第7の実施形態では通信装置の別の例を示す。図13は第7の実施形態に係る通信装置の一部の回路図である。本実施形態の通信装置は、アンテナ1、ダイプレクサ50、高周波電力増幅回路51,52及び移相回路30を備える。高周波電力増幅回路51の入力部にはハイバンド用の送信回路が接続され、高周波電力増幅回路52の入力部にはローバンド用の送信回路が接続される。高周波電力増幅回路51,52は本発明における「送受信回路」に相当する。
 移相回路30は、高周波電力増幅回路51の出力端から高周波電力増幅回路52の出力端が等価的に開放に見える、又は高周波電力増幅回路52の出力端から高周波電力増幅回路51の出力端が等価的に開放に見えるだけの移相量を移相する。
 このようにして高周波電力増幅回路51と高周波電力増幅回路52とのアイソレーションを確保することができる。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
 例えば、以上に示した各実施形態では、第1コイル導体を構成する導体パターンと、第2コイル導体を構成する導体パターンとが、互いに線対称関係にある導体パターンで構成される例を示したが、対称性は必須ではない。
 また、第1コイル導体の巻回軸(第1巻回軸)と第2コイル導体の巻回軸(第2巻回軸)とは一致している必要はなく、「第1巻回軸」と「第2巻回軸」とは平行であり、入出力端子側第1コイル導体が、第2巻回軸の方向において、2つの第2コイル導体の間に位置し、かつ第2巻回軸の方向に視て、2つの第2コイル導体に重なり、入出力端子側第2コイル導体が、第1巻回軸の方向において、2つの第1コイル導体の間に位置し、かつ第1巻回軸の方向に視て、2つの第1コイル導体に重なる関係であればよい。
 また、以上に示した各実施形態では、第1コイルL1と第2コイルL2とのインダクタンス比が1:1である例を示したが、これ以外のインダクタンス比であってもよい。
C1…第1キャパシタ
C2…第2キャパシタ
C12…入出力間キャパシタ
CA1,CA2…コイル開口
COM…共通端子
GND…グランド端子(共通端子)
IT…理想トランス
L1…第1コイル
L2…第2コイル
La,Lb,Lc,Lc1…インダクタ
LC1…共通端子側第1コイル導体
LC2…共通端子側第2コイル導体
LM1…中間第1コイル導体
LM2…中間第2コイル導体
LP1…入出力端子側第1コイル導体
LP2…入出力端子側第2コイル導体
NC…空き端子
S1~S8…基材
T1…第1入出力端子
T2…第2入出力端子
V1A,V1B,V1C…ビア導体(層間接続導体)
V2A,V2B,V2C…ビア導体(層間接続導体)
WA…巻回軸
1…アンテナ
9…給電回路
10~14…コイルデバイス
20…移相線路
30,30A,30B…移相回路
40…アンテナ整合回路
41…通信回路(高周波回路)
42…ベースバンド回路
43…アプリケーションプロセッサ
44…入出力回路
50…ダイプレクサ
51,52…高周波電力増幅回路(高周波回路)
100…積層体
200…通信装置

Claims (9)

  1.  絶縁基体と、
     それぞれ前記絶縁基体に形成された、第1入出力端子、第2入出力端子、共通端子、第1コイル及び第2コイルと、
     を備え、
     前記第1コイルは、第1巻回軸まわりに巻回された形状の第1コイル導体で構成され、
     前記第2コイルは、前記第1巻回軸方向に平行な第2巻回軸まわりに巻回された形状の第2コイル導体で構成され、
     前記第1コイルは、複数層に亘って形成された複数の第1コイル導体で構成され、前記複数の第1コイル導体は、一端が入出力端子に接続された、入出力端子側第1コイル導体を有し、
     前記第2コイルは、複数層に亘って形成された複数の第2コイル導体で構成され、前記複数の第2コイル導体は、一端が入出力端子に接続された、入出力端子側第2コイル導体を有し、
     前記入出力端子側第1コイル導体は、前記第2巻回軸の方向において、前記複数の第2コイル導体のうち2つの第2コイル導体の間に位置し、かつ前記第2巻回軸の方向に視て、前記2つの第2コイル導体に重なり、
     前記2つの第2コイル導体のうち一方は前記入出力端子側第2コイル導体であり、
     前記入出力端子側第2コイル導体は、前記第1巻回軸の方向において、前記複数の第1コイル導体のうち2つの第1コイル導体の間に位置し、かつ前記第1巻回軸の方向に視て、前記2つの第1コイル導体に重なり、
     前記2つの第1コイル導体のうち一方は前記入出力端子側第1コイル導体である、
     コイルデバイス。
  2.  前記2つの第1コイル導体のうち前記入出力端子側第1コイル導体とは異なる他方は、一端が前記共通端子に接続された共通端子側第1コイル導体であり、
     前記2つの第2コイル導体のうち前記入出力端子側第2コイル導体とは異なる他方は、一端が前記共通端子に接続された共通端子側第2コイル導体である、
     請求項1に記載のコイルデバイス。
  3.  前記複数の第1コイル導体は、一端が前記共通端子に接続された共通端子側第1コイル導体と、前記入出力端子側第1コイル導体と前記共通端子側第1コイル導体とで前記第1巻回軸の方向に挟まれた中間第1コイル導体と、を含み、
     前記2つの第1コイル導体のうち前記入出力端子側第1コイル導体とは異なる他方は前記中間第1コイル導体であり、
     前記複数の第2コイル導体は、一端が前記共通端子に接続された共通端子側第2コイル導体と、前記入出力端子側第2コイル導体と前記共通端子側第2コイル導体とで前記第2巻回軸の方向に挟まれた中間第2コイル導体と、を含み、
     前記2つの第2コイル導体のうち前記入出力端子側第2コイル導体とは異なる他方は前記中間第2コイル導体である、
     請求項1に記載のコイルデバイス。
  4.  前記入出力端子側第1コイル導体の線幅は前記共通端子側第1コイル導体の線幅よりも太い部分を有し、前記入出力端子側第2コイル導体の線幅は前記共通端子側第2コイル導体の線幅よりも太い部分を有する、
     請求項2又は3に記載のコイルデバイス。
  5.  前記入出力端子側第1コイル導体の巻回数は、前記共通端子側第1コイル導体の巻回数よりも多く、前記入出力端子側第2コイル導体の巻回数は、前記共通端子側第2コイル導体の巻回数よりも多い、
     請求項2から4のいずれかに記載のコイルデバイス。
  6.  前記入出力端子側第1コイル導体の巻回数は1より多く、
     前記入出力端子側第1コイル導体に接続される層間接続導体は、前記入出力端子側第2コイル導体のコイル開口内に位置し、
     前記入出力端子側第2コイル導体の巻回数は1より多く、
     前記入出力端子側第2コイル導体に接続される層間接続導体は、前記入出力端子側第1コイル導体のコイル開口内に位置する、
     請求項1から5のいずれかに記載のコイルデバイス。
  7.  請求項1から6のいずれかに記載のコイルデバイスと、前記コイルデバイスに対して直列に接続された、移相量が90°未満の移相線路とを備える、移相回路。
  8.  送受信回路と、前記送受信回路に接続されるアンテナと、を備える通信装置であって、
     前記送受信回路と前記アンテナとの間に、請求項1から6のいずれかに記載のコイルデバイス又は請求項7に記載の移相回路を備えた、通信装置。
  9.  送受信回路と、前記送受信回路に接続されるダイプレクサと、を備える通信装置であって、
     前記送受信回路と前記ダイプレクサとの間に、請求項1から6のいずれかに記載のコイルデバイス又は請求項7に記載の移相回路を備えた、通信装置。
PCT/JP2020/005091 2019-02-22 2020-02-10 コイルデバイス、移相回路及び通信装置 WO2020170882A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202090000332.9U CN216528275U (zh) 2019-02-22 2020-02-10 线圈器件、移相电路及通信装置
JP2021501874A JP6904497B2 (ja) 2019-02-22 2020-02-10 コイルデバイス、移相回路及び通信装置
US17/368,903 US11961651B2 (en) 2019-02-22 2021-07-07 Coil device, phase shift circuit, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-030411 2019-02-22
JP2019030411 2019-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/368,903 Continuation US11961651B2 (en) 2019-02-22 2021-07-07 Coil device, phase shift circuit, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2020170882A1 true WO2020170882A1 (ja) 2020-08-27

Family

ID=72144673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005091 WO2020170882A1 (ja) 2019-02-22 2020-02-10 コイルデバイス、移相回路及び通信装置

Country Status (4)

Country Link
US (1) US11961651B2 (ja)
JP (1) JP6904497B2 (ja)
CN (1) CN216528275U (ja)
WO (1) WO2020170882A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7528956B2 (ja) * 2019-12-03 2024-08-06 戸田工業株式会社 モジュール基板用アンテナ、及びそれを用いたモジュール基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153011A (ja) * 1989-11-10 1991-07-01 Murata Mfg Co Ltd 積層トランス
US20140138792A1 (en) * 2012-11-21 2014-05-22 Qualcomm Incorporated Hybrid transformer structure on semiconductor devices
JP2016219606A (ja) * 2015-05-21 2016-12-22 株式会社村田製作所 複合電子部品
WO2018012400A1 (ja) * 2016-07-15 2018-01-18 株式会社村田製作所 高周波トランスおよび移相器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143370A1 (en) * 2008-05-22 2009-11-26 Advanced Magnet Lab, Inc. Coil magnets with constant or variable phase shifts
JP2013065678A (ja) * 2011-09-16 2013-04-11 Hitachi Cable Ltd 積層コイル
CN206506500U (zh) 2015-01-15 2017-09-19 株式会社村田制作所 变压器型移相器、移相电路以及通信终端装置
CN106664070B (zh) * 2015-03-25 2019-05-03 株式会社村田制作所 移相器、阻抗匹配电路、合分波器以及通信终端装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153011A (ja) * 1989-11-10 1991-07-01 Murata Mfg Co Ltd 積層トランス
US20140138792A1 (en) * 2012-11-21 2014-05-22 Qualcomm Incorporated Hybrid transformer structure on semiconductor devices
JP2016219606A (ja) * 2015-05-21 2016-12-22 株式会社村田製作所 複合電子部品
WO2018012400A1 (ja) * 2016-07-15 2018-01-18 株式会社村田製作所 高周波トランスおよび移相器

Also Published As

Publication number Publication date
CN216528275U (zh) 2022-05-13
US20210335533A1 (en) 2021-10-28
US11961651B2 (en) 2024-04-16
JPWO2020170882A1 (ja) 2021-09-13
JP6904497B2 (ja) 2021-07-14

Similar Documents

Publication Publication Date Title
US10348265B2 (en) Transformer-type phase shifter, phase-shift circuit, and communication terminal apparatus
JP6168243B2 (ja) 移相器、インピーダンス整合回路、合分波器および通信端末装置
JP6388059B2 (ja) 移相器、インピーダンス整合回路および通信端末装置
KR100643145B1 (ko) 집중 정수형 비상반소자
US11322284B2 (en) High-frequency transformer and phase shifter
WO2016114182A1 (ja) アンテナ整合回路、アンテナ装置および通信端末装置
US9893708B2 (en) Impedance conversion ratio setting method, impedance conversion circuit, and communication terminal apparatus
WO2020170882A1 (ja) コイルデバイス、移相回路及び通信装置
WO2016006676A1 (ja) 高周波モジュール
JP4783996B2 (ja) 積層型複合バラントランス
US8269581B2 (en) Band-pass filter, high-frequency component, and communication apparatus
WO2019176551A1 (ja) アンテナ装置
US11838043B2 (en) Filter circuit module, filter circuit element, filter circuit, and communication apparatus
US7054608B2 (en) Multilayer electronic component and communication apparatus and method
WO2010113845A1 (ja) 分布定数回路
WO2021187083A1 (ja) コイルデバイス、回路素子モジュール及び電子機器
JP2005143150A (ja) 積層型方向性結合器
WO2016136569A1 (ja) インダクタンス素子、高周波トランス素子、インピーダンス変換素子およびアンテナ装置
JP2001006941A (ja) 高周波トランスおよびインピーダンス変換器
US20230369735A1 (en) Power splitter and communication apparatus
JP2005175655A (ja) 高周波部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20760272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501874

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20760272

Country of ref document: EP

Kind code of ref document: A1