WO2020170377A1 - クロマトグラフ用検出器 - Google Patents

クロマトグラフ用検出器 Download PDF

Info

Publication number
WO2020170377A1
WO2020170377A1 PCT/JP2019/006451 JP2019006451W WO2020170377A1 WO 2020170377 A1 WO2020170377 A1 WO 2020170377A1 JP 2019006451 W JP2019006451 W JP 2019006451W WO 2020170377 A1 WO2020170377 A1 WO 2020170377A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
cell
flow
flow cell
cell body
Prior art date
Application number
PCT/JP2019/006451
Other languages
English (en)
French (fr)
Inventor
悠佑 長井
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2021501217A priority Critical patent/JP7147952B2/ja
Priority to PCT/JP2019/006451 priority patent/WO2020170377A1/ja
Publication of WO2020170377A1 publication Critical patent/WO2020170377A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Definitions

  • the present invention relates to a detector for a chromatograph used in a liquid chromatograph (hereinafter, LC) or a supercritical fluid chromatograph (hereinafter, SFC).
  • LC liquid chromatograph
  • SFC supercritical fluid chromatograph
  • an absorbance detector In LC and SFC, an absorbance detector is often used as a detector for detecting the sample components separated in the separation column.
  • the absorbance detector has a flow cell that allows the sample solution to flow inside, and by detecting the intensity of the light transmitted through the flow cell, the presence or absence of the component concentration of the sample solution flowing in the flow cell and the concentration are optically detected and measured. To do.
  • SFC is a chromatograph that uses a fluid in the supercritical state, which has intermediate properties between liquid and gas, as the mobile phase.
  • the basic system is the same as the LC, but in order to maintain the supercritical state, it is necessary to add a back pressure regulator (BPR) after the detector to increase the pressure inside the analysis channel to 10 MPa to 40 MPa. There is. Therefore, high pressure is also applied to the flow cell used in the detector.
  • BPR back pressure regulator
  • a BPR may be installed after the detector to reduce noise, but the pressure applied to the flow cell is still about 3 MPa at most.
  • a valve is attached to the latter stage of the detector, and therefore a pressure of about 20 MPa may be applied to the flow cell when switching the valve.
  • an object of the present invention is to provide a detector equipped with a flow cell capable of realizing a short optical path length while having a high withstand voltage of 40 MPa or more.
  • the chromatographic detector according to the present invention has a pair of light-transmissive optical windows provided with a projection having a first flat surface at the tip, and is attached to a cell body so that the first flat surfaces face each other, Irradiating the measurement light to the flow cell so that the measurement light passes through a flow cell in which a gap for flowing a sample solution is formed between the first planes and the pair of optical windows of the flow cell.
  • a light source and a photodetector for detecting the measurement light that has passed through the pair of optical windows of the flow cell are provided, and the cell body of the flow cell has a flow channel in which a sample liquid flows inside and the flow channel.
  • the cell body has an opening communicating with the flow path at a position opposed to each other, and the peripheral surface of the opening of the cell body is a flat surface, and each of the pair of optical windows is the peripheral surface of the opening of the cell body.
  • a flange portion having a second flat surface that faces the flow path, the protrusion is inserted into the flow path through the opening of the cell body, and is made of resin between the peripheral surface and the second flat surface.
  • the second plane is pressed against the peripheral surface side with the packing sandwiched, and the arithmetic mean roughness of the second plane of the optical window is 0.8a or less.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2008-216094 discloses that a flange-shaped optical window is attached to a cell body to realize a flow cell having a short optical path length.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2008-216094 discloses that a flange-shaped optical window is attached to a cell body to realize a flow cell having a short optical path length.
  • Patent Document 2 it is assumed that a pressure of about 0.4 MPa is applied to the flow cell, and it is not assumed that a pressure of 40 MPa is applied to the flow cell.
  • the cell body of the flow cell has an opening leading to the flow channel at a position facing each other across the flow channel while having a flow channel in which a sample liquid flows inside.
  • a peripheral surface of the opening of the cell body is a flat surface
  • each of the pair of optical windows has a flange portion having a second flat surface facing the peripheral surface of the opening of the cell body, The second flat surface is pressed toward the peripheral surface with the protrusion inserted into the flow path through the opening and a resin packing sandwiched between the peripheral surface and the second flat surface.
  • a detector provided with a flow cell capable of realizing a short optical path length while having a high withstand voltage of 40 MPa or more is provided. ..
  • the chromatographic detector of this embodiment includes a light source 2, a condenser lens 4, a flow cell 6, a mirror 8, an entrance slit 10, a spectroscope 12 and a photodetector 14.
  • the photodetector 14 is, for example, a photodiode array.
  • the condenser lens 4 and the flow cell 6 are arranged on the optical path of the measurement light emitted from the light source 2, and the measurement light from the light source 2 is applied to the flow cell 6 via the condenser lens 4. ..
  • the eluate from the separation column of the liquid chromatograph or the supercritical fluid chromatograph flows as a sample liquid in the flow cell 6.
  • the mirror 8 is arranged so as to reflect the measurement light transmitted through the flow cell 6 and guide it toward the entrance slit 10 side, and the measurement light passing through the entrance slit 10 is guided to a spectroscope 12 such as a diffraction grating. ..
  • the light guided to the spectroscope 12 is split into light of each wavelength component and is incident on the photodetector 14.
  • the photodetector 14 detects the intensity of light of each wavelength component, and generates a detection signal according to the intensity.
  • the photodetector 14 is connected to an arithmetic processing unit realized by a dedicated computer or a general-purpose computer.
  • the arithmetic processing unit is adapted to obtain the absorbance spectrum of the liquid flowing through the flow cell 6 based on the detection signal intensity obtained by the photodetector 14 to detect or quantify the sample component.
  • the flow cell 6 used in the chromatographic detector of this embodiment includes a cell body 16 made of a metal such as stainless steel, a pair of optical windows 20, 20, and each optical window 20. Two packings 18, 18 sandwiched between the cell body 16 and two fixing plates 22, 22 for fixing each optical window 20 to the cell body 16 are provided.
  • the cell body 16 has a flow path 24 inside for flowing the sample solution.
  • a recess 26 for fitting the optical window 20 is provided on each of two surfaces (upper surface and lower surface in the drawing) of the cell body 16 which are located opposite to each other. Are provided respectively.
  • the two openings 28, 28 face each other.
  • the shapes of the depression 26 and the opening 28 are cylindrical.
  • the bottom surface 30 of the depression 26, which is the peripheral surface of the edge of the opening 28, is a flat surface.
  • the optical window 20 has a cylindrical protrusion 34 having a first flat surface 38 at the tip, and a flange portion 36 that extends in the circumferential direction from the base end of the protrusion 34.
  • the flange portion 36 of the optical window 20 has a second flat surface 40 that faces the bottom surface 30 of the depression 26.
  • the back surface 42 of the optical window 20 opposite to the first plane 38 and the second plane 40 is a plane parallel to the first plane 38 and the second plane 40.
  • the protrusion 34 of the optical window 20 has an outer diameter slightly smaller than the inner diameter of the opening 28 of the cell body 16.
  • the optical window 20 is made of a material having a light-transmitting property with respect to the measurement light, such as quartz.
  • the packing 18 is a disk-shaped member having a through hole 32 for allowing the protrusion 34 of the optical window 20 to penetrate therethrough in the central portion, and is made of an elastic material such as a fluororesin or a ketone resin.
  • the ketone resin include polyether ether ketone (PEEK).
  • the fixing plate 22 is fixed to the cell body 16 by, for example, screwing in order to press and fix the back surface 42 of the optical window 20 fitted in the recess 26 toward the cell body 16 side.
  • the fixed plate 22 is made of a metal material such as stainless steel.
  • a through hole 44 for allowing the measurement light to pass is provided in the center of the fixed plate 22.
  • the optical window 20 When the optical window 20 is fitted into the depression 26 of the cell body 16 and fixed by the fixing plate 22 with the packing 18 sandwiched between the bottom surface 30 of the depression 26 and the second plane 40 of the optical window 20, it is shown in FIG.
  • the protrusions 34 of the pair of optical windows 20, 20 enter the flow path 24, and a gap narrower than the flow path 24 is formed between the first flat surfaces 38, 38. ..
  • the measurement light enters from the back surface 42 of one of the pair of optical windows 20, 20 so as to pass through the gap between the first planes 38, 38, and the back surface 42 of the other optical window 20. It is irradiated so as to exit from. Therefore, the size of the gap between the first planes 38 and 38 becomes the optical path length through which the measurement light passes through the sample liquid.
  • the size of the gap between the first planes 38, 38 that is the optical path length of the flow cell 6 is determined by the height dimension between the first plane 38 and the back surface 42 of the optical window 20. Therefore, the optical path length of the flow cell 6 can be changed by changing the optical window 20 fitted in the depression 26 to have a different height dimension between the first plane 38 and the back surface 42.
  • the size of the optical window 20 is designed so that the size of the gap between the first planes 38, 38 is 1.0 mm or less.
  • the pair of optical windows 20 and 20 have the same shape and the same size, but they do not necessarily have the same shape and the same size.
  • the second plane 40 of the optical window 20 is surface-treated so that the arithmetic average roughness is 0.8a or less.
  • the present inventor has verified the relationship between the surface roughness of the second plane 40 of the optical window 20 and the pressure resistance performance by checking whether or not liquid leakage occurs when a pressure of 45 MPa is applied to the flow cell 6.
  • the arithmetic mean roughness of the second plane 40 is 25a, the probability is 100%, when the arithmetic mean roughness is 6.3a, the probability is about 40%, and the arithmetic mean roughness is 1.6a.
  • the pressure resistance performance of the flow cell 6 can be further improved. Furthermore, by setting the flatness of the second flat surface 40 of the optical window 20 to 10 times or less the wavelength of the measurement light, the pressure resistance of the flow cell 6 can be further improved. Further, by setting the parallelism between the second plane 40 and the back surface 42 of the optical window 20 to 1 ⁇ m or less, the pressure resistance performance of the flow cell 6 can be further improved.
  • the projection 34 of the optical window 20 may have a tapered shape in which the outer diameter becomes smaller toward the first flat surface 34 side of the tip, as shown in FIG. As a result, the strength of the optical window 20 can be increased.
  • Embodiments of the chromatographic detector according to the present invention are as follows.
  • the pair of light-transmissive optical windows (20, 20) provided with the protrusion (34) having the first plane (38) at the tip thereof are mutually
  • a flow cell (6) which is attached to the cell body (16) so that the first planes (38) face each other, and a gap for flowing a sample solution is formed between the first planes (38).
  • a photodetector (14) for detecting the measurement light that has passed through the pair of optical windows (20, 20), and the cell body (16) of the flow cell (6) has a channel (24) through which a sample solution flows.
  • the gap between the first flat surfaces (38) of the pair of optical windows (20, 20) is 1.0 mm or less. Due to such an aspect, the detector according to the present invention can be used for preparative applications containing a high concentration of sample components.
  • the surface accuracy of the second plane (40) of the optical window (20) is 200 ⁇ m or less. With such a mode, the pressure resistance of the flow cell (6) can be further improved.
  • the flatness of the second plane (40) of the optical window (20) is 10 times or less the wavelength of the measurement light.
  • the back surface (42) located on the side opposite to the first plane (38) and the second plane (40) of the optical window (20) is a plane.
  • the parallelism between the second plane (40) and the back surface (42) is 1 ⁇ m or less.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Measuring Cells (AREA)

Abstract

クロマトグラフ用検出器は、先端に第1平面(38)をもつ突起(34)が設けられている光透過性の一対の光学窓(20,20)が、互いの前記第1平面(38)が対向するようにセルボディ(16)に取り付けられ、互いの前記第1平面(38)の間に試料液が流れるための隙間が形成されているフローセル(6)と、前記フローセル(6)の前記一対の光学窓(20,20)を測定光が通過するように前記フローセル(6)に対して測定光を照射する光源(2)と、前記フローセル(6)の前記一対の光学窓(20,20)を通過した測定光を検出するための光検出器(14)と、を備え、前記フローセル(6)の前記セルボディ(16)は試料液が流れる流路(24)を内部に有するとともに前記流路(24)を挟んで互いに対向する位置に前記流路(24)へ通じる開口(28)を有し、前記セルボディ(16)の前記開口(28)の周囲面(30)が平面となっており、前記一対の光学窓(20,20)のそれぞれは、前記セルボディ(16)の前記開口(28)の前記周囲面(30)と対向する第2平面(40)を有するフランジ部(34)を有し、前記セルボディ(16)の前記開口(28)を介して前記流路(24)内へ前記突起(34)が挿入され、かつ、前記周囲面(30)と前記第2平面(40)との間に樹脂製のパッキン(18)が挟み込まれた状態で前記第2平面(40)が前記周囲面(30)側へ押し付けられ、前記光学窓(20)の前記第2平面(40)の算術平均粗さが0.8a以下である。

Description

クロマトグラフ用検出器
 本発明は、液体クロマトグラフ(以下、LC)又は超臨界流体クロマトグラフ(以下、SFC)において使用されるクロマトグラフ用検出器に関する。
 LCやSFCでは、分離カラムにおいて分離された試料成分を検出するための検出器として吸光度検出器がよく使用される。吸光度検出器は、試料液を内部で流通させるフローセルを有し、フローセルを透過させた光の強度を検出することによりフローセル内を流れる試料液の成分濃度の有無や濃度を光学的に検出・測定する。
 試料成分の分取を行なう場合は、試料濃度が通常の分析の際の試料濃度の10倍以上にもなることが多い。そのため、分取において分析と同じ光路長(測定光が試料水を通過する距離)をもつフローセルを使用すると、フローセルを透過する光量が不足し、十分な検出感度が得られない。そのため、分取用途では、分析用途よりも大幅に短い光路長をもつフローセルが使用される。
 ここで、SFCは、液体と気体の中間的物性をもつ超臨界状態の流体を移動相として使用するクロマトグラフである。基本的なシステムはLCと同じであるが、超臨界状態を維持するために、検出器の後段に背圧調整装置(BPR)を追加して分析流路内を10MPa~40MPaの高圧にする必要がある。そのため、検出器で使用するフローセルにも高い圧力がかかる。
 分析を目的としたLCシステムでは、ノイズ低減のために検出器の後段にBPRが設けられることがあるが、それでもフローセルにかかる圧力は高々3MPa程度である。一方で、分取を目的としたLCシステムでは、検出器の後段にバルブを取り付けるため、バルブの切替えの際に20MPa程度の圧力がフローセルにかかる場合がある。
 石英などからなる光透過性基板を複数積層し、それらの光透過性基板の内部接合面に溝を設けて短光路長のフローセルを実現することが提案されている(特許文献1参照。)。
特開2017-201259号公報 特開2008-216094号公報
 特許文献1において提案されているような複数の基板の接合構造では、1mm以下といった短い光路長は実現できるものの、40MPa以上の高耐圧性を有するフローセルの実現は容易ではない。
 そこで、本発明は、40MPa以上の高耐圧を有しながら短い光路長を実現可能なフローセルを備えた検出器を提供することを目的とするものである。
 本発明に係るクロマトグラフ用検出器は、先端に第1平面をもつ突起が設けられている光透過性の一対の光学窓が、互いの前記第1平面が対向するようにセルボディに取り付けられ、互いの前記第1平面の間に試料液が流れるための隙間が形成されているフローセルと、前記フローセルの前記一対の光学窓を測定光が通過するように前記フローセルに対して測定光を照射する光源と、前記フローセルの前記一対の光学窓を通過した測定光を検出するための光検出器と、を備え、前記フローセルの前記セルボディは試料液が流れる流路を内部に有するとともに前記流路を挟んで互いに対向する位置に前記流路へ通じる開口を有し、前記セルボディの前記開口の周囲面が平面となっており、前記一対の光学窓のそれぞれは、前記セルボディの前記開口の前記周囲面と対向する第2平面を有するフランジ部を有し、前記セルボディの前記開口を介して前記流路内へ前記突起が挿入され、かつ、前記周囲面と前記第2平面との間に樹脂製のパッキンが挟み込まれた状態で前記第2平面が前記周囲面側へ押し付けられ、前記光学窓の前記第2平面の算術平均粗さが0.8a以下である。
 特許文献2(特開2008-216094号公報)には、フランジ形状の光学窓をセル本体に取り付けて短光路長のフローセルを実現することが開示されている。しかしながら、この特許文献2では、0.4MPa程度の圧力がフローセルにかかることが想定されており、40MPaもの圧力がフローセルにかかることは想定されていない。
 本発明にかかるクロマトグラフ用検出器では、前記フローセルの前記セルボディは試料液が流れる流路を内部に有するとともに前記流路を挟んで互いに対向する位置に前記流路へ通じる開口を有し、前記セルボディの前記開口の周囲面が平面となっており、前記一対の光学窓のそれぞれは、前記セルボディの前記開口の前記周囲面と対向する第2平面を有するフランジ部を有し、前記セルボディの前記開口を介して前記流路内へ前記突起が挿入され、かつ、前記周囲面と前記第2平面との間に樹脂製のパッキンが挟み込まれた状態で前記第2平面が前記周囲面側へ押し付けられ、前記光学窓の前記第2平面の算術平均粗さが0.8a以下であるので、40MPa以上の高耐圧を有しながら短い光路長を実現可能なフローセルを備えた検出器が提供される。
クロマトグラフ用検出器の一実施例の概略構成図である。 同実施例のフローセルの分解断面構成図である。 同実施例のフローセルの断面構成図である。 フローセルの光学窓の変形例を示す断面図である。
 以下に、本発明に係るクロマトグラフ用検出器の一実施例について、図面を用いて説明する。
 クロマトグラフ用検出器の一実施例の構成について、図1の概略構成図を用いて説明する。
 この実施例のクロマトグラフ用検出器は、光源2、集光レンズ4、フローセル6、ミラー8、入口スリット10、分光器12及び光検出器14を備えている。光検出器14は、例えばフォトダイオードアレイである。
 光源2により発せられる測定光の光路上に、集光レンズ4及びフローセル6が配置されており、光源2からの測定光が集光レンズ4を介してフローセル6へ照射されるようになっている。フローセル6内を液体クロマトグラフ又は超臨界流体クロマトグラフの分離カラムからの溶出液が試料液として流れる。
 ミラー8はフローセル6を透過した測定光を反射させて入口スリット10側へ導くように配置されており、入口スリット10を経た測定光が回折格子などの分光器12に導かれるようになっている。分光器12に導かれた光は各波長成分の光に分光されて光検出器14に入射するようになっている。
 光検出器14は各波長成分の光の強度を検出するものであり、その強度に応じた検出信号を発生させる。図示は省略されているが、光検出器14には、専用のコンピュータや汎用のコンピュータによって実現される演算処理装置が接続されている。その演算処理装置は光検出器14で得られた検出信号強度に基づいて、フローセル6を流れる液の吸光度スペクトルを求め、試料成分の検出や定量を行なうようになっている。
 フローセル6の構造について、図2及び図3を用いて説明する。
 図2に示されているように、この実施例のクロマトグラフ用検出器に用いられているフローセル6は、ステンレスなどの金属からなるセルボディ16、一対の光学窓20,20、各光学窓20とセルボディ16との間にそれぞれ挟み込まれる2つのパッキン18,18、各光学窓20をセルボディ16に対して固定するための2つの固定板22,22を備えている。
 セルボディ16は試料液が流れるための流路24を内部に有する。セルボディ16の互いに反対に位置する2つの面(図において上面と下面)のそれぞれに、光学窓20をはめ込むための窪み26が設けられており、その窪み26の底面に流路24に通じる開口28がそれぞれ設けられている。2つの開口28,28は互いに対向している。窪み26及び開口28の形状は円柱形状である。開口28の縁の周囲面である窪み26の底面30は平面となっている。
 光学窓20は、先端に第1平面38をもつ円柱状の突起34と、突起34の基端から周方向へ広がるフランジ部36と、を有する。光学窓20のフランジ部36は、窪み26の底面30と対向する第2平面40を有する。光学窓20の第1平面38及び第2平面40とは反対側の背面42は、第1平面38及び第2平面40と平行な平面となっている。光学窓20の突起34はセルボディ16の開口28の内径よりも僅かに小さい外径を有する。光学窓20は、石英など測定光に対して光透過性を有する材質で構成されている。
 パッキン18は、中央部に光学窓20の突起34を貫通させるための貫通孔32を有する円盤状の部材であり、フッ素樹脂やケトン系樹脂などの弾性材料で構成されている。ケトン系樹脂としては、ポリエーテルエーテルケトン(PEEK)などが挙げられる。
 固定板22は、窪み26に嵌め込まれた光学窓20の背面42をセルボディ16側へ押圧して固定するためにセルボディ16に、例えばネジ止めにより固定されるものである。固定板22はステンレスなどの金属材料により構成されている。固定板22の中央部には、測定光を通過させるための貫通孔44が設けられている。
 窪み26の底面30と光学窓20の第2平面40との間にパッキン18を挟み込んだ状態で光学窓20をセルボディ16の窪み26に嵌め込んで固定板22により固定すると、図3に示されているように、一対の光学窓20,20のそれぞれの突起部34が流路24内に入り込み、互いの第1平面38,38の間に流路24よりも幅の狭い隙間が形成される。測定光は、第1平面38,38の間の隙間を通過するように、一対の光学窓20,20のうちの一方の光学窓20の背面42から入射し、他方の光学窓20の背面42から出射するように照射される。したがって、第1平面38,38の間の隙間の大きさが、測定光が試料液を通過する光路長となる。
 このように、光学窓20の第1平面38と背面42との間の高さ寸法によりフローセル6の光路長となる第1平面38,38の間の隙間の大きさが決定される。したがって、窪み26に嵌め込む光学窓20を第1平面38と背面42との間の高さ寸法の異なるものに変更することで、フローセル6の光路長を変更することができる。この実施例の検出器が分取用途で用いられる場合、第1平面38,38の間の隙間の大きさが1.0mm以下となるように光学窓20の寸法が設計される。
 なお、この実施例では、一対の光学窓20,20が同一形状及び同一寸法となっているが、必ずしも同一形状及び同一寸法である必要はない。
 ここで、光学窓20の第2平面40は、算術平均粗さが0.8a以下となるように表面処理が施されている。本発明者は、光学窓20の第2平面40の表面粗さと耐圧性能との関係性について、フローセル6に45MPaの圧力をかけたときに液漏れが発生するか否かによって検証した。検証の結果、第2平面40の算術平均粗さを25aとした場合は100%の確率、算術平均粗さを6.3aとした場合は約40%の確率、算術平均粗さを1.6aとした場合は約20%の確率でそれぞれ液漏れが発生したのに対し、算術平均粗さを0.8aとした場合は液漏れが発生しなかった。このことから、パッキン18と直接的に接触する光学窓20の第2平面40の算術平均粗さを0.8a以下とすることにより、40MPa以上の耐圧性能を具備させることができることがわかった。
 また、光学窓20の第2平面40の面精度を200μm以下とすることで、フローセル6の耐圧性能をさらに向上させることができる。さらには、光学窓20の第2平面40の平面度を測定光の波長の10倍以下とすることによっても、フローセル6の耐圧性能をさらに向上させることができる。また、光学窓20の第2平面40と背面42との間の平行度を1μm以下とすることで、フローセル6の耐圧性能をさらに向上させることができる。
 なお、光学窓20の突起34は、図4に示されているように、先端の第1平面34側へいくほど外径が小さくなるテーパ形状を有していてもよい。これにより、光学窓20の強度を高めることができる。
 上記実施例は、本発明に係るクロマトグラフ用検出器の実施形態を例示したに過ぎない。本発明に係るクロマトグラフ用検出器の実施形態は、以下のとおりである。
 本発明に係るクロマトグラフ用検出器の実施形態では、先端に第1平面(38)をもつ突起(34)が設けられている光透過性の一対の光学窓(20,20)が、互いの前記第1平面(38)が対向するようにセルボディ(16)に取り付けられ、互いの前記第1平面(38)の間に試料液が流れるための隙間が形成されているフローセル(6)と、前記フローセル(6)の前記一対の光学窓(20,20)を測定光が通過するように前記フローセル(6)に対して測定光を照射する光源(2)と、前記フローセル(6)の前記一対の光学窓(20,20)を通過した測定光を検出するための光検出器(14)と、を備え、前記フローセル(6)の前記セルボディ(16)は試料液が流れる流路(24)を内部に有するとともに前記流路(24)を挟んで互いに対向する位置に前記流路(24)へ通じる開口(28)を有し、前記セルボディ(16)の前記開口(28)の周囲面(30)が平面となっており、前記一対の光学窓(20,20)のそれぞれは、前記セルボディ(16)の前記開口(28)の前記周囲面(30)と対向する第2平面(40)を有するフランジ部(34)を有し、前記セルボディ(16)の前記開口(28)を介して前記流路(24)内へ前記突起(34)が挿入され、かつ、前記周囲面(30)と前記第2平面(40)との間に樹脂製のパッキン(18)が挟み込まれた状態で前記第2平面(40)が前記周囲面(30)側へ押し付けられ、前記光学窓(20)の前記第2平面(40)の算術平均粗さが0.8a以下である。
 上記実施形態の第1態様では、前記一対の光学窓(20,20)の互いの前記第1平面(38)の間の前記隙間は1.0mm以下である。このような態様により、本発明に係る検出器を、試料成分を高濃度に含む分取用途に使用することができる。
 また、上記実施形態の第2態様では、前記光学窓(20)の前記第2平面(40)の面精度は200μm以下である。このような態様により、前記フローセル(6)の耐圧性能をさらに向上させることができる。
 また、上記実施形態の第3態様では、前記光学窓(20)の前記第2平面(40)の平面度は前記測定光の波長の10倍以下である。このような態様により、前記フローセル(6)の耐圧性能をさらに向上させることができる。
 また、上記実施形態の第4態様では、前記光学窓(20)の前記第1平面(38)及び前記第2平面(40)とは反対側に位置する背面(42)が平面となっており、前記第2平面(40)と前記背面(42)との間の平行度は1μm以下である。このような態様により、前記フローセル(6)の耐圧性能をさらに向上させることができる。
 上記第1態様から第4態様は互いに自在に組み合わせることができる。
   2   光源
   4   集光レンズ
   6   フローセル
   8   ミラー
   10   入口スリット
   12   分光器
   14   光検出器
   16   セルボディ
   18   パッキン
   20   光学窓
   22   固定板
   24   流路
   26   窪み
   28   開口
   30   窪みの底面(周囲面)
   32,44   貫通孔
   34   突起
   36   フランジ部
   38   第1平面
   40   第2平面
   42   背面

Claims (5)

  1.  先端に第1平面をもつ突起が設けられている光透過性の一対の光学窓が、互いの前記第1平面が対向するようにセルボディに取り付けられ、互いの前記第1平面の間に試料液が流れるための隙間が形成されているフローセルと、
     前記フローセルの前記一対の光学窓を測定光が通過するように前記フローセルに対して測定光を照射する光源と、
     前記フローセルの前記一対の光学窓を通過した測定光を検出するための光検出器と、を備え、
     前記フローセルの前記セルボディは試料液が流れる流路を内部に有するとともに前記流路を挟んで互いに対向する位置に前記流路へ通じる開口を有し、前記セルボディの前記開口の周囲面が平面となっており、
     前記一対の光学窓のそれぞれは、前記セルボディの前記開口の前記周囲面と対向する第2平面を有するフランジ部を有し、前記セルボディの前記開口を介して前記流路内へ前記突起が挿入され、かつ、前記周囲面と前記第2平面との間に樹脂製のパッキンが挟み込まれた状態で前記第2平面が前記周囲面側へ押し付けられ、
     前記光学窓の前記第2平面の算術平均粗さが0.8a以下である、クロマトグラフ用検出器。
  2.  前記一対の光学窓の互いの前記第1平面の間の前記隙間は1.0mm以下である、請求項1に記載のクロマトグラフ用検出器。
  3.  前記光学窓の前記第2平面の面精度は200μm以下である、請求項1に記載のクロマトグラフ用検出器。
  4.  前記光学窓の前記第2平面の平面度は前記測定光の波長の10倍以下である、請求項1に記載のクロマトグラフ用検出器。
  5.  前記光学窓の前記第1平面及び前記第2平面とは反対側に位置する背面が平面となっており、前記第2平面と前記背面との間の平行度は1μm以下である、請求項1に記載のクロマトグラフ用検出器。
PCT/JP2019/006451 2019-02-21 2019-02-21 クロマトグラフ用検出器 WO2020170377A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021501217A JP7147952B2 (ja) 2019-02-21 2019-02-21 クロマトグラフ用検出器
PCT/JP2019/006451 WO2020170377A1 (ja) 2019-02-21 2019-02-21 クロマトグラフ用検出器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006451 WO2020170377A1 (ja) 2019-02-21 2019-02-21 クロマトグラフ用検出器

Publications (1)

Publication Number Publication Date
WO2020170377A1 true WO2020170377A1 (ja) 2020-08-27

Family

ID=72143366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006451 WO2020170377A1 (ja) 2019-02-21 2019-02-21 クロマトグラフ用検出器

Country Status (2)

Country Link
JP (1) JP7147952B2 (ja)
WO (1) WO2020170377A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822166A (en) * 1985-12-12 1989-04-18 Rossiter Valentine J Flow-through cells for spectroscopy
US5003174A (en) * 1988-07-02 1991-03-26 Bruker Analytische Messtechnik Gmbh Optical high-pressure transmission cell
US5054919A (en) * 1989-02-07 1991-10-08 Linear Instruments Corporation Seal for high pressure and small volume sample cells
US5078493A (en) * 1990-06-29 1992-01-07 Conoco Inc. Flow cell resistant to corrosive environments for fiber optic spectroscopy
JP2002071551A (ja) * 2000-08-30 2002-03-08 Japan Science & Technology Corp 高温・高圧状態の試料を測定可能とする流通型試料保持装置
JP2008216094A (ja) * 2007-03-06 2008-09-18 Kurabo Ind Ltd 透過光測定用フローセル
JP2011503562A (ja) * 2007-11-13 2011-01-27 エフ.ホフマン−ラ ロシュ アーゲー キュベット及びキュベットの使用方法
JP2011257146A (ja) * 2010-06-04 2011-12-22 Horiba Ltd 光学測定用セル
JP2016099311A (ja) * 2014-11-26 2016-05-30 横河電機株式会社 試料測定装置
WO2018037536A1 (ja) * 2016-08-25 2018-03-01 株式会社島津製作所 フローセル

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822166A (en) * 1985-12-12 1989-04-18 Rossiter Valentine J Flow-through cells for spectroscopy
US5003174A (en) * 1988-07-02 1991-03-26 Bruker Analytische Messtechnik Gmbh Optical high-pressure transmission cell
US5054919A (en) * 1989-02-07 1991-10-08 Linear Instruments Corporation Seal for high pressure and small volume sample cells
US5078493A (en) * 1990-06-29 1992-01-07 Conoco Inc. Flow cell resistant to corrosive environments for fiber optic spectroscopy
JP2002071551A (ja) * 2000-08-30 2002-03-08 Japan Science & Technology Corp 高温・高圧状態の試料を測定可能とする流通型試料保持装置
JP2008216094A (ja) * 2007-03-06 2008-09-18 Kurabo Ind Ltd 透過光測定用フローセル
JP2011503562A (ja) * 2007-11-13 2011-01-27 エフ.ホフマン−ラ ロシュ アーゲー キュベット及びキュベットの使用方法
JP2011257146A (ja) * 2010-06-04 2011-12-22 Horiba Ltd 光学測定用セル
JP2016099311A (ja) * 2014-11-26 2016-05-30 横河電機株式会社 試料測定装置
WO2018037536A1 (ja) * 2016-08-25 2018-03-01 株式会社島津製作所 フローセル

Also Published As

Publication number Publication date
JP7147952B2 (ja) 2022-10-05
JPWO2020170377A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
US8649005B2 (en) Optical flow cell detector
EP1994392B1 (en) Flow cell for optical detector and method of forming same
EP2602611B1 (en) High-pressure fluorescence flow cell, flow cell assembly, fluorescence detector, and supercritical fluid chromatograph
US9995673B2 (en) Flow cell
US9222876B2 (en) Light scattering flow cell device
US4006990A (en) Convergent light illuminated flow cell for liquid chromatography
JP6704920B2 (ja) 流路構造体および測定対象液体の測定装置
US7859657B2 (en) Methods of making and using an apparatus and devices for placing light and sample in photo-emitting or absorbing devices
US7005090B2 (en) Method for manufacturing a flow cell
WO2020170377A1 (ja) クロマトグラフ用検出器
JP6658918B2 (ja) 液体クロマトグラフ用検出器
US3975104A (en) Convergent light illuminated flow cell for liquid chromatography
WO2014021099A1 (ja) 液体クロマトグラフ分析装置
WO2018193666A1 (ja) フローセル及びそのフローセルを備えた検出器
JP2002148182A (ja) フローセル
WO2018003045A1 (ja) アパーチャ機能を有するビームスプリッタ及びそのビームスプリッタを備えた検出器
JP7180786B2 (ja) クロマトグラフィ検出器用フローセルおよびクロマトグラフィ検出器
JP7180760B2 (ja) クロマトグラフィ検出器用フローセルおよびクロマトグラフィ検出器
JPH04110750A (ja) 赤外分光光度計用液体フローセル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915952

Country of ref document: EP

Kind code of ref document: A1