WO2020168726A1 - 压缩机及换热设备 - Google Patents

压缩机及换热设备 Download PDF

Info

Publication number
WO2020168726A1
WO2020168726A1 PCT/CN2019/109971 CN2019109971W WO2020168726A1 WO 2020168726 A1 WO2020168726 A1 WO 2020168726A1 CN 2019109971 W CN2019109971 W CN 2019109971W WO 2020168726 A1 WO2020168726 A1 WO 2020168726A1
Authority
WO
WIPO (PCT)
Prior art keywords
bowl
oil
shaped structure
compressor according
opening gap
Prior art date
Application number
PCT/CN2019/109971
Other languages
English (en)
French (fr)
Inventor
刘锋
魏会军
陈华杰
朱晓光
刘才
李睿
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2020168726A1 publication Critical patent/WO2020168726A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid

Definitions

  • This application relates to the field of heat exchange equipment, and in particular to a compressor and heat exchange equipment.
  • the oil baffle cap is generally U-shaped, and the vertical U-shaped outer wall has a small contact area facing the mixed refrigerant and refrigerating oil disturbance, and the structure is single, resulting in poor separation effect and freezing in the compressor.
  • the oil flows into the air conditioning system, which affects the heat exchange efficiency and reduces the air conditioning performance.
  • the crankshaft needs to be higher than the oil baffle cap.
  • a circular shaft hole is punched in the middle of the oil baffle cap, and the inner diameter is larger than the outer diameter of the crankshaft.
  • the bottom surface of the oil baffle cap is attached to the end surface of the rotor iron core, and the oil and gas separation is performed once by the vertical U-shaped surface, which has low separation efficiency, high oil discharge rate of the compressor, and poor air conditioning performance.
  • the main purpose of this application is to provide a compressor and heat exchange equipment to solve the problem of high oil discharge rate of the compressor in the prior art.
  • a compressor including: a rotor structure; a crankshaft, the crankshaft passing through the rotor structure; an oil retaining structure, the oil retaining structure connected to the top of the crankshaft and to the end surface of the rotor structure A first oil-retaining space is formed therebetween, wherein the oil-retaining structure includes a bowl-shaped structure, and at least one opening gap is opened on the side wall of the bowl-shaped structure, the opening gap is connected to the top edge of the bowl-shaped structure, and the bowl-shaped structure An oil baffle is provided on the inner surface and/or the outer surface of the side wall.
  • the opening gap is bent in a direction deviating from the center point of the oil retaining structure when extending downward from the top edge of the bowl-shaped structure, so that the opening gap is curved.
  • the bending direction of the opening gap is consistent with the rotation direction of the rotor structure.
  • angle A between the line L1 between the top end of the opening gap and the bottom end of the opening gap and the line L2 between the top end of the opening gap and the center point of the bowl-shaped structure is greater than or equal to 10 degrees and less than or equal to 30 degrees. degree.
  • the plurality of opening slits are sequentially spaced along the circumference of the bowl-shaped structure, and the bending directions of the plurality of opening slits are the same and the spacing is equal.
  • the angle at which the oil baffle deflects toward the center of the bowl-shaped structure relative to the opening gap is 20 degrees to 60 degrees.
  • the number of opening gaps is an integer multiple of the number of rotor stages of the rotor structure.
  • the distance between the oil baffle plate and the inner surface of the bottom of the bowl-shaped structure is greater than or equal to 1 mm and less than or equal to 3 mm.
  • the outer diameter of the rotor core of the rotor structure is at least 4 mm larger than the diameter of the top opening of the bowl-shaped structure.
  • the bowl-shaped structure includes a flat bottom wall and a bowl-shaped side wall, a first oil retaining space is formed between the flat bottom wall and the end surface of the rotor structure, and the bowl-shaped side wall has an opening gap.
  • the oil retaining structure further includes an extension section extending from the bottom of the bowl-shaped structure to one side of the crankshaft, and the extension section is sleeved on the top of the crankshaft and the concave and convex cooperation between the two to seal.
  • the side of the extension section facing the crankshaft has an annular rib, and the outer peripheral surface of the top end of the crankshaft has an annular groove fitted with the annular rib; or the side of the extension section facing the crankshaft has an annular groove, The outer peripheral surface of the top end of the crankshaft has an annular rib that is fitted into the annular groove.
  • a through hole is formed at the center of the bottom of the bowl-shaped structure, and the structure at the through hole forms an extension section.
  • the height of the extension section is at least 3 mm larger than the height of the balance weight of the rotor structure.
  • an oil baffle plate is arranged at the edge of the opening gap, and the oil baffle plate extends to the inner side of the bowl-shaped structure or to the outer side of the bowl-shaped structure.
  • the width W of the oil baffle is greater than or equal to 4 mm and less than or equal to 10 mm.
  • a set of opposite edges of the opening gap are respectively provided with oil baffle plates to form a second oil baffle space between the two oil baffle plates.
  • width W of the two oil baffle plates at the same opening gap are both greater than or equal to 2 mm and less than or equal to 5 mm.
  • the distance between the two oil baffles at the same opening gap gradually decreases in the direction approaching the center of the bowl-shaped structure.
  • the oil baffle is formed by bending the structure cut at the opening gap.
  • a heat exchange device including the above-mentioned compressor.
  • the compressor in this application includes a rotor structure, a crankshaft and an oil retaining structure.
  • the crankshaft passes through the rotor structure; the oil-retaining structure is connected to the top of the crankshaft and forms a first oil-retaining space between the end surface of the rotor structure, wherein the oil-retaining structure includes a bowl-shaped structure, and the side wall of the bowl-shaped structure is provided with at least An opening gap is connected to the top edge of the bowl-shaped structure, and an oil baffle is provided on the inner surface and/or the outer surface of the side wall of the bowl-shaped structure.
  • the oil blocking structure is provided at the top of the crankshaft, so the oil moving up with the exhaust gas flow can be blocked by the oil blocking structure, thereby Prevent oil from draining out.
  • the oil in the exhaust airflow is separated from the oil through the first oil retaining space, and the oil is returned.
  • Figure 1 shows a schematic structural diagram of a compressor according to a specific embodiment of the present application
  • Figure 2 shows the exploded view of Figure 1
  • Fig. 3 shows a schematic structural diagram of the crankshaft of the compressor in Fig. 2;
  • Figure 4 shows a schematic diagram of the oil retaining structure in Figure 2;
  • Figure 5 shows a front view of the oil retaining structure in Figure 4.
  • Figure 6 shows a schematic diagram of the angular relationship between L1 and L2;
  • FIG. 7 shows a schematic structural diagram when only one oil baffle plate is provided at the opening gap of the oil baffle structure in another specific embodiment of the present application
  • Fig. 8 shows a front view of the oil retaining structure in Fig. 7.
  • Rotor structure 11. Balance weight; 12. Rotor core circulation hole; 20. Crankshaft; 21. Annular groove; 30. Oil retaining structure; 31. First oil retaining space; 32. Bowl structure; 321 , Flat bottom wall; 322, bowl-shaped side wall; 33, opening gap; 34, oil baffle plate; 35, extension section; 351, annular rib; 36, through hole; 37, second oil retaining space; 40 , Baffle; 50, rivets.
  • the directional words used such as “up, down, top, bottom” are usually directed to the direction shown in the drawings, or refer to the vertical, In terms of vertical or gravitational direction; similarly, for ease of understanding and description, “inner and outer” refers to the inner and outer relative to the contour of each component itself, but the above-mentioned orientation words are not used to limit the application.
  • the present application provides a compressor and a heat exchange device.
  • the heat exchange equipment includes the following compressor.
  • the heat exchange device may be an air conditioner.
  • the compressor in the present application includes a rotor structure 10, a crankshaft 20 and an oil blocking structure 30.
  • the crankshaft 20 passes through the rotor structure 10; the oil retaining structure 30 is connected to the top of the crankshaft 20 and forms a first oil retaining space 31 between the end surface of the rotor structure 10, wherein the oil retaining structure 30 includes a bowl-shaped structure 32, and is bowl-shaped At least one opening gap 33 is provided on the side wall of the structure 32, the opening gap 33 is connected to the top edge of the bowl-shaped structure 32, and the inner surface and/or the outer surface of the side wall of the bowl-shaped structure 32 are provided with oil baffles 34.
  • the oil blocking structure 30 is provided at the top of the crankshaft 20, so the oil blocking structure 30 can prevent the oil moving up with the exhaust gas flow. Block to prevent oil from draining out.
  • the oil in the exhaust gas flow is separated from the oil through the first oil retaining space 31, and the oil is returned. After the exhaust airflow passes through the first oil-retaining space 31, since the rotor core will always be in a rotating state, a pressure difference will be formed between the inside and the outside of the bowl-shaped structure 32 of the oil-retaining structure 30, which will remove the lighter weight.
  • the air flow is sucked into the bowl-shaped structure 32 through the opening gap 33, and the oil in the exhaust air flow is blocked by the oil baffle 34 on the side wall of the bowl-shaped structure 32, and the oil returns to the bottom of the compressor
  • the oil pool will not be discharged with the exhaust air flow, which can effectively reduce the oil discharge rate of the compressor, thereby improving the performance of the heat exchange system.
  • the curve inside the rotor core circulation hole 12 in the rotor structure 10 is the flow path of the oil and exhaust gas flow.
  • the rotor structure 10 has a through hole 36, which serves as a rotor core circulation hole, and the oil and exhaust gas flow upward through the rotor core circulation hole.
  • the opening gap 33 is bent in a direction deviating from the center point of the oil retaining structure 30 when extending downward from the top edge of the bowl-shaped structure 32, so that the opening gap 33 is arc-shaped. Since the bowl-shaped structure 32 rotates with the rotor structure 10 during the compressor working process, this arrangement can ensure that under the action of the pressure difference between the inside and outside of the bowl-shaped structure 32, the exhaust airflow can be more easily sucked into The interior of the bowl-shaped structure 32 can effectively reduce the amount of oil entering the interior of the bowl-shaped structure 32, thereby effectively reducing the oil discharge rate of the compressor.
  • the bending direction of the opening slit 33 is consistent with the rotation direction of the rotor structure 10. Through this arrangement, it can be ensured that the speed direction of the exhaust air flow when it is sucked into the bowl-shaped structure 32 is close to the rotation direction of the rotor structure 10. If the bending direction of the opening gap 33 is selected to be opposite to the rotation direction of the rotor structure 10, the relative movement of the exhaust airflow and the bowl-shaped structure 32 will cause oil to easily enter the interior of the bowl-shaped structure 32 and follow the exhaust airflow. Discharge, thereby affecting compressor performance.
  • the angle A between the line L1 between the top end of the opening gap 33 and the bottom end of the opening gap 33 and the line L2 between the top end of the opening gap 33 and the center point of the bowl-shaped structure 32 is greater than or equal to 10. Degree and less than or equal to 30 degrees. Of course, you can also make appropriate adjustments according to the different models used.
  • FIG. 8 it is a schematic diagram of the angle A between LI and L2.
  • the plurality of opening slits 33 are sequentially spaced along the circumference of the bowl-shaped structure 32, and the bending directions of the plurality of opening slits 33 are the same and the intervals are equal.
  • the angle at which the oil baffle 34 is deflected to the center of the bowl-shaped structure 32 relative to the opening gap 33 is 20 degrees to 60 degrees.
  • the number of opening slots 33 is an integer multiple of the number of rotor stages of the rotor structure 10.
  • the distance between the oil baffle plate 34 and the bottom inner surface of the bowl-shaped structure 32 is greater than or equal to 1 mm and less than or equal to 3 mm.
  • the outer diameter of the rotor core of the rotor structure 10 is at least 4 mm larger than the diameter of the top opening of the bowl-shaped structure 32.
  • the bowl-shaped structure 32 includes a flat bottom wall 321 and a bowl-shaped side wall 322.
  • a first oil retaining space 31 is formed between the flat bottom wall 321 and the end surface of the rotor structure 10, and the bowl-shaped side wall 322 has an opening gap. 33.
  • the oil retaining structure 30 further includes an extension section 35 extending from the bottom of the bowl-shaped structure 32 toward the side of the crankshaft 20.
  • the extension section 35 is sleeved on the top end of the crankshaft 20 and the two convexes and concaves cooperate to seal.
  • a through hole 36 is formed at the center of the bottom of the bowl-shaped structure 32, and the structure at the through hole 36 forms an extension section 35.
  • the extension section 35 has an annular rib 351 on the side facing the crankshaft 20, and the outer peripheral surface of the top end of the crankshaft 20 has an annular groove 21 fitted with the annular rib 351.
  • the annular convex rib 351 is a semicircular annular convex rib 351. Moreover, the inner diameter of the annular rib 351 is slightly smaller than the outer diameter of the crankshaft 20, and the inner diameter of the extension section 35 is slightly larger than the outer diameter of the crankshaft 20.
  • the side of the extension section facing the crankshaft has an annular groove
  • the outer peripheral surface of the top end of the crankshaft has an annular rib that is engaged with the annular groove.
  • the annular rib 351 is generally arranged slightly above the middle value of the height direction of the extension section 35 and the bottom surface of the bowl-shaped structure 32, and there is a corresponding annular concave at the position of the outer diameter of the crankshaft 20.
  • the groove 21 should be designed to avoid interference with the rounding of the long shaft tail of the crankshaft 20.
  • the height of the extension section 35 is at least 3 mm larger than the height of the balance weight 11 of the rotor structure 10.
  • a baffle 40 is also provided between the balance weight 11 and the rotor structure 10, and the balance weight 11, the baffle 40 and the rotor structure 10 are connected and fixed by rivets 50.
  • an oil baffle 34 is provided at the edge of the opening gap 33, and the oil baffle 34 extends to the inner side of the bowl-shaped structure 32 or to the outer side of the bowl-shaped structure 32.
  • only one oil baffle 34 is provided at the same opening gap 33, and the width W of the oil baffle 34 is greater than or equal to 4 mm and less than or equal to 10 mm. In this way, the oil blocking effect of the oil baffle 34 can be ensured, and the exhaust air flow can enter the interior of the bowl-shaped structure 32.
  • a set of opposite edges of the opening gap 33 are respectively provided with oil baffle plates 34 to form a second oil baffle space 37 between the two oil baffle plates 34.
  • the width W of the two oil baffle plates 34 at the same opening gap 33 is greater than or equal to 2 mm and less than or equal to 5 mm.
  • the distance between the two oil baffle plates 34 at the same opening gap 33 gradually decreases in a direction approaching the center of the bowl-shaped structure 32. Due to the different gravity of the oil and the exhaust air flow, the amount of oil mixed in the exhaust air flow at the position of the bowl-shaped structure 32 relatively far from the rotor core will be reduced, so this arrangement can ensure that the oil retaining structure 30 stops At the same time as the oil effect, it can also accelerate the speed of the exhaust air flow into the bowl-shaped structure 32.
  • the oil baffle 34 is formed by bending a structure cut at the opening gap 33. Through this arrangement, the processing of the oil retaining structure 30 can be facilitated. Of course, other methods such as welding can also be selected to join the oil baffle 34 and the bowl-shaped structure 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机及换热设备,其中,压缩机包括:转子结构(10);曲轴(20),曲轴(20)穿过转子结构(10);挡油结构(30),挡油结构(30)连接在曲轴(20)的顶端并与转子结构(10)的端面之间形成第一挡油空间(31),其中,挡油结构(30)包括碗状结构(32),且碗状结构(32)的侧壁上开设有至少一个开口缝隙(33),开口缝隙(33)连通至碗状结构(32)的顶部边缘处,且碗状结构(32)的侧壁的内表面和/或外表面上设置有挡油板(34)。其解决了压缩机排油率高的问题。

Description

压缩机及换热设备
本申请要求于2019年2月21日提交至中国国家知识产权局、申请号为201910140449.0、发明名称为“一种压缩机及换热设备”的专利申请的优先权。
技术领域
本申请涉及换热设备领域,具体而言,涉及一种压缩机及换热设备。
背景技术
旋转变频压缩机运行时,内部若过多的冷冻油随着排气气流进入换热系统,则会影响换热系统的换热效率,降低系统性能,并使得压缩机的回油变得困难,容易导致压缩机缺冷冻油,造成压缩机零部件润滑不良,磨损加剧,无法保证压缩机运行可靠性。
在现有的压缩机中,挡油帽一般为U型结构,竖直U型外侧壁面对混合的冷媒、冷冻油扰动的接触面积小,且结构单一,导致分离效果差,压缩机中的冷冻油流入空调系统,影响换热效率,降低空调性能。并且,为保证转子铁芯与曲轴的过盈配合长度,曲轴需要高出挡油帽,挡油帽中间冲有圆型轴孔,且内径大于曲轴外径。混合的冷媒、冷冻油通过转子铁芯通流孔上窜,通过挡油帽轴孔再经排气管直接排出压缩机,导致压缩机排油率高,换热设备性能变差。而且在现有的压缩机中挡油帽底面与转子铁芯端面贴合,只靠竖直U型面进行一次油气分离,分离效率较低,压缩机排油率高,空调性能不良。
由上述可知,现有技术中存在压缩机排油率高的问题。
发明内容
本申请的主要目的在于提供一种压缩机及换热设备,以解决现有技术中压缩机排油率高的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种压缩机,包括:转子结构;曲轴,曲轴穿过转子结构;挡油结构,挡油结构连接在曲轴的顶端并与转子结构的端面之间形成第一挡油空间,其中,挡油结构包括碗状结构,且碗状结构的侧壁上开设有至少一个开口缝隙,开口缝隙连通至碗状结构的顶部边缘处,且碗状结构的侧壁的内表面和/或外表面上设置有挡油板。
进一步地,开口缝隙由碗状结构的顶部边缘向下延伸时向偏离挡油结构的中心点的方向弯曲,以使开口缝隙呈弧形。
进一步地,开口缝隙的弯曲方向与转子结构的转动方向一致。
进一步地,开口缝隙的顶端至开口缝隙的底端之间的连线L1与开口缝隙的顶端至碗状结构的中心点之间的连线L2之间的角度A大于等于10度且小于等于30度。
进一步地,开口缝隙是多个,多个开口缝隙沿碗状结构的周向依次间隔设置,多个开口缝隙的弯曲方向一致且间距相等。
进一步地,挡油板相对于开口缝隙向碗状结构的中心偏转的角度为20度至60度。
进一步地,开口缝隙的个数是转子结构的转子级数的整数倍。
进一步地,挡油板与碗状结构的底部内表面之间的距离大于等于1毫米且小于等于3毫米。
进一步地,转子结构的转子铁芯的外径至少比碗状结构的顶部开口的直径大4毫米。
进一步地,碗状结构包括平板状底壁和碗状侧壁,平板状底壁与转子结构的端面之间形成第一挡油空间,碗状侧壁具有开口缝隙。
进一步地,挡油结构还包括由碗状结构的底部向曲轴一侧伸出的延伸段,延伸段套设在曲轴的顶端且二者之间凹凸配合以密封。
进一步地,延伸段朝向曲轴的一侧具有环状凸筋,曲轴的顶端的外周面具有与环状凸筋嵌合的环状凹槽;或者延伸段朝向曲轴的一侧具有环状凹槽,曲轴的顶端的外周面具有与环状凹槽嵌合的环状凸筋。
进一步地,碗状结构的底部中心处成型一个通孔,且通孔处的结构形成延伸段。
进一步地,延伸段的高度至少比转子结构的平衡块的高度大3毫米。
进一步地,开口缝隙的边缘处设置有挡油板,且挡油板向碗状结构的内侧伸出或向碗状结构的外侧伸出。
进一步地,同一个开口缝隙处仅对应设置有一个挡油板,且挡油板的宽度W大于等于4毫米且小于等于10毫米。
进一步地,开口缝隙的一组相对设置的边缘处分别设置有挡油板,以在两个挡油板之间形成第二挡油空间。
进一步地,同一个开口缝隙处的两个挡油板的宽度W均大于等于2毫米且小于等于5毫米。
进一步地,同一个开口缝隙处的两个挡油板之间的距离沿靠近碗状结构的中心的方向逐渐减小。
进一步地,挡油板由开口缝隙处裁切后的结构折弯形成。
根据本申请的另一个方面,提供了一种换热设备,包括上述的压缩机。
应用本申请的技术方案,本申请中的压缩机包括转子结构、曲轴以及挡油结构。曲轴穿过转子结构;挡油结构连接在曲轴的顶端并与转子结构的端面之间形成第一挡油空间,其中,挡油结构包括碗状结构,且碗状结构的侧壁上开设有至少一个开口缝隙,开口缝隙连通至碗状结构的顶部边缘处,且碗状结构的侧壁的内表面和/或外表面上设置有挡油板。
使用上述结构的压缩机时,当油通过转子结构随排气气流上窜时,由于曲轴的顶端设置有挡油结构,所以能够通过挡油结构对随排气气流上窜的油进行阻挡,从而防止油向外排出。在油上窜至转子结构的顶端时,首先经过第一挡油空间对排气气流中的油进行油气分离,并使油回流。在排气气流经过第一挡油空间后,由于转子铁芯会一直处于旋转状态,所以会在挡油结构的碗状结构的内外部形成压差,这样会把质量较轻的排气气流通过开口缝隙抽吸至碗状结构内部,而排气气流中的油则会被碗状结构的侧壁上设置的挡油板阻挡,并使油重新回到压缩机底部的油池,而不会随排气气流排出,从而能够有效地降低压缩机的排油率,进而提高换热系统的性能。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的一个具体实施例的压缩机的结构示意图;
图2示出了图1的爆炸图;
图3示出了图2中的压缩机的曲轴的结构示意图;
图4示出了图2中的挡油结构示意图;
图5示出了图4中的挡油结构的主视图;
图6示出了L1与L2的角度关系示意图;
图7示出了本申请的另一具体实施例中挡油结构的开口缝隙处仅对应设置一个挡油板时的结构示意图;
图8示出了图7中的挡油结构的主视图。
其中,上述附图包括以下附图标记:
10、转子结构;11、平衡块;12、转子铁芯流通孔;20、曲轴;21、环状凹槽;30、挡油结构;31、第一挡油空间;32、碗状结构;321、平板状底壁;322、碗状侧壁;33、开口缝隙;34、挡油板;35、延伸段;351、环状凸筋;36、通孔;37、第二挡油空间;40、挡板;50、铆钉。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本申请中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本申请。
为了解决现有技术中压缩机排油率高的问题,本申请提供了一种压缩机及换热设备。
其中,换热设备包括下述的压缩机。
可选地,换热设备可以是空调。
如图1至图7所示所示,本申请中的压缩机包括转子结构10、曲轴20以及挡油结构30。曲轴20穿过转子结构10;挡油结构30连接在曲轴20的顶端并与转子结构10的端面之间形成第一挡油空间31,其中,挡油结构30包括碗状结构32,且碗状结构32的侧壁上开设有至少一个开口缝隙33,开口缝隙33连通至碗状结构32的顶部边缘处,且碗状结构32的侧壁的内表面和/或外表面上设置有挡油板34。
使用上述结构的压缩机时,当油通过转子结构10随排气气流上窜时,由于曲轴20的顶端设置有挡油结构30,所以能够通过挡油结构30对随排气气流上窜的油进行阻挡,从而防止油向外排出。在油上窜至转子结构10的顶端时,首先经过第一挡油空间31对排气气流中的油进行油气分离,并使油回流。在排气气流经过第一挡油空间31后,由于转子铁芯会一直处于旋转状态,所以会在挡油结构30的碗状结构32的内外部形成压差,这样会把质量较轻的排气气流通过开口缝隙33抽吸至碗状结构32内部,而排气气流中的油则会被碗状结构32的侧壁上设置的挡油板34阻挡,并使油重新回到压缩机底部的油池,而不会随排气气流排出,从而能够有效地降低压缩机的排油率,进而提高换热系统的性能。
如图1所示,转子结构10中转子铁芯流通孔12内部的曲线为油和排气气流的流动路线。
在本实施例中,转子结构10具有通孔36,通孔36作为转子铁芯流通孔,油及排气气流通过转子铁芯流通孔上窜。
可选地,开口缝隙33由碗状结构32的顶部边缘向下延伸时向偏离挡油结构30的中心点的方向弯曲,以使开口缝隙33呈弧形。由于在压缩机工作的过程中,碗状结构32会随转子结构10一同旋转,所以通过这样设置,能够保证在碗状结构32内外压差的作用下,排气气流能够更加容易地被吸入到碗状结构32内部,并且可以有效地减少进入碗状结构32内部的油量,从而有效地降低压缩机的排油率。
可选地,开口缝隙33的弯曲方向与转子结构10的转动方向一致。通过这样设置,能够保证排气气流被吸入碗状结构32内部时的速度方向与转子结构10的转动方向趋近一致。若选择开口缝隙33的弯曲方向与转子结构10的转动方向相反,则会存在因排气气流与碗状结构32的相对运动,而使油容易进入碗状结构32的内部并随排气气流一同排出,从而影响压缩机性能。
可选地,开口缝隙33的顶端至开口缝隙33的底端之间的连线L1与开口缝隙33的顶端至碗状结构32的中心点之间的连线L2之间的角度A大于等于10度且小于等于30度。当然,也可以根据使用机型的不同,做出适当的调整。
如图8所示,为LI与L2之间的角度A的示意图。
可选地,开口缝隙33是多个,多个开口缝隙33沿碗状结构32的周向依次间隔设置,多个开口缝隙33的弯曲方向一致且间距相等。通过这样设置,能够保证排气气流可以均匀地被吸入到碗状结构32内部,进而保证挡油结构30的挡油效果。
可选地,挡油板34相对于开口缝隙33向碗状结构32的中心偏转的角度为20度至60度。通过这样设置,能够保证挡油板34可以具有最佳的挡油效果的同时,还不会阻碍排气气流在碗状结构32内外压差的作用下进入碗状结构32内部,从而防止排气气流在碗状结构32外部产生滞留,保证压缩器的排气效果。
可选地,开口缝隙33的个数是转子结构10的转子级数的整数倍。通过这样设置,能够保证从转子每一级排出的油能够有向对应的挡油板34进行阻挡,并保证挡油结构30每一部分所阻挡的油量近似相等。
可选地,挡油板34与碗状结构32的底部内表面之间的距离大于等于1毫米且小于等于3毫米。通过这样设置,能够保证混有油的排气气流在经过第一挡油空间31后,能够具有一定的缓冲上升距离,而不是在通过第一挡油空间31后直接进入碗状结构32内部。
具体地,转子结构10的转子铁芯的外径至少比碗状结构32的顶部开口的直径大4毫米。通过这样设置,能够避免碗状结构32与压缩机的定子内孔、定子绕组产生干涉。
可选地,碗状结构32包括平板状底壁321和碗状侧壁322,平板状底壁321与转子结构10的端面之间形成第一挡油空间31,碗状侧壁322具有开口缝隙33。通过设置平板状底壁321和碗状侧壁322,能够增大碗状结构32与排气气流以及油的接触面积,从而能够有效地提高油气分离效率,减低压缩机的排油率。
具体地,挡油结构30还包括由碗状结构32的底部向曲轴20一侧伸出的延伸段35,延伸段35套设在曲轴20的顶端且二者之间凹凸配合以密封。
具体地,碗状结构32的底部中心处成型一个通孔36,且通孔36处的结构形成延伸段35。
具体地,延伸段35朝向曲轴20的一侧具有环状凸筋351,曲轴20的顶端的外周面具有与环状凸筋351嵌合的环状凹槽21。
在本实施例中,环状凸筋351为半圆形环状凸筋351。且环状凸筋351的内径略小于曲轴20外径,延伸段35的内径略大于曲轴20外径。
在一个未图示的实施例中,延伸段朝向曲轴的一侧具有环状凹槽,曲轴的顶端的外周面具有与环状凹槽嵌合的环状凸筋。
由于在排气气流吸入到碗状结构32内部的过程中,并不会将油全部阻挡在碗状结构32外部,所以随着排气气流进入碗状结构32内部的油会在重力的作用下排至碗状结构32的底部。所以这样设置能够有效地防止油通过碗状底部进入曲轴20与转子结构10的转子铁芯之间。
并且,通过设置相配合的环状凸筋351和环状凹槽21还能够在碗状结构32和曲轴20之间起到固定的作用,并且彻底杜绝了油气混合物从碗状结构32底部直接排出的问题。
并且,为保证碗状结构32装配可靠,环状凸筋351一般设置在延伸段35与碗状结构32底面高度方向的中间值稍偏上,并在曲轴20外径位置有对应的环状凹槽21,并在设计过程中应避免与曲轴20长轴尾部倒圆干涉,在将延伸段35压入曲轴20时,保证环状凸筋351与环状凹槽21卡合。
具体地,延伸段35的高度至少比转子结构10的平衡块11的高度大3毫米。通过这样设置,可以保证第一挡油空间31足够大,进而保证第一挡油空间31的挡油效果,保证压缩机的性能。
并且,在平衡块11和转子结构10之间还设置有挡板40,平衡块11、挡板40以及转子结构10通过铆钉50连接固定。
可选地,开口缝隙33的边缘处设置有挡油板34,且挡油板34向碗状结构32的内侧伸出或向碗状结构32的外侧伸出。通过这样设置,能够加强对油和排气气流的扰动,并使挡油结构30可以有效地对油和排气气流进行油气分离。
如图7和图8所示,同一个开口缝隙33处仅对应设置有一个挡油板34,且挡油板34的宽度W大于等于4毫米且小于等于10毫米。这样既可以保证挡油板34对油的阻挡效果,有可以使排气气流进入碗状结构32内部。
如图4和图5所示,开口缝隙33的一组相对设置的边缘处分别设置有挡油板34,以在两个挡油板34之间形成第二挡油空间37。通过这样设置,便可以使挡油结构30可以对油和排气气流的油气混合物进行两次扰动及挡油,从而提高压缩机的性能,降低压缩机的排油率。
可选地,同一个开口缝隙33处的两个挡油板34的宽度W均大于等于2毫米且小于等于5毫米。
可选地,同一个开口缝隙33处的两个挡油板34之间的距离沿靠近碗状结构32的中心的方向逐渐减小。由于油和排气气流的重力不同,所以在碗状结构32相对远离转子铁芯的位置 处排气气流中的混有的油量会有所降低,所以这样设置能够在保证挡油结构30挡油效果的同时,还能够加快排气气流进入碗状结构32内部的速度。
可选地,挡油板34由开口缝隙33处裁切后的结构折弯形成。通过这样设置,可以方便对挡油结构30的加工。当然,也可以选择焊接等其他方式对挡油板34和碗状结构32进行拼接。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
1、增强了油气分离效果,降低了压缩机排油率;
2、有效地保证了换热设备的换热效率;
3、结构简单,安全可靠。
显然,上述所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种压缩机,包括:
    转子结构(10);
    曲轴(20),所述曲轴(20)穿过所述转子结构(10);
    挡油结构(30),所述挡油结构(30)连接在所述曲轴(20)的顶端并与所述转子结构(10)的端面之间形成第一挡油空间(31),其中,所述挡油结构(30)包括碗状结构(32),且所述碗状结构(32)的侧壁上开设有至少一个开口缝隙(33),所述开口缝隙(33)连通至所述碗状结构(32)的顶部边缘处,且所述碗状结构(32)的侧壁的内表面和/或外表面上设置有挡油板(34)。
  2. 根据权利要求1所述的压缩机,其特征在于,所述开口缝隙(33)由所述碗状结构(32)的顶部边缘向下延伸时向偏离所述挡油结构(30)的中心点的方向弯曲,以使所述开口缝隙(33)呈弧形。
  3. 根据权利要求2所述的压缩机,其特征在于,所述开口缝隙(33)的弯曲方向与所述转子结构(10)的转动方向一致。
  4. 根据权利要求2所述的压缩机,其特征在于,所述开口缝隙(33)的顶端至所述开口缝隙(33)的底端之间的连线L1与所述开口缝隙(33)的顶端至所述碗状结构(32)的中心点之间的连线L2之间的角度A大于等于10度且小于等于30度。
  5. 根据权利要求2所述的压缩机,其特征在于,所述开口缝隙(33)是多个,多个所述开口缝隙(33)沿所述碗状结构(32)的周向依次间隔设置,多个所述开口缝隙(33)的弯曲方向一致且间距相等。
  6. 根据权利要求1所述的压缩机,其特征在于,所述挡油板(34)相对于所述开口缝隙(33)向所述碗状结构(32)的中心偏转的角度为20度至60度。
  7. 根据权利要求1所述的压缩机,其特征在于,所述开口缝隙(33)的个数是所述转子结构(10)的转子级数的整数倍。
  8. 根据权利要求1所述的压缩机,其特征在于,所述挡油板(34)与所述碗状结构(32)的底部内表面之间的距离大于等于1毫米且小于等于3毫米。
  9. 根据权利要求1所述的压缩机,其特征在于,所述转子结构(10)的转子铁芯的外径至少比所述碗状结构(32)的顶部开口的直径大4毫米。
  10. 根据权利要求1所述的压缩机,其特征在于,所述碗状结构(32)包括平板状底壁(321)和碗状侧壁(322),所述平板状底壁(321)与所述转子结构(10)的端面之间形成所述第一挡油空间(31),所述碗状侧壁(322)具有所述开口缝隙(33)。
  11. 根据权利要求1所述的压缩机,其特征在于,所述挡油结构(30)还包括由所述碗状结构(32)的底部向所述曲轴(20)一侧伸出的延伸段(35),所述延伸段(35)套设在所述曲轴(20)的顶端且二者之间凹凸配合以密封。
  12. 根据权利要求11所述的压缩机,其特征在于,
    所述延伸段(35)朝向所述曲轴(20)的一侧具有环状凸筋(351),所述曲轴(20)的顶端的外周面具有与所述环状凸筋(351)嵌合的环状凹槽(21);或者
    所述延伸段(35)朝向所述曲轴(20)的一侧具有环状凹槽(21),所述曲轴(20)的顶端的外周面具有与所述环状凹槽(21)嵌合的环状凸筋(351)。
  13. 根据权利要求11所述的压缩机,其特征在于,所述碗状结构(32)的底部中心处成型一个通孔(36),且所述通孔(36)处的结构形成所述延伸段(35)。
  14. 根据权利要求11所述的压缩机,其特征在于,所述延伸段(35)的高度至少比所述转子结构(10)的平衡块(11)的高度大3毫米。
  15. 根据权利要求1至14中任一项所述的压缩机,其特征在于,所述开口缝隙(33)的边缘处设置有所述挡油板(34),且所述挡油板(34)向所述碗状结构(32)的内侧伸出或向所述碗状结构(32)的外侧伸出。
  16. 根据权利要求15所述的压缩机,其特征在于,同一个所述开口缝隙(33)处仅对应设置有一个所述挡油板(34),且所述挡油板(34)的宽度W大于等于4毫米且小于等于10毫米。
  17. 根据权利要求15所述的压缩机,其特征在于,所述开口缝隙(33)的一组相对设置的边缘处分别设置有所述挡油板(34),以在两个所述挡油板(34)之间形成第二挡油空间(37)。
  18. 根据权利要求17所述的压缩机,其特征在于,同一个所述开口缝隙(33)处的两个所述挡油板(34)的宽度W均大于等于2毫米且小于等于5毫米。
  19. 根据权利要求17所述的压缩机,其特征在于,同一个所述开口缝隙(33)处的两个挡油板(34)之间的距离沿靠近所述碗状结构(32)的中心的方向逐渐减小。
  20. 根据权利要求15所述的压缩机,其特征在于,所述挡油板(34)由所述开口缝隙(33)处裁切后的结构折弯形成。
  21. 一种换热设备,其特征在于,包括权利要求1至20中任一项所述的压缩机。
PCT/CN2019/109971 2019-02-21 2019-10-08 压缩机及换热设备 WO2020168726A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910140449.0A CN109667756A (zh) 2019-02-21 2019-02-21 压缩机及换热设备
CN201910140449.0 2019-02-21

Publications (1)

Publication Number Publication Date
WO2020168726A1 true WO2020168726A1 (zh) 2020-08-27

Family

ID=66151713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109971 WO2020168726A1 (zh) 2019-02-21 2019-10-08 压缩机及换热设备

Country Status (2)

Country Link
CN (1) CN109667756A (zh)
WO (1) WO2020168726A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109667756A (zh) * 2019-02-21 2019-04-23 珠海格力节能环保制冷技术研究中心有限公司 压缩机及换热设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255214A (ja) * 2006-03-20 2007-10-04 Mitsubishi Electric Corp 密閉電動圧縮機および冷凍サイクル装置
CN103452852A (zh) * 2012-05-29 2013-12-18 珠海格力节能环保制冷技术研究中心有限公司 压缩机的油分离装置及包括该装置的压缩机
CN105604949A (zh) * 2016-01-20 2016-05-25 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN106015007A (zh) * 2016-07-11 2016-10-12 珠海凌达压缩机有限公司 一种挡油板、压缩机转子组件、压缩机及空调器
CN106246556A (zh) * 2016-09-18 2016-12-21 珠海凌达压缩机有限公司 挡油装置及具有其的压缩机
CN206917862U (zh) * 2017-06-08 2018-01-23 上海海立电器有限公司 挡油板以及压缩机
CN109667756A (zh) * 2019-02-21 2019-04-23 珠海格力节能环保制冷技术研究中心有限公司 压缩机及换热设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801397B2 (en) * 2009-10-14 2014-08-12 Panasonic Corporation Compressor
CN104728119A (zh) * 2013-12-23 2015-06-24 珠海格力节能环保制冷技术研究中心有限公司 旋转式压缩机油分离装置及具有该装置的旋转式压缩机
CN209704842U (zh) * 2019-02-21 2019-11-29 珠海格力节能环保制冷技术研究中心有限公司 压缩机及换热设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255214A (ja) * 2006-03-20 2007-10-04 Mitsubishi Electric Corp 密閉電動圧縮機および冷凍サイクル装置
CN103452852A (zh) * 2012-05-29 2013-12-18 珠海格力节能环保制冷技术研究中心有限公司 压缩机的油分离装置及包括该装置的压缩机
CN105604949A (zh) * 2016-01-20 2016-05-25 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN106015007A (zh) * 2016-07-11 2016-10-12 珠海凌达压缩机有限公司 一种挡油板、压缩机转子组件、压缩机及空调器
CN106246556A (zh) * 2016-09-18 2016-12-21 珠海凌达压缩机有限公司 挡油装置及具有其的压缩机
CN206917862U (zh) * 2017-06-08 2018-01-23 上海海立电器有限公司 挡油板以及压缩机
CN109667756A (zh) * 2019-02-21 2019-04-23 珠海格力节能环保制冷技术研究中心有限公司 压缩机及换热设备

Also Published As

Publication number Publication date
CN109667756A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
US10473339B2 (en) Guide blade and air conditioner having the same
WO2014069301A1 (ja) 空気調和機
KR102454762B1 (ko) 공기조화기의 실내기
US10527298B2 (en) Air conditioner
TW200530539A (en) Integral air conditioner
WO2020168726A1 (zh) 压缩机及换热设备
CN104696222A (zh) 压缩机
US11674520B2 (en) Centrifugal fan and air-conditioning apparatus
EP2792886B1 (en) Turbofan
CN103306983A (zh) 压缩机引流板及旋转式压缩机
US11215195B2 (en) Centrifugal compressor and turbo refrigerator
CN104457103A (zh) 风道结构和冰箱
CN204404659U (zh) 风道结构和冰箱
KR102136879B1 (ko) 터보팬 및 이를 사용한 천정형 공기조화기
CN209704842U (zh) 压缩机及换热设备
CN104685218B (zh) 螺旋桨式风扇
CN205779725U (zh) 一种挡油板及采用其的压缩机
JP5590016B2 (ja) ターボファン、空気調和装置
JP2015096781A (ja) 油分離器
CN103206380A (zh) 旋转式压缩机
WO2021234859A1 (ja) 軸流ファン、送風装置、及び、冷凍サイクル装置
CN204532822U (zh) 压缩机
CN103541904A (zh) 挡油件及具有该挡油件的压缩机
CN105276898B (zh) 一种冰箱风道结构及具有其的冰箱
CN205858697U (zh) 一种挡油板、压缩机转子组件、压缩机及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915648

Country of ref document: EP

Kind code of ref document: A1