WO2020166542A1 - Bearing device and spindle device - Google Patents

Bearing device and spindle device Download PDF

Info

Publication number
WO2020166542A1
WO2020166542A1 PCT/JP2020/005024 JP2020005024W WO2020166542A1 WO 2020166542 A1 WO2020166542 A1 WO 2020166542A1 JP 2020005024 W JP2020005024 W JP 2020005024W WO 2020166542 A1 WO2020166542 A1 WO 2020166542A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
heat flux
flux sensor
bearing device
sensor
Prior art date
Application number
PCT/JP2020/005024
Other languages
French (fr)
Japanese (ja)
Inventor
小池 孝誌
靖之 福島
勇介 澁谷
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019037713A external-priority patent/JP2020133889A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN202080013803.4A priority Critical patent/CN113453826A/en
Priority to KR1020217026651A priority patent/KR20210125012A/en
Priority to DE112020000770.7T priority patent/DE112020000770T5/en
Publication of WO2020166542A1 publication Critical patent/WO2020166542A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/08Rigid support of bearing units; Housings, e.g. caps, covers for spindles
    • F16C35/12Rigid support of bearing units; Housings, e.g. caps, covers for spindles with ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Definitions

  • the present invention relates to a bearing device and a spindle device.
  • Patent Document 1 a non-contact temperature sensor that measures the temperature of a pump for lubricating the bearing and the temperature of the lubrication part in order to prevent problems such as seizure of the bearing. (Infrared sensor) is provided on the end surface of the bearing. When the time variation of the temperature obtained from the non-contact temperature sensor exceeds the threshold value, the bearing is lubricated by the pump to prevent the temperature rise.
  • Infrared sensor Infrared sensor
  • the non-contact temperature sensor infrared sensor
  • the non-contact temperature sensor uses a resin holder as a measurement target.
  • the cage is not made of resin, it is difficult to measure the temperature with the structure disclosed in JP-A-2017-26078.
  • the non-contact temperature sensor has lower measurement accuracy than the contact type temperature sensor. Therefore, the non-contact temperature sensor may erroneously detect a temperature change even if no abnormality has occurred, or may not detect a temperature change even if an abnormality has occurred. Furthermore, when the non-contact temperature sensor is used in an oil lubrication environment, it is assumed that the sensor is affected by the lubricating oil. For example, when the lubricating oil becomes mist and enters between the measurement target and the non-contact temperature sensor, it is difficult to measure the temperature accurately.
  • the present invention is to solve the above problems, and an object thereof is to provide a bearing device capable of accurately and quickly detecting a temperature change of a bearing, and a spindle device including the bearing device. That is.
  • the bearing device includes a bearing, a preload portion, a housing, and a heat flux sensor.
  • the bearing is for supporting the rotating body.
  • the preload unit includes an elastic body that applies a preload to the bearing.
  • the housing fixes the bearing.
  • the heat flux sensor is fixed to either one of the housing and the preload portion and detects the heat flux.
  • a spindle device includes the bearing device and a motor that rotates a rotating body.
  • FIG. 13 is a diagram showing still another example of the control device of the spindle device shown in FIG. 12. It is a schematic diagram which shows the structure of the bearing device which concerns on Embodiment 10 of this invention. It is a schematic diagram which shows the structure of the modification of the bearing device which concerns on Embodiment 10 of this invention.
  • FIG. 1 is a schematic diagram showing a configuration of a bearing device according to the first embodiment of the present invention.
  • a bearing device 1 shown in FIG. 1 is a constant pressure preload type bearing device and includes a plurality of bearings 2 that support a rotating body 5 that is a main shaft, a preload portion 3, a housing 4, and a heat flux sensor 11. ..
  • the bearing 2 rotatably supports the rotating body 5.
  • a through hole is formed in the housing 4.
  • the rotating body 5, the bearing 2, and the preload portion 3 are housed inside the through hole.
  • Two bearings 2 are fixed to both ends of the through hole of the housing 4.
  • the bearing 2 includes an inner ring 2i, an outer ring 2g, a rolling element 2t, and a cage 2r.
  • the bearing 2 is a rolling bearing, for example, an angular ball bearing. That is, the rolling element 2t is, for example, a ball.
  • the rotating body 5 as the main shaft is inserted and fixed in the inner ring 2i of the bearing 2.
  • a collar 6 is arranged outside the inner ring 2i of the bearing 2 in the extending direction of the rotating body 5.
  • a nut 7 is arranged outside the collar 6 in the extending direction of the rotating body 5.
  • the preload unit 3 applies a constant pressure preload to the bearing 2.
  • the preload unit 3 includes a spring holder 8, a spring 9 that is an elastic body that applies a preload to the bearing 2, and an intermediate member 10 that is a ring-shaped member.
  • One end surface 8 a of the spring holder 8 contacts the step portion 4 a of the housing 4.
  • the preload portion 3 presses the end surface of the outer ring 2g, which is the fixed ring of the bearing 2, via the intermediate member 10 by the elastic force of the spring 9.
  • the spring 9 for example, a coil spring can be used.
  • a plurality of preload portions 3 may be arranged in the circumferential direction along the outer ring 2g. Note that other types of springs such as a disc spring may be used as the spring 9, and the type and structure of the spring are not limited.
  • the end surface of the outer ring 2g which is the fixed ring of the other bearing 2, contacts the step 4b of the housing 4.
  • a constant pressure preload is applied to the bearing 2.
  • the bearings 2 are installed in a back surface combination (DB combination).
  • the bearing 2 is a bearing that can apply a preload by a force in the axial direction.
  • an angular ball bearing, a deep groove ball bearing, a tapered roller bearing or the like can be used.
  • the heat flux sensor 11 is a sensor that detects a heat flux, and is arranged near each of the plurality of bearings 2.
  • One surface of the heat flux sensor 11 is fixed to a non-rotating member near the bearing 2 by adhesion or the like.
  • the other surface of the heat flux sensor 11 is arranged to face the rotating body 5 with a gap.
  • the heat flux sensor 11 on the left side is fixed to the inner peripheral surface 4c of the housing 4.
  • the heat flux sensor 11 on the right side is fixed to the surface portion 8b which is the inner diameter surface of the spring holder 8.
  • the heat flux sensor 11 is used to measure the temperature change inside the bearing device 1 during the operation of the bearing device 1.
  • the heat flux sensor 11 for example, the heat flux sensor described in Japanese Unexamined Patent Application Publication No. 2016-166832 (Patent Document 2) can be used.
  • the output voltage of the heat flux sensor 11 is generated from a slight temperature difference between the front and back of the sensor.
  • the heat flux sensor 11 uses the Seebeck effect to convert the heat flow into an electric signal.
  • the temperature of the bearing 2 rises as the contact surface pressure increases.
  • the heat capacity of the rotating body 5 fixed to the housing 4 that houses the bearing 2 and the inner ring 2i is relatively large, the temperature of the housing 4 and the rotating body 5 rises from the timing when the temperature of the bearing 2 rises. Timing is delayed. Therefore, when the abnormality of the bearing 2 is determined based on the temperature change of the housing 4 or the rotating body 5 detected by using the temperature sensor or the like, the timing of detecting the abnormality of the bearing 2 is the timing of the actual abnormality occurrence.
  • the surface of the heat flux sensor 11 is arranged so as to face the most cooled portion (heat generation portion) (the surface of the heat flux sensor 11 should be located as close to the portion not cooled as possible). Is preferably arranged). Further, it is preferable to fix the heat flux sensor 11 to the most cooled portion (contact the back surface of the heat flux sensor 11 to the most cooled portion).
  • the heat flux sensor 11 is applied to, for example, the bearing device 1 that constitutes a spindle device.
  • the cooling medium flow path may be formed in the housing 4.
  • the member fixing the heat flux sensor 11 may be the outer ring 2g of the bearing 2.
  • the member for fixing the heat flux sensor 11 is preferably a member fixed to the housing 4, and more preferably the housing 4 itself.
  • the part where the surfaces of the heat flux sensor 11 face each other may be the rotating body 5. Further, it is more preferable that the portion where the surfaces of the heat flux sensor 11 face each other is the inner ring 2i of the bearing 2.
  • the difference between the outputs of the two heat flux sensors 11 is calculated, or the difference between the output changes of the two heat flux sensors 11 per unit time is calculated, and the calculated value is compared with a preset threshold value.
  • the presence or absence of an abnormality in the bearing 2 may be determined by.
  • a plurality of heat flux sensors 11 may be arranged along the outer ring 2g of one bearing 2 at intervals.
  • the bearing device 1 includes a bearing 2, a preload portion 3, a housing 4, and a heat flux sensor 11.
  • the bearing 2 is for supporting the rotating body 5.
  • the preload unit 3 applies a preload to the bearing 2. More specifically, the preload unit 3 includes an elastic body that applies a preload to the bearing 2.
  • the housing 4 fixes the bearing 2.
  • the heat flux sensor 11 is fixed to one of the housing 4 and the preload unit 3 and detects the heat flux.
  • the heat flux sensor 11 directly detects the heat flux in the heat flux sensor 11 by converting it into a voltage or the like, it is unlikely to erroneously detect a temperature change like a non-contact temperature sensor. Therefore, the abnormality of the bearing 2 can be accurately detected.
  • the heat flux sensor 11 is preferably arranged near the bearing 2. Arranging in the vicinity of the bearing 2 means that the heat flux sensor 11 is arranged in a region adjacent to the bearing 2, and for example, when the distance between the bearing 2 and the heat flux sensor 11 is 50 mm or less. Means The distance between the bearing 2 and the heat flux sensor 11 may be 30 mm or less, 20 mm or less, 10 mm or less, or 5 mm or less.
  • the heat flux sensor 11 is arranged so as to face the rotating body 5. In this case, the heat flux sensor 11 can reliably detect a change in heat flux due to a temperature difference between the rotating body 5 and the housing 4 or the preload portion 3.
  • the heat flux sensor 11 is fixed to the inner peripheral surface 4c of the housing 4 that faces the rotating body 5. In this case, the heat flux sensor 11 can reliably detect a change in heat flux due to a temperature difference between the rotating body 5 and the housing 4.
  • the preload part 3 includes a surface portion facing either one of the rotating body 5 and the bearing 2 (in FIG. 1, the surface portion 8b of the spring holder 8 facing the rotating body 5).
  • the heat flux sensor 11 is fixed to the surface portion 8b. In this case, the change in heat flux due to the temperature difference between the rotating body 5 and the preload unit 3 can be reliably detected by the heat flux sensor 11.
  • the preload part 3 includes a spring 9 and a spring holder 8.
  • the spring 9 is used to generate preload.
  • the spring holder 8 houses the spring 9.
  • the surface portion 8b is a part of the surface of the spring holder 8.
  • a part of the surface of the spring holder 8 on which the heat flux sensor 11 is arranged that is, the surface part 8b, of the housing 4. It is located in a region closer to the rotating body 5 than the inner peripheral surface 4c. Therefore, the heat flux sensor 11 can be arranged relatively close to the rotating body 5.
  • FIG. 2 is a schematic diagram showing the configuration of the bearing device according to the second embodiment of the present invention.
  • the bearing device 1 shown in FIG. 2 basically has the same configuration as the bearing device 1 shown in FIG. 1, but the configuration of the part to which the heat flux sensor 11 located on the left side of FIG.
  • the bearing device 1 shown in FIG. That is, in the bearing device 1 shown in FIG. 2, the pedestal 12 is arranged at a position adjacent to the bearing 2 on the inner peripheral surface 4c of the housing 4.
  • the pedestal 12 may be a dedicated member for installing the heat flux sensor 11 in the housing 4.
  • the pedestal 12 is a member separate from the housing 4, but the pedestal 12 may be formed integrally with the housing 4.
  • the inner peripheral surface 4c of the housing 4 may be processed so as to have the pedestal 12.
  • the heat flux sensor 11 is fixed on the surface of the pedestal 12 facing the rotating body 5.
  • the pedestal 12 includes a surface portion facing either one of the rotating body 5 and the bearing 2.
  • the heat flux sensor 11 is fixed to the surface portion of the pedestal 12 facing the rotating body 5.
  • the shape of the pedestal 12 may be a ring shape along the outer ring 2g of the bearing 2, or may be a columnar shape that faces only a part of the outer ring 2g. Further, a plurality of pedestals 12 may be arranged along the outer ring 2g, and the heat flux sensor 11 may be fixed to each pedestal 12.
  • a plurality of heat flux sensors 11 may be arranged along the outer ring 2g.
  • the distance from the surface of the pedestal 12 on which the heat flux sensor 11 is fixed to the surface of the rotating body 5 is smaller than the distance from the inner peripheral surface 4c of the housing 4 to the surface of the rotating body 5.
  • the pedestal 12 may be fixed to the housing 4 by forming a recess in the inner peripheral surface 4c of the housing 4 and arranging at least a part of the pedestal 12 inside the recess.
  • the distance from the surface of the pedestal 12 on which the heat flux sensor 11 is fixed to the surface of the rotating body 5 and the area of the inner peripheral surface 4c of the housing 4 other than the area where the recess is formed to the surface of the rotating body 5. May be substantially the same in distance.
  • the bearing device 1 shown in FIG. 2 can basically obtain the same effect as the bearing device 1 shown in FIG.
  • the housing 4 includes a pedestal 12 provided from the inner peripheral surface 4c facing the rotating body 5 toward the rotating body 5. That is, the housing 4 includes the pedestal 12 provided on the inner peripheral surface 4c.
  • the heat flux sensor 11 is fixed to the pedestal 12. As described above, by disposing the heat flux sensor 11 on the pedestal 12, the distance between the heat flux sensor 11 and the rotating body 5 can be made smaller than the distance in the bearing device 1 shown in FIG. Therefore, the temperature change of the rotating body 5 caused by the abnormality in the bearing 2 can be detected more quickly and accurately.
  • FIG. 3 is a schematic diagram showing the configuration of the bearing device according to the third embodiment of the present invention.
  • the bearing device 1 shown in FIG. 3 basically has the same configuration as the bearing device 1 shown in FIG. 2, but the configuration of the portion to which the heat flux sensor 11 located on the right side of FIG. 3 is fixed is illustrated. 2 is different from the bearing device 1 shown in FIG. That is, in the bearing device 1 shown in FIG. 3, the preload part 3 includes the spring holder 8, the spring 9, and the intermediate member 10.
  • the intermediate member 10 is a ring-shaped member that extends along the outer ring 2g of the bearing 2.
  • a spring 9 is housed inside the spring holder 8.
  • the intermediate member 10 is arranged between the spring 9 and the bearing 2.
  • the intermediate member 10 is in contact with the outer ring 2g.
  • the stress from the spring 9 is transmitted to the bearing 2 via the intermediate member 10.
  • the surface portion 10 a that is a part of the surface of the intermediate member 10 faces the rotating body 5.
  • the heat flux sensor 11 is fixed to the surface portion 10a.
  • the bearing device 1 shown in FIG. 3 can basically obtain the same effect as the bearing device 1 shown in FIG. Furthermore, in the bearing device 1 shown in FIG. 3, the preload part 3 includes a spring 9 and an intermediate member 10.
  • the intermediate member 10 is, for example, a ring-shaped member.
  • the spring 9 as an elastic body is used to generate a preload.
  • the intermediate member 10 is arranged between the spring 9 and the bearing 2.
  • the surface portion 10 a to which the heat flux sensor 11 is fixed is a part of the surface of the intermediate member 10. In this case, the intermediate member 10 is arranged near the bearing 2. Therefore, the distance between the heat flux sensor 11 and the bearing 2 in the bearing apparatus 1 shown in FIG.
  • the heat flux sensor 11 can quickly and reliably detect the temperature change of the rotating body 5 and the bearing 2 due to the abnormality of the bearing 2.
  • FIG. 4 is a schematic diagram showing the configuration of the bearing device according to the fourth embodiment of the present invention.
  • the bearing device 1 shown in FIG. 4 basically has the same configuration as the bearing device 1 shown in FIG. 3, but the configuration of the portion to which the heat flux sensor 11 of FIG. 4 is fixed is shown in FIG. It differs from the bearing device 1. That is, in the bearing device 1 shown in FIG. 4, the ring-shaped spacer 20 is arranged so as to contact the outer ring 2g of the left bearing 2. One end of the spacer 20 contacts the inside of the outer ring 2g. The other end of the spacer 20 opposite to the one end is in contact with a step portion formed on the inner peripheral surface 4c of the housing 4.
  • the heat flux sensor 11 is fixed on the surface portion 20 a of the spacer 20 that faces the rotating body 5.
  • the spacer 20 and the intermediate member 10 are formed with a supply port 21 which is a nozzle for supplying a lubricating fluid such as lubricating oil to the bearing 2 for lubricating and cooling the bearing 2.
  • the supply ports 21 formed in the spacer 20 and the intermediate member 10 are connected to the flow paths of the lubricating fluid formed in the housing 4, respectively.
  • the flow path is connected to a lubricating fluid supply unit (not shown) via a pump, an on-off valve, and the like. Note that oil mist or air may be supplied to the bearing 2 from the supply port 21.
  • the bearing device 1 shown in FIG. 4 includes a spacer 20 arranged adjacent to the bearing 2.
  • the spacer 20 is formed with a supply port 21 which is a nozzle for supplying a lubricating fluid to the bearing 2.
  • the spacer 20 includes a surface portion facing either one of the rotating body 5 and the bearing 2 (a surface portion 20a facing the rotating body 5 in FIG. 4).
  • the heat flux sensor 11 is fixed to the surface portion 20a. In this case, since the heat flux sensor 11 can be arranged in the area adjacent to the bearing 2, the heat flux sensor 11 can reliably detect the temperature change of the rotating body 5 and the bearing 2 due to the abnormality of the bearing 2.
  • a supply port 21 which is a nozzle for supplying a lubricating fluid to the bearing 2 is formed in the intermediate member 10 which constitutes the preload portion 3, and the heat flux sensor 11 is fixed. .. Therefore, the heat flux sensor 11 can be arranged near the bearing 2 as in the bearing device 1 shown in FIG. Further, since it is not necessary to dispose a member having the supply port 21 for supplying the lubricating fluid separately from the intermediate member 10 in the vicinity of the preload portion 3, the device configuration of the bearing device 1 can be simplified.
  • the heat flux sensor 11 is placed at a position where it is less likely to be affected by the lubricating fluid supplied from the supply port 21. It is preferable to install. For example, it is preferable to arrange the heat flux sensor 11 in a region spaced apart from the position where the supply port 21 is arranged in the circumferential direction of the bearing 2. When a plurality of supply ports 21 are arranged in the circumferential direction of the bearing 2, it is preferable to arrange the heat flux sensor 11 at a position that is substantially equidistant from the plurality of supply ports 21 in the circumferential direction.
  • the protruding direction of the lubricating fluid at the supply port 21 is inclined with respect to the rotation axis direction of the bearing 2 and the lubricating fluid is sprayed along the circumferential direction of the bearing 2.
  • the lubricating fluid sprayed on the bearing 2 hits the transfer surface of the bearing 2 in the vicinity of the supply port 21, spreads over the entire circumference of the bearing 2 as the bearing 2 rotates, and the bearing 2 can be efficiently lubricated/cooled. ..
  • the position of the supply port 21 and the position of the heat flux sensor 11 are set in order to reduce the influence of the lubricating fluid not only in the circumferential direction of the bearing 2 but also in the rotational axis direction of the bearing 2. It is preferable to shift.
  • FIG. 5 is a block diagram for explaining the configuration of the bearing device according to the fifth embodiment of the present invention.
  • the bearing device according to the present embodiment basically has the same configuration as the bearing device 1 shown in FIG. 1, but is provided with an abnormality diagnosis unit 100 for diagnosing an abnormality of the bearing 2 (see FIG. 1). Further, the bearing device 1 is different from the bearing device 1 shown in FIG. 1 in that another sensor 22 is provided. The other sensor 22 can be installed at an arbitrary position such as the outer ring 2g of the bearing 2 or the vicinity of the bearing 2.
  • the abnormality diagnosis unit 100 diagnoses the abnormality of the bearing based on the output information of the heat flux sensor 11.
  • output information from other sensors 22 is also input to the abnormality diagnosis unit 100.
  • the abnormality diagnosis unit 100 also receives a shaft rotation speed signal 101, which is information on the rotation speed of the rotating body 5.
  • the abnormality diagnosis unit 100 diagnoses an abnormality in the bearing 2 based on the output information of the heat flux sensor 11, the output information of the other sensors 22, and the shaft rotation speed signal 101.
  • the abnormality diagnosis unit 100 determines that an abnormality has occurred in the bearing 2
  • the abnormality diagnosis unit 100 outputs an instruction signal 102 for performing an abnormality avoidance operation in order to prevent the bearing from being damaged.
  • an arbitrary sensor such as a temperature sensor, an acceleration sensor, a weight sensor, and a rotation sensor may be added.
  • FIG. 6 is a flowchart for explaining the first example of the abnormality determination processing executed by the abnormality diagnosis device.
  • the abnormality diagnosis unit 100 monitors the output of the sensor in step S1. Examples of the sensor include a heat flux sensor 11, a temperature sensor, a rotation speed detection sensor (not shown) that detects the rotation speed of the rotating body 5, an acceleration sensor, a weight sensor, and the like. Subsequently, in step S2, the abnormality diagnosis unit 100 compares the threshold value provided corresponding to the output of each sensor with the value (output information) detected by the sensor, and determines whether or not the threshold value is exceeded. To do.
  • the threshold value determination may be performed individually for each output information of each sensor, or may be performed for a combination of output information of each sensor.
  • the threshold value of the temperature inside the bearing device 1 which is the output information from the temperature sensor as an example of the other sensor 22 according to the rotation speed of the rotating body 5 which is the output information from the rotation speed detection sensor.
  • the threshold value of the output information of the heat flux sensor 11 is set, the output information from the temperature sensor (measured temperature inside the bearing device 1) exceeds the threshold value (predetermined temperature), and the output information of the heat flux sensor 11 is the threshold value. It is conceivable that the bearing 2 is determined to have an abnormality when the value exceeds.
  • step S2 If the output information (detection value) is smaller than the threshold value in step S2 (that is, the occurrence of abnormality is not detected), the sensor monitoring process of step S1 is repeatedly executed again. On the other hand, when the output information is larger than the threshold value in step S2 (that is, when the occurrence of an abnormality is detected), the abnormality diagnosis unit 100 executes the abnormality avoidance operation so that the abnormality avoidance operation of step S3 is executed.
  • the instruction signal 102 of is output.
  • the abnormality avoidance operation control executed by the instruction signal 102 in the machine tool, which is an example of a mechanical device in which the bearing device 1 is incorporated.
  • the abnormality avoidance operation control may be control for lowering the rotation speed of the rotating body 5 from the present.
  • the abnormality avoidance operation control may be control for reducing the cutting amount of the blade with respect to the object to be processed, compared to the present time, when cutting is performed in the machine tool, for example.
  • the abnormality avoidance operation control may be control for supplying lubricating oil to the bearing 2 (see FIG. 1) of the bearing device 1 or for increasing the amount of lubricating oil supplied.
  • the abnormality avoidance operation control may be control for stopping machining in the machine tool (for example, control for stopping cutting to reduce the rotation speed (spindle rotation speed) of the rotating body 5 or stopping rotation of the rotating body 5). ..
  • control for stopping machining in the machine tool for example, control for stopping cutting to reduce the rotation speed (spindle rotation speed) of the rotating body 5 or stopping rotation of the rotating body 5.
  • FIG. 7 is a flowchart for explaining the second example of the abnormality determination processing executed by the abnormality diagnosis device.
  • the abnormality diagnosis unit 100 monitors the output of the sensor in step S11. Examples of the sensor include a heat flux sensor 11, a temperature sensor, a rotation speed detection sensor (not shown) that detects the rotation speed of the rotating body 5, an acceleration sensor, a weight sensor, and the like, as in the abnormality determination process described in FIG. ..
  • the abnormality diagnosis unit 100 calculates the rate of change of the output of each sensor per unit time. After that, the abnormality diagnosis unit 100 determines whether or not the calculated change rate exceeds a threshold value (determination value) in step S13 (change rate determination).
  • the change rate determination may be performed individually for the output information of each sensor, or may be performed for a combination of the output information of each sensor.
  • the rate of change in the rotation speed of the rotating body 5 per unit time which is the output information from the rotation speed detection sensor, exceeds the threshold value
  • the output information from the temperature sensor as an example of the other sensor 22 is used.
  • the rate of change of the temperature inside a certain bearing device 1 per unit time exceeds a threshold value and the rate of change of the output information of the heat flux sensor 11 per unit time exceeds a predetermined threshold value, an abnormality occurs in the bearing 2. It is conceivable to make a determination method such as “determine”.
  • step S13 If the rate of change detected is smaller than the threshold value (judgment value) in step S13, the sensor monitoring process of step S11 is repeatedly executed again.
  • the abnormality diagnosis unit 100 outputs the instruction signal 102 for executing the abnormality avoidance operation so that the abnormality avoidance operation in step S14 is executed.
  • it may be determined to be abnormal when the occurrence of abnormality is detected a plurality of times consecutively in step S13. Since the example of the abnormality avoidance operation control executed by the machine tool in response to the instruction signal 102 is the same as the case of the abnormality determination processing shown in FIG. 6, the description will not be repeated.
  • the bearing device includes an abnormality diagnosis unit 100 that diagnoses an abnormality of the bearing 2 based on the output information of the heat flux sensor 11.
  • an abnormality diagnosis unit 100 that diagnoses an abnormality of the bearing 2 based on the output information of the heat flux sensor 11.
  • the bearing device itself since the bearing device itself includes the abnormality diagnosis unit 100, it is possible to diagnose whether or not an abnormality has occurred in the bearing 2 in the bearing device.
  • the above bearing device includes another sensor 22 arranged separately from the heat flux sensor 11.
  • the output information of the heat flux sensor 11 and the output information of the other sensors 22 are transmitted to the abnormality diagnosis unit 100.
  • the abnormality diagnosing unit 100 diagnoses an abnormality in the bearing 2 based on the output information of the heat flux sensor 11, the output information of the other sensor 22, and the shaft rotation speed signal 101 that is the rotation speed information of the rotating body. In this case, the abnormality of the bearing 2 can be diagnosed more accurately by using information other than the information from the heat flux sensor 11.
  • FIG. 8 is a schematic diagram showing the configuration of the bearing device according to the sixth embodiment of the present invention.
  • the bearing device 1 shown in FIG. 8 basically has the same configuration as the bearing device 1 shown in FIG. 1, but the configuration of the portion to which the heat flux sensor 11 of FIG. 8 is fixed is shown in FIG. It differs from the bearing device 1. That is, in the bearing device 1 shown in FIG. 8, the housing 4 has a portion located outside the bearing 2 in the extending direction of the rotating body 5. A portion of the housing 4 located outside the bearing 2 has an inner peripheral surface 4Ad facing the rotating body 5.
  • the heat flux sensor 11 is fixed to the inner peripheral surface 4Ad. That is, the heat flux sensor 11 is arranged outside the bearing 2 and in the region 14 adjacent to the bearing 2 in the extending direction of the rotating body 5.
  • the bearing device 1 basically has the same effects as the bearing device 1 shown in FIG. Further, in the bearing device 1 shown in FIG. 8, the heat flux sensor 11 is fixed to the inner peripheral surface 4Ad located on the outer peripheral side of the bearing 2 in the housing 4 and facing the rotating body. In this case, since the heat flux sensor 11 is arranged in a region outside the bearing 2 in the housing 4, maintenance of the heat flux sensor 11 is facilitated and wiring for outputting a signal from the heat flux sensor 11 to the outside is provided. Processing becomes easy.
  • FIG. 9 is a schematic diagram showing the structure of the bearing device according to the seventh embodiment of the present invention.
  • the bearing device 1 shown in FIG. 9 basically has the same configuration as the bearing device 1 shown in FIG. 8, but the configuration of the portion to which the heat flux sensor 11 of FIG. 9 is fixed is shown in FIG. It differs from the bearing device 1. That is, in the bearing device 1 shown in FIG. 9, the pedestal 13 provided from the inner peripheral surface 4Ad of the housing 4 toward the rotating body 5 is arranged outside the bearing 2 and adjacent to the bearing 2. That is, the housing 4 includes the pedestal 13 provided on the inner peripheral surface 4Ad. The pedestal 13 may be separate from the housing 4, like the pedestal 12 shown in FIG.
  • the pedestal 13 includes a surface portion facing either one of the rotating body 5 (collar 6) and the bearing 2.
  • the heat flux sensor 11 is fixed to the surface portion of the pedestal 13 that faces the rotating body 5. That is, the heat flux sensor 11 is fixed on the surface of the pedestal 13 facing the rotating body 5 (the collar 6).
  • the pedestal 13 may be a ring-shaped member that extends along the outer ring 2g of the bearing 2, or may be a columnar member that faces only a part of the outer ring 2g. Alternatively, a plurality of pedestals 13 may be arranged along the outer ring 2g, and the heat flux sensor 11 may be fixed to each pedestal 13.
  • the bearing device 1 shown in FIG. 9 can basically obtain the same effects as those of the bearing device 1 shown in FIG. Further, in the bearing device 1 shown in FIG. 9, the housing 4 includes a pedestal 13 provided from the inner peripheral surface 4Ad facing the rotating body 5 to the rotating body 5 outside the bearing 2.
  • the heat flux sensor 11 is fixed to the pedestal 13. In this case, by disposing the heat flux sensor 11 on the pedestal 13, the distance between the heat flux sensor 11 and the rotating body 5 can be reduced. Therefore, the temperature change of the rotating body 5 (and the collar 6) due to the abnormality in the bearing 2 can be detected more quickly and accurately.
  • FIG. 10 is a schematic diagram showing the structure of the bearing device according to the eighth embodiment of the present invention.
  • FIG. 11 is a diagram showing a configuration for wirelessly transmitting and receiving the output of the sensor.
  • the bearing device 1 shown in FIG. 10 basically has the same configuration as the bearing device 1 shown in FIG. 8, but the point that the bearing device 1 shown in FIG. 8 includes a transmitter 200 and a receiver 300 that are wireless transmitters. It differs from the bearing device 1 shown.
  • the heat flux sensor 11 is connected to the transmitter 200.
  • the wireless transmission device is also connected to another heat flux sensor 11, which is not shown in FIG.
  • the outputs of the two heat flux sensors 11 may be transmitted by one wireless transmission device.
  • the receiving device 300 receives the output information of the heat flux sensor 11 from the transmitting unit 200 and determines whether the bearing 2 is abnormal.
  • the output information generated by the heat flux sensor 11 can be transmitted to the outside by the transmitter 200.
  • the abnormality of the bearing 2 can be diagnosed by an external abnormality diagnosis device.
  • the bearing device 1 may further include a power supply device that supplies power to the transmission unit 200.
  • a power supply device a battery, a power generation device that generates power by a temperature difference, vibration, or the like, an electromagnetic induction power generator, or the like can be used.
  • the transmission unit 200 includes a signal processing unit 201 and a data transmission unit 202.
  • the signal processing unit 201 receives a signal that is output information from the heat flux sensor 11 and amplifies the signal or removes a noise component from the signal. Further, the signal processing unit 201 performs analog-digital conversion processing, modulation processing, etc. on the signal.
  • the signal processing unit 201 outputs the signal subjected to the above-described processing to the data transmitting unit 202 as transmission data.
  • the data transmitting unit 202 wirelessly transmits the data to the receiving device 300.
  • the receiving device 300 is installed, for example, outside the mechanical device in which the bearing device 1 is incorporated.
  • the receiving device 300 includes a data receiving unit 301 that wirelessly receives data, a signal processing unit 302 that demodulates data from a received signal, and an abnormality determination unit 303 that receives data from the signal processing unit 302 and determines a bearing abnormality. including. If the abnormality determination unit 303 is inserted in the subsequent stage of the signal processing unit 201, it is possible to reduce the amount of transmission data and power consumption.
  • the process of abnormality determination unit 303 is similar to the process described with reference to FIGS. 6 and 7, and thus description will not be repeated.
  • the bearing device includes a transmitter 200 that wirelessly transmits the output information of the heat flux sensor 11.
  • the transmitting unit 200 is configured to transmit the output information of the heat flux sensor 11 to the receiving device 300 that diagnoses the abnormality of the bearing 2.
  • the output information of the heat flux sensor 11 can be transmitted to the receiving device 300 without arranging wiring so as to extend from the heat flux sensor 11 to the receiving device 300. Therefore, the abnormality diagnosis of the bearing 2 can be performed in the receiving device 300 without complicating the configuration of the bearing device.
  • the bearing device 1 includes a transmitter 200 that wirelessly transmits the output information of the heat flux sensor 11, and a receiver 300 that receives the output information of the heat flux sensor 11 from the transmitter 200 and determines whether the bearing 2 is abnormal. ..
  • a transmitter 200 that wirelessly transmits the output information of the heat flux sensor 11
  • a receiver 300 that receives the output information of the heat flux sensor 11 from the transmitter 200 and determines whether the bearing 2 is abnormal. ..
  • FIG. 12 is a schematic diagram showing the configuration of the spindle device according to the ninth embodiment of the present invention.
  • the spindle device 30 mainly includes, for example, the bearing device 1 according to the second embodiment, the rotating body 5 as the main shaft, the outer cylinder 32, the motor 31, and the bearing 33.
  • the spindle device 30 is used, for example, as a built-in motor type spindle device of a machine tool.
  • the spindle device 30 is connected to the control device 600.
  • the bearing device 1, the rotating body 5, the motor 31, and the bearing 33 are arranged inside the outer cylinder 32.
  • the rotating body 5 is rotatably supported by the outer cylinder 32 by the bearing device 1 and the bearing 33.
  • the motor 31 is arranged between the bearing device 1 and the bearing 33.
  • the spindle device 30 shown in FIG. 12 is, for example, a spindle device for a machine tool spindle.
  • a motor 31 is incorporated on one end side of the rotating body 5, and a cutting tool such as an end mill (not shown) is connected to the other end side.
  • the bearing device 1 is an improved version of the bearing device 1 shown in FIG.
  • Bearing device 1 has substantially the same structure as bearing device 1 shown in FIG. 2 except that cooling medium flow path G is formed on the outer peripheral surface of housing 4, and therefore description thereof will not be repeated.
  • the bearing device 1 is fixed to the inner peripheral surface of the outer cylinder 32.
  • the cooling medium passage G described above is formed on the surface of the outer cylinder 32 facing the inner peripheral surface.
  • the single-row bearing 33 mainly includes an inner ring 33a, an outer ring 33b, and rolling elements.
  • the inner ring 33 a is axially positioned with respect to the rotating body 5 by a tubular member 34 fitted to the outer periphery of the rotating body 5 and an inner ring retainer 35.
  • the inner ring retainer 35 is fixed to the rotating body 5 by a nut 36 screwed to the rotating body 5.
  • the outer ring 33b of the bearing 33 is sandwiched between a positioning member 37 fixed to the tubular member 34 and a positioning member 38 fixed to the inner ring retainer 35.
  • the outer ring 33b is slidable with respect to the end member 39 integrally with the inner ring 33a according to expansion and contraction of the rotating body 5 caused by heat generation of the bearing 33 during operation of the spindle device 30.
  • the rotating body 5 In the space 40 formed between the rotating body 5 and the outer cylinder 32, the rotating body 5 is located at an intermediate position in the axial direction between the double row bearing 2 and the single row bearing 33 of the bearing device 1.
  • a motor 31 for driving the motor is arranged.
  • the rotor 41 of the motor 31 is fixed to a tubular member 34 fitted on the outer circumference of the rotating body 5.
  • the stator 42 of the motor 31 is fixed to the inner peripheral surface of the outer cylinder 32.
  • the spindle device 30 includes a cooling medium passage (not shown). The cooling medium flow path cools the motor 31.
  • the motor 31 is arranged next to the bearing device 1 in FIG. 12, the motor 31 may be arranged in the space between the two bearings 2 included in the bearing device 1. Further, the bearing device 1 according to the first to third embodiments described above may be applied to the spindle device 30 shown in FIG.
  • the heat flux sensor 11 that measures the heat flux is mounted on the spindle device 30 as a sensor unit. Specifically, two heat flux sensors 11 are arranged inside the bearing device 1 that constitutes the spindle device 30.
  • the control device 600 controls the motor 31. Further, the control device 600 determines the occurrence of abnormality of the bearing 2 from the output signal of the heat flux sensor 11.
  • FIG. 13 is a diagram showing an example of a control device of the spindle device shown in FIG. As shown in FIG. 13, in the spindle device 30, even if the control device 600 that controls the operation of the spindle device 30 diagnoses the abnormality of the bearing 2 (see FIG. 12) based on the output of the heat flux sensor 11. Good.
  • the control device 600 includes a determination unit 601.
  • the determination unit 601 is a predetermined determination for determining the output of the heat flux sensor 11, the rotation speed of the motor 31 of the spindle device 30, machine information D1 such as lubrication conditions and cooling conditions, and the presence or absence of abnormality of the bearing 2.
  • the presence or absence of abnormality of the bearing 2 is determined based on the standard D2.
  • the abnormality of the bearing 2 is, for example, occurrence or risk of seizure of the bearing 2.
  • the output information of the heat flux sensor 11 is transmitted to the determination unit 601 of the control device 600 by any method.
  • the transmitting unit 200 shown in FIG. 10 may be installed in the bearing device 1.
  • the control device 600 may include the receiving device 300 shown in FIG. 11.
  • the control device 600 is provided so as to change at least one of the rotation speed, the lubrication condition, and the cooling condition of the motor 31, based on the determination result by the determination unit 601.
  • the determination unit 601 may determine whether or not there is an abnormality in the bearing 2 based on at least the output of the heat flux sensor 11 and a determination criterion D2 that is predetermined to determine whether or not there is an abnormality in the bearing 2. ..
  • the determination unit 601 can also diagnose the abnormality of the bearing 2 based on the outputs of the heat flux sensor 11 and the other sensors, as in the abnormality diagnosis unit 100 shown in FIG.
  • FIG. 14 is a diagram showing another example of the control device for the spindle device shown in FIG.
  • the determination unit 601 diagnoses an abnormality in the bearing 2 based on the outputs of the temperature sensor 602, the acceleration sensor 603, and the load sensor 604 in addition to the heat flux sensor 11, for example.
  • the temperature sensor 602 is provided so as to detect a temperature rise of the housing 4 due to poor lubrication of the bearing 2, for example.
  • the temperature sensor 602 may be arranged at a position adjacent to the bearing 2 in the housing 4, for example.
  • the acceleration sensor 603 detects vibrations of at least one of the rotating body 5 in the axial direction, which is the extending direction of the rotating body 5 and the radial direction intersecting the axial direction, due to the separation of the raceway surfaces of the bearing 2, for example. It is provided in.
  • the acceleration sensor 603 may be arranged on the end surface of the housing 4 in the axial direction, for example.
  • the load sensor 604 is provided so as to detect, for example, a change in the load applied from the outside or the impact load applied to the bearing 2.
  • the load sensor 604 is arranged so as to connect the outer ring 2g of the bearing 2 and the intermediate member 10 (see FIG. 2) in the axial direction, for example.
  • the load sensor 604 is, for example, a thin film sensor, and its electric resistance changes with pressure.
  • FIG. 15 is a diagram showing still another example of the control device of the spindle device shown in FIG.
  • the determination unit 601 in addition to the outputs of the heat flux sensor 11, the temperature sensor 602, the acceleration sensor 603, and the load sensor 604, the determination unit 601 further rotates the motor 31 that is output information of the rotation sensor 605. It may be provided so as to diagnose the abnormality of the bearing 2 based on the speed.
  • an abnormality diagnosis unit as shown in FIG. 5 may be installed inside the spindle device 30.
  • the above-described abnormality diagnosis unit may be mounted on the board arranged in the housing 4 of the bearing device 1.
  • the distance between the abnormality diagnosing unit and the heat flux sensor 11 is the distance between the abnormality diagnosing unit and the heat flux sensor 11 when the abnormality diagnosing unit is arranged outside the bearing device 1, particularly outside the spindle device 30. Short compared to the distance between. Therefore, the influence of noise is reduced in the abnormality diagnosis unit installed inside the spindle device 30 compared with the output signal of the heat flux sensor 11 acquired by the abnormality diagnosis unit arranged outside the bearing device 1. The presence or absence of the abnormality can be determined based on the output signal.
  • a spindle device 30 according to the present disclosure includes the bearing device 1 and a motor 31 that rotates the rotating body 5. By doing so, it is possible to realize the spindle device 30 that can detect abnormality of the bearing 2 quickly and accurately.
  • FIG. 16 is a schematic diagram showing the structure of the bearing device according to the tenth embodiment of the present invention.
  • the bearing device 1 shown in FIG. 16 basically has the same configuration as the bearing device 1 shown in FIG. 3, but the shapes of the pedestal 12 and the intermediate member 10 and the arrangement of the heat flux sensor 11 are different from those in FIG.
  • the surface portion 12b is a tapered surface facing the inner ring 2i of the bearing 2.
  • the heat flux sensor 11 is fixed to the surface portion 12b.
  • the heat flux sensor 11 is arranged so as to face the inner ring 2i of the bearing 2 adjacent to the pedestal 12.
  • the heat flux sensor 11 may be fixed to the surface portion 12c of the pedestal 12 that faces the bearing 2.
  • the intermediate member 10 of the preload portion has a surface portion 10a facing the rolling element 5 and a surface portion 10c facing the rolling element 2t of the bearing 2 and extending in the radial direction of the bearing 2. And a surface portion 10b connecting the surface portion 10a and the surface portion 10c.
  • the surface portion 10b is a tapered surface facing the inner ring 2i of the bearing 2.
  • the heat flux sensor 11 is fixed to the surface portion 10b.
  • the heat flux sensor 11 is arranged so as to face the inner ring 2i of the bearing 2 adjacent to the intermediate member 10.
  • the heat flux sensor 11 may be fixed to the surface portion 12c of the intermediate member 10 that faces the bearing 2.
  • FIG. 17 is a schematic diagram showing a configuration of a modified example of the bearing device according to the tenth embodiment of the present invention.
  • the bearing device 1 shown in FIG. 17 basically has the same configuration as the bearing device 1 shown in FIG. 4, but the shapes of the spacer 20 and the intermediate member 10 and the arrangement of the heat flux sensor 11 are different.
  • the surface portion 20b is a tapered surface facing the inner ring 2i of the bearing 2.
  • the heat flux sensor 11 is fixed to the surface portion 12b.
  • the heat flux sensor 11 is arranged so as to face the inner ring 2i of the bearing 2 adjacent to the pedestal 12.
  • the heat flux sensor 11 is arranged in a region of the spacer 20 opposite to the supply port 21 when viewed from the rotating body 5.
  • the heat flux sensor 11 may be fixed to the surface portion 20b of the spacer 20 adjacent to the supply port 21.
  • the heat flux sensor 11 may be fixed to the surface portion 20c of the spacer 20 facing the bearing 2.
  • the intermediate member 10 of the preload portion is provided on the surface portion 10a facing the rotating body 5 and the rolling element 2t of the bearing 2 as in the bearing device 1 shown in FIG. It includes a facing surface portion 10c and a surface portion 10b connecting the surface portion 10a and the surface portion 10c.
  • the heat flux sensor 11 is fixed to the surface portion 10b.
  • the heat flux sensor 11 is arranged so as to face the inner ring 2i of the bearing 2 adjacent to the intermediate member 10.
  • the heat flux sensor 11 is arranged in the region of the intermediate member 10 opposite to the supply port 21 when viewed from the rotating body 5.
  • the heat flux sensor 11 may be fixed to the surface portion 10b of the intermediate member 10 adjacent to the supply port 21.
  • the heat flux sensor 11 may be fixed to the surface portion 12c of the intermediate member 10 that faces the bearing 2.
  • the heat flux sensor 11 is arranged so as to face the bearing 2. Specifically, the heat flux sensor 11 is fixed to the surface portions 10b, 12b, 20b of the intermediate member 10, the pedestal 12 and the spacer 20 which face the bearing 2. Therefore, the same effect as that of the bearing device 1 shown in FIG. 3 or FIG. 4 is obtained, and the temperature change due to the heat generation between the rolling element 2t and the inner ring 2i due to the abnormality of the bearing 2 or the like causes the heat flux sensor 11 to detect the temperature change. Can be detected quickly and surely. When the heat flux sensor 11 faces the bearing 2, it is preferable that the heat flux sensor 11 be close to the inner ring 2i.
  • the heat flux sensor 11 may be fixed to the surface portions 10c, 12c, 20c of the intermediate member 10, the pedestal 12, and the spacer 20 that face the rolling elements 2t of the bearing 2. In this case, the heat flux sensor 11 can detect the temperature change due to the heat generation of the rolling element 2t due to the abnormality of the bearing 2 quickly and reliably. Further, the heat flux sensor 11 may be arranged so as to face a member such as the inner ring 2i of the bearing 2 that is fixed to the rotating body 5. In this way, by disposing the heat flux sensor 11 as close to and as close to the heat-generating portion as possible, it is possible to quickly detect a temperature change in the heat-generating portion.
  • the heat flux sensor 11 is arranged at a position facing the concave portion or the convex portion provided on the rotating body 5 and the end surface of the rotating body 5 close to the heat generating portion.
  • the heat flux sensor 11 may be fixed to the recesses (grooves) not shown in the surface portions 10c, 12c, 20c. Further, the heat flux sensor 11 may be formed in a ring shape, and the shape of the heat flux sensor 11 does not matter.

Abstract

Provided are: a bearing device in which changes in bearing temperature can be precisely and rapidly detected; and a spindle device equipped with said bearing device. A bearing device (1) comprises a bearing (2), a preloading part (3), a housing (4), and a heat flux sensor (11). The purpose of the bearing (2) is to support a rotating element (5). The preloading part (3) includes an elastic body (9) for preloading the bearing (2). The housing (4) anchors the bearing (2). The heat flux sensor (11) is anchored to either the housing (4) or the preloading part (3), and detects heat flux.

Description

軸受装置およびスピンドル装置Bearing device and spindle device
 この発明は、軸受装置およびスピンドル装置に関する。 The present invention relates to a bearing device and a spindle device.
 特開2017-26078号公報(特許文献1)に記載の軸受装置では、軸受の焼付き等の不具合を防ぐため、軸受部に給油するためのポンプと潤滑部の温度を計測する非接触温度センサ(赤外線センサ)とを有した付属部を軸受端面に設けている。上記非接触温度センサから入手する温度の時間変化が閾値を超えたとき、ポンプにより軸受部に給油を行なうことで、温度上昇を防いでいる。 In the bearing device described in Japanese Patent Application Laid-Open No. 2017-26078 (Patent Document 1), a non-contact temperature sensor that measures the temperature of a pump for lubricating the bearing and the temperature of the lubrication part in order to prevent problems such as seizure of the bearing. (Infrared sensor) is provided on the end surface of the bearing. When the time variation of the temperature obtained from the non-contact temperature sensor exceeds the threshold value, the bearing is lubricated by the pump to prevent the temperature rise.
特開2017-26078号公報JP, 2017-26078, A 特開2016-166832号公報JP, 2016-166832, A
 特開2017-26078号公報に記載された軸受装置では、軸受に発生する異常の予兆を温度から判断している。ここで、軸受の隣に配置した付属部内に設けられた非接触温度センサ(赤外線センサ)は、赤外線の放射率が低い金属表面の温度測定が困難である。そのため、上記非接触温度センサは樹脂製の保持器を測定対象物としている。しかし、保持器が樹脂製でない場合、特開2017-26078号公報に示す構造で温度を測定することは困難である。 In the bearing device described in Japanese Unexamined Patent Publication No. 2017-26078, the sign of an abnormality occurring in the bearing is judged from the temperature. Here, it is difficult for the non-contact temperature sensor (infrared sensor) provided in the attached portion arranged next to the bearing to measure the temperature of the metal surface having a low infrared emissivity. Therefore, the non-contact temperature sensor uses a resin holder as a measurement target. However, if the cage is not made of resin, it is difficult to measure the temperature with the structure disclosed in JP-A-2017-26078.
 また、非接触温度センサは、接触式の温度センサと比較すると測定精度が低い。そのため、非接触温度センサでは、異常が発生していないにもかかわらず、温度の変化を誤検出する可能性、あるいは異常が発生していても温度変化を検出できない可能性がある。さらに、非接触温度センサを油潤滑環境で使用した場合には、当該センサは潤滑油の影響を受けることが想定される。たとえば、潤滑油がミスト化し、測定対象と非接触温度センサとの間に入り込む場合、正確な温度測定が難しい。 Also, the non-contact temperature sensor has lower measurement accuracy than the contact type temperature sensor. Therefore, the non-contact temperature sensor may erroneously detect a temperature change even if no abnormality has occurred, or may not detect a temperature change even if an abnormality has occurred. Furthermore, when the non-contact temperature sensor is used in an oil lubrication environment, it is assumed that the sensor is affected by the lubricating oil. For example, when the lubricating oil becomes mist and enters between the measurement target and the non-contact temperature sensor, it is difficult to measure the temperature accurately.
 この発明は、上記の課題を解決するためのものであって、その目的は、軸受の温度変化を精度良く迅速に検出することが可能な軸受装置、および当該軸受装置を備えるスピンドル装置を提供することである。 The present invention is to solve the above problems, and an object thereof is to provide a bearing device capable of accurately and quickly detecting a temperature change of a bearing, and a spindle device including the bearing device. That is.
 本開示に係る軸受装置は、軸受と、予圧部と、ハウジングと、熱流束センサとを備える。軸受は回転体を支持するためのものである。予圧部は、軸受に予圧を印加する弾性体を含む。ハウジングは、軸受を固定する。熱流束センサは、ハウジングおよび予圧部のいずれか一方に固定され、熱流束を検出する。 The bearing device according to the present disclosure includes a bearing, a preload portion, a housing, and a heat flux sensor. The bearing is for supporting the rotating body. The preload unit includes an elastic body that applies a preload to the bearing. The housing fixes the bearing. The heat flux sensor is fixed to either one of the housing and the preload portion and detects the heat flux.
 本開示に係るスピンドル装置は、上記軸受装置と、回転体を回転させるモータとを備える。 A spindle device according to the present disclosure includes the bearing device and a motor that rotates a rotating body.
 上記によれば、軸受の温度変化を精度良く迅速に検出することが可能な軸受装置、および当該軸受装置を実現できる。 Based on the above, it is possible to realize a bearing device capable of accurately and quickly detecting a temperature change of the bearing, and the bearing device.
本発明の実施の形態1に係る軸受装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the bearing device which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る軸受装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the bearing device which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る軸受装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the bearing device which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る軸受装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the bearing device which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る軸受装置の構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of the bearing device which concerns on Embodiment 5 of this invention. 異常診断装置が実行する異常判断処理の第1例を説明するためのフローチャートである。It is a flow chart for explaining the 1st example of abnormality judgment processing which an abnormality diagnostic device performs. 異常診断装置が実行する異常判断処理の第2例を説明するためのフローチャートである。It is a flow chart for explaining the 2nd example of abnormality judgment processing which an abnormality diagnostic device performs. 本発明の実施の形態6に係る軸受装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the bearing device which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る軸受装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the bearing device which concerns on Embodiment 7 of this invention. 本発明の実施の形態8に係る軸受装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the bearing device which concerns on Embodiment 8 of this invention. センサの出力をワイヤレスで送受信する構成を示す図である。It is a figure which shows the structure which transmits/receives the output of a sensor wirelessly. 本発明の実施の形態9に係るスピンドル装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the spindle device which concerns on Embodiment 9 of this invention. 図12に示されるスピンドル装置の制御装置の一例を示す図である。It is a figure which shows an example of the control apparatus of the spindle device shown by FIG. 図12に示されるスピンドル装置の制御装置の他の一例を示す図である。It is a figure which shows another example of the control apparatus of the spindle device shown by FIG. 図12に示されるスピンドル装置の制御装置のさらに他の一例を示す図である。FIG. 13 is a diagram showing still another example of the control device of the spindle device shown in FIG. 12. 本発明の実施の形態10に係る軸受装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the bearing device which concerns on Embodiment 10 of this invention. 本発明の実施の形態10に係る軸受装置の変形例の構成を示す模式図である。It is a schematic diagram which shows the structure of the modification of the bearing device which concerns on Embodiment 10 of this invention.
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are designated by the same reference numerals, and the description thereof will not be repeated.
 (実施の形態1)
 <軸受装置の構成>
 図1は、本発明の実施の形態1に係る軸受装置の構成を示す模式図である。図1に示す軸受装置1は、定圧予圧方式の軸受装置であって、主軸である回転体5を支持する複数の軸受2と、予圧部3と、ハウジング4と、熱流束センサ11とを備える。軸受2は回転体5を回転可能に支持する。ハウジング4には、貫通穴が形成されている。貫通穴の内部に回転体5と軸受2と予圧部3とが収容される。ハウジング4の貫通穴の両端部に、2つの軸受2が固定されている。
(Embodiment 1)
<Structure of bearing device>
FIG. 1 is a schematic diagram showing a configuration of a bearing device according to the first embodiment of the present invention. A bearing device 1 shown in FIG. 1 is a constant pressure preload type bearing device and includes a plurality of bearings 2 that support a rotating body 5 that is a main shaft, a preload portion 3, a housing 4, and a heat flux sensor 11. .. The bearing 2 rotatably supports the rotating body 5. A through hole is formed in the housing 4. The rotating body 5, the bearing 2, and the preload portion 3 are housed inside the through hole. Two bearings 2 are fixed to both ends of the through hole of the housing 4.
 軸受2は、内輪2iと、外輪2gと、転動体2tと、保持器2rとを含む。軸受2は転がり軸受であり、例えばアンギュラ玉軸受である。すなわち、転動体2tは例えば玉である。 The bearing 2 includes an inner ring 2i, an outer ring 2g, a rolling element 2t, and a cage 2r. The bearing 2 is a rolling bearing, for example, an angular ball bearing. That is, the rolling element 2t is, for example, a ball.
 主軸としての回転体5は、軸受2の内輪2iに挿入されて固定されている。回転体5には、回転体5の延在方向において軸受2の内輪2iの外側にカラー6が配置される。回転体5の延在方向においてカラー6の外側にはナット7が配置されている。ナット7で締め付けることで、カラー6を介して軸受2の内輪2iに応力が加えられることにより、内輪2iが回転体5に固定される。図1に示した構成では、外輪2gが非回転輪であり、内輪2iが回転輪である。 The rotating body 5 as the main shaft is inserted and fixed in the inner ring 2i of the bearing 2. In the rotating body 5, a collar 6 is arranged outside the inner ring 2i of the bearing 2 in the extending direction of the rotating body 5. A nut 7 is arranged outside the collar 6 in the extending direction of the rotating body 5. By tightening with the nut 7, stress is applied to the inner ring 2i of the bearing 2 via the collar 6, so that the inner ring 2i is fixed to the rotating body 5. In the configuration shown in FIG. 1, the outer ring 2g is a non-rotating wheel and the inner ring 2i is a rotating wheel.
 予圧部3は、軸受2に定圧予圧を印加する。予圧部3は、ばねホルダ8と、軸受2に予圧を印加する弾性体であるばね9と、リング状の部材である中間部材10とを有する。ばねホルダ8の一端面8aは、ハウジング4の段差部4aに当接する。予圧部3は、ばね9の弾性力により、中間部材10を介して軸受2の固定輪である外輪2gの端面を押圧する。ばね9としては、たとえば、コイルばねを用いることができる。予圧部3は、外輪2gに沿った周方向に複数個所配置してもよい。なお、ばね9としては皿ばねなど、他の種類のばねを用いてもよく、ばねの種類や構造は限定されない。 The preload unit 3 applies a constant pressure preload to the bearing 2. The preload unit 3 includes a spring holder 8, a spring 9 that is an elastic body that applies a preload to the bearing 2, and an intermediate member 10 that is a ring-shaped member. One end surface 8 a of the spring holder 8 contacts the step portion 4 a of the housing 4. The preload portion 3 presses the end surface of the outer ring 2g, which is the fixed ring of the bearing 2, via the intermediate member 10 by the elastic force of the spring 9. As the spring 9, for example, a coil spring can be used. A plurality of preload portions 3 may be arranged in the circumferential direction along the outer ring 2g. Note that other types of springs such as a disc spring may be used as the spring 9, and the type and structure of the spring are not limited.
 また、他方の軸受2の固定輪である外輪2gの端面は、ハウジング4の段差部4bに当接する。この結果、軸受2に定圧予圧が与えられる。図1の軸受装置1では、軸受2は背面組み合わせ(DB組み合わせ)で設置されている。軸受2は、軸方向の力で予圧を付与することが可能な軸受である。軸受2としては、アンギュラ玉軸受、深溝玉軸受、テーパころ軸受等を用いることができる。 The end surface of the outer ring 2g, which is the fixed ring of the other bearing 2, contacts the step 4b of the housing 4. As a result, a constant pressure preload is applied to the bearing 2. In the bearing device 1 of FIG. 1, the bearings 2 are installed in a back surface combination (DB combination). The bearing 2 is a bearing that can apply a preload by a force in the axial direction. As the bearing 2, an angular ball bearing, a deep groove ball bearing, a tapered roller bearing or the like can be used.
 熱流束センサ11は、熱流束を検出するセンサであって、複数の軸受2のそれぞれの近傍に配置されている。熱流束センサ11の一方の面は、軸受2の近傍にある非回転部材に接着等で固定される。熱流束センサ11の他方の面は回転体5に隙間を持って対向配置される。図1の軸受装置1では、左側の熱流束センサ11はハウジング4の内周面4cに固定される。右側の熱流束センサ11は、ばねホルダ8の内径面である表面部分8bに固定される。 The heat flux sensor 11 is a sensor that detects a heat flux, and is arranged near each of the plurality of bearings 2. One surface of the heat flux sensor 11 is fixed to a non-rotating member near the bearing 2 by adhesion or the like. The other surface of the heat flux sensor 11 is arranged to face the rotating body 5 with a gap. In the bearing device 1 of FIG. 1, the heat flux sensor 11 on the left side is fixed to the inner peripheral surface 4c of the housing 4. The heat flux sensor 11 on the right side is fixed to the surface portion 8b which is the inner diameter surface of the spring holder 8.
 本実施の形態では、軸受装置1の運転中における軸受装置1内部の温度変化を測定するために、熱流束センサ11を使用する。熱流束センサ11は、たとえば、特開2016-166832号公報(特許文献2)に記載された熱流束センサを使用することができる。センサ表裏のわずかな温度差から熱流束センサ11の出力電圧が発生している。熱流束センサ11は、ゼーベック効果を利用して熱流を電気信号に変換する。 In the present embodiment, the heat flux sensor 11 is used to measure the temperature change inside the bearing device 1 during the operation of the bearing device 1. As the heat flux sensor 11, for example, the heat flux sensor described in Japanese Unexamined Patent Application Publication No. 2016-166832 (Patent Document 2) can be used. The output voltage of the heat flux sensor 11 is generated from a slight temperature difference between the front and back of the sensor. The heat flux sensor 11 uses the Seebeck effect to convert the heat flow into an electric signal.
 <熱流束センサの作用および軸受の異常判定手法>
 以下、本明細書において開示される各実施の形態に共通する熱流束センサ11の作用および軸受の異常判定手法を、図1に示した軸受装置1を用いて説明する。図1に示した軸受装置1では、ハウジング4と回転体5とに温度差が生じた場合、熱流束センサ11を通過する熱流束が生じ、熱流束センサ11の出力が変化する。このような熱流束センサ11の出力変化、または単位時間当たりの出力変化量(変化率)を監視する。監視対象のデータについて、定常状態から逸脱する変化(異常な変化)がみられた場合に、軸受装置1の軸受2に異常が発生したと判断する。
<Operation of heat flux sensor and method for determining abnormality of bearing>
Hereinafter, an operation of the heat flux sensor 11 and a bearing abnormality determination method common to the respective embodiments disclosed in the present specification will be described using the bearing device 1 shown in FIG. In the bearing device 1 shown in FIG. 1, when a temperature difference occurs between the housing 4 and the rotating body 5, a heat flux passing through the heat flux sensor 11 is generated, and the output of the heat flux sensor 11 changes. The output change of the heat flux sensor 11 or the output change amount (change rate) per unit time is monitored. When there is a change (abnormal change) in the monitored data that deviates from the steady state, it is determined that an abnormality has occurred in the bearing 2 of the bearing device 1.
 たとえば、軸受2の予圧が上昇し、転動体2tと内輪2iまたは外輪2gの軌道面との接触面圧が増加した場合を考える。この場合、接触面圧の増加に伴う軸受2の温度上昇が発生する。ここで、軸受2を収納するハウジング4や内輪2iに固定される回転体5の熱容量は相対的に大きいので、軸受2の温度が上昇したタイミングから、ハウジング4および回転体5の温度が上昇するタイミングは遅れる。そのため、温度センサ等を使用して検出したハウジング4または回転体5の温度変化に基づき軸受2の異常を判断した場合には、軸受2での異常発生を検出するタイミングが実際の異常発生のタイミングから遅れ、軸受2において既に焼付きが発生してしまっていることも想定される。一方、熱流束センサ11を利用すれば、熱流束はハウジング4および回転体5の温度変化に先行して変化するため、軸受2の異常をより早く検出することが可能となる。また、通常、工作機械のスピンドル装置に搭載される軸受装置1には冷却媒体流路が形成され、ハウジング4に冷却媒体を流すことによりハウジング4とハウジング4に接触する外輪2gが冷却される。そのため、外輪2gの温度よりも内輪2iの温度の方が高くなる。異常時には、外輪2gと内輪2iとの間の温度差が更に大きくなる。 Consider, for example, a case where the preload of the bearing 2 increases and the contact surface pressure between the rolling element 2t and the raceway of the inner ring 2i or the outer ring 2g increases. In this case, the temperature of the bearing 2 rises as the contact surface pressure increases. Here, since the heat capacity of the rotating body 5 fixed to the housing 4 that houses the bearing 2 and the inner ring 2i is relatively large, the temperature of the housing 4 and the rotating body 5 rises from the timing when the temperature of the bearing 2 rises. Timing is delayed. Therefore, when the abnormality of the bearing 2 is determined based on the temperature change of the housing 4 or the rotating body 5 detected by using the temperature sensor or the like, the timing of detecting the abnormality of the bearing 2 is the timing of the actual abnormality occurrence. It is assumed that seizure has already occurred in the bearing 2 after the delay. On the other hand, if the heat flux sensor 11 is used, the heat flux changes prior to the temperature change of the housing 4 and the rotating body 5, so that the abnormality of the bearing 2 can be detected earlier. Further, usually, a cooling medium flow path is formed in the bearing device 1 mounted on the spindle device of the machine tool, and by flowing the cooling medium through the housing 4, the housing 4 and the outer ring 2g in contact with the housing 4 are cooled. Therefore, the temperature of the inner ring 2i is higher than the temperature of the outer ring 2g. When there is an abnormality, the temperature difference between the outer ring 2g and the inner ring 2i becomes larger.
 なお、熱流束センサ11の最適な配置について、最も冷却されない部位(発熱部位)に対向するように熱流束センサ11の表面を配置すること(なるべく冷却されない部位に近い位置に熱流束センサ11の表面を配置すること)が好ましい。また、最も冷却される部位に熱流束センサ11を固定すること(最も冷却される部位に熱流束センサ11の背面を接触させること)が好ましい。 Regarding the optimum arrangement of the heat flux sensor 11, the surface of the heat flux sensor 11 is arranged so as to face the most cooled portion (heat generation portion) (the surface of the heat flux sensor 11 should be located as close to the portion not cooled as possible). Is preferably arranged). Further, it is preferable to fix the heat flux sensor 11 to the most cooled portion (contact the back surface of the heat flux sensor 11 to the most cooled portion).
 ここで、上記熱流束センサ11を、たとえばスピンドル装置を構成する軸受装置1に適応した場合を考える。スピンドル装置ではハウジング4に冷却媒体流路が形成され得る。この場合、熱流束センサ11を固定する部材を、軸受2の外輪2gとしてもよい。なお、熱流束センサ11を固定する部材を、ハウジング4に固定された部材とすることが好ましく、ハウジング4自体とすることがより好ましい。一方、熱流束センサ11の表面を対向させる部位を、回転体5としてもよい。また、熱流束センサ11の表面を対向させる部位を、軸受2の内輪2iとすることがより好ましい。 Here, consider a case where the heat flux sensor 11 is applied to, for example, the bearing device 1 that constitutes a spindle device. In the spindle device, the cooling medium flow path may be formed in the housing 4. In this case, the member fixing the heat flux sensor 11 may be the outer ring 2g of the bearing 2. The member for fixing the heat flux sensor 11 is preferably a member fixed to the housing 4, and more preferably the housing 4 itself. On the other hand, the part where the surfaces of the heat flux sensor 11 face each other may be the rotating body 5. Further, it is more preferable that the portion where the surfaces of the heat flux sensor 11 face each other is the inner ring 2i of the bearing 2.
 なお、2つの熱流束センサ11の出力の差を取る、あるいは2つの熱流束センサ11の単位時間当たりの出力変化量の差を算出し、当該算出した値と予め設定した閾値とを比較することで軸受2での異常発生の有無を判定してもよい。また、熱流束センサ11を、1つの軸受2の外輪2gに沿って間隔を隔てて複数個配置してもよい。 It should be noted that the difference between the outputs of the two heat flux sensors 11 is calculated, or the difference between the output changes of the two heat flux sensors 11 per unit time is calculated, and the calculated value is compared with a preset threshold value. The presence or absence of an abnormality in the bearing 2 may be determined by. Further, a plurality of heat flux sensors 11 may be arranged along the outer ring 2g of one bearing 2 at intervals.
 <軸受装置の作用効果>
 本開示に係る軸受装置1は、軸受2と、予圧部3と、ハウジング4と、熱流束センサ11とを備える。軸受2は回転体5を支持するためのものである。予圧部3は、軸受2に予圧を印加する。より具体的には、予圧部3は軸受2に予圧を印加する弾性体を含む。ハウジング4は、軸受2を固定する。熱流束センサ11は、ハウジング4および予圧部3のいずれか一方に固定され、熱流束を検出する。
<Effects of bearing device>
The bearing device 1 according to the present disclosure includes a bearing 2, a preload portion 3, a housing 4, and a heat flux sensor 11. The bearing 2 is for supporting the rotating body 5. The preload unit 3 applies a preload to the bearing 2. More specifically, the preload unit 3 includes an elastic body that applies a preload to the bearing 2. The housing 4 fixes the bearing 2. The heat flux sensor 11 is fixed to one of the housing 4 and the preload unit 3 and detects the heat flux.
 このようにすれば、軸受2における異常発生に起因する軸受2の温度変化によって、ハウジング4と回転体5との温度差、または予圧部3と回転体5との温度差が変化した場合に、熱流束センサ11を通過する熱流束が変化し、熱流束センサ11の出力が変化する。この熱流束センサ11の出力の変化は、上述のように回転体5やハウジング4の温度の変化より先に発生する。このため、上記軸受装置1では、熱流束センサ11を用いて軸受装置1内部での熱流束の変化を検出することで、非接触温度センサを用いて軸受装置1の内部の温度を測定する場合より早い段階で軸受2の過負荷といった異常を検知できる。 With this configuration, when the temperature difference between the housing 4 and the rotating body 5 or the temperature difference between the preload portion 3 and the rotating body 5 changes due to the temperature change of the bearing 2 caused by the abnormality occurrence in the bearing 2, The heat flux passing through the heat flux sensor 11 changes, and the output of the heat flux sensor 11 changes. The change in the output of the heat flux sensor 11 occurs before the change in the temperatures of the rotating body 5 and the housing 4, as described above. Therefore, in the bearing device 1, when the temperature inside the bearing device 1 is measured by using the non-contact temperature sensor by detecting the change in the heat flux inside the bearing device 1 by using the heat flux sensor 11. An abnormality such as overload of the bearing 2 can be detected at an earlier stage.
 また、熱流束センサ11は当該熱流束センサ11における熱流束を直接電圧などに変換して検出するため、非接触温度センサのように温度変化を誤検出する可能性は低い。したがって、正確に軸受2の異常を検知できる。 Also, since the heat flux sensor 11 directly detects the heat flux in the heat flux sensor 11 by converting it into a voltage or the like, it is unlikely to erroneously detect a temperature change like a non-contact temperature sensor. Therefore, the abnormality of the bearing 2 can be accurately detected.
 なお、熱流束センサ11は軸受2の近傍に配置されることが好ましい。軸受2の近傍に配置されるとは、熱流束センサ11が軸受2と隣接する領域に配置されることであって、たとえば軸受2と熱流束センサ11との間の距離が50mm以下である場合を意味する。軸受2と熱流束センサ11との間の距離は、30mm以下であってもよく、20mm以下であってもよく、10mm以下であってもよく、5mm以下であってもよい。 The heat flux sensor 11 is preferably arranged near the bearing 2. Arranging in the vicinity of the bearing 2 means that the heat flux sensor 11 is arranged in a region adjacent to the bearing 2, and for example, when the distance between the bearing 2 and the heat flux sensor 11 is 50 mm or less. Means The distance between the bearing 2 and the heat flux sensor 11 may be 30 mm or less, 20 mm or less, 10 mm or less, or 5 mm or less.
 上記軸受装置1において、熱流束センサ11は、回転体5に対向するように配置されている。この場合、回転体5とハウジング4または予圧部3との温度差に起因する熱流束の変化を当該熱流束センサ11により確実に検出できる。 In the bearing device 1, the heat flux sensor 11 is arranged so as to face the rotating body 5. In this case, the heat flux sensor 11 can reliably detect a change in heat flux due to a temperature difference between the rotating body 5 and the housing 4 or the preload portion 3.
 上記軸受装置1では、熱流束センサ11は、ハウジング4において回転体5に面する内周面4cに固定されている。この場合、回転体5とハウジング4との温度差に起因する熱流束の変化を当該熱流束センサ11により確実に検出できる。 In the bearing device 1, the heat flux sensor 11 is fixed to the inner peripheral surface 4c of the housing 4 that faces the rotating body 5. In this case, the heat flux sensor 11 can reliably detect a change in heat flux due to a temperature difference between the rotating body 5 and the housing 4.
 上記軸受装置1において、予圧部3は、回転体5および軸受2のいずれか一方に面する表面部分(図1では回転体5に面するばねホルダ8の表面部分8b)を含む。熱流束センサ11は当該表面部分8bに固定されている。この場合、回転体5と予圧部3との温度差に起因する熱流束の変化を当該熱流束センサ11により確実に検出できる。 In the above bearing device 1, the preload part 3 includes a surface portion facing either one of the rotating body 5 and the bearing 2 (in FIG. 1, the surface portion 8b of the spring holder 8 facing the rotating body 5). The heat flux sensor 11 is fixed to the surface portion 8b. In this case, the change in heat flux due to the temperature difference between the rotating body 5 and the preload unit 3 can be reliably detected by the heat flux sensor 11.
 上記軸受装置1において、予圧部3は、ばね9とばねホルダ8とを含む。ばね9は予圧を発生させるために用いられる。ばねホルダ8は、ばね9を収容する。上記表面部分8bはばねホルダ8の表面の一部である。この場合、ばねホルダ8はばね9を内部に収容するためある程度の体積を有しているので、上記熱流束センサ11を配置するばねホルダ8の表面の一部、つまり表面部分8bはハウジング4の内周面4cより回転体5に近い領域に位置することになる。したがって、熱流束センサ11を相対的に回転体5の近くに配置できる。 In the bearing device 1, the preload part 3 includes a spring 9 and a spring holder 8. The spring 9 is used to generate preload. The spring holder 8 houses the spring 9. The surface portion 8b is a part of the surface of the spring holder 8. In this case, since the spring holder 8 has a certain volume for accommodating the spring 9 therein, a part of the surface of the spring holder 8 on which the heat flux sensor 11 is arranged, that is, the surface part 8b, of the housing 4. It is located in a region closer to the rotating body 5 than the inner peripheral surface 4c. Therefore, the heat flux sensor 11 can be arranged relatively close to the rotating body 5.
 (実施の形態2)
 <軸受装置の構成>
 図2は、本発明の実施の形態2に係る軸受装置の構成を示す模式図である。図2に示した軸受装置1は、基本的には図1に示した軸受装置1と同様の構成を備えるが、図2の左側に位置する熱流束センサ11が固定された部分の構成が図1に示した軸受装置1と異なっている。すなわち、図2に示した軸受装置1では、ハウジング4の内周面4cにおいて軸受2に隣接する位置に台座12が配置されている。台座12は熱流束センサ11をハウジング4に設置するための専用部材であってもよい。台座12はハウジング4と別体の部材であるが、当該台座12をハウジング4と一体に形成してもよい。たとえば、ハウジング4を形成する際に台座12を有するようにハウジング4の内周面4cを加工してもよい。当該台座12において回転体5と対向する表面上に熱流束センサ11が固定されている。台座12は、回転体5および軸受2のいずれか一方に面する表面部分を含む。図2では、熱流束センサ11が台座12の回転体5に面する表面部分に固定されている。台座12の形状は、軸受2の外輪2gに沿ったリング状の形状であってもよいが、外輪2gの一部分のみに対向する柱状の形状であってもよい。また、台座12を外輪2gに沿って複数個配置し、それぞれの台座12に熱流束センサ11を固定してもよい。つまり、外輪2gに沿って複数の熱流束センサ11を配置してもよい。台座12において熱流束センサ11を固定する表面から回転体5の表面までの距離は、ハウジング4の内周面4cから回転体5の表面までの距離より小さい。なお、ハウジング4の内周面4cにおいて凹部を形成し、当該凹部の内部に台座12の少なくとも一部が配置されるように、台座12をハウジング4に固定してもよい。この場合、台座12において熱流束センサ11を固定した表面から回転体5の表面までの距離と、ハウジング4の内周面4cにおいて当該凹部が形成された領域以外の領域から回転体5の表面までの距離が実質的に同じでもよい。
(Embodiment 2)
<Structure of bearing device>
FIG. 2 is a schematic diagram showing the configuration of the bearing device according to the second embodiment of the present invention. The bearing device 1 shown in FIG. 2 basically has the same configuration as the bearing device 1 shown in FIG. 1, but the configuration of the part to which the heat flux sensor 11 located on the left side of FIG. The bearing device 1 shown in FIG. That is, in the bearing device 1 shown in FIG. 2, the pedestal 12 is arranged at a position adjacent to the bearing 2 on the inner peripheral surface 4c of the housing 4. The pedestal 12 may be a dedicated member for installing the heat flux sensor 11 in the housing 4. The pedestal 12 is a member separate from the housing 4, but the pedestal 12 may be formed integrally with the housing 4. For example, when forming the housing 4, the inner peripheral surface 4c of the housing 4 may be processed so as to have the pedestal 12. The heat flux sensor 11 is fixed on the surface of the pedestal 12 facing the rotating body 5. The pedestal 12 includes a surface portion facing either one of the rotating body 5 and the bearing 2. In FIG. 2, the heat flux sensor 11 is fixed to the surface portion of the pedestal 12 facing the rotating body 5. The shape of the pedestal 12 may be a ring shape along the outer ring 2g of the bearing 2, or may be a columnar shape that faces only a part of the outer ring 2g. Further, a plurality of pedestals 12 may be arranged along the outer ring 2g, and the heat flux sensor 11 may be fixed to each pedestal 12. That is, a plurality of heat flux sensors 11 may be arranged along the outer ring 2g. The distance from the surface of the pedestal 12 on which the heat flux sensor 11 is fixed to the surface of the rotating body 5 is smaller than the distance from the inner peripheral surface 4c of the housing 4 to the surface of the rotating body 5. Alternatively, the pedestal 12 may be fixed to the housing 4 by forming a recess in the inner peripheral surface 4c of the housing 4 and arranging at least a part of the pedestal 12 inside the recess. In this case, the distance from the surface of the pedestal 12 on which the heat flux sensor 11 is fixed to the surface of the rotating body 5 and the area of the inner peripheral surface 4c of the housing 4 other than the area where the recess is formed to the surface of the rotating body 5. May be substantially the same in distance.
 <軸受装置の作用効果>
 図2に示した軸受装置1は、基本的には図1に示した軸受装置1と同様の効果を得ることができる。さらに、図2に示した軸受装置1において、ハウジング4は、回転体5に面する内周面4cから回転体5に向けて設けた台座12を含む。つまり、ハウジング4は、内周面4cに設けられた台座12を含む。熱流束センサ11は、台座12に固定されている。このように、台座12に熱流束センサ11を配置することで熱流束センサ11と回転体5との間の距離を図1に示した軸受装置1における当該距離より小さくできる。このため、軸受2での異常に起因する回転体5の温度変化をより迅速かつ正確に検出できる。
<Operation and effect of bearing device>
The bearing device 1 shown in FIG. 2 can basically obtain the same effect as the bearing device 1 shown in FIG. Further, in the bearing device 1 shown in FIG. 2, the housing 4 includes a pedestal 12 provided from the inner peripheral surface 4c facing the rotating body 5 toward the rotating body 5. That is, the housing 4 includes the pedestal 12 provided on the inner peripheral surface 4c. The heat flux sensor 11 is fixed to the pedestal 12. As described above, by disposing the heat flux sensor 11 on the pedestal 12, the distance between the heat flux sensor 11 and the rotating body 5 can be made smaller than the distance in the bearing device 1 shown in FIG. Therefore, the temperature change of the rotating body 5 caused by the abnormality in the bearing 2 can be detected more quickly and accurately.
 (実施の形態3)
 <軸受装置の構成>
 図3は、本発明の実施の形態3に係る軸受装置の構成を示す模式図である。図3に示した軸受装置1は、基本的には図2に示した軸受装置1と同様の構成を備えるが、図3の右側に位置する熱流束センサ11が固定された部分の構成が図2に示した軸受装置1と異なっている。すなわち、図3に示した軸受装置1では、予圧部3が、ばねホルダ8とばね9と中間部材10とを含む。中間部材10は軸受2の外輪2gに沿って延びるリング状の部材である。ばねホルダ8の内部にばね9が収容されている。中間部材10は、ばね9と軸受2との間に配置される。中間部材10は外輪2gと接触している。ばね9からの応力は中間部材10を介して軸受2に伝えられる。中間部材10の表面の一部である表面部分10aは回転体5に面している。熱流束センサ11は、表面部分10aに固定されている。
(Embodiment 3)
<Structure of bearing device>
FIG. 3 is a schematic diagram showing the configuration of the bearing device according to the third embodiment of the present invention. The bearing device 1 shown in FIG. 3 basically has the same configuration as the bearing device 1 shown in FIG. 2, but the configuration of the portion to which the heat flux sensor 11 located on the right side of FIG. 3 is fixed is illustrated. 2 is different from the bearing device 1 shown in FIG. That is, in the bearing device 1 shown in FIG. 3, the preload part 3 includes the spring holder 8, the spring 9, and the intermediate member 10. The intermediate member 10 is a ring-shaped member that extends along the outer ring 2g of the bearing 2. A spring 9 is housed inside the spring holder 8. The intermediate member 10 is arranged between the spring 9 and the bearing 2. The intermediate member 10 is in contact with the outer ring 2g. The stress from the spring 9 is transmitted to the bearing 2 via the intermediate member 10. The surface portion 10 a that is a part of the surface of the intermediate member 10 faces the rotating body 5. The heat flux sensor 11 is fixed to the surface portion 10a.
 <軸受装置の作用効果>
 図3に示した軸受装置1は、基本的には図2に示した軸受装置1と同様の効果を得ることができる。さらに、図3に示した軸受装置1において、予圧部3は、ばね9と中間部材10とを含む。中間部材10はたとえばリング状の部材である。弾性体としてのばね9は予圧を発生させるために用いられる。中間部材10は、ばね9と軸受2との間に配置される。上記熱流束センサ11が固定される表面部分10aは中間部材10の表面の一部である。この場合、中間部材10は軸受2の近傍に配置されている。このため、図2に示した軸受装置1における熱流束センサ11と軸受2との間の距離より、図3に示す軸受装置1では熱流束センサ11と軸受2との間の距離を小さくできる。また、ハウジング4の内周面4cから中間部材10の表面部分10aまでの距離を調整することで、熱流束センサ11を回転体5に対して極力近づけることができる。このため、軸受2の異常に起因する回転体5および軸受2の温度変化を熱流束センサ11において迅速かつ確実に検出できる。
<Effects of bearing device>
The bearing device 1 shown in FIG. 3 can basically obtain the same effect as the bearing device 1 shown in FIG. Furthermore, in the bearing device 1 shown in FIG. 3, the preload part 3 includes a spring 9 and an intermediate member 10. The intermediate member 10 is, for example, a ring-shaped member. The spring 9 as an elastic body is used to generate a preload. The intermediate member 10 is arranged between the spring 9 and the bearing 2. The surface portion 10 a to which the heat flux sensor 11 is fixed is a part of the surface of the intermediate member 10. In this case, the intermediate member 10 is arranged near the bearing 2. Therefore, the distance between the heat flux sensor 11 and the bearing 2 in the bearing apparatus 1 shown in FIG. 3 can be made smaller than the distance between the heat flux sensor 11 and the bearing 2 in the bearing apparatus 1 shown in FIG. Further, by adjusting the distance from the inner peripheral surface 4c of the housing 4 to the surface portion 10a of the intermediate member 10, the heat flux sensor 11 can be brought as close as possible to the rotating body 5. Therefore, the heat flux sensor 11 can quickly and reliably detect the temperature change of the rotating body 5 and the bearing 2 due to the abnormality of the bearing 2.
 (実施の形態4)
 <軸受装置の構成>
 図4は、本発明の実施の形態4に係る軸受装置の構成を示す模式図である。図4に示した軸受装置1は、基本的には図3に示した軸受装置1と同様の構成を備えるが、図4の熱流束センサ11が固定された部分の構成が図3に示した軸受装置1と異なっている。すなわち、図4に示した軸受装置1では、左側の軸受2の外輪2gに接触するようにリング状の間座20が配置されている。間座20の一方端は外輪2gの内側に接触する。間座20において上記一方端と反対側の他方端は、ハウジング4の内周面4cに形成された段差部に接触している。熱流束センサ11は間座20において回転体5と対向する表面部分20a上に固定されている。間座20および中間部材10には、軸受2の潤滑・冷却のため軸受2に潤滑油などの潤滑用流体を供給するためのノズルである供給口21が形成される。間座20および中間部材10に形成された供給口21は、それぞれハウジング4に形成された潤滑用流体の流路と接続されている。当該流路は、図示しない潤滑用流体の供給部とポンプおよび開閉弁などを介して接続されている。なお、供給口21から軸受2に対してオイルミストまたはエアーが供給されてもよい。
(Embodiment 4)
<Structure of bearing device>
FIG. 4 is a schematic diagram showing the configuration of the bearing device according to the fourth embodiment of the present invention. The bearing device 1 shown in FIG. 4 basically has the same configuration as the bearing device 1 shown in FIG. 3, but the configuration of the portion to which the heat flux sensor 11 of FIG. 4 is fixed is shown in FIG. It differs from the bearing device 1. That is, in the bearing device 1 shown in FIG. 4, the ring-shaped spacer 20 is arranged so as to contact the outer ring 2g of the left bearing 2. One end of the spacer 20 contacts the inside of the outer ring 2g. The other end of the spacer 20 opposite to the one end is in contact with a step portion formed on the inner peripheral surface 4c of the housing 4. The heat flux sensor 11 is fixed on the surface portion 20 a of the spacer 20 that faces the rotating body 5. The spacer 20 and the intermediate member 10 are formed with a supply port 21 which is a nozzle for supplying a lubricating fluid such as lubricating oil to the bearing 2 for lubricating and cooling the bearing 2. The supply ports 21 formed in the spacer 20 and the intermediate member 10 are connected to the flow paths of the lubricating fluid formed in the housing 4, respectively. The flow path is connected to a lubricating fluid supply unit (not shown) via a pump, an on-off valve, and the like. Note that oil mist or air may be supplied to the bearing 2 from the supply port 21.
 <軸受装置の作用効果>
 図4に示した軸受装置1は、軸受2に隣接して配置される間座20を備える。間座20には、軸受2に潤滑用流体を供給するためのノズルである供給口21が形成される。間座20は、回転体5および軸受2のいずれか一方に面する表面部分(図4では回転体5に面する表面部分20a)を含む。熱流束センサ11は表面部分20aに固定されている。この場合、熱流束センサ11を軸受2に隣接する領域に配置することができるので、軸受2の異常に起因する回転体5および軸受2の温度変化を熱流束センサ11において確実に検出できる。
<Effects of bearing device>
The bearing device 1 shown in FIG. 4 includes a spacer 20 arranged adjacent to the bearing 2. The spacer 20 is formed with a supply port 21 which is a nozzle for supplying a lubricating fluid to the bearing 2. The spacer 20 includes a surface portion facing either one of the rotating body 5 and the bearing 2 (a surface portion 20a facing the rotating body 5 in FIG. 4). The heat flux sensor 11 is fixed to the surface portion 20a. In this case, since the heat flux sensor 11 can be arranged in the area adjacent to the bearing 2, the heat flux sensor 11 can reliably detect the temperature change of the rotating body 5 and the bearing 2 due to the abnormality of the bearing 2.
 また、上記軸受装置1において、予圧部3を構成する中間部材10に、軸受2に潤滑用流体を供給するためのノズルである供給口21が形成されるとともに熱流束センサ11が固定されている。このため、図3に示した軸受装置1と同様に、熱流束センサ11を軸受2の近くに配置することができる。さらに、中間部材10とは別に潤滑用流体を供給する供給口21が形成された部材を予圧部3近傍に配置する必要が無いので、軸受装置1の装置構成を簡略化できる。 Further, in the bearing device 1, a supply port 21 which is a nozzle for supplying a lubricating fluid to the bearing 2 is formed in the intermediate member 10 which constitutes the preload portion 3, and the heat flux sensor 11 is fixed. .. Therefore, the heat flux sensor 11 can be arranged near the bearing 2 as in the bearing device 1 shown in FIG. Further, since it is not necessary to dispose a member having the supply port 21 for supplying the lubricating fluid separately from the intermediate member 10 in the vicinity of the preload portion 3, the device configuration of the bearing device 1 can be simplified.
 上述のように軸受装置1において潤滑用流体を供給するための供給口21が形成されている場合、熱流束センサ11を当該供給口21から供給される潤滑用流体などの影響を受けにくい位置に設置することが好ましい。たとえば、軸受2の周方向において、供給口21が配置された位置から間隔を隔てた領域に熱流束センサ11を配置することが好ましい。軸受2の周方向において供給口21が複数配置されている場合、熱流束センサ11を上記周方向において当該複数の供給口21から実質的に等距離となる位置に配置することが好ましい。また、供給口21における潤滑用流体の突出方向が軸受2の回転軸方向に対して傾斜している場合であって、軸受2の周方向に沿って潤滑用流体が吹き付けられる場合を考える。この場合、軸受2に吹き付けられた潤滑用流体は供給口21近傍の軸受2の転送面に当たり、軸受2の回転に伴って軸受2の全周に広がり、軸受2を効率的に潤滑・冷却できる。このような構成においては、軸受2の周方向に加えて、軸受2の回転軸方向においても、潤滑用流体の影響を低減するために、供給口21の位置と熱流束センサ11の位置とをずらすことが好ましい。 When the supply port 21 for supplying the lubricating fluid is formed in the bearing device 1 as described above, the heat flux sensor 11 is placed at a position where it is less likely to be affected by the lubricating fluid supplied from the supply port 21. It is preferable to install. For example, it is preferable to arrange the heat flux sensor 11 in a region spaced apart from the position where the supply port 21 is arranged in the circumferential direction of the bearing 2. When a plurality of supply ports 21 are arranged in the circumferential direction of the bearing 2, it is preferable to arrange the heat flux sensor 11 at a position that is substantially equidistant from the plurality of supply ports 21 in the circumferential direction. Further, consider a case where the protruding direction of the lubricating fluid at the supply port 21 is inclined with respect to the rotation axis direction of the bearing 2 and the lubricating fluid is sprayed along the circumferential direction of the bearing 2. In this case, the lubricating fluid sprayed on the bearing 2 hits the transfer surface of the bearing 2 in the vicinity of the supply port 21, spreads over the entire circumference of the bearing 2 as the bearing 2 rotates, and the bearing 2 can be efficiently lubricated/cooled. .. In such a configuration, the position of the supply port 21 and the position of the heat flux sensor 11 are set in order to reduce the influence of the lubricating fluid not only in the circumferential direction of the bearing 2 but also in the rotational axis direction of the bearing 2. It is preferable to shift.
 (実施の形態5)
 <軸受装置の構成>
 図5は、本発明の実施の形態5に係る軸受装置の構成を説明するためのブロック図である。本実施の形態に係る軸受装置は、基本的には図1に示した軸受装置1と同様の構成を備えるが、軸受2(図1参照)の異常を診断する異常診断部100を備える点、および他のセンサ22を備える点が図1に示した軸受装置1と異なっている。他のセンサ22は、たとえば軸受2の外輪2g、あるいは軸受2の近傍など任意の位置に設置できる。異常診断部100は、熱流束センサ11の出力情報に基づいて軸受の異常を診断する。また、異常診断部100には、他のセンサ22からの出力情報も入力される。さらに、異常診断部100には、回転体5の回転速度の情報である軸回転速度信号101も入力される。異常診断部100は、熱流束センサ11の出力情報、他のセンサ22の出力情報、および軸回転速度信号101に基づき、軸受2の異常を診断する。異常診断部100は、軸受2で異常が発生したと判断した場合、軸受の破損などを防止するため、異常回避動作を行うための指示信号102を出力する。なお、他のセンサ22として、温度センサ、加速度センサ、加重センサ、回転センサなど、任意のセンサを追加してもよい。
(Embodiment 5)
<Structure of bearing device>
FIG. 5 is a block diagram for explaining the configuration of the bearing device according to the fifth embodiment of the present invention. The bearing device according to the present embodiment basically has the same configuration as the bearing device 1 shown in FIG. 1, but is provided with an abnormality diagnosis unit 100 for diagnosing an abnormality of the bearing 2 (see FIG. 1). Further, the bearing device 1 is different from the bearing device 1 shown in FIG. 1 in that another sensor 22 is provided. The other sensor 22 can be installed at an arbitrary position such as the outer ring 2g of the bearing 2 or the vicinity of the bearing 2. The abnormality diagnosis unit 100 diagnoses the abnormality of the bearing based on the output information of the heat flux sensor 11. Further, output information from other sensors 22 is also input to the abnormality diagnosis unit 100. Further, the abnormality diagnosis unit 100 also receives a shaft rotation speed signal 101, which is information on the rotation speed of the rotating body 5. The abnormality diagnosis unit 100 diagnoses an abnormality in the bearing 2 based on the output information of the heat flux sensor 11, the output information of the other sensors 22, and the shaft rotation speed signal 101. When the abnormality diagnosis unit 100 determines that an abnormality has occurred in the bearing 2, the abnormality diagnosis unit 100 outputs an instruction signal 102 for performing an abnormality avoidance operation in order to prevent the bearing from being damaged. In addition, as the other sensor 22, an arbitrary sensor such as a temperature sensor, an acceleration sensor, a weight sensor, and a rotation sensor may be added.
 <異常診断処理>
 以下、具体的な異常判断処理の例を説明する。図6は、異常診断装置が実行する異常判断処理の第1例を説明するためのフローチャートである。図5及び図6を参照して、異常診断部100は、ステップS1において、センサの出力を監視する。センサの例としては、熱流束センサ11、温度センサ、回転体5の回転速度を検出する図示しない回転速度検出センサ、加速度センサ、加重センサなどが挙げられる。続いて、ステップS2において異常診断部100は、各センサの出力に対応して設けられた閾値とセンサで検出された値(出力情報)とを比較し、閾値を超えたか否かの閾値判定を行なう。閾値判定は、各センサの出力情報ごとに個別に実行されてもよく、各センサの出力情報の組み合わせに対して行なわれてもよい。組み合わせの例としては、回転速度検出センサからの出力情報である回転体5の回転速度に応じて、他のセンサ22の一例としての温度センサからの出力情報である軸受装置1内部の温度の閾値および熱流束センサ11の出力情報の閾値を設定し、温度センサからの出力情報(軸受装置1内部の測定温度)が上記閾値(所定温度)を超え、かつ熱流束センサ11の出力情報が上記閾値を超えた場合に、軸受2において異常が発生したと判定する、といった判定方法が考えられる。
<Abnormality diagnosis processing>
Hereinafter, a specific example of the abnormality determination processing will be described. FIG. 6 is a flowchart for explaining the first example of the abnormality determination processing executed by the abnormality diagnosis device. Referring to FIGS. 5 and 6, the abnormality diagnosis unit 100 monitors the output of the sensor in step S1. Examples of the sensor include a heat flux sensor 11, a temperature sensor, a rotation speed detection sensor (not shown) that detects the rotation speed of the rotating body 5, an acceleration sensor, a weight sensor, and the like. Subsequently, in step S2, the abnormality diagnosis unit 100 compares the threshold value provided corresponding to the output of each sensor with the value (output information) detected by the sensor, and determines whether or not the threshold value is exceeded. To do. The threshold value determination may be performed individually for each output information of each sensor, or may be performed for a combination of output information of each sensor. As an example of the combination, the threshold value of the temperature inside the bearing device 1 which is the output information from the temperature sensor as an example of the other sensor 22 according to the rotation speed of the rotating body 5 which is the output information from the rotation speed detection sensor. And the threshold value of the output information of the heat flux sensor 11 is set, the output information from the temperature sensor (measured temperature inside the bearing device 1) exceeds the threshold value (predetermined temperature), and the output information of the heat flux sensor 11 is the threshold value. It is conceivable that the bearing 2 is determined to have an abnormality when the value exceeds.
 ステップS2において閾値よりも出力情報(検出値)が小さい場合(つまり異常の発生が検出されない場合)、再びステップS1のセンサ監視処理が繰り返し実行される。一方、ステップS2において閾値よりも出力情報が大きい場合(つまり異常の発生が検出された場合)、ステップS3の異常回避動作が実行されるように、異常診断部100は異常回避動作を実行するための指示信号102を出力する。 If the output information (detection value) is smaller than the threshold value in step S2 (that is, the occurrence of abnormality is not detected), the sensor monitoring process of step S1 is repeatedly executed again. On the other hand, when the output information is larger than the threshold value in step S2 (that is, when the occurrence of an abnormality is detected), the abnormality diagnosis unit 100 executes the abnormality avoidance operation so that the abnormality avoidance operation of step S3 is executed. The instruction signal 102 of is output.
 この指示信号102によって、軸受装置1が組み込まれた機械装置の一例である工作機械において実行される異常回避動作制御の例は以下のとおりである。例えば、異常回避動作制御は、回転体5の回転速度を現在よりも低くする制御であってもよい。異常回避動作制御は、たとえば工作機械において切削加工が実施されている場合、加工対象物に対する刃物の切り込み量を現在よりも小さくする制御であってもよい。異常回避動作制御は、軸受装置1の軸受2(図1参照)に対して潤滑油を供給する、または潤滑油の供給量を増やす制御であってもよい。異常回避動作制御は、工作機械における加工を停止する制御(たとえば切削を中止し回転体5の回転速度(スピンドル回転速度)を下げる、または回転体5の回転を停止させる制御)であってもよい。なお、ステップS2における1回の閾値判定で異常の有無を判定する場合、ノイズ等で誤判定することも想定される。そこで、誤判定を回避するため、ステップS2において連続して複数回異常を検出した場合に異常と判定し、異常回避動作を実行するための指示信号を出力するステップS3に移行するようにしてあってもよい。 The following is an example of the abnormality avoidance operation control executed by the instruction signal 102 in the machine tool, which is an example of a mechanical device in which the bearing device 1 is incorporated. For example, the abnormality avoidance operation control may be control for lowering the rotation speed of the rotating body 5 from the present. The abnormality avoidance operation control may be control for reducing the cutting amount of the blade with respect to the object to be processed, compared to the present time, when cutting is performed in the machine tool, for example. The abnormality avoidance operation control may be control for supplying lubricating oil to the bearing 2 (see FIG. 1) of the bearing device 1 or for increasing the amount of lubricating oil supplied. The abnormality avoidance operation control may be control for stopping machining in the machine tool (for example, control for stopping cutting to reduce the rotation speed (spindle rotation speed) of the rotating body 5 or stopping rotation of the rotating body 5). .. When determining the presence/absence of abnormality by performing the threshold value determination once in step S2, it is also possible to make an erroneous determination due to noise or the like. Therefore, in order to avoid erroneous determination, when an abnormality is detected a plurality of times in succession in step S2, it is determined to be abnormal, and the process proceeds to step S3 in which an instruction signal for executing the abnormality avoidance operation is output. May be.
 図7は、異常診断装置が実行する異常判断処理の第2例を説明するためのフローチャートである。図5および図7を参照して、異常診断部100は、ステップS11において、センサの出力を監視する。センサの例としては、図6において説明した異常判断処理と同様に熱流束センサ11、温度センサ、回転体5の回転速度を検出する図示しない回転速度検出センサ、加速度センサ、加重センサなどが挙げられる。続いて、ステップS12において異常診断部100は、各センサの出力の単位時間当たりの変化率を算出する。その後、異常診断部100は、ステップS13において、算出した変化率が閾値(判定値)を超えるか否かを判定する(変化率判定)。 FIG. 7 is a flowchart for explaining the second example of the abnormality determination processing executed by the abnormality diagnosis device. Referring to FIGS. 5 and 7, the abnormality diagnosis unit 100 monitors the output of the sensor in step S11. Examples of the sensor include a heat flux sensor 11, a temperature sensor, a rotation speed detection sensor (not shown) that detects the rotation speed of the rotating body 5, an acceleration sensor, a weight sensor, and the like, as in the abnormality determination process described in FIG. .. Subsequently, in step S12, the abnormality diagnosis unit 100 calculates the rate of change of the output of each sensor per unit time. After that, the abnormality diagnosis unit 100 determines whether or not the calculated change rate exceeds a threshold value (determination value) in step S13 (change rate determination).
 変化率判定は、各センサの出力情報について個別に実行されてもよく、各センサの出力情報の組み合わせに対して行なわれてもよい。組み合わせの例としては、回転速度検出センサからの出力情報である回転体5の回転速度の単位時間あたりの変化率が閾値を超え、かつ他のセンサ22の一例としての温度センサからの出力情報である軸受装置1内部の温度の単位時間あたりの変化率が閾値を超え、かつ熱流束センサ11の出力情報の単位時間あたりの変化率が所定閾値を超えた場合に、軸受2において異常が発生したと判定する、といった判定方法が考えられる。 The change rate determination may be performed individually for the output information of each sensor, or may be performed for a combination of the output information of each sensor. As an example of the combination, the rate of change in the rotation speed of the rotating body 5 per unit time, which is the output information from the rotation speed detection sensor, exceeds the threshold value, and the output information from the temperature sensor as an example of the other sensor 22 is used. When the rate of change of the temperature inside a certain bearing device 1 per unit time exceeds a threshold value and the rate of change of the output information of the heat flux sensor 11 per unit time exceeds a predetermined threshold value, an abnormality occurs in the bearing 2. It is conceivable to make a determination method such as “determine”.
 ステップS13において閾値(判定値)よりも検出された変化率が小さい場合、再びステップS11のセンサ監視処理が繰り返し実行される。一方、ステップS13において閾値よりも検出された変化率が大きい場合、ステップS14の異常回避動作が実行されるように、異常診断部100は異常回避動作を実行するための指示信号102を出力する。この場合も、ノイズ等で誤判定することを抑制するため、ステップS13において連続して複数回異常の発生を検出した場合に異常と判定してもよい。なお、指示信号102によって工作機械で実行される異常回避動作制御の例は図6に示した異常判断処理の場合と同じであるので説明は繰り返さない。 If the rate of change detected is smaller than the threshold value (judgment value) in step S13, the sensor monitoring process of step S11 is repeatedly executed again. On the other hand, when the change rate detected in step S13 is larger than the threshold value, the abnormality diagnosis unit 100 outputs the instruction signal 102 for executing the abnormality avoidance operation so that the abnormality avoidance operation in step S14 is executed. In this case as well, in order to prevent erroneous determination due to noise or the like, it may be determined to be abnormal when the occurrence of abnormality is detected a plurality of times consecutively in step S13. Since the example of the abnormality avoidance operation control executed by the machine tool in response to the instruction signal 102 is the same as the case of the abnormality determination processing shown in FIG. 6, the description will not be repeated.
 <軸受装置の作用効果>
 本実施の形態に係る軸受装置は、熱流束センサ11の出力情報に基づいて軸受2の異常を診断する異常診断部100を備える。この場合、軸受装置自体が異常診断部100を備えるため、軸受装置において軸受2での異常発生の有無を診断できる。
<Effects of bearing device>
The bearing device according to the present embodiment includes an abnormality diagnosis unit 100 that diagnoses an abnormality of the bearing 2 based on the output information of the heat flux sensor 11. In this case, since the bearing device itself includes the abnormality diagnosis unit 100, it is possible to diagnose whether or not an abnormality has occurred in the bearing 2 in the bearing device.
 上記軸受装置は、熱流束センサ11とは別に配置した他のセンサ22を備える。熱流束センサ11の出力情報および他のセンサ22の出力情報は異常診断部100に送信される。異常診断部100は、熱流束センサ11の出力情報、他のセンサ22の出力情報、および回転体の回転速度の情報である軸回転速度信号101に基づき、軸受2の異常を診断する。この場合、熱流束センサ11からの情報以外の情報も用いて軸受2の異常をより正確に診断できる。 The above bearing device includes another sensor 22 arranged separately from the heat flux sensor 11. The output information of the heat flux sensor 11 and the output information of the other sensors 22 are transmitted to the abnormality diagnosis unit 100. The abnormality diagnosing unit 100 diagnoses an abnormality in the bearing 2 based on the output information of the heat flux sensor 11, the output information of the other sensor 22, and the shaft rotation speed signal 101 that is the rotation speed information of the rotating body. In this case, the abnormality of the bearing 2 can be diagnosed more accurately by using information other than the information from the heat flux sensor 11.
 (実施の形態6)
 <軸受装置の構成>
 図8は、本発明の実施の形態6に係る軸受装置の構成を示す模式図である。図8に示した軸受装置1は、基本的には図1に示した軸受装置1と同様の構成を備えるが、図8の熱流束センサ11が固定された部分の構成が図1に示した軸受装置1と異なっている。すなわち、図8に示した軸受装置1では、回転体5の延在方向においてハウジング4が軸受2より外側に位置する部分を有している。ハウジング4において軸受2より外側に位置する部分は回転体5に面する内周面4Adを有する。熱流束センサ11は内周面4Adに固定されている。つまり、回転体5の延在方向において熱流束センサ11は軸受2より外側にであって軸受2に隣接する領域14に配置されている。
(Embodiment 6)
<Structure of bearing device>
FIG. 8 is a schematic diagram showing the configuration of the bearing device according to the sixth embodiment of the present invention. The bearing device 1 shown in FIG. 8 basically has the same configuration as the bearing device 1 shown in FIG. 1, but the configuration of the portion to which the heat flux sensor 11 of FIG. 8 is fixed is shown in FIG. It differs from the bearing device 1. That is, in the bearing device 1 shown in FIG. 8, the housing 4 has a portion located outside the bearing 2 in the extending direction of the rotating body 5. A portion of the housing 4 located outside the bearing 2 has an inner peripheral surface 4Ad facing the rotating body 5. The heat flux sensor 11 is fixed to the inner peripheral surface 4Ad. That is, the heat flux sensor 11 is arranged outside the bearing 2 and in the region 14 adjacent to the bearing 2 in the extending direction of the rotating body 5.
 <軸受装置の作用効果>
 上記軸受装置1では、基本的には図1に示した軸受装置1と同様の効果が得られる。さらに、図8に示した軸受装置1において、熱流束センサ11はハウジング4において軸受2より外周側に位置するとともに回転体に面する内周面4Adに固定されている。この場合、ハウジング4において軸受2より外側の領域に熱流束センサ11を配置するので、熱流束センサ11の保守が容易になるとともに、熱流束センサ11からの信号を外部へ出力するための配線の処理が容易になる。
<Effects of bearing device>
The bearing device 1 basically has the same effects as the bearing device 1 shown in FIG. Further, in the bearing device 1 shown in FIG. 8, the heat flux sensor 11 is fixed to the inner peripheral surface 4Ad located on the outer peripheral side of the bearing 2 in the housing 4 and facing the rotating body. In this case, since the heat flux sensor 11 is arranged in a region outside the bearing 2 in the housing 4, maintenance of the heat flux sensor 11 is facilitated and wiring for outputting a signal from the heat flux sensor 11 to the outside is provided. Processing becomes easy.
 (実施の形態7)
 <軸受装置の構成>
 図9は、本発明の実施の形態7に係る軸受装置の構成を示す模式図である。図9に示した軸受装置1は、基本的には図8に示した軸受装置1と同様の構成を備えるが、図9の熱流束センサ11が固定された部分の構成が図8に示した軸受装置1と異なっている。すなわち、図9に示した軸受装置1では、ハウジング4の内周面4Adから回転体5に向けて設けた台座13が軸受2の外側であって軸受2に隣接する位置に配置されている。つまり、ハウジング4は、内周面4Adに設けられた台座13を含む。なお、図2に示した台座12と同様に、台座13はハウジング4と別体でもよい。台座13は、回転体5(カラー6)および軸受2のいずれか一方に面する表面部分を含む。図9では、熱流束センサ11が台座13の回転体5に面する表面部分に固定されている。つまり、当該台座13において回転体5(カラー6)と対向する表面上に熱流束センサ11が固定されている。台座13は、軸受2の外輪2gに沿ったリング状の部材であってもよいが、外輪2gの一部分のみに対向する柱状の部材であってもよい。また、台座13を外輪2gに沿って複数個配置し、それぞれの台座13に熱流束センサ11を固定してもよい。
(Embodiment 7)
<Structure of bearing device>
FIG. 9 is a schematic diagram showing the structure of the bearing device according to the seventh embodiment of the present invention. The bearing device 1 shown in FIG. 9 basically has the same configuration as the bearing device 1 shown in FIG. 8, but the configuration of the portion to which the heat flux sensor 11 of FIG. 9 is fixed is shown in FIG. It differs from the bearing device 1. That is, in the bearing device 1 shown in FIG. 9, the pedestal 13 provided from the inner peripheral surface 4Ad of the housing 4 toward the rotating body 5 is arranged outside the bearing 2 and adjacent to the bearing 2. That is, the housing 4 includes the pedestal 13 provided on the inner peripheral surface 4Ad. The pedestal 13 may be separate from the housing 4, like the pedestal 12 shown in FIG. The pedestal 13 includes a surface portion facing either one of the rotating body 5 (collar 6) and the bearing 2. In FIG. 9, the heat flux sensor 11 is fixed to the surface portion of the pedestal 13 that faces the rotating body 5. That is, the heat flux sensor 11 is fixed on the surface of the pedestal 13 facing the rotating body 5 (the collar 6). The pedestal 13 may be a ring-shaped member that extends along the outer ring 2g of the bearing 2, or may be a columnar member that faces only a part of the outer ring 2g. Alternatively, a plurality of pedestals 13 may be arranged along the outer ring 2g, and the heat flux sensor 11 may be fixed to each pedestal 13.
 <軸受装置の作用効果>
 図9に示した軸受装置1では、基本的に図8に示した軸受装置1と同様の効果を得ることができる。さらに、図9に示した軸受装置1において、ハウジング4は、軸受2の外側において回転体5に面する内周面4Adから回転体5に向けて設けた台座13を含む。熱流束センサ11は、台座13に固定されている。この場合、台座13に熱流束センサ11を配置することで熱流束センサ11と回転体5との間の距離を小さくできる。このため、軸受2での異常に起因する回転体5(およびカラー6)の温度変化をより迅速かつ正確に検出できる。
<Effects of bearing device>
The bearing device 1 shown in FIG. 9 can basically obtain the same effects as those of the bearing device 1 shown in FIG. Further, in the bearing device 1 shown in FIG. 9, the housing 4 includes a pedestal 13 provided from the inner peripheral surface 4Ad facing the rotating body 5 to the rotating body 5 outside the bearing 2. The heat flux sensor 11 is fixed to the pedestal 13. In this case, by disposing the heat flux sensor 11 on the pedestal 13, the distance between the heat flux sensor 11 and the rotating body 5 can be reduced. Therefore, the temperature change of the rotating body 5 (and the collar 6) due to the abnormality in the bearing 2 can be detected more quickly and accurately.
 (実施の形態8)
 <軸受装置の構成>
 図10は、本発明の実施の形態8に係る軸受装置の構成を示す模式図である。図11は、センサの出力をワイヤレスで送受信する構成を示す図である。図10に示した軸受装置1は、基本的には図8に示した軸受装置1と同様の構成を備えるが、ワイヤレス送信装置である送信部200と受信装置300とを備える点が図8に示した軸受装置1と異なっている。図10に示した軸受装置1では、熱流束センサ11に送信部200が接続されている。なお、図10において図示していないもう一つの熱流束センサ11にもワイヤレス送信装置が接続されている。なお、1つのワイヤレス送信装置により2つの熱流束センサ11の出力を送信してもよい。受信装置300は、送信部200から熱流束センサ11の出力情報を受信し、軸受2の異常判断を行なう。
(Embodiment 8)
<Structure of bearing device>
FIG. 10 is a schematic diagram showing the structure of the bearing device according to the eighth embodiment of the present invention. FIG. 11 is a diagram showing a configuration for wirelessly transmitting and receiving the output of the sensor. The bearing device 1 shown in FIG. 10 basically has the same configuration as the bearing device 1 shown in FIG. 8, but the point that the bearing device 1 shown in FIG. 8 includes a transmitter 200 and a receiver 300 that are wireless transmitters. It differs from the bearing device 1 shown. In the bearing device 1 shown in FIG. 10, the heat flux sensor 11 is connected to the transmitter 200. The wireless transmission device is also connected to another heat flux sensor 11, which is not shown in FIG. The outputs of the two heat flux sensors 11 may be transmitted by one wireless transmission device. The receiving device 300 receives the output information of the heat flux sensor 11 from the transmitting unit 200 and determines whether the bearing 2 is abnormal.
 図10に示す軸受装置1では、熱流束センサ11で発生した出力情報を、送信部200により外部に送信できる。この場合、外部の異常診断装置で軸受2の異常の診断が可能である。なお、好ましくは、軸受装置1は送信部200に電力を供給する給電装置をさらに備えてもよい。給電装置としては、電池、温度差や振動などで発電する発電装置、電磁誘導式の発電機などを用いることができる。 In the bearing device 1 shown in FIG. 10, the output information generated by the heat flux sensor 11 can be transmitted to the outside by the transmitter 200. In this case, the abnormality of the bearing 2 can be diagnosed by an external abnormality diagnosis device. In addition, preferably, the bearing device 1 may further include a power supply device that supplies power to the transmission unit 200. As the power supply device, a battery, a power generation device that generates power by a temperature difference, vibration, or the like, an electromagnetic induction power generator, or the like can be used.
 図11に示すように、送信部200は、信号処理部201と、データ送信部202とを含む。信号処理部201は、熱流束センサ11の出力情報である信号を受けて、信号の増幅、あるいは、当該信号からノイズ成分の除去を行なう。さらに、信号処理部201は、当該信号に対するアナログ-デジタル変換処理および変調処理等を行なう。信号処理部201は、上述した処理を実施した信号をデータ送信部202に送信用のデータとして出力する。データ送信部202は、無線によって受信装置300に当該データを送信する。 As shown in FIG. 11, the transmission unit 200 includes a signal processing unit 201 and a data transmission unit 202. The signal processing unit 201 receives a signal that is output information from the heat flux sensor 11 and amplifies the signal or removes a noise component from the signal. Further, the signal processing unit 201 performs analog-digital conversion processing, modulation processing, etc. on the signal. The signal processing unit 201 outputs the signal subjected to the above-described processing to the data transmitting unit 202 as transmission data. The data transmitting unit 202 wirelessly transmits the data to the receiving device 300.
 受信装置300は、たとえば軸受装置1を組み込んだ機械装置の外部に設置されている。受信装置300は、無線でデータを受信するデータ受信部301と、受信信号からデータを復調する信号処理部302と、信号処理部302からのデータを受けて軸受異常を判断する異常判定部303とを含む。異常判定部303を信号処理部201の後段に挿入すれば、送信データ量を減らし、電力消費を低減することもできる。なお、異常判定部303の処理は、図6および図7で説明した処理と同様であるので、説明は繰り返さない。 The receiving device 300 is installed, for example, outside the mechanical device in which the bearing device 1 is incorporated. The receiving device 300 includes a data receiving unit 301 that wirelessly receives data, a signal processing unit 302 that demodulates data from a received signal, and an abnormality determination unit 303 that receives data from the signal processing unit 302 and determines a bearing abnormality. including. If the abnormality determination unit 303 is inserted in the subsequent stage of the signal processing unit 201, it is possible to reduce the amount of transmission data and power consumption. The process of abnormality determination unit 303 is similar to the process described with reference to FIGS. 6 and 7, and thus description will not be repeated.
 <軸受装置の作用効果>
 上記軸受装置は、熱流束センサ11の出力情報をワイヤレス送信する送信部200を備える。送信部200は、軸受2の異常診断を行う受信装置300に熱流束センサ11の出力情報を送信するように構成される。この場合、熱流束センサ11から受信装置300にまで延びるように配線を配置することなく、当該受信装置300に熱流束センサ11の出力情報を送信できる。このため、軸受装置の構成を複雑化させることなく、当該受信装置300において軸受2の異常診断を行うことができる。
<Effects of bearing device>
The bearing device includes a transmitter 200 that wirelessly transmits the output information of the heat flux sensor 11. The transmitting unit 200 is configured to transmit the output information of the heat flux sensor 11 to the receiving device 300 that diagnoses the abnormality of the bearing 2. In this case, the output information of the heat flux sensor 11 can be transmitted to the receiving device 300 without arranging wiring so as to extend from the heat flux sensor 11 to the receiving device 300. Therefore, the abnormality diagnosis of the bearing 2 can be performed in the receiving device 300 without complicating the configuration of the bearing device.
 上記軸受装置1は、熱流束センサ11の出力情報をワイヤレス送信する送信部200と、送信部200から熱流束センサ11の出力情報を受信し、軸受2の異常判断を行なう受信装置300とを備える。これにより、熱流束センサ11を軸受装置1内部において回転する部材に接続する場合にも、外部に熱流束センサ11の検出結果を出力することができる。このため、速やかに軸受2の異常を検出することができる。 The bearing device 1 includes a transmitter 200 that wirelessly transmits the output information of the heat flux sensor 11, and a receiver 300 that receives the output information of the heat flux sensor 11 from the transmitter 200 and determines whether the bearing 2 is abnormal. .. As a result, even when the heat flux sensor 11 is connected to a member that rotates inside the bearing device 1, the detection result of the heat flux sensor 11 can be output to the outside. Therefore, the abnormality of the bearing 2 can be promptly detected.
 (実施の形態9)
 <軸受装置の構成>
 図12は、本発明の実施の形態9に係るスピンドル装置の構成を示す模式図である。図12に示されるように、スピンドル装置30は、例えば上記実施の形態2に係る軸受装置1、主軸である回転体5、外筒32、モータ31、軸受33を主に備える。スピンドル装置30は、たとえば、工作機械のビルトインモータ方式のスピンドル装置として使用される。スピンドル装置30は制御装置600に接続されている。スピンドル装置30では、外筒32の内部に軸受装置1、回転体5、モータ31および軸受33が配置されている。回転体5は外筒32に軸受装置1と軸受33とにより回転可能に支持されている。モータ31は軸受装置1と軸受33との間に配置されている。
(Embodiment 9)
<Structure of bearing device>
FIG. 12 is a schematic diagram showing the configuration of the spindle device according to the ninth embodiment of the present invention. As shown in FIG. 12, the spindle device 30 mainly includes, for example, the bearing device 1 according to the second embodiment, the rotating body 5 as the main shaft, the outer cylinder 32, the motor 31, and the bearing 33. The spindle device 30 is used, for example, as a built-in motor type spindle device of a machine tool. The spindle device 30 is connected to the control device 600. In the spindle device 30, the bearing device 1, the rotating body 5, the motor 31, and the bearing 33 are arranged inside the outer cylinder 32. The rotating body 5 is rotatably supported by the outer cylinder 32 by the bearing device 1 and the bearing 33. The motor 31 is arranged between the bearing device 1 and the bearing 33.
 図12に示すスピンドル装置30は、たとえば工作機械主軸用のスピンドル装置である。スピンドル装置30では、回転体5の一端側にはモータ31が組み込まれ、他端側には図示しないエンドミル等の切削工具が接続される。軸受装置1は、図2に示した軸受装置1の改良型である。軸受装置1は、ハウジング4の外周面に冷却媒体流路Gが形成されたこと以外は図2に示した軸受装置1とほぼ同じ構造のため、その説明は繰り返さない。軸受装置1は外筒32の内周面に固定される。軸受装置1のハウジング4において、外筒32の内周面に面する表面に上述した冷却媒体流路Gが形成されている。 The spindle device 30 shown in FIG. 12 is, for example, a spindle device for a machine tool spindle. In the spindle device 30, a motor 31 is incorporated on one end side of the rotating body 5, and a cutting tool such as an end mill (not shown) is connected to the other end side. The bearing device 1 is an improved version of the bearing device 1 shown in FIG. Bearing device 1 has substantially the same structure as bearing device 1 shown in FIG. 2 except that cooling medium flow path G is formed on the outer peripheral surface of housing 4, and therefore description thereof will not be repeated. The bearing device 1 is fixed to the inner peripheral surface of the outer cylinder 32. In the housing 4 of the bearing device 1, the cooling medium passage G described above is formed on the surface of the outer cylinder 32 facing the inner peripheral surface.
 単列の軸受33は、内輪33aと、外輪33bと、転動体とを主に備える。内輪33aは、回転体5の外周に嵌合した筒状部材34と内輪押さえ35とにより、回転体5に対して軸方向に位置決めされている。内輪押さえ35は、回転体5に螺着したナット36により回転体5に固定されている。軸受33の外輪33bは、筒状部材34に固定された位置決め部材37と、内輪押さえ35に固定された位置決め部材38とに挟まれている。外輪33bは、スピンドル装置30の運転時における軸受33の発熱に伴う回転体5の伸縮に応じて、内輪33aと一体的に端部材39に対して摺動可能になっている。 The single-row bearing 33 mainly includes an inner ring 33a, an outer ring 33b, and rolling elements. The inner ring 33 a is axially positioned with respect to the rotating body 5 by a tubular member 34 fitted to the outer periphery of the rotating body 5 and an inner ring retainer 35. The inner ring retainer 35 is fixed to the rotating body 5 by a nut 36 screwed to the rotating body 5. The outer ring 33b of the bearing 33 is sandwiched between a positioning member 37 fixed to the tubular member 34 and a positioning member 38 fixed to the inner ring retainer 35. The outer ring 33b is slidable with respect to the end member 39 integrally with the inner ring 33a according to expansion and contraction of the rotating body 5 caused by heat generation of the bearing 33 during operation of the spindle device 30.
 回転体5と外筒32との間に形成される空間部40において、軸受装置1の複列の軸受2と単列の軸受33とで挟まれた軸方向の中間位置には、回転体5を駆動するモータ31が配置されている。モータ31のロータ41は回転体5の外周に嵌合した筒状部材34に固定されている。モータ31のステータ42は外筒32の内周面に固定されている。なお、スピンドル装置30は、図示しない冷却媒体流路を備える。当該冷却媒体流路は、モータ31を冷却する。なお、図12では、軸受装置1の隣にモータ31を配置したが、軸受装置1に含まれる2つの軸受2の間の空間にモータ31を配置してもよい。また、図12に示したスピンドル装置30において、上述した実施の形態1、3~8に係る軸受装置1を適用してもよい。 In the space 40 formed between the rotating body 5 and the outer cylinder 32, the rotating body 5 is located at an intermediate position in the axial direction between the double row bearing 2 and the single row bearing 33 of the bearing device 1. A motor 31 for driving the motor is arranged. The rotor 41 of the motor 31 is fixed to a tubular member 34 fitted on the outer circumference of the rotating body 5. The stator 42 of the motor 31 is fixed to the inner peripheral surface of the outer cylinder 32. The spindle device 30 includes a cooling medium passage (not shown). The cooling medium flow path cools the motor 31. Although the motor 31 is arranged next to the bearing device 1 in FIG. 12, the motor 31 may be arranged in the space between the two bearings 2 included in the bearing device 1. Further, the bearing device 1 according to the first to third embodiments described above may be applied to the spindle device 30 shown in FIG.
 熱流束を測定する熱流束センサ11が、センサ部としてスピンドル装置30に実装される。具体的には、スピンドル装置30を構成する軸受装置1の内部に2つの熱流束センサ11が配置されている。 The heat flux sensor 11 that measures the heat flux is mounted on the spindle device 30 as a sensor unit. Specifically, two heat flux sensors 11 are arranged inside the bearing device 1 that constitutes the spindle device 30.
 ここで、軸受2の転動体2t(図2参照)と、内輪2i(図2参照)および外輪2g(図2参照)の軌道面との接触面圧の増加に伴い、内輪2iおよび外輪2gの温度が上昇する。このとき、初めに転動体2tと内輪2iおよび外輪2gの軌道面間で発生した熱が回転体5およびハウジング4に伝達する。熱容量の大きなハウジング4の温度は、上昇するまでに遅れが生じる。また、ハウジング4は冷却媒体流路Gを流れる冷却媒体により冷却されているため、さらに温度の上昇に遅れが発生する。 Here, as the contact surface pressure between the rolling elements 2t (see FIG. 2) of the bearing 2 and the raceways of the inner ring 2i (see FIG. 2) and the outer ring 2g (see FIG. 2) increases, the inner ring 2i and the outer ring 2g The temperature rises. At this time, the heat initially generated between the rolling elements 2t and the raceways of the inner ring 2i and the outer ring 2g is transferred to the rotating body 5 and the housing 4. The temperature of the housing 4 having a large heat capacity is delayed until it rises. Further, since the housing 4 is cooled by the cooling medium flowing through the cooling medium flow passage G, the temperature rise is further delayed.
 そのため、軸受2の焼付きといった異常の予兆を、ハウジング4または回転体5の温度を測定することで検出しようとすると、当該温度上昇に遅れがあるため、異常の予兆を早期に検出できないことも想定される。このような場合に熱流束センサ11を利用すれば、熱流束の変化は温度変化より早期に発生するため、軸受2の急激な発熱といった異常を迅速に検出することが可能である。 Therefore, if an attempt is made to detect a sign of an abnormality such as seizure of the bearing 2 by measuring the temperature of the housing 4 or the rotating body 5, there is a delay in the temperature rise, so that the sign of the abnormality may not be detected early. is assumed. If the heat flux sensor 11 is used in such a case, a change in heat flux occurs earlier than a temperature change, so that an abnormality such as a sudden heat generation of the bearing 2 can be quickly detected.
 制御装置600は、モータ31を制御する。また、制御装置600は、熱流束センサ11の出力信号から軸受2の異常の発生を判定する。 The control device 600 controls the motor 31. Further, the control device 600 determines the occurrence of abnormality of the bearing 2 from the output signal of the heat flux sensor 11.
 図13は、図12に示されるスピンドル装置の制御装置の一例を示す図である。図13に示されるように、上記スピンドル装置30では、スピンドル装置30の動作を制御する制御装置600が、熱流束センサ11の出力に基づいて軸受2(図12参照)の異常を診断してもよい。制御装置600は判定部601を含む。判定部601は、熱流束センサ11の出力、スピンドル装置30のモータ31の回転数、潤滑条件および冷却条件等の機械情報D1、および軸受2の異常の有無を判定するために予め定められた判定基準D2に基づき、軸受2の異常の有無を判定する。なお、軸受2の異常とは、例えば軸受2の焼付きの発生またはそのおそれである。熱流束センサ11の出力情報は、任意の方法により制御装置600の判定部601に送信される。たとえば、図10に示した送信部200が軸受装置1に設置されていてもよい。制御装置600は図11に示した受信装置300を含んでいてもよい。制御装置600は、判定部601による判定結果に基づき、モータ31の回転数、潤滑条件、および冷却条件の少なくともいずれかを変更するように設けられている。なお、判定部601は、少なくとも熱流束センサ11の出力と、軸受2の異常の有無を判定するために予め定められた判定基準D2とに基づき、軸受2の異常の有無を判定してもよい。 FIG. 13 is a diagram showing an example of a control device of the spindle device shown in FIG. As shown in FIG. 13, in the spindle device 30, even if the control device 600 that controls the operation of the spindle device 30 diagnoses the abnormality of the bearing 2 (see FIG. 12) based on the output of the heat flux sensor 11. Good. The control device 600 includes a determination unit 601. The determination unit 601 is a predetermined determination for determining the output of the heat flux sensor 11, the rotation speed of the motor 31 of the spindle device 30, machine information D1 such as lubrication conditions and cooling conditions, and the presence or absence of abnormality of the bearing 2. The presence or absence of abnormality of the bearing 2 is determined based on the standard D2. The abnormality of the bearing 2 is, for example, occurrence or risk of seizure of the bearing 2. The output information of the heat flux sensor 11 is transmitted to the determination unit 601 of the control device 600 by any method. For example, the transmitting unit 200 shown in FIG. 10 may be installed in the bearing device 1. The control device 600 may include the receiving device 300 shown in FIG. 11. The control device 600 is provided so as to change at least one of the rotation speed, the lubrication condition, and the cooling condition of the motor 31, based on the determination result by the determination unit 601. Note that the determination unit 601 may determine whether or not there is an abnormality in the bearing 2 based on at least the output of the heat flux sensor 11 and a determination criterion D2 that is predetermined to determine whether or not there is an abnormality in the bearing 2. ..
 また、上記判定部601は、図5に示した異常診断部100と同様に、熱流束センサ11およびそれ以外のセンサの各出力に基づいて軸受2の異常を診断することもできる。図14は、図12に示されるスピンドル装置の制御装置の他の一例を示す図である。 The determination unit 601 can also diagnose the abnormality of the bearing 2 based on the outputs of the heat flux sensor 11 and the other sensors, as in the abnormality diagnosis unit 100 shown in FIG. FIG. 14 is a diagram showing another example of the control device for the spindle device shown in FIG.
 図14に示されるように、上記判定部601は、例えば、熱流束センサ11に加えて、温度センサ602、加速度センサ603、および荷重センサ604の各出力に基づいて軸受2の異常を診断する。温度センサ602は、例えば軸受2の潤滑不良に伴うハウジング4の温度上昇を検出するように設けられている。温度センサ602は、例えばハウジング4において軸受2に隣接する位置に配置されていてもよい。加速度センサ603は、例えば軸受2の各軌道面の剥離に伴う回転体5の延在方向である軸方向および当該軸方向と交差する径方向の少なくともいずれかの回転体5の振動を検出するように設けられている。加速度センサ603は、例えば上記軸方向におけるハウジング4の端面に配置されていてもよい。荷重センサ604は、例えば軸受2に外部から付与される負荷荷重、あるいは衝撃荷重の変化を検出するように設けられている。荷重センサ604は、例えば上記軸方向において軸受2の外輪2gと中間部材10(図2参照)との間を接続するように配置されている。荷重センサ604は、例えば薄膜センサであり、圧力により電気抵抗が変化する。 As shown in FIG. 14, the determination unit 601 diagnoses an abnormality in the bearing 2 based on the outputs of the temperature sensor 602, the acceleration sensor 603, and the load sensor 604 in addition to the heat flux sensor 11, for example. The temperature sensor 602 is provided so as to detect a temperature rise of the housing 4 due to poor lubrication of the bearing 2, for example. The temperature sensor 602 may be arranged at a position adjacent to the bearing 2 in the housing 4, for example. The acceleration sensor 603 detects vibrations of at least one of the rotating body 5 in the axial direction, which is the extending direction of the rotating body 5 and the radial direction intersecting the axial direction, due to the separation of the raceway surfaces of the bearing 2, for example. It is provided in. The acceleration sensor 603 may be arranged on the end surface of the housing 4 in the axial direction, for example. The load sensor 604 is provided so as to detect, for example, a change in the load applied from the outside or the impact load applied to the bearing 2. The load sensor 604 is arranged so as to connect the outer ring 2g of the bearing 2 and the intermediate member 10 (see FIG. 2) in the axial direction, for example. The load sensor 604 is, for example, a thin film sensor, and its electric resistance changes with pressure.
 図15は、図12に示されるスピンドル装置の制御装置のさらに他の一例を示す図である。図15に示すように、上記判定部601は、熱流束センサ11、温度センサ602、加速度センサ603、および荷重センサ604の各出力に加えて、さらに回転センサ605の出力情報であるモータ31の回転速度に基づいて軸受2の異常を診断するように設けられていてもよい。 FIG. 15 is a diagram showing still another example of the control device of the spindle device shown in FIG. As shown in FIG. 15, in addition to the outputs of the heat flux sensor 11, the temperature sensor 602, the acceleration sensor 603, and the load sensor 604, the determination unit 601 further rotates the motor 31 that is output information of the rotation sensor 605. It may be provided so as to diagnose the abnormality of the bearing 2 based on the speed.
 上記スピンドル装置30において、図5に示すような異常診断部をスピンドル装置30の内部に設置してもよい。たとえば、軸受装置1のハウジング4に配置された基板に上述した異常診断部を実装してもよい。この場合、上記異常診断部と熱流束センサ11との間の距離は、上記異常診断部が軸受装置1の外部、特にスピンドル装置30の外部に配置された場合における異常診断部と熱流束センサ11との間の距離と比べて短い。そのため、スピンドル装置30の内部に設置された上記異常診断部は、軸受装置1の外部に配置された上記異常診断部が取得する熱流束センサ11の出力信号と比べて、ノイズの影響が低減された出力信号に基づいて上記異常の有無を判定することができる。 In the spindle device 30, an abnormality diagnosis unit as shown in FIG. 5 may be installed inside the spindle device 30. For example, the above-described abnormality diagnosis unit may be mounted on the board arranged in the housing 4 of the bearing device 1. In this case, the distance between the abnormality diagnosing unit and the heat flux sensor 11 is the distance between the abnormality diagnosing unit and the heat flux sensor 11 when the abnormality diagnosing unit is arranged outside the bearing device 1, particularly outside the spindle device 30. Short compared to the distance between. Therefore, the influence of noise is reduced in the abnormality diagnosis unit installed inside the spindle device 30 compared with the output signal of the heat flux sensor 11 acquired by the abnormality diagnosis unit arranged outside the bearing device 1. The presence or absence of the abnormality can be determined based on the output signal.
 <軸受装置の作用効果>
 本開示に係るスピンドル装置30は、上記軸受装置1と、回転体5を回転させるモータ31とを備える。このようにすれば、軸受2の異常を迅速かつ正確に検知できるスピンドル装置30を実現できる。
<Effects of bearing device>
A spindle device 30 according to the present disclosure includes the bearing device 1 and a motor 31 that rotates the rotating body 5. By doing so, it is possible to realize the spindle device 30 that can detect abnormality of the bearing 2 quickly and accurately.
 上述した各実施の形態では、軸受2を背面組み合わせ(DB組み合わせ)で設置した定圧予圧構造を用いて説明したが、軸受2を正面組み合わせ(DF組み合わせ)にした定圧予圧構造にも本開示に係る構成は適用可能である。 In each of the above-described embodiments, the constant pressure preload structure in which the bearing 2 is installed in the back combination (DB combination) has been described, but the present disclosure also relates to the constant pressure preload structure in which the bearing 2 is in the front combination (DF combination). The configuration is applicable.
 (実施の形態10)
 <軸受装置の構成>
 図16は、本発明の実施の形態10に係る軸受装置の構成を示す模式図である。図16に示した軸受装置1は、基本的には図3に示した軸受装置1と同様の構成を備えるが、台座12および中間部材10の形状と、熱流束センサ11の配置とが図3に示した軸受装置1と異なっている。すなわち、図16に示した軸受装置1では、台座12が、回転体5に面する表面部分12aと、軸受2の転動体2tに面し軸受2のラジアル方向に延びる表面部分12cと、表面部分12aと表面部分12cとを接続する表面部分12bとを含む。表面部分12bは、軸受2の内輪2iに面したテーパ面である。熱流束センサ11は、表面部分12bに固定されている。熱流束センサ11は、台座12に隣接する軸受2の内輪2iに対向するように配置されている。なお、熱流束センサ11を台座12において軸受2に面する表面部分12cに固定してもよい。
(Embodiment 10)
<Structure of bearing device>
FIG. 16 is a schematic diagram showing the structure of the bearing device according to the tenth embodiment of the present invention. The bearing device 1 shown in FIG. 16 basically has the same configuration as the bearing device 1 shown in FIG. 3, but the shapes of the pedestal 12 and the intermediate member 10 and the arrangement of the heat flux sensor 11 are different from those in FIG. The bearing device 1 shown in FIG. That is, in the bearing device 1 shown in FIG. 16, the pedestal 12 includes a surface portion 12a facing the rotating body 5, a surface portion 12c facing the rolling element 2t of the bearing 2 and extending in the radial direction of the bearing 2, and a surface portion. 12a and a surface portion 12b connecting the surface portion 12c. The surface portion 12b is a tapered surface facing the inner ring 2i of the bearing 2. The heat flux sensor 11 is fixed to the surface portion 12b. The heat flux sensor 11 is arranged so as to face the inner ring 2i of the bearing 2 adjacent to the pedestal 12. The heat flux sensor 11 may be fixed to the surface portion 12c of the pedestal 12 that faces the bearing 2.
 また、図16に示した軸受装置1では、予圧部の中間部材10が、転体5に面する表面部分10aと、軸受2の転動体2tに面し軸受2のラジアル方向に延びる表面部分10cと、表面部分10aと表面部分10cとを接続する表面部分10bとを含む。表面部分10bは、軸受2の内輪2iに面したテーパ面である。熱流束センサ11は、表面部分10bに固定されている。熱流束センサ11は、中間部材10に隣接する軸受2の内輪2iに対向するように配置されている。なお、熱流束センサ11を中間部材10において軸受2に面する表面部分12cに固定してもよい。 Further, in the bearing device 1 shown in FIG. 16, the intermediate member 10 of the preload portion has a surface portion 10a facing the rolling element 5 and a surface portion 10c facing the rolling element 2t of the bearing 2 and extending in the radial direction of the bearing 2. And a surface portion 10b connecting the surface portion 10a and the surface portion 10c. The surface portion 10b is a tapered surface facing the inner ring 2i of the bearing 2. The heat flux sensor 11 is fixed to the surface portion 10b. The heat flux sensor 11 is arranged so as to face the inner ring 2i of the bearing 2 adjacent to the intermediate member 10. The heat flux sensor 11 may be fixed to the surface portion 12c of the intermediate member 10 that faces the bearing 2.
 図17は、本発明の実施の形態10に係る軸受装置の変形例の構成を示す模式図である。図17に示した軸受装置1は、基本的には図4に示した軸受装置1と同様の構成を備えるが、間座20および中間部材10の形状と、熱流束センサ11の配置とが図4に示した軸受装置1と異なっている。すなわち、図17に示した軸受装置1では、間座20が、回転体5に面する表面部分20aと、軸受2の転動体2tに面し軸受2のラジアル方向に延びる表面部分20cと、表面部分20aと表面部分20cとを接続する表面部分20bとを含む。表面部分20bは、軸受2の内輪2iに面したテーパ面である。熱流束センサ11は、表面部分12bに固定されている。熱流束センサ11は、台座12に隣接する軸受2の内輪2iに対向するように配置されている。図17に示す軸受装置1では、熱流束センサ11が回転体5から見て間座20における供給口21と反対側の領域に配置されている。なお、熱流束センサ11を間座20において供給口21に隣接する表面部分20bに固定してもよい。熱流束センサ11を間座20において軸受2に面する表面部分20cに固定してもよい。 FIG. 17 is a schematic diagram showing a configuration of a modified example of the bearing device according to the tenth embodiment of the present invention. The bearing device 1 shown in FIG. 17 basically has the same configuration as the bearing device 1 shown in FIG. 4, but the shapes of the spacer 20 and the intermediate member 10 and the arrangement of the heat flux sensor 11 are different. The bearing device 1 shown in FIG. That is, in the bearing device 1 shown in FIG. 17, the spacer 20 includes a surface portion 20 a facing the rotating body 5, a surface portion 20 c facing the rolling element 2 t of the bearing 2 and extending in the radial direction of the bearing 2, and a surface. It includes a surface portion 20b connecting the portion 20a and the surface portion 20c. The surface portion 20b is a tapered surface facing the inner ring 2i of the bearing 2. The heat flux sensor 11 is fixed to the surface portion 12b. The heat flux sensor 11 is arranged so as to face the inner ring 2i of the bearing 2 adjacent to the pedestal 12. In the bearing device 1 shown in FIG. 17, the heat flux sensor 11 is arranged in a region of the spacer 20 opposite to the supply port 21 when viewed from the rotating body 5. The heat flux sensor 11 may be fixed to the surface portion 20b of the spacer 20 adjacent to the supply port 21. The heat flux sensor 11 may be fixed to the surface portion 20c of the spacer 20 facing the bearing 2.
 また、図17に示した軸受装置1では、予圧部の中間部材10が、図16に示した軸受装置1と同様に、回転体5に面する表面部分10aと、軸受2の転動体2tに面する表面部分10cと、表面部分10aと表面部分10cとを接続する表面部分10bとを含む。熱流束センサ11は、表面部分10bに固定されている。熱流束センサ11は、中間部材10に隣接する軸受2の内輪2iに対向するように配置されている。図17に示す軸受装置1では、熱流束センサ11が回転体5から見て中間部材10における供給口21と反対側の領域に配置されている。なお、熱流束センサ11を中間部材10において供給口21に隣接する表面部分10bに固定してもよい。熱流束センサ11を中間部材10において軸受2に面する表面部分12cに固定してもよい。 Further, in the bearing device 1 shown in FIG. 17, the intermediate member 10 of the preload portion is provided on the surface portion 10a facing the rotating body 5 and the rolling element 2t of the bearing 2 as in the bearing device 1 shown in FIG. It includes a facing surface portion 10c and a surface portion 10b connecting the surface portion 10a and the surface portion 10c. The heat flux sensor 11 is fixed to the surface portion 10b. The heat flux sensor 11 is arranged so as to face the inner ring 2i of the bearing 2 adjacent to the intermediate member 10. In the bearing device 1 shown in FIG. 17, the heat flux sensor 11 is arranged in the region of the intermediate member 10 opposite to the supply port 21 when viewed from the rotating body 5. The heat flux sensor 11 may be fixed to the surface portion 10b of the intermediate member 10 adjacent to the supply port 21. The heat flux sensor 11 may be fixed to the surface portion 12c of the intermediate member 10 that faces the bearing 2.
 <作用効果>
 図16および図17に示した軸受装置1において、熱流束センサ11は、軸受2に対向するように配置されている。具体的には、熱流束センサ11は、中間部材10、台座12および間座20において軸受2に面する表面部分10b、12b、20bに固定されている。このため、図3または図4に示した軸受装置1と同様の効果が得られるとともに軸受2の異常などに起因する転動体2tと内輪2iとの間での発熱による温度変化を熱流束センサ11により迅速かつ確実に検出できる。なお、熱流束センサ11が軸受2に対向する場合、内輪2iに近接する方が好ましい。
<Effect>
In the bearing device 1 shown in FIGS. 16 and 17, the heat flux sensor 11 is arranged so as to face the bearing 2. Specifically, the heat flux sensor 11 is fixed to the surface portions 10b, 12b, 20b of the intermediate member 10, the pedestal 12 and the spacer 20 which face the bearing 2. Therefore, the same effect as that of the bearing device 1 shown in FIG. 3 or FIG. 4 is obtained, and the temperature change due to the heat generation between the rolling element 2t and the inner ring 2i due to the abnormality of the bearing 2 or the like causes the heat flux sensor 11 to detect the temperature change. Can be detected quickly and surely. When the heat flux sensor 11 faces the bearing 2, it is preferable that the heat flux sensor 11 be close to the inner ring 2i.
 また、熱流束センサ11を、中間部材10、台座12および間座20において軸受2の転動体2tに面する表面部分10c、12c、20cに固定してもよい。この場合、軸受2の異常に起因する転動体2tの発熱による温度変化を熱流束センサ11により迅速かつ確実に検出できる。また、熱流束センサ11を、軸受2の内輪2iのように回転体5に当節された部材に面するように配置してもよい。このように、熱流束センサ11をできるだけ発熱部位に近接して対向配置することで、発熱部位における温度変化を迅速に検出することができる。 The heat flux sensor 11 may be fixed to the surface portions 10c, 12c, 20c of the intermediate member 10, the pedestal 12, and the spacer 20 that face the rolling elements 2t of the bearing 2. In this case, the heat flux sensor 11 can detect the temperature change due to the heat generation of the rolling element 2t due to the abnormality of the bearing 2 quickly and reliably. Further, the heat flux sensor 11 may be arranged so as to face a member such as the inner ring 2i of the bearing 2 that is fixed to the rotating body 5. In this way, by disposing the heat flux sensor 11 as close to and as close to the heat-generating portion as possible, it is possible to quickly detect a temperature change in the heat-generating portion.
 熱流束センサ11をできるだけ発熱部位に近接して対向配置するために、発熱部位に近接する回転体5に設けた凹部または凸部、回転体5の端面に対向する位置に熱流束センサ11を配置する構造であってもよいし、表面部分10c、12c、20cに図示しない凹部(溝)を設け、凹部に熱流束センサ11を固定してもよい。また、熱流束センサ11をリング状に形成してあってもよく、熱流束センサ11の形状は問わない。 In order to dispose the heat flux sensor 11 as close as possible to the heat generating portion and face it, the heat flux sensor 11 is arranged at a position facing the concave portion or the convex portion provided on the rotating body 5 and the end surface of the rotating body 5 close to the heat generating portion. The heat flux sensor 11 may be fixed to the recesses (grooves) not shown in the surface portions 10c, 12c, 20c. Further, the heat flux sensor 11 may be formed in a ring shape, and the shape of the heat flux sensor 11 does not matter.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
 1 軸受装置、2,33 軸受、2g,33b 外輪、2i,33a 内輪、2r 保持器、2t 転動体、3 予圧部、4 ハウジング、4Ad,4c 内周面、4a,4b 段差部、5 回転体、6 カラー、7,36 ナット、8 ばねホルダ、8a 一端面、8b,10a,10b,10c,12a,12b,12c,20a,20b,20c 表面部分、9 ばね、10 中間部材、11 熱流束センサ、12,13 台座、14 領域、20 間座、21 供給口、22,602 温度センサ、30 スピンドル装置、31 モータ、32 外筒、34 筒状部材、35 内輪押さえ、37,38 位置決め部材、39 端部材、40 空間部、41 ロータ、42 ステータ、100 異常診断部、101 軸回転速度信号、102 異常回避動作指示信号、200 送信部、201,302 信号処理部、202 データ送信部、300 受信装置、301 データ受信部、303 異常判定部、600 制御装置、601 判定部、603 加速度センサ、604 荷重センサ、605 回転センサ、D1 機械情報、D2 判定基準、G 冷却媒体流路。 1 bearing device, 2, 33 bearing, 2g, 33b outer ring, 2i, 33a inner ring, 2r cage, 2t rolling element, 3 preload section, 4 housing, 4Ad, 4c inner peripheral surface, 4a, 4b step section, 5 rotating body , 6 collars, 7, 36 nuts, 8 spring holders, 8a one end surface, 8b, 10a, 10b, 10c, 12a, 12b, 12c, 20a, 20b, 20c surface part, 9 springs, 10 intermediate member, 11 heat flux sensor , 12, 13 pedestal, 14 area, 20 spacer, 21 supply port, 22,602 temperature sensor, 30 spindle device, 31 motor, 32 outer cylinder, 34 cylindrical member, 35 inner ring retainer, 37, 38 positioning member, 39 End member, 40 space section, 41 rotor, 42 stator, 100 abnormality diagnosis section, 101 axis rotation speed signal, 102 abnormality avoidance operation instruction signal, 200 transmission section, 201, 302 signal processing section, 202 data transmission section, 300 reception device , 301 data receiving unit, 303 abnormality determination unit, 600 control device, 601, determination unit, 603 acceleration sensor, 604 load sensor, 605 rotation sensor, D1 machine information, D2 determination standard, G cooling medium flow path.

Claims (13)

  1.  回転体を支持するための軸受と、
     前記軸受に予圧を印加する弾性体を含む予圧部と、
     前記軸受を固定するハウジングと、
     前記ハウジングおよび前記予圧部のいずれか一方に固定され、熱流束を検出する熱流束センサとを備える、軸受装置。
    A bearing for supporting the rotating body,
    A preload portion including an elastic body for applying a preload to the bearing,
    A housing for fixing the bearing,
    A bearing device, comprising: a heat flux sensor that is fixed to one of the housing and the preload portion and that detects a heat flux.
  2.  前記熱流束センサは、前記回転体に対向するように配置されている、請求項1に記載の軸受装置。 The bearing device according to claim 1, wherein the heat flux sensor is arranged so as to face the rotating body.
  3.  前記熱流束センサは、前記軸受に対向するように配置されている、請求項1に記載の軸受装置。 The bearing device according to claim 1, wherein the heat flux sensor is arranged so as to face the bearing.
  4.  前記熱流束センサは、前記ハウジングにおいて前記回転体に面する内周面に固定されている、請求項1~請求項3のいずれか1項に記載の軸受装置。 The bearing device according to any one of claims 1 to 3, wherein the heat flux sensor is fixed to an inner peripheral surface of the housing facing the rotating body.
  5.  前記ハウジングは、前記回転体に面する内周面から前記回転体に向けて設けた台座を含み、
     前記熱流束センサは、前記台座に固定されている、請求項1~請求項3のいずれか1項に記載の軸受装置。
    The housing includes a pedestal provided from an inner peripheral surface facing the rotating body toward the rotating body,
    The bearing device according to claim 1, wherein the heat flux sensor is fixed to the pedestal.
  6.  前記予圧部は、前記回転体および前記軸受のいずれか一方に面する表面部分を含み、
     前記熱流束センサは前記表面部分に固定されている、請求項1~請求項3のいずれか1項に記載の軸受装置。
    The preload portion includes a surface portion facing one of the rotating body and the bearing,
    The bearing device according to any one of claims 1 to 3, wherein the heat flux sensor is fixed to the surface portion.
  7.  前記予圧部は、
     前記弾性体としてのばねと、
     前記ばねを収容するばねホルダとを含み、
     前記表面部分は前記ばねホルダの表面の一部である、請求項6に記載の軸受装置。
    The preload section is
    A spring as the elastic body,
    A spring holder for accommodating the spring,
    The bearing device according to claim 6, wherein the surface portion is a part of a surface of the spring holder.
  8.  前記予圧部は、
     前記弾性体としてのばねと、
     前記ばねと前記軸受との間に配置される中間部材とを含み、
     前記表面部分は前記中間部材の表面の一部である、請求項6に記載の軸受装置。
    The preload section is
    A spring as the elastic body,
    An intermediate member disposed between the spring and the bearing,
    The bearing device according to claim 6, wherein the surface portion is a part of a surface of the intermediate member.
  9.  前記軸受に隣接して配置される間座を備え、
     前記間座には、前記軸受に潤滑用流体を供給するための供給口が形成され、
     前記間座は、前記回転体および前記軸受のいずれか一方に面する表面部分を含み、
     前記熱流束センサは前記表面部分に固定されている、請求項1~請求項3のいずれか1項に記載の軸受装置。
    A spacer disposed adjacent to the bearing,
    In the spacer, a supply port for supplying a lubricating fluid to the bearing is formed,
    The spacer includes a surface portion facing one of the rotating body and the bearing,
    The bearing device according to any one of claims 1 to 3, wherein the heat flux sensor is fixed to the surface portion.
  10.  前記熱流束センサの出力情報をワイヤレス送信する送信部を備え、
     前記送信部は、前記軸受の異常診断を行う受信装置に前記熱流束センサの出力情報を送信するように構成される、請求項1~請求項9のいずれか1項に記載の軸受装置。
    A transmitter for wirelessly transmitting output information of the heat flux sensor,
    The bearing device according to any one of claims 1 to 9, wherein the transmission unit is configured to transmit the output information of the heat flux sensor to a reception device that diagnoses an abnormality of the bearing.
  11.  前記熱流束センサの出力情報に基づいて前記軸受の異常を診断する異常診断部を備える、請求項1~請求項10のいずれか1項に記載の軸受装置。 The bearing device according to any one of claims 1 to 10, further comprising an abnormality diagnosis unit that diagnoses an abnormality of the bearing based on output information of the heat flux sensor.
  12.  前記熱流束センサとは別に配置した他のセンサを備え、
     前記熱流束センサの出力情報および前記他のセンサの出力情報は前記異常診断部に送信され、
     前記異常診断部は、前記熱流束センサの出力情報、前記他のセンサの出力情報、および前記回転体の回転速度の情報に基づき、前記軸受の異常を診断する、請求項11に記載の軸受装置。
    It comprises another sensor arranged separately from the heat flux sensor,
    Output information of the heat flux sensor and output information of the other sensor are transmitted to the abnormality diagnosis unit,
    The bearing device according to claim 11, wherein the abnormality diagnosis unit diagnoses an abnormality of the bearing based on output information of the heat flux sensor, output information of the other sensor, and information of a rotation speed of the rotating body. ..
  13.  請求項1~請求項12のいずれか1項に記載の軸受装置と、
     前記回転体を回転させるモータとを備える、スピンドル装置。
    A bearing device according to any one of claims 1 to 12,
    A spindle device, comprising: a motor that rotates the rotating body.
PCT/JP2020/005024 2019-02-12 2020-02-10 Bearing device and spindle device WO2020166542A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080013803.4A CN113453826A (en) 2019-02-12 2020-02-10 Bearing device and spindle device
KR1020217026651A KR20210125012A (en) 2019-02-12 2020-02-10 Bearing unit and spindle unit
DE112020000770.7T DE112020000770T5 (en) 2019-02-12 2020-02-10 Storage device and spindle device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-022701 2019-02-12
JP2019022701 2019-02-12
JP2019037713A JP2020133889A (en) 2019-02-12 2019-03-01 Bearing device and spindle device
JP2019-037713 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020166542A1 true WO2020166542A1 (en) 2020-08-20

Family

ID=72044656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005024 WO2020166542A1 (en) 2019-02-12 2020-02-10 Bearing device and spindle device

Country Status (1)

Country Link
WO (1) WO2020166542A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059573A1 (en) * 2020-09-16 2022-03-24 Ntn株式会社 Bearing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155918A (en) * 1979-05-22 1980-12-04 Nippon Seiko Kk Rolling bearing
JP2004169756A (en) * 2002-11-18 2004-06-17 Nsk Ltd Bearing device with sensor
JP2007177850A (en) * 2005-12-27 2007-07-12 Ntn Corp Tapered roller bearing
JP2012037013A (en) * 2010-08-11 2012-02-23 Ntn Corp Bearing device
JP2016011691A (en) * 2014-06-27 2016-01-21 Ntn株式会社 Lubricant supply unit and bearing device
JP2017187451A (en) * 2016-04-08 2017-10-12 株式会社デンソー Monitoring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155918A (en) * 1979-05-22 1980-12-04 Nippon Seiko Kk Rolling bearing
JP2004169756A (en) * 2002-11-18 2004-06-17 Nsk Ltd Bearing device with sensor
JP2007177850A (en) * 2005-12-27 2007-07-12 Ntn Corp Tapered roller bearing
JP2012037013A (en) * 2010-08-11 2012-02-23 Ntn Corp Bearing device
JP2016011691A (en) * 2014-06-27 2016-01-21 Ntn株式会社 Lubricant supply unit and bearing device
JP2017187451A (en) * 2016-04-08 2017-10-12 株式会社デンソー Monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059573A1 (en) * 2020-09-16 2022-03-24 Ntn株式会社 Bearing device

Similar Documents

Publication Publication Date Title
CA2884602C (en) Rotary machine, bearing and method for manufacturing a rotary machine
EP2746610B1 (en) State detection device for bearing roller, roller bearing device with sensor, and wind turbine generator
JP5564963B2 (en) Bearing device and spindle device of machine tool
JP7362239B2 (en) Bearing devices and spindle devices
JP4993492B2 (en) Bearing device
WO2020004430A1 (en) Preload sensor, bearing device, bearing, and spacer
KR20210125012A (en) Bearing unit and spindle unit
WO2020166542A1 (en) Bearing device and spindle device
JP5842965B2 (en) Spindle device of machine tool provided with bearing device with load sensor
WO2019159838A1 (en) Bearing device and spindle device
WO2022065199A1 (en) Bearing device
WO2021131662A1 (en) Bearing device, spindle device, bearing and spacer
CN110691917A (en) Pretightening force measurement by means of force measuring bolts
JP6967495B2 (en) Bearing equipment
KR20220069049A (en) Bearing devices and spacers
JP2005133891A (en) Preload measuring method and device for bearing
WO2021065361A1 (en) Bearing device and machine tool
CN113056620B (en) Bearing device
JP2023047505A (en) Bearing device and spindle device
JP2024039154A (en) Bearing devices and spindle devices
JP2020070861A (en) Bearing device, spindle device, and abnormality determination method
JP2020070862A (en) Bearing device
JP2008298251A (en) Bearing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217026651

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20756655

Country of ref document: EP

Kind code of ref document: A1