WO2019159838A1 - Bearing device and spindle device - Google Patents

Bearing device and spindle device Download PDF

Info

Publication number
WO2019159838A1
WO2019159838A1 PCT/JP2019/004617 JP2019004617W WO2019159838A1 WO 2019159838 A1 WO2019159838 A1 WO 2019159838A1 JP 2019004617 W JP2019004617 W JP 2019004617W WO 2019159838 A1 WO2019159838 A1 WO 2019159838A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
heat flux
flux sensor
outer ring
spacer
Prior art date
Application number
PCT/JP2019/004617
Other languages
French (fr)
Japanese (ja)
Inventor
勇介 澁谷
小池 孝誌
靖之 福島
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018190852A external-priority patent/JP7362239B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP19754234.3A priority Critical patent/EP3754218A4/en
Priority to CN201980010890.5A priority patent/CN111670311B/en
Publication of WO2019159838A1 publication Critical patent/WO2019159838A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Definitions

  • This invention relates to a bearing device and a spindle device.
  • Patent Document 1 In the bearing device described in Japanese Patent Application Laid-Open No. 2017-26078 (Patent Document 1), in order to prevent problems such as seizure of the bearing, a non-contact sensor that measures the temperature of a pump for supplying oil to the bearing portion and the lubrication portion ( An attachment having an infrared sensor is provided on the bearing end surface. When the time change of the temperature obtained from the temperature sensor exceeds the threshold value, the bearing is lubricated by the pump to prevent the temperature from rising.
  • JP 2017-26078 A Japanese Unexamined Patent Publication No. 2016-166832
  • the non-contact temperature sensor infrared sensor
  • the non-contact temperature sensor is difficult to measure the temperature of the metal surface having a low infrared emissivity, and therefore uses a resin cage as a measurement object.
  • the non-contact temperature sensor has a lower measurement accuracy than the contact-type temperature sensor, and thus may be erroneously detected although no abnormality has occurred.
  • Lubricating oil becomes mist and enters between the object to be measured and the non-contact temperature sensor, making accurate temperature measurement difficult.
  • the present invention is for solving the above-described problems, and an object of the present invention is to provide a bearing device capable of detecting a temperature change of a bearing with high accuracy and speed, and a spindle device including the bearing device. That is.
  • the present invention is a bearing device that supports a rotating body with a single bearing or a structure of a plurality of bearings and a spacer, and the bearing includes an inner ring and an outer ring.
  • the bearing device includes a heat flux sensor that is disposed on an inner ring, an outer ring, or a spacer and detects a heat flux.
  • the spacer includes an outer ring spacer and an inner ring spacer.
  • the heat flux sensor is disposed in the non-rotating side spacer of the inner ring spacer and the outer ring spacer.
  • the spacer includes an outer ring spacer and an inner ring spacer.
  • the heat flux sensor is disposed in the rotation side spacer of the inner ring spacer and the outer ring spacer.
  • the spacer includes an outer ring spacer and an inner ring spacer.
  • the outer ring spacer includes a main body part and a protruding part that protrudes from the side surface of the main body part toward the outer diameter surface of the inner ring.
  • the heat flux sensor is fixed to the protruding portion so as to face the outer diameter surface of the inner ring.
  • the heat flux sensor is disposed on a non-rotating raceway ring of the inner ring and the outer ring.
  • the heat flux sensor is disposed on the rotating raceway of the inner ring and the outer ring.
  • the heat flux sensor is disposed inside the bearing in the width direction at a portion other than the raceway surface of the outer ring surface of the inner ring or a portion other than the raceway surface of the inner ring surface of the outer ring.
  • the bearing device further includes a transmitter that wirelessly transmits output information of the heat flux sensor to the outside.
  • the transmission unit is configured to transmit the output information of the heat flux sensor to a reception device that performs bearing abnormality determination.
  • the bearing device further includes a temperature sensor arranged separately from the heat flux sensor, and an abnormality diagnosis unit that diagnoses an abnormality of the bearing based on the output of the heat flux sensor, the output of the temperature sensor, and the rotation speed signal.
  • the present invention it is possible to detect the temperature change of the bearing accurately and quickly without limiting the material used for the bearing.
  • FIG. 5 is a diagram for explaining the characteristics of the heat flux sensor used in the first embodiment.
  • FIG. 3A is a graph in which the vertical axis indicates the output of the heat flux sensor, and the horizontal axis indicates the passage of time before and after the occurrence of the abnormality.
  • the vertical axis represents the output of the temperature sensor, and the horizontal axis represents the time elapsed before and after the occurrence of the abnormality.
  • FIG. 6 is a diagram illustrating a configuration of a bearing device according to a third embodiment. It is a figure which shows the structure which transmits / receives the output of a sensor wirelessly.
  • FIG. 6 is a diagram illustrating a configuration of a bearing device according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a bearing device according to a fifth embodiment.
  • FIG. 16 is a cross-sectional view taken along line XVI-XVI in FIG. 15.
  • FIG. 16 is a cross-sectional view taken along line XVII-XVII in FIG.
  • FIG. 16 is a cross-sectional view taken along line XVII-XVII in FIG.
  • FIG. 10 is a diagram showing a configuration of a modified example of the bearing device according to the fifth embodiment.
  • FIG. 10 is a diagram showing a configuration of another modification of the bearing device according to the fifth embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a spindle device including a bearing device according to a fifth embodiment. It is a figure which shows an example of the control apparatus of the spindle apparatus shown by FIG. It is a figure which shows another example of the control apparatus of the spindle apparatus shown by FIG. It is a figure which shows the structure of a spindle apparatus provided with the control apparatus shown by FIG. It is a figure which shows another example of the control apparatus of the spindle apparatus shown by FIG.
  • FIG. 10 is a diagram illustrating a configuration of a modified example of a spindle device including the bearing device according to the fifth embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a bearing device 400 according to the first embodiment.
  • the bearing device shown in FIG. 1 is a bearing device that supports a rotating body with a structure in which a spacer is sandwiched between a single bearing or a plurality of bearings.
  • the bearing 1 includes an inner ring 4, an outer ring 2, a rolling element 3, and a cage 5.
  • the bearing 1 is a rolling bearing, for example, an angular ball bearing. That is, the rolling element 3 is a ball, for example.
  • the bearing device includes a bearing 1 and a heat flux sensor 7 that is disposed on the outer ring 2 and detects a heat flux.
  • the heat flux sensor 7 is attached to the outer ring 2 that is a non-rotating wheel, and a signal is output to an abnormality diagnosis unit (not shown) through the wiring 30. More preferably, as shown in FIG. 1, the heat flux sensor 7 is disposed inside the bearing 1 in the width direction of the inner diameter surface 6 of the outer ring 2 other than the raceway surface 6 ⁇ / b> A that contacts the rolling element 3.
  • FIG. 2 is a view showing the structure around the spindle of the machine tool on which the bearing device of the present embodiment is arranged.
  • the main shaft 17 is directly connected to the rotation shaft of the drive motor 80.
  • a bearing 1 is disposed at a boundary portion between the housing 18 and the main shaft 17.
  • the main shaft 17 is rotatably supported by the four bearings 1.
  • a spacer 40 is disposed between the bearings 1.
  • the housing 18 is provided with an inlet / outlet for air-cooled air (air oil or oil mist), and the heat generated in the bearing 1 between the main shaft 17 and the housing 18 rotating at high speed is cooled by the air flow indicated by the arrow.
  • air-cooled air air oil or oil mist
  • the heat flux sensor 7 is used to measure a change in bearing temperature during operation.
  • a heat flux sensor described in JP-A-2016-166832 Patent Document 2
  • the output voltage of the heat flux sensor is generated from a slight temperature difference between the front and back of the sensor.
  • the heat flux sensor 7 converts the heat flow into an electrical signal using the Seebeck effect.
  • FIGS. 3A and 3B are diagrams for explaining the characteristics of the heat flux sensor used in the first embodiment.
  • 3A and 3B schematically show the difference between the output F1 of the heat flux sensor and the output T1 of a thermocouple generally used for temperature measurement.
  • the output T1 of the thermocouple changes at the time t2 delayed from the time t1, but the gradient of the output T1 does not change as much as the output F1 of the heat flux sensor.
  • the heat flux sensor 7 can quickly detect the unsteady state immediately after the occurrence of the abnormality.
  • FIG. 4 is a diagram illustrating an arrangement example of the heat flux sensor as viewed from the axial direction.
  • the heat flux sensors 7 are provided at equal intervals in the circumferential direction on the inner diameter surface 6 of the outer ring 2 of the outer ring 2.
  • the heat flux sensor 7 may be attached to one place on the circumference of the inner ring 4 or the outer ring 2, but the temperature distribution may be monitored by attaching the heat flux sensor 7 to a plurality of places at equal intervals. Therefore, it is possible to detect an abnormality more accurately and quickly.
  • a heat flux sensor 7 is affixed to the outer ring 2.
  • a heat flux sensor 7 is affixed to the inner diameter surface 6 of the outer ring.
  • the heat flux sensor 7 generates an output voltage based on a temperature difference between the temperature of the attached outer ring 2 and the temperature of the rotating atmosphere 8 generated by the rotation of the inner ring 4, the rolling element 3, the cage 5, and the like.
  • the output F1 of the heat flux sensor 7 changes to a constant output or a gradual change depending on the change in the rotational speed and the operating state.
  • a temperature change occurs in such a part, a change in the heat flow is large, and a large change appears in the output F1 of the heat flux sensor 7.
  • the heat flux sensor 7 is attached so as to be close to the rotation side member.
  • the heat flux sensor 7 generates an output voltage due to a temperature difference between the surface temperature of the non-rotating member and the rotating member.
  • the amount of change in the output voltage of the heat flux sensor is monitored, and when a change deviating from the steady state (abnormal change) is observed, it is determined that an abnormality has occurred in the bearing.
  • the heat capacity of the housing and rotating shaft that holds the bearing is large, so the heat generated between the rolling element of the bearing and the raceway surface causes the housing and rotation Transmission to the shaft causes a delay until the temperature of the inner ring, outer ring, or spacer rises.
  • the seizure precursor of a bearing it is assumed that the precursor cannot be detected because there is a delay in temperature rise. If the sensor is used, it changes slowly when viewed in terms of temperature, but changes rapidly in the heat flow, so that rapid heat generation can be detected quickly.
  • FIG. 5 shows an example in which a temperature sensor 22 is provided on the outer ring 2 of the bearing.
  • the bearing device includes, in addition to the bearing 1 and the heat flux sensor 7, a temperature sensor 22 arranged separately from the heat flux sensor 7, an output of the heat flux sensor 7, and an output of the temperature sensor 22.
  • an abnormality diagnosis unit 100 for diagnosing a bearing abnormality based on the rotation speed signal.
  • FIG. 6 is a flowchart for explaining a first example of abnormality determination processing executed by the abnormality diagnosis apparatus.
  • abnormality diagnosis unit 100 monitors the output of the sensor. Examples of the sensor include a heat flux sensor 7, a temperature sensor 22, and a rotation speed detection sensor (not shown).
  • the abnormality diagnosis unit 100 compares a threshold provided corresponding to the output of each sensor with a value detected by the sensor, and determines whether or not the threshold has been exceeded.
  • the threshold determination may be performed for each sensor output individually or may be performed for a combination of sensors. As an example of the combination, it may be determined that an abnormality has occurred when the rotation speed exceeds a predetermined rotation speed, the temperature exceeds a predetermined temperature, and the output of the heat flux sensor exceeds a predetermined threshold.
  • step S2 If the detected value is smaller than the threshold value in step S2, the sensor monitoring process in step S1 is repeated. On the other hand, when the detected value is larger than the threshold value in step S2, abnormality diagnosis unit 100 outputs an instruction signal for avoiding the abnormal operation so that the abnormality avoiding operation in step S3 is executed.
  • An example of the abnormal avoidance operation control executed by the machine tool in response to this instruction signal is as follows. For example, control to lower the rotation speed than the current control, control to reduce the cutting depth of the blade smaller than the present, control to supply the lubricant or increase the supply amount, stop processing (cutting is stopped and the spindle rotation speed is reduced or rotated) Stop).
  • control to lower the rotation speed than the current control control to reduce the cutting depth of the blade smaller than the present, control to supply the lubricant or increase the supply amount, stop processing (cutting is stopped and the spindle rotation speed is reduced or rotated) Stop).
  • stop processing cutting is stopped and the spindle rotation speed is reduced or rotated
  • FIG. 7 is a flowchart for explaining a second example of the abnormality determination process executed by the abnormality diagnosis apparatus.
  • the abnormality diagnosis unit 100 monitors the output of the sensor. Examples of the sensor include a heat flux sensor 7, a temperature sensor 22, and a rotation speed detection sensor (not shown). Subsequently, in step S12, the abnormality diagnosis unit 100 calculates the rate of change per unit time of the output of each sensor, and then determines whether the rate of change calculated in step S13 exceeds the determination value (change rate). Judgment).
  • the change rate determination may be performed individually for each sensor output, or may be performed for a combination of sensors.
  • the combination when the rotation speed is a predetermined rotation speed, it may be determined that an abnormality has occurred when the temperature exceeds the predetermined temperature and the increase rate of the output of the heat flux sensor exceeds the determination value. .
  • abnormality diagnosis unit 100 outputs an instruction signal for avoiding the abnormal operation so that the abnormality avoiding operation in step S14 is executed. Also in this case, in order to suppress erroneous determination due to noise or the like, an abnormality may be determined when an abnormality is detected a plurality of times in succession.
  • the temperature of the inner ring or outer ring of the non-rotating side bearing is used as a reference temperature, and the heat flux generated by the difference between the temperature of the surface of the heat flux sensor and the reference temperature is detected by the heat flux sensor.
  • the heat flux sensor detects an abnormality (a sign of seizure or the like) occurring in the bearing from the change in electromotive force at an early stage. For this reason, it is possible to prevent the bearing from being damaged by reducing the operating speed of the machine tool.
  • the heat flux sensor is provided on the non-rotating side, the wiring for transmitting the sensor output to the outside becomes easy.
  • the material used for the bearing is not limited, and by using the heat flux sensor, it is not necessary to consider the emissivity of the measurement unit like a radiation thermometer.
  • thermometer By using a heat flux sensor, it is possible to detect a minute change in heat flux, so that heat generation can be detected more quickly than a thermometer.
  • the bearing device 401 supports the rotating body with a structure in which a spacer is sandwiched between two bearings.
  • a heat flux sensor is attached to the non-rotating side of the spacer (for example, the outer ring spacer).
  • FIG. 8 shows a state in which the heat flux sensor 7 is attached to the outer ring spacer 13 in an example in which a bearing device is incorporated in the main spindle 17 of the machine tool. That is, the bearing device 401 according to the second embodiment includes the bearing 1, the outer ring spacer 13, and the heat flux sensor 7 that is disposed in the outer ring spacer 13 and detects the heat flux generated from the bearing 1.
  • an inner ring spacer 14 and an outer ring spacer 13 are inserted between two rolling bearings 1.
  • the main shaft 17 is inserted into the inner diameter portion 9 and the inner ring spacer inner diameter portion 16 of the inner ring 4, and the outer diameter portion 10 and the outer ring spacer outer diameter portion 15 of the outer ring 2 are inserted into the housing 18 to support the rotation of the main shaft 17. Yes.
  • the bearing 1 When the main shaft 17 rotates, the bearing 1 generates heat due to contact between the inner ring rolling element raceway surface 12 and the rolling element 3 and contact between the outer ring rolling element raceway surface 11 and the rolling element 3. At this time, the temperature of the inner ring 4 in which the main shaft 17 is inserted tends to be higher than that of the outer ring 2 inserted in the housing 18.
  • the heat capacity of the housing 18 and the main shaft 17 that holds the bearing 1 is large, and thus occurs between the rolling element 3 of the bearing 1 and the raceway surface 11.
  • the transmitted heat is transmitted to the housing 18 and the main shaft 17, and a delay occurs until the temperature of the inner ring 4, the outer ring 2, or the spacers 13 and 14 rises. For this reason, if the temperature of each component is measured by the temperature sensor and an attempt is made to determine a bearing abnormality, the detection of the precursor is delayed.
  • the difference between the temperature of the rotating atmosphere 8 generated by the rotation of the inner ring 4, the rolling element 3, and the cage 5 and the temperature of the outer ring 2 is detected by the heat flux sensor 7, and a voltage output different from the steady operation state is detected. If it is, it is judged as abnormal.
  • the bearing apparatus of the same structure is applicable also in an industrial field or a motor vehicle field
  • the heat flux sensor 7 is disposed at the center of the outer ring spacer 13, but the heat flux sensor 7 may be disposed at a position close to the inner ring 4.
  • the inner ring 4, the outer ring 2, and the rolling element 3, which are the heat generating parts can be arranged close to the contact part, the inner ring rolling element raceway surface 12 and the outer ring rolling element raceway surface 11, and the heat flow can be detected quickly. it can.
  • FIG. 9 is a view showing a modified example in which the heat flux sensor 7 is arranged at a position close to the inner ring 4.
  • a protrusion 19 may be provided so that the end of the outer ring spacer 13 is close to the inner ring outer diameter surface 20, and the heat flux sensor 7 may be fixed to the inner diameter surface 21 of the protrusion 19.
  • the spacer includes an outer ring spacer 13 (main body part) and a protruding part 19 that protrudes from the side surface of the outer ring spacer 13 (main body part) toward the outer diameter surface of the inner ring 4.
  • the heat flux sensor 7 is fixed to the protruding portion 19 so as to face the outer diameter surface of the inner ring 4.
  • the outer ring spacer 13 is adjacent to the outer ring 2 in the axial direction of the bearing 1 and is spaced from the inner ring spacer 14 in the radial direction of the bearing 1.
  • the heat flux sensor 7 since the heat flux sensor 7 directly faces the inner ring outer diameter surface 20, the accuracy of abnormality detection can be improved.
  • the heat flux sensor 7 is provided on the left and right protrusions 19, but may be provided on only one of the left and right protrusions 19.
  • the heat flux sensor 7 When the heat flux sensor 7 is provided in the protrusion 19 projecting from the inner ring provided in the spacer, the heat flux sensor can be disposed in the vicinity of the heat generating portion, and the detection speed of the abnormality can be increased.
  • the heat flux sensor 7 may be arranged near the bearing side surface 24. By doing so, the heat flux sensor can be provided even if there is no space for providing the heat flux sensor in the bearing or the spacer.
  • FIG. 10 is a diagram showing a modification in which a temperature sensor is added to the spacer.
  • a temperature sensor 22 may be provided in the outer ring spacer 13, and the temperature sensor 22 may be disposed in the vicinity where the outer ring spacer 13 and the outer ring 2 are in contact with each other.
  • FIG. 11 is a diagram showing a modification in which a non-contact temperature sensor is added to the spacer.
  • a non-contact temperature sensor 23 is provided in the outer ring spacer 13 and the temperature of the inner ring 4 is measured using a non-contact temperature sensor 23 (for example, an infrared temperature sensor), and the output of the heat flux sensor 7. Therefore, the abnormality diagnosis unit 100 may determine a sign of a bearing abnormality (such as seizure).
  • a bearing abnormality such as seizure
  • the inner ring temperature from the temperature of the outer ring 2, the number of rotations of a rotating body such as a bearing, and the output of the heat flux sensor 7.
  • the bearing load applied to the bearing portion can be estimated from the estimated inner ring temperature, outer ring temperature, and rotation speed.
  • the bearing load estimation method will be described below.
  • the temperature rises and expands when the inner ring rotates while receiving the preload. Therefore, the preload of the bearing rises from the initial set value. If this relationship is prepared by an arithmetic expression or the like, the preload can be estimated. Parameters used in the arithmetic expression are, for example, the rotational speed of the bearing, the outer ring temperature, the inner ring temperature, the heat flux sensor output, and the like.
  • the output of the heat flux sensor is not the temperature of the measurement object itself, it is possible to detect the change in the heat flow that occurs when the measurement object changes in temperature. It can be used as an alternative to detecting temperature with a thermocouple.
  • the preload load estimation method described in JP 2009-68533 A (paragraph 0008) can be used.
  • the heat flux sensor 7 is arranged in the spacer. As a result, it is possible to quickly detect a sign of occurrence of an abnormality in the bearing without performing special processing on the bearing itself.
  • the temperature of the inner and outer rings of the bearing is estimated from the output of the heat flux sensor, the bearing rotation speed (support section rotation speed), and the temperature at the location where the heat flux sensor is attached. Not only the generation but also the load applied to the bearing device can be estimated.
  • FIG. 12 is a diagram illustrating a configuration of the bearing device 402 according to the third embodiment.
  • the example shown in FIG. 12 shows a state where the rotating wheel is the outer ring 2 and the non-rotating wheel is the inner ring 4 and the heat flux sensor 7 is attached to the inner ring 4 that is a non-rotating wheel.
  • the heat flux sensor 7 is disposed inside the bearing 1 in the width direction on the outer diameter surface 106 of the inner ring 4 other than the raceway surface 106 ⁇ / b> A that contacts the rolling element 3.
  • the heat flux sensor 7 is attached to the inner ring 4.
  • the outer ring 2 is a rotating ring and the inner ring 4 is a non-rotating ring.
  • the structure shown in FIG. 12 is applied, an abnormality occurring in the bearing is detected using the output from the heat flux sensor 7. It is possible. If the output information generated by the heat flux sensor 7 is transmitted to the outside by the wireless transmission device 200, the same diagnosis can be performed by the external abnormality diagnosis device. In addition, Preferably, you may further provide the electric power feeder which supplies electric power to this.
  • the power supply device in addition to the battery, a power generation device that generates power by a temperature difference or vibration, an electromagnetic induction generator, or the like can be used.
  • FIG. 13 is a diagram illustrating a configuration in which sensor outputs are transmitted and received wirelessly.
  • the wireless transmission device 200 (FIG. 12) includes a signal processing unit 201 and a data transmission unit 202.
  • the signal processing unit 201 receives the output of the heat flux sensor 7, removes noise components, performs analog-digital conversion processing, modulation processing, and the like, and outputs data for transmission to the data transmission unit 202.
  • the data transmission unit 202 transmits data to the reception device 300 wirelessly.
  • the receiving device 300 is installed outside the machine tool.
  • the receiving apparatus 300 includes a data receiving unit 301 that wirelessly receives data, a signal processing unit 302 that demodulates data from a received signal, and an abnormality determination unit 303 that receives data from the signal processing unit 302 and determines a bearing abnormality. including. If the abnormality determination unit 303 is inserted after the signal processing unit 201, the amount of transmission data can be reduced and the power consumption can be reduced. Note that the determination process of abnormality determination unit 303 is the same as the process described with reference to FIGS. 6 and 7, and therefore description thereof will not be repeated.
  • the bearing device receives the output information of the heat flux sensor 7 wirelessly from the wireless transmitter 200 and receives the output information of the heat flux sensor 7 from the wireless transmitter 200 to determine the abnormality of the bearing.
  • a receiving apparatus 300 receives the detection result of the heat flux sensor 7 to the outside. For this reason, as in the first and second embodiments, a sign of a bearing abnormality can be quickly detected.
  • FIG. 14 is a diagram illustrating a configuration of the bearing device 403 according to the fourth embodiment.
  • the bearing device supports the rotating body with a structure in which a spacer is sandwiched between two bearings, and the inner ring is on the non-rotating side.
  • the heat flux sensor 7 is attached to the non-rotating side of the spacer (for example, the inner ring spacer 14).
  • the bearing device is arranged in the inner ring spacer 14 and wirelessly transmits the output information of the heat flux sensor 7 to the outside, and the output of the heat flux sensor 7 from the wireless transmitter 200. It further includes a receiving device 300 (FIG. 13) that receives information and determines abnormality of the bearing 1.
  • the outer ring 2 is a rotating ring and the inner ring 4 is a non-rotating ring. Even if the relationship between the rotating wheel and the non-rotating wheel is opposite to that shown in FIG. 8, if the structure shown in FIG. 14 is applied, an abnormality occurring in the bearing 1 can be detected using the output from the heat flux sensor 7. Is possible. If the output information generated by the heat flux sensor 7 is transmitted to the outside by the wireless transmission device 200, the same diagnosis can be performed by the external abnormality diagnosis device. In addition, Preferably, you may further provide the electric power feeder which supplies electric power to this.
  • a power generation device that generates power by a temperature difference or vibration, an electromagnetic induction generator, or the like can be used. Since wireless transmitting apparatus 200 has been described with reference to FIG. 13, description thereof will not be repeated.
  • a temperature sensor 22 may be attached to the inner ring spacer 14 in order to measure the temperature in the vicinity of the inner ring.
  • the bearing device of the fourth embodiment even when the inner ring is a fixed ring and the outer ring is a rotating ring, the detection result of the heat flux sensor can be output to the outside. Therefore, as in the first to third embodiments, it is possible to quickly detect a sign of a bearing abnormality. Further, since the bearing itself does not require special processing, the spacer and the heat flux sensor can be used as they are even if the bearing is replaced due to deterioration over time, as in the second embodiment.
  • the bearing device 404 according to the fifth embodiment has basically the same configuration as the bearing device 401 according to the second embodiment, and the outer ring 2 is configured as a fixed ring.
  • the bearing device according to the fifth embodiment further includes a supply path for supplying the lubricating fluid to the bearing 1, and the arrangement of the heat flux sensor 7 in the circumferential direction of the bearing apparatus is limited based on the arrangement of the supply path. This is different from the bearing device according to the second embodiment.
  • the lubricating fluid includes lubricating oil, and includes, for example, lubricating oil and air.
  • FIGS. 15 to 17 show a configuration example of the bearing device according to the fifth embodiment, in which the first bearing 1a and the second bearing 1b sandwich the outer ring spacer 13 and the inner ring spacer 14 in the axial direction.
  • positioned is shown.
  • the inner ring spacer 14, the main shaft 17, the housing 18, and the outer cylinder 41 are not illustrated. 16 and 17, the main shaft 17 is not viewed in cross section.
  • the first bearing 1a and the second bearing 1b are, for example, angular ball bearings.
  • the combination of the 1st bearing 1a and the 2nd bearing 1b may be selected arbitrarily, it is a back surface combination, for example.
  • the 1st bearing 1a and the 2nd bearing 1b have the mutually equivalent structure, for example.
  • a first supply path 31a for supplying lubricating fluid to the internal space of the first bearing 1a
  • a second supply path 31b for supplying a lubricating fluid to the internal space of the second bearing 1b.
  • the first supply path 31a and the second supply path 31b are connected to a lubricating fluid supply apparatus (not shown) arranged outside the bearing device via an external supply path 34 arranged outside the bearing apparatus.
  • the first supply path 31 a has a first supply port 32 a disposed facing the internal space of the first bearing 1 a and a first inflow port 33 a connected to the external supply path 34.
  • the first supply path 31a and the second supply path 31b are disposed, for example, inside the outer ring spacer 13.
  • the first supply port 32a is disposed, for example, on the axial end surface 13a of the outer ring spacer 13.
  • the first inflow port 33a is disposed, for example, on the outer diameter surface of the outer ring spacer 13.
  • the second supply path 31 b has a second supply port 32 b disposed facing the internal space of the second bearing 1 b and a second inflow port 33 b connected to the external supply path 34.
  • the 2nd supply port 32b is arrange
  • the second inflow port 33b is disposed on the outer diameter surface of the outer ring spacer 13, for example.
  • the end surface 13a and the end surface 13b in the axial direction of the outer ring spacer 13 have, for example, the same configuration.
  • the external supply path 34 is disposed, for example, inside the housing 18.
  • the external supply path 34 includes a branch portion, a third outlet port 34a and a fourth outlet port 34b that are located downstream of the branch portion in the flow direction of the lubricating fluid, and an upstream side of the branch portion in the flow direction. It has the 3rd inflow port 34c located.
  • the third outlet 34a is connected to the first inlet 33a.
  • the fourth outlet 34b is connected to the second inlet 33b.
  • the 3rd outflow port 34a and the 4th outflow port 34b are arrange
  • the third inflow port 34c is connected to a lubricating fluid supply device via a pipe or the like (not shown).
  • the third inflow port 34c is provided in the front lid 60 connected to, for example, the axial end surface of the housing 18.
  • the bearing device according to the fifth embodiment is provided with a discharge path for discharging the lubricating fluid in the internal space of each bearing 1.
  • the discharge path the first discharge path 35a for discharging the lubricating fluid from the internal space of the first bearing 1a and the inside of the second bearing 1b are used.
  • a second discharge path 35b for supplying a lubricating fluid to the space.
  • the first discharge passage 35a and the second discharge passage 35b are connected to a lubricating fluid discharge device (not shown) disposed outside the bearing device via an external discharge passage 38 disposed outside the bearing device.
  • the first discharge path 35a has a first discharge port 36a disposed facing the internal space of the first bearing 1a, and a fifth outlet 37a connected to the external discharge path 38.
  • the first discharge path 35a is disposed, for example, between the outer ring 2a of the first bearing 1a and the outer ring spacer 13.
  • a groove portion that is continuous with the end surface 13 a is formed on the connection surface that is in contact with the end surface of the outer ring 2 a in the axial direction.
  • the first discharge path 35a is defined by, for example, the end surface of the outer ring 2a and the inner peripheral surface of the groove formed in the outer ring spacer 13.
  • the second discharge path 35b has a second discharge port 36b disposed facing the internal space of the second bearing 1b, and a sixth outlet 37b connected to the external discharge path 38.
  • the second discharge path 35b is disposed, for example, between the outer ring 2b of the second bearing 1b and the outer ring spacer 13.
  • a groove portion that is continuous with the end surface 13 b is formed on the connection surface that is in contact with the axial end surface of the outer ring 2 b.
  • the second discharge path 35b is partitioned by, for example, the end surface of the outer ring 2b and the inner peripheral surface of the groove portion formed in the outer ring spacer 13.
  • the first discharge port 36 a is disposed at a distance from the first supply port 32 a in the circumferential direction when the bearing device is viewed from the axial direction.
  • the center angle formed by the centers of the first supply port 32a and the first discharge port 36a with respect to the center axis of the bearing device is, for example, 180 degrees.
  • the second discharge port 36b is disposed at a distance from the second supply port 32b in the circumferential direction when the bearing device is viewed from the axial direction.
  • the center angle formed by the centers of the second supply port 32b and the second discharge port 36b with respect to the central axis of the bearing device is, for example, 180 degrees.
  • a first supply path 31a, a first supply port 32a, an internal space of the first bearing 1a, a first discharge port 36a, and a first discharge path 35a are sequentially connected to the inside of the bearing device according to the fifth embodiment.
  • a road is formed.
  • the first channel and the second channel have, for example, the same configuration.
  • a first branch path and a second branch path that connect between the first supply port 32a and the first discharge port 36a are provided in the internal space. Is formed. That is, the first flow path is branched and merged between the first supply port 32a and the first discharge port 36a.
  • a third branch path and a fourth branch path that connect between the second supply port 32b and the second discharge port 36b are provided in the internal space. Is formed. That is, the second flow path is branched and merged between the second supply port 32b and the second discharge port 36b.
  • 1st heat flux sensor 7a and 2nd heat flux sensor 7b are being fixed to the surface facing inner ring spacer 14 as a rotation side spacer in outer ring spacer 13 as a fixed side spacer, for example.
  • the first heat flux sensor 7a and the second heat flux sensor 7b are arranged so as to detect the heat flux extending along the radial direction between the outer ring spacer 13 and the inner ring spacer 14.
  • the first heat flux sensor 7a and the second heat flux sensor 7b may be fixed to the fixed side spacer by any method, but are fixed by, for example, adhesion or screw tightening.
  • the relative positional relationship between the first heat flux sensor 7a and the first flow path is, for example, the same as the relative positional relationship between the second heat flux sensor 7b and the second flow path.
  • the first heat flux sensor 7 a is disposed at a distance from the first supply port 32 a and the first discharge port 36 a in the circumferential direction when the bearing device is viewed from the axial direction. ing.
  • the first heat flux sensor 7a is disposed between the first supply port 32a and the first discharge port 36a when the bearing device is viewed from the axial direction. That is, the first heat flux sensor 7a is disposed adjacent to the first branch path or the second branch path.
  • the first heat flux sensor 7a is disposed at the approximate center between the first supply port 32a and the first discharge port 36a in the circumferential direction when the bearing device is viewed from the axial direction.
  • the 1st heat flux sensor 7a will be arrange
  • the center angle formed by each center of the first heat flux sensor 7a and the first supply port 32a with respect to the center axis, and the center of each of the first heat flux sensor 7a and the first discharge port 36a are defined by the center axis.
  • the central angle formed with respect to it is 80 degrees or more and 100 degrees or less.
  • the second heat flux sensor 7b is disposed at a distance from the second supply port 32b and the second discharge port 36b in the circumferential direction when the bearing device is viewed from the axial direction.
  • the second heat flux sensor 7b is disposed between the second supply port 32b and the second discharge port 36b when the bearing device is viewed from the axial direction. That is, the second heat flux sensor 7b is disposed adjacent to the third branch path or the fourth branch path.
  • the second heat flux sensor 7b is disposed substantially at the center between the second supply port 32b and the second discharge port 36b in the circumferential direction when the bearing device is viewed from the axial direction.
  • the 2nd heat flux sensor 7b will be arrange
  • the center angle formed by the centers of the second heat flux sensor 7b and the second supply port 32b with respect to the center axis, and the centers of the second heat flux sensor 7b and the second discharge port 36b are set on the center axis.
  • the central angle formed with respect to it is 80 degrees or more and 100 degrees or less.
  • the first heat flux sensor 7a is disposed in an area adjacent to the inner ring 4a of the first bearing 1a on the inner diameter surface of the outer ring spacer 13.
  • the second heat flux sensor 7 b is disposed in a region adjacent to the inner ring 4 b of the second bearing 1 b on the inner diameter surface of the outer ring spacer 13.
  • the first supply port 32a is disposed so as to overlap the second supply port 32b in the axial direction, for example.
  • the first discharge port 36a is disposed so as to overlap the second discharge port 36b in the axial direction.
  • the first heat flux sensor 7a is disposed at a distance from the second supply port 32b and the second discharge port 36b in the circumferential direction when the bearing device is viewed from the axial direction.
  • the second heat flux sensor 7b is disposed at a distance from the first supply port 32a and the first discharge port 36a in the circumferential direction when the bearing device is viewed from the axial direction.
  • the first heat flux sensor 7a and the second heat flux sensor 7b are arranged, for example, so as to overlap in the axial direction.
  • the first heat flux sensor 7a and the second heat flux sensor 7b are arranged between the first supply port 32a and the first discharge port 36a and the second supply port in the circumferential direction when the bearing device is viewed from the axial direction. It is disposed on the region R1 or the region R2 of the outer ring spacer 13 positioned between 32b and the second discharge port 36b.
  • the first heat flux sensor 7a is spaced apart from the first supply port 32a and the first discharge port 36a in the circumferential direction when the bearing device is viewed from the axial direction. Has been placed. Although such a first heat flux sensor 7a is disposed in a region adjacent to the first bearing 1a in the axial direction, the flow rate of the lubricating fluid is relatively large in the first flow path and the second flow path.
  • the first branch path and the second branch path may be arranged apart from the junction part, that is, the first supply port 32a and the first discharge port 36a and the region adjacent to the axial direction.
  • the first heat flux sensor 7a can be disposed adjacent to the first branch path in which the flow rate of the lubricating fluid is relatively small in the first flow path. Therefore, the first heat flux sensor 7a can detect a change in the heat flux generated from the first bearing 1a with high accuracy and high speed. This is due to the following reason.
  • the change in the heat flux generated in the bearing device is caused by a change in the balance of the heat generation and cooling operations in the bearing device and the heat dissipation action to the outside of the bearing device.
  • the first heat flux sensor 7a In order for the first heat flux sensor 7a to detect the change of the heat flux accompanying the change of the heat generating action in the first bearing 1a with high accuracy and high speed, the first heat flux sensor 7a is used for the first bearing 1a. It is preferable to arrange it close. On the other hand, the closer to the first bearing 1a, the stronger the cooling action by the lubricating fluid flowing in the internal space of the first bearing 1a.
  • the region closer to the first supply port 32a or the first discharge port 36a where the flow rate of the lubricating fluid is relatively increased is more strongly subjected to the cooling action by the lubricating fluid. Therefore, for example, when the first heat flux sensor 7a is disposed near the first supply port 32a or the first discharge port 36a, the first heat flux sensor 7a changes the heat generation action in the first bearing 1a. There is concern that the accompanying change in heat flux cannot be detected with high accuracy and high speed.
  • the first heat flux sensor 7a which is disposed at a distance in the circumferential direction from the first supply port 32a and the first discharge port 36a, is disposed away from the merging portion. Even if it is arranged near the bearing 1a, it is hardly affected by the cooling action by the lubricating fluid, and the change in the heat flux accompanying the change in the heat generation action can be detected with high accuracy and at high speed.
  • the second heat flux sensor 7b can also achieve the same effect as the first heat flux sensor 7a for the same reason as the first heat flux sensor 7a described above.
  • the 1st supply port 32a may be arrange
  • the first heat flux sensor 7a is disposed at a distance in the circumferential direction from the first supply port 32a and the first discharge port 36a when the bearing device is viewed from the axial direction.
  • the first discharge port 36a may be arranged so as not to overlap the second discharge port 36b in the axial direction.
  • the first heat flux sensor 7a is disposed at a distance in the circumferential direction from the first supply port 32a and the first discharge port 36a when the bearing device is viewed from the axial direction
  • the second heat flux sensor 7b is arranged at a distance from the second supply port 32b and the second discharge port 36b in the circumferential direction when the bearing device is viewed from the axial direction, the first supply is performed. You may arrange
  • the lubricating fluid discharge device may be configured integrally with the lubricating fluid supply device.
  • the supply path and the discharge path may be configured as a part of a circulation path for circulating the lubricating fluid.
  • a preload is applied to the first bearing 1a and the second bearing 1b in the axial direction.
  • the housing 18 protrudes inward with respect to the inner diameter surface that contacts the outer diameter surface of the outer ring 2a of the first bearing 1a, and has an end surface 18a that contacts the end surface in the axial direction of the outer ring 2a.
  • the main shaft 17 protrudes outward with respect to the outer diameter surface in contact with the inner diameter surface of the inner ring 4b of the second bearing 1b, and has an end surface 17a in contact with the end surface in the axial direction of the inner ring 4b.
  • the end surface 17a of the main shaft 17 and the end surface 18a of the housing 18 are provided so as to face each other.
  • the outer ring 2a of the first bearing 1a, the outer ring spacer 13 and the outer ring 2b of the second bearing 1b are sandwiched between the end face 18a of the housing 18 and the front lid 60.
  • the inner ring 4 a of the first bearing 1 a, the inner ring spacer 14, and the inner ring 4 b of the second bearing 1 b are sandwiched between the nut 61 and the end surface 17 a of the main shaft 17.
  • the preload applied to the first bearing 1 a and the second bearing 1 b includes the axial width between the end surface 18 a and the front lid 60 and the axial width between the end surface 17 a and the nut 61. It is determined by the difference.
  • the difference between the end face 17 a and the nut 61 in the axial direction varies depending on the tightening amount of the nut 61.
  • the first supply path 31a of the bearing device according to the fifth embodiment has a plurality of (for example, three) first supply ports 32a for supplying lubricating oil to the internal space of one bearing. You may have.
  • the plurality of first supply ports 32a are arranged at intervals in the circumferential direction, and are arranged at intervals from the first discharge ports 36a in the circumferential direction.
  • the plurality of first supply ports 32a are arranged at equal intervals in the circumferential direction, and the first discharge port 36a is arranged at the center between the two first supply ports 32a adjacent in the circumferential direction. ing.
  • the 1st heat flux sensor 7a is arrange
  • the first heat flux sensor 7a is disposed at a distance from the plurality of first supply ports 32a and the first discharge ports 36a in the circumferential direction, so that the first heat flux sensor 7a is close to the first bearing 1a. Even if it is disposed, it is difficult to be influenced by the cooling action by the lubricating fluid, and the change in the heat flux accompanying the change in the heat generation action can be detected with high accuracy and at high speed.
  • the second supply path 31b may have the same configuration as the first supply path 31a.
  • the heat flux sensor 7 of the bearing device according to the fifth embodiment is the same as the heat flux sensor 7 of the bearing device shown in FIG. 3 may be disposed in a portion other than the raceway surface 6A (see FIG. 1) that abuts the track 3.
  • Such a heat flux sensor 7 is also disposed at a distance from the supply port 32 and the discharge port 36 in the circumferential direction when the bearing device is viewed from the axial direction.
  • the heat flux sensor 7 is not easily affected by the cooling action by the lubricating fluid, and can detect the change in the heat flux accompanying the change in the heat generation action with high accuracy and high speed. Can do.
  • the heat flux sensor is provided on the non-rotating side of the bearing or spacer, but the heat flux sensor may be provided on the rotating side.
  • the surface for measuring the temperature of the rotating atmosphere facing the heat flux sensor 7 so that the lubricating oil adheres to the surface of the heat flux sensor 7 and the heat flow detection accuracy does not deteriorate.
  • the oil repellent treatment may be applied.
  • FIG. 20 shows a spindle device 500 including a bearing device 404 according to the fifth embodiment.
  • the spindle device 500 mainly includes, for example, the bearing device according to the fifth embodiment, the main shaft 17, the housing 18, the motor 80, the bearing 84, and the outer cylinder 41.
  • the main shaft 17 and the housing 18 have basically the same configuration as those shown in FIG.
  • the main shaft 17 is rotatably supported by the bearing 1 and the bearing 84 of the bearing device.
  • the axial direction of the bearing 84 is along the axial direction.
  • the first bearing 1a, the second bearing 1b, and the bearing 84 are arranged so as to sandwich the motor 80 in the axial direction.
  • the first bearing 1a and the second bearing 1b are, for example, angular ball bearings.
  • the bearing 84 is, for example, a cylindrical roller bearing.
  • the first bearing 1 a and the second bearing 1 b support a radial load and an axial load that act on the main shaft 17.
  • the bearing 84 supports a radial load acting on the main shaft 17.
  • the housing 18 is fixed to the outer cylinder 41.
  • the outer diameter surface of the housing 18 is in contact with the inner diameter surface of the outer cylinder 41.
  • a stator 81 of the motor 80 is fixed to the outer cylinder 41.
  • the outer diameter surface of the stator 81 is in contact with the inner diameter surface of the outer cylinder 41.
  • the rotor 82 of the motor 80 is fixed to the main shaft 17.
  • the rotor 82 is fixed to the main shaft 17 via a cylindrical member 83, for example.
  • the cylindrical member 83 is provided in an annular shape, and the main shaft 17 is inserted inside the cylindrical member 83.
  • the outer ring of the bearing 84 is sandwiched between the positioning member 85 fixed to the cylindrical member 83 and the outer ring retainer 86 in the axial direction.
  • the outer ring retainer 86 is fixed to the end member 87.
  • the outer ring of the bearing 84 is disposed inside the end member 87 in the radial direction, and is provided so as to slide with respect to the outer ring retainer 86 and the end member 87 in accordance with the expansion and contraction of the main shaft 17 in the axial direction. Yes.
  • the end member 87 is fixed to the outer cylinder 41.
  • the inner ring of the bearing 84 is sandwiched between the cylindrical member 83 and the inner ring retainer 88 in the axial direction.
  • the cylindrical member 83, the inner ring of the bearing 84, and the inner ring retainer 88 are positioned in the axial direction by the main shaft 17 and the nut 89.
  • the positioning member 85, the outer ring retainer 86, the end member 87, the inner ring retainer 88, and the nut 89 are provided in an annular shape, and the main shaft 17 is inserted through the inside thereof.
  • the spindle device is provided with a cooling unit for cooling the bearing device.
  • the cooling unit is disposed outside the bearing device.
  • the cooling unit includes a flow path through which a cooling medium flows, for example.
  • the flow passage is provided as a space defined by a spiral groove 18 b formed on the outer diameter surface of the housing 18 and an inner diameter surface of the outer cylinder 41.
  • the cooling unit cools the bearing device by circulating a cooling medium in the groove 18b when the spindle device is in use.
  • the first heat flux sensor 7a and the second heat flux sensor 7b are disposed closer to the first bearing 1a and the second bearing 1b than the cooling unit.
  • the spindle device is provided with a motor cooling unit for cooling the motor 80, but is not shown here.
  • the first heat flux sensor 7a and the second heat flux sensor 7b are used for the first heat flux sensor 7b as compared with the spindle device in which the heat flux sensor is disposed outside the housing. It is possible to detect a change in heat flux generated from the bearing 1a and the second bearing 1b with high accuracy and high speed.
  • the control device 600 that controls the operation of the spindle device may diagnose an abnormality of the bearing 1 based on the output of the heat flux sensor 7.
  • the control device 600 includes a determination unit 601.
  • the determination unit 601 determines the output of the heat flux sensor 7, the rotational speed of the motor 80 of the spindle device, the machine information D1 such as the lubrication condition and the cooling condition, and the predetermined determination criteria for determining whether there is an abnormality in the bearing 1. Based on D2, the presence or absence of abnormality of the bearing 1 is determined.
  • the abnormality of the bearing 1 is, for example, the occurrence of seizure of the bearing 1 or the fear thereof.
  • the transmission unit of the bearing device is provided to transmit the output of the heat flux sensor 7 to the determination unit 601 of the control device 600.
  • the control device 600 is provided so as to change at least one of the rotational speed of the motor 80, the lubrication condition, and the cooling condition based on the determination result by the determination unit 601.
  • the determination unit 601 may determine whether there is an abnormality in the bearing 1 based on at least the output of the heat flux sensor 7 and a determination criterion D2 that is predetermined in order to determine whether there is an abnormality in the bearing 1. .
  • the determination unit 601 can diagnose the abnormality of the bearing 1 based on the outputs of the heat flux sensor 7 and other sensors, similarly to the abnormality diagnosis unit. As shown in FIG. 22, the determination unit 601 diagnoses an abnormality of the bearing 1 based on outputs of the temperature sensor 602, the acceleration sensor 603, and the load sensor 604 in addition to the heat flux sensor 7, for example.
  • the temperature sensor 602 is provided so as to detect an increase in the temperature of the outer ring spacer 13 due to, for example, poor lubrication of the first bearing 1a and the second bearing 1b. As shown in FIG. 23, for example, the temperature sensor 602 is disposed on each end face of the outer ring spacer 13 that faces each of the first bearing 1a and the second bearing 1b in the axial direction.
  • the acceleration sensor 603 is provided so as to detect, for example, vibration of the main shaft 17 in at least one of the axial direction and the radial direction accompanying the separation of the raceway surfaces of the first bearing 1a and the second bearing 1b. . As shown in FIG. 23, the acceleration sensor 603 is arranged side by side with the temperature sensor 602, for example, on each end face of the outer ring spacer 13 facing each of the first bearing 1a and the second bearing 1b in the axial direction. Has been.
  • the load sensor 604 is provided to detect a change in the axial preload applied to the first bearing 1a and the second bearing 1b, for example. As shown in FIG.
  • the load sensor 604 is disposed so as to connect, for example, the outer ring 2b of the second bearing 1b and the outer ring spacer 13 in the axial direction.
  • the load sensor 604 is, for example, a thin film sensor, and the electric resistance changes with pressure.
  • the determination unit 601 diagnoses the abnormality of the bearing 1 based on the rotation speed of the motor 80 in addition to the outputs of the heat flux sensor 7, the temperature sensor 602, the acceleration sensor 603, and the load sensor 604. It may be provided.
  • the determination unit 601 may be provided so as to acquire the rotation speed of the motor 80 as a rotation sensor signal output from the motor 80. Further, as shown in FIG. 24, the determination unit 601 performs rotation measured by a magnetic ring (not shown) fixed to the inner ring spacer 14 and a rotation sensor (magnetic sensor) 605 fixed to the outer ring spacer 13. It may be provided so as to be acquired as a speed.
  • the abnormality diagnosis unit can diagnose the abnormality of the bearing 1.
  • the abnormality diagnosis unit may be disposed in the outer ring spacer 13, for example. Specifically, as shown in FIG. 25, the abnormality diagnosis unit may be mounted on a substrate 610 disposed on the outer diameter surface of the outer ring spacer 13.
  • the distance between the abnormality diagnosing unit and the heat flux sensor 7 is such that the abnormality diagnosing unit is located outside the bearing device, in particular, between the abnormality diagnosing unit and the heat flux sensor 7 arranged outside the spindle device. Short compared to distance.
  • the abnormality diagnosis unit arranged in the outer ring spacer 13 has an output in which the influence of noise is reduced compared to the output signal of the heat flux sensor 7 acquired by the abnormality diagnosis unit arranged outside the bearing device. Based on the signal, the presence or absence of the abnormality can be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Provided is a bearing (1) including an inner ring (4), an outer ring (2), a rolling body (3), and a cage (5). Also provided is a bearing device provided with the bearings (1) and heat flux sensors (7) each disposed at the outer ring (2) to detect a heat flux. The bearing device has a structure for holding spacers between the bearings (1) and supports a rotating body. The spacers include an outer ring spacer (13) and an inner ring spacer (14). The heat flux sensor (7) is disposed on a nonrotating spacer among the inner ring spacer (14) and the outer ring spacer (13).

Description

軸受装置およびスピンドル装置Bearing device and spindle device
 この発明は、軸受装置およびスピンドル装置に関する。 This invention relates to a bearing device and a spindle device.
 特開2017-26078号公報(特許文献1)に記載の軸受装置では、軸受の焼付き等の不具合を防ぐため、軸受部に給油するためのポンプと潤滑部の温度を計測する非接触センサ(赤外線センサ)とを有した付属部を軸受端面に設けている。温度センサから入手する温度の時間変化が閾値を超えたとき、ポンプにより軸受部に給油を行なうことで、温度上昇を防いでいる。 In the bearing device described in Japanese Patent Application Laid-Open No. 2017-26078 (Patent Document 1), in order to prevent problems such as seizure of the bearing, a non-contact sensor that measures the temperature of a pump for supplying oil to the bearing portion and the lubrication portion ( An attachment having an infrared sensor is provided on the bearing end surface. When the time change of the temperature obtained from the temperature sensor exceeds the threshold value, the bearing is lubricated by the pump to prevent the temperature from rising.
特開2017-26078号公報JP 2017-26078 A 特開2016-166832号公報Japanese Unexamined Patent Publication No. 2016-166832
 特開2017-26078号公報に記載された軸受装置では、軸受に発生する異常の予兆を温度から判断している。軸受の隣に配置した付属部内に設けられた非接触の温度センサ(赤外線センサ)は、赤外線の放射率が低い金属表面の温度測定が困難なため、樹脂製の保持器を測定対象物としている。しかし、保持器が樹脂製でない場合、特開2017-26078号公報に示す構造で温度を測定することは困難である。また、非接触温度センサは、接触式の温度センサと比較すると、測定精度が低いため、異常が発生していないにもかかわらず、誤検出する可能性がある。さらに、油潤滑環境で使用した場合には、潤滑油の影響を受けることが想定される。潤滑油がミスト化し、測定対象と非接触温度センサの間に入り込み、正確な温度測定が難しい。 In the bearing device described in Japanese Patent Application Laid-Open No. 2017-26078, a sign of abnormality occurring in the bearing is determined from the temperature. The non-contact temperature sensor (infrared sensor) provided in the attachment portion arranged next to the bearing is difficult to measure the temperature of the metal surface having a low infrared emissivity, and therefore uses a resin cage as a measurement object. . However, when the cage is not made of resin, it is difficult to measure the temperature with the structure disclosed in Japanese Patent Application Laid-Open No. 2017-26078. Further, the non-contact temperature sensor has a lower measurement accuracy than the contact-type temperature sensor, and thus may be erroneously detected although no abnormality has occurred. Furthermore, when used in an oil-lubricated environment, it is assumed to be affected by the lubricating oil. Lubricating oil becomes mist and enters between the object to be measured and the non-contact temperature sensor, making accurate temperature measurement difficult.
 この発明は、上記の課題を解決するためのものであって、その目的は、軸受の温度変化を精度良く迅速に検出することが可能な軸受装置、および該軸受装置を備えるスピンドル装置を提供することである。 The present invention is for solving the above-described problems, and an object of the present invention is to provide a bearing device capable of detecting a temperature change of a bearing with high accuracy and speed, and a spindle device including the bearing device. That is.
 この発明は、要約すると、単一の軸受または複数の軸受と間座の構造で回転体を支持する軸受装置であって、軸受は、内輪、外輪を含む。軸受装置は、内輪、外輪、または間座に配置され、熱流束を検出する熱流束センサを備える。 Summarizing, the present invention is a bearing device that supports a rotating body with a single bearing or a structure of a plurality of bearings and a spacer, and the bearing includes an inner ring and an outer ring. The bearing device includes a heat flux sensor that is disposed on an inner ring, an outer ring, or a spacer and detects a heat flux.
 好ましくは、間座は、外輪間座と内輪間座とを含む。熱流束センサは、内輪間座および外輪間座のうち非回転側の間座に配置される。 Preferably, the spacer includes an outer ring spacer and an inner ring spacer. The heat flux sensor is disposed in the non-rotating side spacer of the inner ring spacer and the outer ring spacer.
 好ましくは、間座は、外輪間座と内輪間座とを含む。熱流束センサは、内輪間座および外輪間座のうち回転側の間座に配置される。 Preferably, the spacer includes an outer ring spacer and an inner ring spacer. The heat flux sensor is disposed in the rotation side spacer of the inner ring spacer and the outer ring spacer.
 より好ましくは、間座は、外輪間座と内輪間座とを含む。外輪間座は、本体部と、本体部の側面から内輪の外径面に向けて突出する突出部とを含む。熱流束センサは、内輪の外径面に対向するように突出部に固定される。 More preferably, the spacer includes an outer ring spacer and an inner ring spacer. The outer ring spacer includes a main body part and a protruding part that protrudes from the side surface of the main body part toward the outer diameter surface of the inner ring. The heat flux sensor is fixed to the protruding portion so as to face the outer diameter surface of the inner ring.
 好ましくは、熱流束センサは、内輪および外輪のうち非回転側の軌道輪に配置される。
 好ましくは、熱流束センサは、内輪および外輪のうち回転側の軌道輪に配置される。
Preferably, the heat flux sensor is disposed on a non-rotating raceway ring of the inner ring and the outer ring.
Preferably, the heat flux sensor is disposed on the rotating raceway of the inner ring and the outer ring.
 より好ましくは、熱流束センサは、軸受の幅方向の内部で、内輪の外径面の軌道面以外の部分または外輪の内径面の軌道面以外の部分に配置される。 More preferably, the heat flux sensor is disposed inside the bearing in the width direction at a portion other than the raceway surface of the outer ring surface of the inner ring or a portion other than the raceway surface of the inner ring surface of the outer ring.
 好ましくは、軸受装置は、熱流束センサの出力情報を外部にワイヤレス送信する送信部をさらに備える。送信部は、軸受の異常判断を行なう受信装置に熱流束センサの出力情報を送信するように構成される。 Preferably, the bearing device further includes a transmitter that wirelessly transmits output information of the heat flux sensor to the outside. The transmission unit is configured to transmit the output information of the heat flux sensor to a reception device that performs bearing abnormality determination.
 好ましくは、軸受装置は、熱流束センサとは別に配置した温度センサと、熱流束センサの出力、温度センサの出力および回転速度信号に基づいて軸受の異常を診断する異常診断部とをさらに備える。 Preferably, the bearing device further includes a temperature sensor arranged separately from the heat flux sensor, and an abnormality diagnosis unit that diagnoses an abnormality of the bearing based on the output of the heat flux sensor, the output of the temperature sensor, and the rotation speed signal.
 本発明によれば、軸受に使用する材料を限定することなく、軸受の温度変化を精度良く迅速に検出することが可能となる。 According to the present invention, it is possible to detect the temperature change of the bearing accurately and quickly without limiting the material used for the bearing.
実施の形態1の軸受装置の構成を示す図である。It is a figure which shows the structure of the bearing apparatus of Embodiment 1. FIG. 本実施の形態の軸受装置が配置される工作機械の主軸周辺の構造を示す図である。It is a figure which shows the structure around the main axis | shaft of the machine tool by which the bearing apparatus of this Embodiment is arrange | positioned. 実施の形態1で用いられる熱流束センサの特性を説明するための図である。図3(a)は、縦軸が熱流束センサの出力、横軸が異常発生前後の時間経過を示すグラフである。図3(b)は、縦軸が温度センサの出力、横軸が異常発生前後の時間経過を示す。FIG. 5 is a diagram for explaining the characteristics of the heat flux sensor used in the first embodiment. FIG. 3A is a graph in which the vertical axis indicates the output of the heat flux sensor, and the horizontal axis indicates the passage of time before and after the occurrence of the abnormality. In FIG. 3B, the vertical axis represents the output of the temperature sensor, and the horizontal axis represents the time elapsed before and after the occurrence of the abnormality. 軸方向から見た熱流束センサの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the heat flux sensor seen from the axial direction. 軸受の外輪2に温度センサ22を設けた例を示す図である。It is a figure which shows the example which provided the temperature sensor 22 in the outer ring | wheel 2 of the bearing. 異常診断装置が実行する異常判断処理の第1例を説明するためのフローチャートである。It is a flowchart for demonstrating the 1st example of the abnormality determination process which an abnormality diagnosis apparatus performs. 異常診断装置が実行する異常判断処理の第2例を説明するためのフローチャートである。It is a flowchart for demonstrating the 2nd example of the abnormality determination process which an abnormality diagnosis apparatus performs. 実施の形態2の軸受装置の構成を示す図である。It is a figure which shows the structure of the bearing apparatus of Embodiment 2. FIG. 内輪4に近接する位置に熱流束センサ7を配置した変形例を示す図である。It is a figure which shows the modification which has arrange | positioned the heat flux sensor 7 in the position close | similar to the inner ring | wheel 4. 間座に温度センサを追加した変形例を示す図である。It is a figure which shows the modification which added the temperature sensor to the spacer. 間座に非接触型の温度センサを追加した変形例を示す図である。It is a figure which shows the modification which added the non-contact-type temperature sensor to the spacer. 実施の形態3の軸受装置の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of a bearing device according to a third embodiment. センサの出力をワイヤレスで送受信する構成を示す図である。It is a figure which shows the structure which transmits / receives the output of a sensor wirelessly. 実施の形態4の軸受装置の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of a bearing device according to a fourth embodiment. 実施の形態5の軸受装置の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a bearing device according to a fifth embodiment. 図15中の線分XVI-XVIから視た断面図である。FIG. 16 is a cross-sectional view taken along line XVI-XVI in FIG. 15. 図15中の線分XVII-XVIIから視た断面図である。FIG. 16 is a cross-sectional view taken along line XVII-XVII in FIG. 実施の形態5の軸受装置の変形例の構成を示す図である。FIG. 10 is a diagram showing a configuration of a modified example of the bearing device according to the fifth embodiment. 実施の形態5の軸受装置の他の変形例の構成を示す図である。FIG. 10 is a diagram showing a configuration of another modification of the bearing device according to the fifth embodiment. 実施の形態5の軸受装置を備えるスピンドル装置の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a spindle device including a bearing device according to a fifth embodiment. 図20に示されるスピンドル装置の制御装置の一例を示す図である。It is a figure which shows an example of the control apparatus of the spindle apparatus shown by FIG. 図20に示されるスピンドル装置の制御装置の他の一例を示す図である。It is a figure which shows another example of the control apparatus of the spindle apparatus shown by FIG. 図22に示される制御装置を備えるスピンドル装置の構成を示す図である。It is a figure which shows the structure of a spindle apparatus provided with the control apparatus shown by FIG. 図20に示されるスピンドル装置の制御装置のさらに他の一例を示す図である。It is a figure which shows another example of the control apparatus of the spindle apparatus shown by FIG. 実施の形態5の軸受装置を備えるスピンドル装置の変形例の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a modified example of a spindle device including the bearing device according to the fifth embodiment.
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 [実施の形態1]
 図1は、実施の形態1の軸受装置400の構成を示す図である。図1に示す軸受装置は、軸受単体または複数の軸受の間に間座を挟む構造で回転体を支持する軸受装置である。軸受1は、内輪4と、外輪2と、転動体3と、保持器5とを含む。軸受1は、転がり軸受であり、例えばアンギュラ玉軸受である。すなわち、転動体3は例えば玉である。軸受装置は、軸受1と、外輪2に配置され、熱流束を検出する熱流束センサ7とを備える。図1に示す軸受1は、回転輪が内輪4、非回転輪が外輪2である。熱流束センサ7は、非回転輪である外輪2に取り付けられており、配線30によって信号が図示しない異常診断部に出力される。より好ましくは、図1に示すように、熱流束センサ7は、軸受1の幅方向の内部で、外輪2の内径面6のうち、転動体3に当接する軌道面6A以外の部分に配置される。
[Embodiment 1]
FIG. 1 is a diagram illustrating a configuration of a bearing device 400 according to the first embodiment. The bearing device shown in FIG. 1 is a bearing device that supports a rotating body with a structure in which a spacer is sandwiched between a single bearing or a plurality of bearings. The bearing 1 includes an inner ring 4, an outer ring 2, a rolling element 3, and a cage 5. The bearing 1 is a rolling bearing, for example, an angular ball bearing. That is, the rolling element 3 is a ball, for example. The bearing device includes a bearing 1 and a heat flux sensor 7 that is disposed on the outer ring 2 and detects a heat flux. The bearing 1 shown in FIG. 1 has an inner ring 4 as a rotating wheel and an outer ring 2 as a non-rotating wheel. The heat flux sensor 7 is attached to the outer ring 2 that is a non-rotating wheel, and a signal is output to an abnormality diagnosis unit (not shown) through the wiring 30. More preferably, as shown in FIG. 1, the heat flux sensor 7 is disposed inside the bearing 1 in the width direction of the inner diameter surface 6 of the outer ring 2 other than the raceway surface 6 </ b> A that contacts the rolling element 3. The
 図2は、本実施の形態の軸受装置が配置される工作機械の主軸周辺の構造を示す図である。主軸17は、駆動モータ80の回転軸に直結されている。ハウジング18と主軸17との境界部分には、軸受1が配置されている。4つの軸受1によって、主軸17は回転自在に支持されている。軸受1同士の間には間座40が配置されている。 FIG. 2 is a view showing the structure around the spindle of the machine tool on which the bearing device of the present embodiment is arranged. The main shaft 17 is directly connected to the rotation shaft of the drive motor 80. A bearing 1 is disposed at a boundary portion between the housing 18 and the main shaft 17. The main shaft 17 is rotatably supported by the four bearings 1. A spacer 40 is disposed between the bearings 1.
 ハウジング18には、空冷エアー(エアオイルまたはオイルミスト)の出入り口が設けられ、矢印で示すエアーの流れによって、高速回転する主軸17とハウジング18との間の軸受1で生じる発熱が冷却される。 The housing 18 is provided with an inlet / outlet for air-cooled air (air oil or oil mist), and the heat generated in the bearing 1 between the main shaft 17 and the housing 18 rotating at high speed is cooled by the air flow indicated by the arrow.
 本実施の形態では、運転中の軸受温度変化を測定するために、熱流束センサ7を使用する。熱流束センサ7は、たとえば、特開2016-166832号公報(特許文献2)に記載された熱流束センサを使用することができる。センサ表裏のわずかな温度差から熱流束センサの出力電圧が発生している。熱流束センサ7は、ゼーベック効果を利用して熱流を電気信号に変換する。 In this embodiment, the heat flux sensor 7 is used to measure a change in bearing temperature during operation. As the heat flux sensor 7, for example, a heat flux sensor described in JP-A-2016-166832 (Patent Document 2) can be used. The output voltage of the heat flux sensor is generated from a slight temperature difference between the front and back of the sensor. The heat flux sensor 7 converts the heat flow into an electrical signal using the Seebeck effect.
 図3(a)および(b)は、実施の形態1で用いられる熱流束センサの特性を説明するための図である。図3(a)および(b)では、熱流束センサの出力F1と、温度測定に一般的に使用される熱電対の出力T1との違いを模式的に示す。定常状態では、出力F1と出力T1の傾きに大きな差はないが、時間t1で異常が発生すると、時間t1で熱流束センサの出力F1のグラフの傾きに大きな変化が発生する。熱電対の出力T1は、時間t1より遅れた時間t2で出力T1の傾きは変わるが、熱流束センサの出力F1ほどの大きな変化は発生しない。 FIGS. 3A and 3B are diagrams for explaining the characteristics of the heat flux sensor used in the first embodiment. 3A and 3B schematically show the difference between the output F1 of the heat flux sensor and the output T1 of a thermocouple generally used for temperature measurement. In the steady state, there is no significant difference between the slopes of the output F1 and the output T1, but when an abnormality occurs at time t1, a large change occurs in the slope of the graph of the output F1 of the heat flux sensor at time t1. The output T1 of the thermocouple changes at the time t2 delayed from the time t1, but the gradient of the output T1 does not change as much as the output F1 of the heat flux sensor.
 したがって、熱流束センサ7は、異常発生直後の非定常状態を速やかに検出することができる。 Therefore, the heat flux sensor 7 can quickly detect the unsteady state immediately after the occurrence of the abnormality.
 図4は、軸方向から見た熱流束センサの配置例を示す図である。ここでは、熱流束センサ7を外輪2の外輪の内径面6に周方向に3箇所等間隔に設けた例が示される。図4に示すように、熱流束センサ7を貼り付ける箇所は、内輪4または外輪2の円周上に1カ所でも良いが、等間隔に複数個所に貼り付けることで、温度分布を監視することが可能となり、より精度良く迅速に異常を検出することができる。 FIG. 4 is a diagram illustrating an arrangement example of the heat flux sensor as viewed from the axial direction. Here, an example is shown in which the heat flux sensors 7 are provided at equal intervals in the circumferential direction on the inner diameter surface 6 of the outer ring 2 of the outer ring 2. As shown in FIG. 4, the heat flux sensor 7 may be attached to one place on the circumference of the inner ring 4 or the outer ring 2, but the temperature distribution may be monitored by attaching the heat flux sensor 7 to a plurality of places at equal intervals. Therefore, it is possible to detect an abnormality more accurately and quickly.
 図1に示す軸受装置は、内輪4、外輪2、転動体3、保持器5を備え、転がり軸受を構成している。そして、外輪2に熱流束センサ7が貼り付けられている。図1では、外輪の内径面6に熱流束センサ7が貼り付けられている。熱流束センサ7は、貼り付けられている外輪2の温度と内輪4、転動体3、保持器5等の回転によって発生する回転雰囲気8の温度との温度差から出力電圧を発生させる。 1 includes an inner ring 4, an outer ring 2, a rolling element 3, and a cage 5, and constitutes a rolling bearing. A heat flux sensor 7 is affixed to the outer ring 2. In FIG. 1, a heat flux sensor 7 is affixed to the inner diameter surface 6 of the outer ring. The heat flux sensor 7 generates an output voltage based on a temperature difference between the temperature of the attached outer ring 2 and the temperature of the rotating atmosphere 8 generated by the rotation of the inner ring 4, the rolling element 3, the cage 5, and the like.
 一般に、工作機械の主軸用軸受が焼付くときには、内輪と外輪にわずかな温度差が生じる。この温度差を速やかに熱流束センサ7によって捉えることによって、軸受1に焼き付きが発生する前に早期に検出が可能となる。 Generally, when the main shaft bearing of a machine tool is seized, a slight temperature difference occurs between the inner ring and the outer ring. By quickly grasping this temperature difference by the heat flux sensor 7, it becomes possible to detect the bearing 1 at an early stage before seizure occurs.
 図3に示すように、異常が発生しない場合は、熱流束センサ7の出力F1は回転数の変化や運転状態によって一定の出力、またはゆるやかに変化するが、異常が発生した場合には、いずれかの部位に温度変化が発生し、熱流の変化が大きく、熱流束センサ7の出力F1に大きな変化があらわれる。この熱流束センサ7の出力の大きな変化を利用して、軸受1に異常が発生したことを検出できる。 As shown in FIG. 3, when an abnormality does not occur, the output F1 of the heat flux sensor 7 changes to a constant output or a gradual change depending on the change in the rotational speed and the operating state. A temperature change occurs in such a part, a change in the heat flow is large, and a large change appears in the output F1 of the heat flux sensor 7. By utilizing the large change in the output of the heat flux sensor 7, it is possible to detect that an abnormality has occurred in the bearing 1.
 このとき、熱流束センサ7は回転側部材に近接するように取り付ける。熱流束センサ7は、非回転側部材の表面温度と回転側部材との温度差によって出力電圧が発生する。この熱流束センサの出力電圧の変化量を監視し、定常状態から逸脱する変化(異常な変化)がみられた場合に、軸受に異常が発生したと判断する。 At this time, the heat flux sensor 7 is attached so as to be close to the rotation side member. The heat flux sensor 7 generates an output voltage due to a temperature difference between the surface temperature of the non-rotating member and the rotating member. The amount of change in the output voltage of the heat flux sensor is monitored, and when a change deviating from the steady state (abnormal change) is observed, it is determined that an abnormality has occurred in the bearing.
 たとえば、軸受の転動体と軌道面との面圧増加に伴う温度上昇では、軸受を保持するハウジングや回転軸の熱容量が大きいので、軸受の転動体と軌道面間で発生した熱がハウジングや回転軸に伝達し、内輪や外輪、あるいは間座の温度が上昇するまでに遅れが生じる。軸受の焼付き前兆を検出するのに、内輪、外輪、間座等の温度を測定して検出しようとすると、温度上昇に遅れがあるため、前兆を検出できないことも想定されるが、熱流束センサを利用すれば、温度でみた場合にはゆっくり変化するが、熱流では速く変化するため、急激な発熱を迅速に検出することが可能である。 For example, when the temperature rises due to an increase in the surface pressure between the rolling elements of the bearing and the raceway surface, the heat capacity of the housing and rotating shaft that holds the bearing is large, so the heat generated between the rolling element of the bearing and the raceway surface causes the housing and rotation Transmission to the shaft causes a delay until the temperature of the inner ring, outer ring, or spacer rises. When detecting the seizure precursor of a bearing by measuring the temperature of the inner ring, outer ring, spacer, etc., it is assumed that the precursor cannot be detected because there is a delay in temperature rise. If the sensor is used, it changes slowly when viewed in terms of temperature, but changes rapidly in the heat flow, so that rapid heat generation can be detected quickly.
 なお、熱流束センサ7に加えて、軸受の内輪、外輪の温度を直接または間接的に測定した結果と、回転速度情報から、焼付きの有無を判定してもよい。図5は、軸受の外輪2に温度センサ22を設けた例を示す。図5に示す構成では、軸受装置は、軸受1と、熱流束センサ7とに加えて、熱流束センサ7とは別に配置した温度センサ22と、熱流束センサ7の出力、温度センサ22の出力および回転速度信号に基づいて軸受の異常を診断する異常診断部100とをさらに備える。 In addition to the heat flux sensor 7, the presence or absence of seizure may be determined from the result of directly or indirectly measuring the temperature of the inner and outer rings of the bearing and the rotational speed information. FIG. 5 shows an example in which a temperature sensor 22 is provided on the outer ring 2 of the bearing. In the configuration shown in FIG. 5, the bearing device includes, in addition to the bearing 1 and the heat flux sensor 7, a temperature sensor 22 arranged separately from the heat flux sensor 7, an output of the heat flux sensor 7, and an output of the temperature sensor 22. And an abnormality diagnosis unit 100 for diagnosing a bearing abnormality based on the rotation speed signal.
 図6は、異常診断装置が実行する異常判断処理の第1例を説明するためのフローチャートである。異常診断部100は、ステップS1において、センサの出力を監視する。センサの例としては、熱流束センサ7、温度センサ22、図示しない回転速度検出センサが挙げられる。続いて、ステップS2において異常診断部100は、各センサの出力に対応して設けられた閾値とセンサで検出された値とを比較し、閾値を超えたか否かの閾値判定を行なう。閾値判定は、各センサの出力個別に実行されてもよく、各センサの組み合わせに対して行なわれてもよい。組み合わせの例としては、回転速度が所定回転速度を超え、かつ温度が所定温度を超え、かつ熱流束センサの出力が所定閾値を超えた場合に異常発生したと判定することが考えられる。 FIG. 6 is a flowchart for explaining a first example of abnormality determination processing executed by the abnormality diagnosis apparatus. In step S1, abnormality diagnosis unit 100 monitors the output of the sensor. Examples of the sensor include a heat flux sensor 7, a temperature sensor 22, and a rotation speed detection sensor (not shown). Subsequently, in step S2, the abnormality diagnosis unit 100 compares a threshold provided corresponding to the output of each sensor with a value detected by the sensor, and determines whether or not the threshold has been exceeded. The threshold determination may be performed for each sensor output individually or may be performed for a combination of sensors. As an example of the combination, it may be determined that an abnormality has occurred when the rotation speed exceeds a predetermined rotation speed, the temperature exceeds a predetermined temperature, and the output of the heat flux sensor exceeds a predetermined threshold.
 ステップS2において閾値よりも検出値が小さい場合、再びステップS1のセンサ監視処理が繰り返し実行される。一方、ステップS2において閾値よりも検出値が大きい場合、ステップS3の異常回避動作が実行されるように異常診断部100は、異常動作を回避するための指示信号を出力する。 If the detected value is smaller than the threshold value in step S2, the sensor monitoring process in step S1 is repeated. On the other hand, when the detected value is larger than the threshold value in step S2, abnormality diagnosis unit 100 outputs an instruction signal for avoiding the abnormal operation so that the abnormality avoiding operation in step S3 is executed.
 この指示信号によって工作機器で実行される異常回避動作制御の例は以下のとおりである。例えば、回転速度を現在よりも低くする制御、刃物切り込み量を現在よりも小さくする制御、潤滑油を供給する、または供給量を増やす制御、加工停止(切削を中止しスピンドル回転速度を下げるまたは回転停止させる)などが挙げられる。なお、1回の閾値判定S2で異常有無を判定する場合、ノイズ等で誤判定することも想定され、誤判定を回避するため、連続して複数回異常を検出した場合に異常と判定し、異常回避動作S3に移行するようにしてあってもよい。 An example of the abnormal avoidance operation control executed by the machine tool in response to this instruction signal is as follows. For example, control to lower the rotation speed than the current control, control to reduce the cutting depth of the blade smaller than the present, control to supply the lubricant or increase the supply amount, stop processing (cutting is stopped and the spindle rotation speed is reduced or rotated) Stop). In addition, when determining the presence / absence of abnormality in one threshold determination S2, it is also assumed that erroneous determination is made with noise or the like, and in order to avoid erroneous determination, it is determined as abnormal when an abnormality is detected multiple times in succession, You may make it transfer to abnormality avoidance operation | movement S3.
 図7は、異常診断装置が実行する異常判断処理の第2例を説明するためのフローチャートである。異常診断部100は、ステップS11において、センサの出力を監視する。センサの例としては、熱流束センサ7、温度センサ22、図示しない回転速度検出センサが挙げられる。続いて、ステップS12において異常診断部100は、各センサの出力の単位時間当たりの変化率を算出し、その後、ステップS13において算出した変化率が判定値を超えるか否かを判定する(変化率判定)。 FIG. 7 is a flowchart for explaining a second example of the abnormality determination process executed by the abnormality diagnosis apparatus. In step S11, the abnormality diagnosis unit 100 monitors the output of the sensor. Examples of the sensor include a heat flux sensor 7, a temperature sensor 22, and a rotation speed detection sensor (not shown). Subsequently, in step S12, the abnormality diagnosis unit 100 calculates the rate of change per unit time of the output of each sensor, and then determines whether the rate of change calculated in step S13 exceeds the determination value (change rate). Judgment).
 変化率判定は、各センサの出力個別に実行されてもよく、各センサの組み合わせに対して行なわれてもよい。組み合わせの例としては、回転速度がある所定回転速度の時、温度が所定温度を超え、かつ熱流束センサの出力の増加率が判定値を超えた場合に異常発生したと判定することが考えられる。 The change rate determination may be performed individually for each sensor output, or may be performed for a combination of sensors. As an example of the combination, when the rotation speed is a predetermined rotation speed, it may be determined that an abnormality has occurred when the temperature exceeds the predetermined temperature and the increase rate of the output of the heat flux sensor exceeds the determination value. .
 ステップS13において判定値よりも変化率が小さい場合、再びステップS11のセンサ監視処理が繰り返し実行される。一方、ステップS13において閾値よりも検出値が大きい場合、ステップS14の異常回避動作が実行されるように異常診断部100は、異常動作を回避するための指示信号を出力する。この場合も、ノイズ等で誤判定することを抑制するため、連続して複数回異常を検出した場合に異常と判定してもよい。 If the rate of change is smaller than the determination value in step S13, the sensor monitoring process in step S11 is repeated. On the other hand, when the detected value is larger than the threshold value in step S13, abnormality diagnosis unit 100 outputs an instruction signal for avoiding the abnormal operation so that the abnormality avoiding operation in step S14 is executed. Also in this case, in order to suppress erroneous determination due to noise or the like, an abnormality may be determined when an abnormality is detected a plurality of times in succession.
 この指示信号によって工作機器で実行される異常回避動作制御の例は図6の場合と同じであるので説明は繰り返さない。 The example of the abnormality avoidance operation control executed by the machine tool in response to this instruction signal is the same as in the case of FIG.
 実施の形態1の軸受装置では、非回転側の軸受の内輪又は外輪の温度を基準温度とし、熱流束センサ表面の温度との基準温度との差によって生じる熱流を熱流束センサで検出することで、起電力の変化から軸受に発生した異常(焼付き等の前兆)を早期に検出することができる。このため、工作機械の運転速度を低下させるなどして軸受に損傷が生じるのを防ぐことができる。 In the bearing device of the first embodiment, the temperature of the inner ring or outer ring of the non-rotating side bearing is used as a reference temperature, and the heat flux generated by the difference between the temperature of the surface of the heat flux sensor and the reference temperature is detected by the heat flux sensor. Thus, it is possible to detect an abnormality (a sign of seizure or the like) occurring in the bearing from the change in electromotive force at an early stage. For this reason, it is possible to prevent the bearing from being damaged by reducing the operating speed of the machine tool.
 また、熱流束センサを非回転側に設けるので、センサの出力を外部に送信する配線の取り回しが容易となる。 Also, since the heat flux sensor is provided on the non-rotating side, the wiring for transmitting the sensor output to the outside becomes easy.
 さらに、例えば非接触温度センサで内輪温度(または内輪間座温度)を測定する場合、内輪表面(または内輪間座表面)に赤外線放射率が高くなるように表面処理を施すのが望ましいが、本実施の形態による異常検出装置であれば、軸受に使用する材料を限定することがなく、熱流束センサを使用することにより、放射温度計のように測定部の放射率を考慮する必要がない。 Furthermore, for example, when measuring the inner ring temperature (or inner ring spacer temperature) with a non-contact temperature sensor, it is desirable to subject the inner ring surface (or inner ring spacer surface) to a surface treatment so as to increase the infrared emissivity. With the abnormality detection device according to the embodiment, the material used for the bearing is not limited, and by using the heat flux sensor, it is not necessary to consider the emissivity of the measurement unit like a radiation thermometer.
 また、熱流束センサを使用することにより、微小な熱流束の変化を検出することが可能なため、温度計よりも熱の発生を素早く検出できる。 Also, by using a heat flux sensor, it is possible to detect a minute change in heat flux, so that heat generation can be detected more quickly than a thermometer.
 熱流束センサ7の貼り付け箇所を図1に示すような外輪内径側とすることで、発熱部位の近くで測定でき、検出感度、検出速度を改善できる。 ¡By attaching the heat flux sensor 7 to the outer ring inner diameter side as shown in FIG. 1, it is possible to measure near the heat generating part and improve the detection sensitivity and detection speed.
 [実施の形態2]
 実施の形態1では、軸受の外輪の内径面6に熱流束センサ7を貼り付けた例を示したが、実施の形態2では間座に熱流束センサ7を設けた例を説明する。間座に熱流束センサ7を設けることによって、軸受は標準品を使用することができる。このため、経年劣化によって軸受を交換することにも対応しやすい。
[Embodiment 2]
In the first embodiment, an example in which the heat flux sensor 7 is attached to the inner diameter surface 6 of the outer ring of the bearing has been described. In the second embodiment, an example in which the heat flux sensor 7 is provided in the spacer will be described. By providing the heat flux sensor 7 in the spacer, the standard bearing can be used. For this reason, it is easy to cope with replacement of the bearing due to deterioration over time.
 軸受装置401は、軸受け2個の間に間座を挟む構造で回転体を支持するものである。この軸受装置において、間座の非回転側(たとえば外輪間座)に熱流束センサを取り付ける。 The bearing device 401 supports the rotating body with a structure in which a spacer is sandwiched between two bearings. In this bearing device, a heat flux sensor is attached to the non-rotating side of the spacer (for example, the outer ring spacer).
 図8では、工作機の主軸17に軸受装置を組み込んだ例で、外輪間座13に熱流束センサ7を取り付けた状態を示す。つまり、実施の形態2に係る軸受装置401は、軸受1と、外輪間座13と、外輪間座13に配置され、軸受1から生じた熱流束を検出する熱流束センサ7とを備える。 FIG. 8 shows a state in which the heat flux sensor 7 is attached to the outer ring spacer 13 in an example in which a bearing device is incorporated in the main spindle 17 of the machine tool. That is, the bearing device 401 according to the second embodiment includes the bearing 1, the outer ring spacer 13, and the heat flux sensor 7 that is disposed in the outer ring spacer 13 and detects the heat flux generated from the bearing 1.
 図8において、2つの転がり軸受1の間に内輪間座14と外輪間座13が挿入されている。内輪4の内径部9および内輪間座内径部16に主軸17が挿入され、外輪2の外径部10および外輪間座外径部15がハウジング18に挿入され、主軸17の回転を支持している。主軸17が回転運動を行なうと、軸受1は内輪転動体軌道面12と転動体3の接触および外輪転動体軌道面11と転動体3の接触によって発熱する。この時、ハウジング18に挿入された外輪2よりも、主軸17が挿入された内輪4の方が、温度が高くなる傾向がある。 8, an inner ring spacer 14 and an outer ring spacer 13 are inserted between two rolling bearings 1. The main shaft 17 is inserted into the inner diameter portion 9 and the inner ring spacer inner diameter portion 16 of the inner ring 4, and the outer diameter portion 10 and the outer ring spacer outer diameter portion 15 of the outer ring 2 are inserted into the housing 18 to support the rotation of the main shaft 17. Yes. When the main shaft 17 rotates, the bearing 1 generates heat due to contact between the inner ring rolling element raceway surface 12 and the rolling element 3 and contact between the outer ring rolling element raceway surface 11 and the rolling element 3. At this time, the temperature of the inner ring 4 in which the main shaft 17 is inserted tends to be higher than that of the outer ring 2 inserted in the housing 18.
 軸受1の転動体3と軌道面11との面圧増加に伴う温度上昇では、軸受1を保持するハウジング18や主軸17の熱容量が大きいので、軸受1の転動体3と軌道面11間で発生した熱がハウジング18や主軸17に伝達し、内輪4や外輪2、あるいは間座13,14の温度が上昇するまでに遅れが生じる。そのため、温度センサで各部品の温度を測定して、軸受の異常を判定しようとすると、前兆を検出するのが遅くなってしまう。 In the temperature rise accompanying the increase in the surface pressure between the rolling element 3 of the bearing 1 and the raceway surface 11, the heat capacity of the housing 18 and the main shaft 17 that holds the bearing 1 is large, and thus occurs between the rolling element 3 of the bearing 1 and the raceway surface 11. The transmitted heat is transmitted to the housing 18 and the main shaft 17, and a delay occurs until the temperature of the inner ring 4, the outer ring 2, or the spacers 13 and 14 rises. For this reason, if the temperature of each component is measured by the temperature sensor and an attempt is made to determine a bearing abnormality, the detection of the precursor is delayed.
 そこで、内輪4、転動体3、保持器5の回転により発生する回転雰囲気8の温度と、外輪2の温度の差を熱流束センサ7によって検出し、定常運転状態と異なる電圧出力が検出された場合、異常と判断する。なお、例として工作機主軸に軸受装置を挿入した例を示したが、工作機主軸以外にも、産業分野や自動車分野において同様の構造の軸受装置を適用することが可能である。 Therefore, the difference between the temperature of the rotating atmosphere 8 generated by the rotation of the inner ring 4, the rolling element 3, and the cage 5 and the temperature of the outer ring 2 is detected by the heat flux sensor 7, and a voltage output different from the steady operation state is detected. If it is, it is judged as abnormal. In addition, although the example which inserted the bearing apparatus in the machine tool main axis | shaft was shown as an example, the bearing apparatus of the same structure is applicable also in an industrial field or a motor vehicle field | area other than a machine tool main axis | shaft.
 図8では、外輪間座13の中央に熱流束センサ7を配置した絵で説明したが、内輪4に近接する位置に熱流束センサ7を配置してもよい。そうすることで、発熱部である内輪4、外輪2、転動体3の接触部、内輪転動体軌道面12と外輪転動体軌道面11に接近して配置でき、熱流の検出を速く行なうことができる。 8, the heat flux sensor 7 is disposed at the center of the outer ring spacer 13, but the heat flux sensor 7 may be disposed at a position close to the inner ring 4. By doing so, the inner ring 4, the outer ring 2, and the rolling element 3, which are the heat generating parts, can be arranged close to the contact part, the inner ring rolling element raceway surface 12 and the outer ring rolling element raceway surface 11, and the heat flow can be detected quickly. it can.
 図9は、内輪4に近接する位置に熱流束センサ7を配置した変形例を示す図である。図9に示すように、外輪間座13の端部が内輪外径面20に近接するように突出部19を設け、突出部19の内径面21に熱流束センサ7を固定してもよい。 FIG. 9 is a view showing a modified example in which the heat flux sensor 7 is arranged at a position close to the inner ring 4. As shown in FIG. 9, a protrusion 19 may be provided so that the end of the outer ring spacer 13 is close to the inner ring outer diameter surface 20, and the heat flux sensor 7 may be fixed to the inner diameter surface 21 of the protrusion 19.
 間座は、外輪間座13(本体部)と、外輪間座13(本体部)の側面から内輪4の外径面に向けて突出する突出部19とを含む。熱流束センサ7は、内輪4の外径面に対向するように突出部19に固定される。外輪間座13は、軸受1の軸方向において外輪2に隣接し、かつ軸受1の径方向において内輪間座14と間隔を隔てて配置されている。 The spacer includes an outer ring spacer 13 (main body part) and a protruding part 19 that protrudes from the side surface of the outer ring spacer 13 (main body part) toward the outer diameter surface of the inner ring 4. The heat flux sensor 7 is fixed to the protruding portion 19 so as to face the outer diameter surface of the inner ring 4. The outer ring spacer 13 is adjacent to the outer ring 2 in the axial direction of the bearing 1 and is spaced from the inner ring spacer 14 in the radial direction of the bearing 1.
 この場合、熱流束センサ7は、内輪外径面20と直接対向するため、異常検出の精度を高められる。図9に示す例では、熱流束センサ7を左右の突出部19にそれぞれ設けたが、左右の突出部19の一方のみに設けてもよい。 In this case, since the heat flux sensor 7 directly faces the inner ring outer diameter surface 20, the accuracy of abnormality detection can be improved. In the example shown in FIG. 9, the heat flux sensor 7 is provided on the left and right protrusions 19, but may be provided on only one of the left and right protrusions 19.
 間座に設けた内輪に突出する突出部19に熱流束センサ7を設けた場合、発熱部近傍に熱流束センサを配置することができ、異常の検出速度を早めることができる。 When the heat flux sensor 7 is provided in the protrusion 19 projecting from the inner ring provided in the spacer, the heat flux sensor can be disposed in the vicinity of the heat generating portion, and the detection speed of the abnormality can be increased.
 また、軸受側面近傍24に熱流束センサ7を配置してもよい。そうすることで、軸受あるいは間座に熱流束センサを設けるスペースが無くとも、熱流束センサを設けることができる。 Further, the heat flux sensor 7 may be arranged near the bearing side surface 24. By doing so, the heat flux sensor can be provided even if there is no space for providing the heat flux sensor in the bearing or the spacer.
 図10は、間座に温度センサを追加した変形例を示す図である。図10に示すように、外輪間座13に温度センサ22を設け、外輪間座13と外輪2が接触する近傍に温度センサ22を配置してもよい。 FIG. 10 is a diagram showing a modification in which a temperature sensor is added to the spacer. As shown in FIG. 10, a temperature sensor 22 may be provided in the outer ring spacer 13, and the temperature sensor 22 may be disposed in the vicinity where the outer ring spacer 13 and the outer ring 2 are in contact with each other.
 図11は、間座に非接触型の温度センサを追加した変形例を示す図である。図11に示すように、外輪間座13に非接触温度センサ23を設け、内輪4の温度を非接触温度センサ23(たとえば赤外線温度センサ)を用いて測定した結果と、熱流束センサ7の出力とから軸受の異常(焼付き等)の前兆を異常診断部100で判定してもよい。 FIG. 11 is a diagram showing a modification in which a non-contact temperature sensor is added to the spacer. As shown in FIG. 11, a non-contact temperature sensor 23 is provided in the outer ring spacer 13 and the temperature of the inner ring 4 is measured using a non-contact temperature sensor 23 (for example, an infrared temperature sensor), and the output of the heat flux sensor 7. Therefore, the abnormality diagnosis unit 100 may determine a sign of a bearing abnormality (such as seizure).
 また、外輪2の温度、軸受など回転体の回転数、熱流束センサ7の出力から内輪温度を推定することが可能である。こうして推定された内輪温度と、外輪温度と、回転数から軸受部に付与されている軸受荷重を推定することが可能である。 Also, it is possible to estimate the inner ring temperature from the temperature of the outer ring 2, the number of rotations of a rotating body such as a bearing, and the output of the heat flux sensor 7. The bearing load applied to the bearing portion can be estimated from the estimated inner ring temperature, outer ring temperature, and rotation speed.
 軸受荷重の推定方法を以下に説明する。ハウジングに外輪を挿入し内輪で軸を支持している状態を例にすると、予圧を受けた状態で内輪が回転すると温度が上昇し膨張する。そのため、軸受の予圧が初期設定値よりも上昇する。この関係を演算式などで用意しておけば、予圧を推定することが可能となる。演算式に用いるパラメータは、例えば軸受の回転速度、外輪温度、内輪温度、熱流束センサ出力などである。 The bearing load estimation method will be described below. In the case where the outer ring is inserted into the housing and the shaft is supported by the inner ring, for example, the temperature rises and expands when the inner ring rotates while receiving the preload. Therefore, the preload of the bearing rises from the initial set value. If this relationship is prepared by an arithmetic expression or the like, the preload can be estimated. Parameters used in the arithmetic expression are, for example, the rotational speed of the bearing, the outer ring temperature, the inner ring temperature, the heat flux sensor output, and the like.
 熱流束センサ出力は測定対象物の温度そのものではないが、測定対象物が温度変化し、発生する熱流の変化を検出することが可能である。熱電対などで温度を検出する代替えとして使用できる。たとえば、特開2009-68533号公報(段落0008)に記載された予圧荷重推定方法を用いることができる。 Although the output of the heat flux sensor is not the temperature of the measurement object itself, it is possible to detect the change in the heat flow that occurs when the measurement object changes in temperature. It can be used as an alternative to detecting temperature with a thermocouple. For example, the preload load estimation method described in JP 2009-68533 A (paragraph 0008) can be used.
 以上説明したように、実施の形態2では、間座に熱流束センサ7を配置した。これにより軸受自体に特殊な加工をすることなく、軸受の異常発生の予兆を速やかに検出することができる。加えて、軸受に温度センサを併設することにより、熱流束センサの出力と、軸受回転数(支持部回転数)、熱流束センサ貼り付け箇所の温度から軸受内外輪の温度を推定し、異常の発生だけでなく軸受装置に付与されている荷重を推定することができる。 As described above, in the second embodiment, the heat flux sensor 7 is arranged in the spacer. As a result, it is possible to quickly detect a sign of occurrence of an abnormality in the bearing without performing special processing on the bearing itself. In addition, by installing a temperature sensor in the bearing, the temperature of the inner and outer rings of the bearing is estimated from the output of the heat flux sensor, the bearing rotation speed (support section rotation speed), and the temperature at the location where the heat flux sensor is attached. Not only the generation but also the load applied to the bearing device can be estimated.
 [実施の形態3]
 実施の形態1,2では、外輪または外輪間座が固定側であり、内輪または内輪間座が回転側である場合に、外輪または外輪間座に熱流束センサを配置して配線で外部にセンサの出力を引き出す場合について説明した。しかし、逆に外輪または外輪間座が回転側であり、内輪または内輪間座が固定側である場合もありうる。実施の形態3では、内輪が固定側である場合の例を説明する。
[Embodiment 3]
In the first and second embodiments, when the outer ring or outer ring spacer is on the fixed side and the inner ring or inner ring spacer is on the rotation side, a heat flux sensor is arranged on the outer ring or outer ring spacer and the sensor is connected to the outside by wiring. The case of extracting the output of was explained. However, conversely, the outer ring or the outer ring spacer may be the rotating side, and the inner ring or the inner ring spacer may be the fixed side. In Embodiment 3, an example in which the inner ring is on the fixed side will be described.
 図12は、実施の形態3の軸受装置402の構成を示す図である。図12に示す例では、回転輪が外輪2、非回転輪が内輪4の場合で、熱流束センサ7を非回転輪である内輪4に取り付けた状態を示す。 FIG. 12 is a diagram illustrating a configuration of the bearing device 402 according to the third embodiment. The example shown in FIG. 12 shows a state where the rotating wheel is the outer ring 2 and the non-rotating wheel is the inner ring 4 and the heat flux sensor 7 is attached to the inner ring 4 that is a non-rotating wheel.
 熱流束センサ7は、軸受1の幅方向の内部で、内輪4の外径面106のうち、転動体3に当接する軌道面106A以外の部分に配置される。 The heat flux sensor 7 is disposed inside the bearing 1 in the width direction on the outer diameter surface 106 of the inner ring 4 other than the raceway surface 106 </ b> A that contacts the rolling element 3.
 図12に示すように、熱流束センサ7が内輪4に貼り付けられている。この構成の軸受装置は、外輪2が回転輪、内輪4が非回転輪である。 As shown in FIG. 12, the heat flux sensor 7 is attached to the inner ring 4. In the bearing device having this configuration, the outer ring 2 is a rotating ring and the inner ring 4 is a non-rotating ring.
 熱流束センサ7の貼り付け箇所を図12のような内輪外径側とすることで、発熱部位の近くで測定でき、検出感度、検出速度を改善できる。 ¡By attaching the heat flux sensor 7 on the inner ring outer diameter side as shown in FIG. 12, it is possible to measure near the heat generating part, and to improve detection sensitivity and detection speed.
 また、回転輪と非回転輪の関係が図1と逆になっていても、図12の構造を適用すれば、熱流束センサ7からの出力を利用して、軸受に発生する異常を検出することが可能である。熱流束センサ7で発生した出力の情報は、ワイヤレス送信装置200で外部に送信すれば、外部の異常診断装置で同様の診断が可能である。なお、好ましくは、これに電力を供給する給電装置をさらに備えてもよい。給電装置としては、電池の他に、温度差や振動などで発電する発電装置、電磁誘導式の発電機などを使うことができる。 Even if the relationship between the rotating wheel and the non-rotating wheel is opposite to that shown in FIG. 1, if the structure shown in FIG. 12 is applied, an abnormality occurring in the bearing is detected using the output from the heat flux sensor 7. It is possible. If the output information generated by the heat flux sensor 7 is transmitted to the outside by the wireless transmission device 200, the same diagnosis can be performed by the external abnormality diagnosis device. In addition, Preferably, you may further provide the electric power feeder which supplies electric power to this. As the power supply device, in addition to the battery, a power generation device that generates power by a temperature difference or vibration, an electromagnetic induction generator, or the like can be used.
 図13は、センサの出力をワイヤレスで送受信する構成を示す図である。図13に示すように、ワイヤレス送信装置200(図12)は、信号処理部201と、データ送信部202とを含む。信号処理部201は、熱流束センサ7の出力を受けて、ノイズ成分の除去を行ない、アナログ-デジタル変換処理および変調処理等を行ない、データ送信部202に送信用のデータを出力する。データ送信部202は、無線によって受信装置300にデータを送信する。 FIG. 13 is a diagram illustrating a configuration in which sensor outputs are transmitted and received wirelessly. As illustrated in FIG. 13, the wireless transmission device 200 (FIG. 12) includes a signal processing unit 201 and a data transmission unit 202. The signal processing unit 201 receives the output of the heat flux sensor 7, removes noise components, performs analog-digital conversion processing, modulation processing, and the like, and outputs data for transmission to the data transmission unit 202. The data transmission unit 202 transmits data to the reception device 300 wirelessly.
 受信装置300は、工作装置の外部に設置されている。受信装置300は、無線でデータを受信するデータ受信部301と、受信信号からデータを復調する信号処理部302と、信号処理部302からのデータを受けて軸受異常を判断する異常判定部303とを含む。異常判定部303を信号処理部201の後段に挿入すれば、送信データ量を減らし、電力消費を低減することもできる。なお、異常判定部303の判断処理は、図6および図7で説明した処理と同様であるので、説明は繰り返さない。 The receiving device 300 is installed outside the machine tool. The receiving apparatus 300 includes a data receiving unit 301 that wirelessly receives data, a signal processing unit 302 that demodulates data from a received signal, and an abnormality determination unit 303 that receives data from the signal processing unit 302 and determines a bearing abnormality. including. If the abnormality determination unit 303 is inserted after the signal processing unit 201, the amount of transmission data can be reduced and the power consumption can be reduced. Note that the determination process of abnormality determination unit 303 is the same as the process described with reference to FIGS. 6 and 7, and therefore description thereof will not be repeated.
 実施の形態3の軸受装置は、熱流束センサ7の出力情報を外部にワイヤレス送信するワイヤレス送信装置200と、ワイヤレス送信装置200から熱流束センサ7の出力情報を受信し、軸受の異常判断を行なう受信装置300とを備える。これにより、内輪が固定輪で外輪が回転輪である場合にも、外部に熱流束センサの検出結果を出力することができる。このため、実施の形態1,2と同様に速やかに軸受の異常の予兆を検出することができる。 The bearing device according to the third embodiment receives the output information of the heat flux sensor 7 wirelessly from the wireless transmitter 200 and receives the output information of the heat flux sensor 7 from the wireless transmitter 200 to determine the abnormality of the bearing. A receiving apparatus 300. Thereby, even when the inner ring is a fixed ring and the outer ring is a rotating ring, the detection result of the heat flux sensor can be output to the outside. For this reason, as in the first and second embodiments, a sign of a bearing abnormality can be quickly detected.
 [実施の形態4]
 実施の形態4では、実施の形態3と同様に内輪が固定輪である場合について説明する。ただし、実施の形態4では、内輪ではなく内輪間座に熱流束センサを配置した構成を説明する。
[Embodiment 4]
In the fourth embodiment, a case where the inner ring is a fixed ring as in the third embodiment will be described. However, in the fourth embodiment, a configuration in which the heat flux sensor is arranged in the inner ring spacer instead of the inner ring will be described.
 図14は、実施の形態4の軸受装置403の構成を示す図である。軸受装置は、軸受け2個の間に間座を挟む構造で回転体を支持するものであり、内輪が非回転側である。図14に示す例では、間座の非回転側(たとえば内輪間座14)に熱流束センサ7を取り付けている。 FIG. 14 is a diagram illustrating a configuration of the bearing device 403 according to the fourth embodiment. The bearing device supports the rotating body with a structure in which a spacer is sandwiched between two bearings, and the inner ring is on the non-rotating side. In the example shown in FIG. 14, the heat flux sensor 7 is attached to the non-rotating side of the spacer (for example, the inner ring spacer 14).
 すなわち、実施の形態4に係る軸受装置は、内輪間座14に配置され、熱流束センサ7の出力情報を外部にワイヤレス送信するワイヤレス送信装置200と、ワイヤレス送信装置200から熱流束センサ7の出力情報を受信し、軸受1の異常判断を行なう受信装置300(図13)とをさらに備える。 That is, the bearing device according to the fourth embodiment is arranged in the inner ring spacer 14 and wirelessly transmits the output information of the heat flux sensor 7 to the outside, and the output of the heat flux sensor 7 from the wireless transmitter 200. It further includes a receiving device 300 (FIG. 13) that receives information and determines abnormality of the bearing 1.
 この構成の軸受装置は、外輪2が回転輪、内輪4が非回転輪である。回転輪と非回転輪の関係が図8と逆になっていても、図14の構造を適用すれば、熱流束センサ7からの出力を利用して、軸受1に発生する異常を検出することが可能である。熱流束センサ7で発生した出力の情報は、ワイヤレス送信装置200で外部に送信すれば、外部の異常診断装置で同様の診断が可能である。なお、好ましくは、これに電力を供給する給電装置をさらに備えてもよい。給電装置としては、電池の他に、温度差や振動などで発電する発電装置、電磁誘導式の発電機などを使うことができる。なお、ワイヤレス送信装置200については、図13で説明しているので、説明は繰り返さない。 In this bearing device, the outer ring 2 is a rotating ring and the inner ring 4 is a non-rotating ring. Even if the relationship between the rotating wheel and the non-rotating wheel is opposite to that shown in FIG. 8, if the structure shown in FIG. 14 is applied, an abnormality occurring in the bearing 1 can be detected using the output from the heat flux sensor 7. Is possible. If the output information generated by the heat flux sensor 7 is transmitted to the outside by the wireless transmission device 200, the same diagnosis can be performed by the external abnormality diagnosis device. In addition, Preferably, you may further provide the electric power feeder which supplies electric power to this. As the power supply device, in addition to the battery, a power generation device that generates power by a temperature difference or vibration, an electromagnetic induction generator, or the like can be used. Since wireless transmitting apparatus 200 has been described with reference to FIG. 13, description thereof will not be repeated.
 なお、熱流束センサ7に加えて、内輪近傍の温度を測定するため、温度センサ22を内輪間座14に取り付けても良い。 In addition to the heat flux sensor 7, a temperature sensor 22 may be attached to the inner ring spacer 14 in order to measure the temperature in the vicinity of the inner ring.
 実施の形態4の軸受装置によれば、内輪が固定輪で外輪が回転輪である場合にも、外部に熱流束センサの検出結果を出力することができる。このため、実施の形態1~3と同様に速やかに軸受の異常の予兆を検出することができる。また、軸受自体には特殊な加工は必要ないので、実施の形態2と同様に、経年劣化などにより軸受の交換等を行なっても間座と熱流束センサをそのまま使用することができる。 According to the bearing device of the fourth embodiment, even when the inner ring is a fixed ring and the outer ring is a rotating ring, the detection result of the heat flux sensor can be output to the outside. Therefore, as in the first to third embodiments, it is possible to quickly detect a sign of a bearing abnormality. Further, since the bearing itself does not require special processing, the spacer and the heat flux sensor can be used as they are even if the bearing is replaced due to deterioration over time, as in the second embodiment.
 [実施の形態5]
 実施の形態5に係る軸受装置404は、実施の形態2に係る軸受装置401と基本的に同様の構成を備え、外輪2が固定輪として構成されている。ただし、実施の形態5に係る軸受装置は、軸受1に潤滑用流体を供給する供給路をさらに備えており、軸受装置の周方向における熱流束センサ7の配置が供給路の配置に基づいて制限されている点で、実施の形態2に係る軸受装置と異なる。潤滑用流体は、潤滑油を含み、例えば潤滑油とエアーとを含む。
[Embodiment 5]
The bearing device 404 according to the fifth embodiment has basically the same configuration as the bearing device 401 according to the second embodiment, and the outer ring 2 is configured as a fixed ring. However, the bearing device according to the fifth embodiment further includes a supply path for supplying the lubricating fluid to the bearing 1, and the arrangement of the heat flux sensor 7 in the circumferential direction of the bearing apparatus is limited based on the arrangement of the supply path. This is different from the bearing device according to the second embodiment. The lubricating fluid includes lubricating oil, and includes, for example, lubricating oil and air.
 図15~図17は、実施の形態5に係る軸受装置の構成例として、第1の軸受1aと第2の軸受1bとが上記軸方向において外輪間座13および内輪間座14を挟むように配置されており、かつ第1の軸受1aから生じた熱流束を検出するための第1熱流束センサ7aと第2の軸受1bから生じた熱流束を検出するための第2熱流束センサ7bとが配置された軸受装置を示している。なお、図15において、内輪間座14、主軸17、ハウジング18、および外筒41は、図示されていない。また、図16および図17において、主軸17は断面視されていない。第1の軸受1aおよび第2の軸受1bは、例えばアンギュラ玉軸受である。第1の軸受1aおよび第2の軸受1bの組み合わせは、任意に選択され得るが、例えば背面組み合わせである。第1の軸受1aおよび第2の軸受1bは、例えば互いに同等の構成を有している。 FIGS. 15 to 17 show a configuration example of the bearing device according to the fifth embodiment, in which the first bearing 1a and the second bearing 1b sandwich the outer ring spacer 13 and the inner ring spacer 14 in the axial direction. A first heat flux sensor 7a for detecting a heat flux generated from the first bearing 1a and a second heat flux sensor 7b for detecting a heat flux generated from the second bearing 1b. The bearing apparatus by which is arrange | positioned is shown. In FIG. 15, the inner ring spacer 14, the main shaft 17, the housing 18, and the outer cylinder 41 are not illustrated. 16 and 17, the main shaft 17 is not viewed in cross section. The first bearing 1a and the second bearing 1b are, for example, angular ball bearings. Although the combination of the 1st bearing 1a and the 2nd bearing 1b may be selected arbitrarily, it is a back surface combination, for example. The 1st bearing 1a and the 2nd bearing 1b have the mutually equivalent structure, for example.
 図15~図17に示されるように、実施の形態5に係る軸受装置は、供給路として、第1の軸受1aの内部空間に潤滑用流体を供給するための第1供給路31aと、第2の軸受1bの内部空間に潤滑用流体を供給するための第2供給路31bとを備えている。第1供給路31aおよび第2供給路31bは、軸受装置の外部に配置された外部供給路34を介して、軸受装置の外部に配置された図示しない潤滑用流体供給装置と接続されている。 As shown in FIGS. 15 to 17, in the bearing device according to the fifth embodiment, as a supply path, a first supply path 31a for supplying lubricating fluid to the internal space of the first bearing 1a, And a second supply path 31b for supplying a lubricating fluid to the internal space of the second bearing 1b. The first supply path 31a and the second supply path 31b are connected to a lubricating fluid supply apparatus (not shown) arranged outside the bearing device via an external supply path 34 arranged outside the bearing apparatus.
 第1供給路31aは、第1の軸受1aの内部空間に面して配置された第1供給口32aと、外部供給路34に接続された第1流入口33aとを有している。第1供給路31aおよび第2供給路31bは、例えば外輪間座13の内部に配置されている。第1供給口32aは、例えば外輪間座13の上記軸方向の端面13aに配置されている。第1流入口33aは、例えば外輪間座13の外径面に配置されている。第2供給路31bは、第2の軸受1bの内部空間に面して配置された第2供給口32bと、外部供給路34に接続された第2流入口33bとを有している。第2供給口32bは、例えば外輪間座13の上記軸方向の端面13bに配置されている。第2流入口33bは、例えば外輪間座13の外径面に配置されている。外輪間座13の上記軸方向の端面13aおよび端面13bは、例えば互いに同等の構成を有している。 The first supply path 31 a has a first supply port 32 a disposed facing the internal space of the first bearing 1 a and a first inflow port 33 a connected to the external supply path 34. The first supply path 31a and the second supply path 31b are disposed, for example, inside the outer ring spacer 13. The first supply port 32a is disposed, for example, on the axial end surface 13a of the outer ring spacer 13. The first inflow port 33a is disposed, for example, on the outer diameter surface of the outer ring spacer 13. The second supply path 31 b has a second supply port 32 b disposed facing the internal space of the second bearing 1 b and a second inflow port 33 b connected to the external supply path 34. The 2nd supply port 32b is arrange | positioned at the end surface 13b of the said axial direction of the outer ring spacer 13, for example. The second inflow port 33b is disposed on the outer diameter surface of the outer ring spacer 13, for example. The end surface 13a and the end surface 13b in the axial direction of the outer ring spacer 13 have, for example, the same configuration.
 外部供給路34は、例えばハウジング18の内部に配置されている。外部供給路34は、分岐部と、分岐部よりも潤滑用流体の流通方向における下流側に位置する第3流出口34aおよび第4流出口34bと、分岐部よりも上記流通方向における上流側に位置する第3流入口34cとを有している。第3流出口34aは、第1流入口33aに接続されている。第4流出口34bは、第2流入口33bに接続されている。第3流出口34aおよび第4流出口34bは、例えば外輪間座13の外径面に接続されるハウジング18の内径面に配置されている。第3流入口34cは、図示しない配管等を介して、潤滑用流体供給装置に接続されている。第3流入口34cは、例えばハウジング18の上記軸方向の端面に接続されている前蓋60に設けられている。 The external supply path 34 is disposed, for example, inside the housing 18. The external supply path 34 includes a branch portion, a third outlet port 34a and a fourth outlet port 34b that are located downstream of the branch portion in the flow direction of the lubricating fluid, and an upstream side of the branch portion in the flow direction. It has the 3rd inflow port 34c located. The third outlet 34a is connected to the first inlet 33a. The fourth outlet 34b is connected to the second inlet 33b. The 3rd outflow port 34a and the 4th outflow port 34b are arrange | positioned at the internal-diameter surface of the housing 18 connected to the outer-diameter surface of the outer ring | wheel spacer 13, for example. The third inflow port 34c is connected to a lubricating fluid supply device via a pipe or the like (not shown). The third inflow port 34c is provided in the front lid 60 connected to, for example, the axial end surface of the housing 18.
 図15~図17に示されるように、実施の形態5に係る軸受装置は、各軸受1の上記内部空間内の潤滑用流体を排出するための排出路を備えている。具体的には、実施の形態5に係る軸受装置は、排出路として、第1の軸受1aの内部空間から潤滑用流体を排出するための第1排出路35aと、第2の軸受1bの内部空間に潤滑用流体を供給するための第2排出路35bとを備えている。第1排出路35aおよび第2排出路35bは、軸受装置の外部に配置された外部排出路38を介して、軸受装置の外部に配置された図示しない潤滑用流体排出装置と接続されている。 As shown in FIGS. 15 to 17, the bearing device according to the fifth embodiment is provided with a discharge path for discharging the lubricating fluid in the internal space of each bearing 1. Specifically, in the bearing device according to the fifth embodiment, as the discharge path, the first discharge path 35a for discharging the lubricating fluid from the internal space of the first bearing 1a and the inside of the second bearing 1b are used. And a second discharge path 35b for supplying a lubricating fluid to the space. The first discharge passage 35a and the second discharge passage 35b are connected to a lubricating fluid discharge device (not shown) disposed outside the bearing device via an external discharge passage 38 disposed outside the bearing device.
 第1排出路35aは、第1の軸受1aの内部空間に面して配置された第1排出口36aと、外部排出路38に接続された第5流出口37aとを有している。第1排出路35aは、例えば第1の軸受1aの外輪2aと外輪間座13との間に配置されている。外輪間座13において外輪2aの軸方向の端面に接する接続面には、端面13aに連なる溝部が形成されている。第1排出路35aは、例えば外輪2aの上記端面と、外輪間座13に形成された上記溝部の内周面とによって区画されている。 The first discharge path 35a has a first discharge port 36a disposed facing the internal space of the first bearing 1a, and a fifth outlet 37a connected to the external discharge path 38. The first discharge path 35a is disposed, for example, between the outer ring 2a of the first bearing 1a and the outer ring spacer 13. In the outer ring spacer 13, a groove portion that is continuous with the end surface 13 a is formed on the connection surface that is in contact with the end surface of the outer ring 2 a in the axial direction. The first discharge path 35a is defined by, for example, the end surface of the outer ring 2a and the inner peripheral surface of the groove formed in the outer ring spacer 13.
 第2排出路35bは、第2の軸受1bの内部空間に面して配置された第2排出口36bと、外部排出路38に接続された第6流出口37bとを有している。第2排出路35bは、例えば第2の軸受1bの外輪2bと外輪間座13との間に配置されている。外輪間座13において外輪2bの軸方向の端面に接する接続面には、端面13bに連なる溝部が形成されている。第2排出路35bは、例えば外輪2bの上記端面と、外輪間座13に形成された上記溝部の内周面とによって区画されている。 The second discharge path 35b has a second discharge port 36b disposed facing the internal space of the second bearing 1b, and a sixth outlet 37b connected to the external discharge path 38. The second discharge path 35b is disposed, for example, between the outer ring 2b of the second bearing 1b and the outer ring spacer 13. In the outer ring spacer 13, a groove portion that is continuous with the end surface 13 b is formed on the connection surface that is in contact with the axial end surface of the outer ring 2 b. The second discharge path 35b is partitioned by, for example, the end surface of the outer ring 2b and the inner peripheral surface of the groove portion formed in the outer ring spacer 13.
 図15に示されるように、第1排出口36aは、上記軸方向から軸受装置を視たときに、第1供給口32aと上記周方向に間隔を隔てて配置されている。上記軸方向から軸受装置を視たときに、第1供給口32aおよび第1排出口36aの各中心が軸受装置の中心軸に対して成す中心角は、例えば180度である。第2排出口36bは、上記軸方向から軸受装置を視たときに、第2供給口32bと上記周方向に間隔を隔てて配置されている。上記軸方向から軸受装置を視たときに、第2供給口32bおよび第2排出口36bの各中心が軸受装置の中心軸に対して成す中心角は、例えば180度である。 As shown in FIG. 15, the first discharge port 36 a is disposed at a distance from the first supply port 32 a in the circumferential direction when the bearing device is viewed from the axial direction. When the bearing device is viewed from the axial direction, the center angle formed by the centers of the first supply port 32a and the first discharge port 36a with respect to the center axis of the bearing device is, for example, 180 degrees. The second discharge port 36b is disposed at a distance from the second supply port 32b in the circumferential direction when the bearing device is viewed from the axial direction. When the bearing device is viewed from the axial direction, the center angle formed by the centers of the second supply port 32b and the second discharge port 36b with respect to the central axis of the bearing device is, for example, 180 degrees.
 実施の形態5に係る軸受装置の内部には、第1供給路31a、第1供給口32a、第1の軸受1aの内部空間、第1排出口36a、および第1排出路35aが順に接続されてなる第1流路と、第2供給路31b、第2供給口32b、第2の軸受1bの内部空間、第2排出口36b、および第2排出路35bが順に接続されてなる第2流路とが形成されている。第1流路と第2流路とは、例えば同等の構成を有している。 A first supply path 31a, a first supply port 32a, an internal space of the first bearing 1a, a first discharge port 36a, and a first discharge path 35a are sequentially connected to the inside of the bearing device according to the fifth embodiment. A second flow path formed by sequentially connecting the first flow path, the second supply path 31b, the second supply port 32b, the internal space of the second bearing 1b, the second discharge port 36b, and the second discharge path 35b. A road is formed. The first channel and the second channel have, for example, the same configuration.
 第1の軸受1aの内部空間が環状に設けられていることにより、当該内部空間には第1供給口32aと第1排出口36aとの間を接続する第1分岐路と第2分岐路とが形成されている。つまり、第1流路は第1供給口32aと第1排出口36aとの間で分岐されかつ合流されている。 Since the internal space of the first bearing 1a is provided in an annular shape, a first branch path and a second branch path that connect between the first supply port 32a and the first discharge port 36a are provided in the internal space. Is formed. That is, the first flow path is branched and merged between the first supply port 32a and the first discharge port 36a.
 第2の軸受1bの内部空間が環状に設けられていることにより、当該内部空間には第2供給口32bと第2排出口36bとの間を接続する第3分岐路と第4分岐路とが形成されている。つまり、第2流路は第2供給口32bと第2排出口36bとの間で分岐されかつ合流されている。 Since the internal space of the second bearing 1b is provided in an annular shape, a third branch path and a fourth branch path that connect between the second supply port 32b and the second discharge port 36b are provided in the internal space. Is formed. That is, the second flow path is branched and merged between the second supply port 32b and the second discharge port 36b.
 第1熱流束センサ7aおよび第2熱流束センサ7bは、例えば固定側間座としての外輪間座13において回転側間座としての内輪間座14と対向する面に固定されている。第1熱流束センサ7aおよび第2熱流束センサ7bは、外輪間座13と内輪間座14との間を上記径方向に沿って延びる熱流束を検出するように配置されている。第1熱流束センサ7aおよび第2熱流束センサ7bは、任意の方法により固定側間座に固定されていればよいが、例えば接着またはネジ締め等により固定されている。第1熱流束センサ7aと第1流路との相対的な位置関係は、例えば第2熱流束センサ7bと第2流路との相対的な位置関係と同等である。 1st heat flux sensor 7a and 2nd heat flux sensor 7b are being fixed to the surface facing inner ring spacer 14 as a rotation side spacer in outer ring spacer 13 as a fixed side spacer, for example. The first heat flux sensor 7a and the second heat flux sensor 7b are arranged so as to detect the heat flux extending along the radial direction between the outer ring spacer 13 and the inner ring spacer 14. The first heat flux sensor 7a and the second heat flux sensor 7b may be fixed to the fixed side spacer by any method, but are fixed by, for example, adhesion or screw tightening. The relative positional relationship between the first heat flux sensor 7a and the first flow path is, for example, the same as the relative positional relationship between the second heat flux sensor 7b and the second flow path.
 図15に示されるように、第1熱流束センサ7aは、上記軸方向から軸受装置を視たときに、第1供給口32aおよび第1排出口36aと上記周方向に間隔を隔てて配置されている。第1熱流束センサ7aは、上記軸方向から軸受装置を視たときに、第1供給口32aと第1排出口36aとの間に配置されている。つまり、第1熱流束センサ7aは、上記第1分岐路または上記第2分岐路に隣接して配置されている。好ましくは、第1熱流束センサ7aは、上記軸方向から軸受装置を視たときに、上記周方向において第1供給口32aと第1排出口36aとの間の略中央に配置されている。異なる観点から言えば、第1熱流束センサ7aは、上記第1分岐路または上記第2分岐路において第1供給口32aおよび第1排出口36aから最も離れた領域に隣接して配置されているのが好ましい。好ましくは、第1熱流束センサ7aおよび第1供給口32aの各中心が上記中心軸に対して成す中心角、および第1熱流束センサ7aおよび第1排出口36aの各中心が上記中心軸に対して成す中心角は、80度以上100度以下である。 As shown in FIG. 15, the first heat flux sensor 7 a is disposed at a distance from the first supply port 32 a and the first discharge port 36 a in the circumferential direction when the bearing device is viewed from the axial direction. ing. The first heat flux sensor 7a is disposed between the first supply port 32a and the first discharge port 36a when the bearing device is viewed from the axial direction. That is, the first heat flux sensor 7a is disposed adjacent to the first branch path or the second branch path. Preferably, the first heat flux sensor 7a is disposed at the approximate center between the first supply port 32a and the first discharge port 36a in the circumferential direction when the bearing device is viewed from the axial direction. If it says from a different viewpoint, the 1st heat flux sensor 7a will be arrange | positioned adjacent to the area | region furthest from the 1st supply port 32a and the 1st discharge port 36a in the said 1st branch path or the said 2nd branch path. Is preferred. Preferably, the center angle formed by each center of the first heat flux sensor 7a and the first supply port 32a with respect to the center axis, and the center of each of the first heat flux sensor 7a and the first discharge port 36a are defined by the center axis. The central angle formed with respect to it is 80 degrees or more and 100 degrees or less.
 第2熱流束センサ7bは、上記軸方向から軸受装置を視たときに、第2供給口32bおよび第2排出口36bと上記周方向に間隔を隔てて配置されている。第2熱流束センサ7bは、上記軸方向から軸受装置を視たときに、第2供給口32bと第2排出口36bとの間に配置されている。つまり、第2熱流束センサ7bは、上記第3分岐路または上記第4分岐路に隣接して配置されている。好ましくは、第2熱流束センサ7bは、上記軸方向から軸受装置を視たときに、上記周方向において第2供給口32bと第2排出口36bとの間の略中央に配置されている。異なる観点から言えば、第2熱流束センサ7bは、上記第3分岐路または上記第4分岐路において第2供給口32bおよび第2排出口36bから最も離れた領域に隣接して配置されているのが好ましい。好ましくは、第2熱流束センサ7bおよび第2供給口32bの各中心が上記中心軸に対して成す中心角、および第2熱流束センサ7bおよび第2排出口36bの各中心が上記中心軸に対して成す中心角は、80度以上100度以下である。 The second heat flux sensor 7b is disposed at a distance from the second supply port 32b and the second discharge port 36b in the circumferential direction when the bearing device is viewed from the axial direction. The second heat flux sensor 7b is disposed between the second supply port 32b and the second discharge port 36b when the bearing device is viewed from the axial direction. That is, the second heat flux sensor 7b is disposed adjacent to the third branch path or the fourth branch path. Preferably, the second heat flux sensor 7b is disposed substantially at the center between the second supply port 32b and the second discharge port 36b in the circumferential direction when the bearing device is viewed from the axial direction. If it says from a different viewpoint, the 2nd heat flux sensor 7b will be arrange | positioned adjacent to the area | region furthest from the 2nd supply port 32b and the 2nd discharge port 36b in the said 3rd branch path or the said 4th branch path. Is preferred. Preferably, the center angle formed by the centers of the second heat flux sensor 7b and the second supply port 32b with respect to the center axis, and the centers of the second heat flux sensor 7b and the second discharge port 36b are set on the center axis. The central angle formed with respect to it is 80 degrees or more and 100 degrees or less.
 図17に示されるように、第1熱流束センサ7aは、外輪間座13の内径面において第1の軸受1aの内輪4aに隣接する領域に配置されている。第2熱流束センサ7bは、外輪間座13の内径面において第2の軸受1bの内輪4bに隣接する領域に配置されている。 As shown in FIG. 17, the first heat flux sensor 7a is disposed in an area adjacent to the inner ring 4a of the first bearing 1a on the inner diameter surface of the outer ring spacer 13. The second heat flux sensor 7 b is disposed in a region adjacent to the inner ring 4 b of the second bearing 1 b on the inner diameter surface of the outer ring spacer 13.
 第1供給口32aは、例えば上記軸方向において第2供給口32bと重なるように配置されている。第1排出口36aは、例えば上記軸方向において第2排出口36bと重なるように配置されている。この場合、第1熱流束センサ7aは、上記軸方向から軸受装置を視たときに、第2供給口32bおよび第2排出口36bと上記周方向に間隔を隔てて配置されている。第2熱流束センサ7bは、上記軸方向から軸受装置を視たときに、第1供給口32aおよび第1排出口36aと上記周方向に間隔を隔てて配置されている。第1熱流束センサ7aおよび第2熱流束センサ7bは、例えば上記軸方向において重なるように配置されている。第1熱流束センサ7aおよび第2熱流束センサ7bは、上記軸方向から軸受装置を視たときに、上記周方向において第1供給口32aと第1排出口36aとの間および第2供給口32bと第2排出口36bとの間に位置する外輪間座13の領域R1または領域R2上に配置されている。 The first supply port 32a is disposed so as to overlap the second supply port 32b in the axial direction, for example. For example, the first discharge port 36a is disposed so as to overlap the second discharge port 36b in the axial direction. In this case, the first heat flux sensor 7a is disposed at a distance from the second supply port 32b and the second discharge port 36b in the circumferential direction when the bearing device is viewed from the axial direction. The second heat flux sensor 7b is disposed at a distance from the first supply port 32a and the first discharge port 36a in the circumferential direction when the bearing device is viewed from the axial direction. The first heat flux sensor 7a and the second heat flux sensor 7b are arranged, for example, so as to overlap in the axial direction. The first heat flux sensor 7a and the second heat flux sensor 7b are arranged between the first supply port 32a and the first discharge port 36a and the second supply port in the circumferential direction when the bearing device is viewed from the axial direction. It is disposed on the region R1 or the region R2 of the outer ring spacer 13 positioned between 32b and the second discharge port 36b.
 実施の形態5に係る軸受装置では、第1熱流束センサ7aが、上記軸方向から軸受装置を視たときに、第1供給口32aおよび第1排出口36aと上記周方向に間隔を隔てて配置されている。このような第1熱流束センサ7aは、上記軸方向において第1の軸受1aに隣接する領域に配置されながらも、第1流路および第2流路において潤滑用流体の流通量が比較的多い第1分岐路と第2分岐路との合流部、すなわち第1供給口32aおよび第1排出口36aと上記軸方向に隣接する領域、から離れて配置され得る。具体的には、第1熱流束センサ7aは、第1流路において潤滑用流体の流通量が比較的少ない第1分岐路に隣接して配置され得る。そのため、第1熱流束センサ7aは、第1の軸受1aから生じた熱流束の変化を高精度かつ高速に検出することができる。これは、以下の理由による。 In the bearing device according to the fifth embodiment, the first heat flux sensor 7a is spaced apart from the first supply port 32a and the first discharge port 36a in the circumferential direction when the bearing device is viewed from the axial direction. Has been placed. Although such a first heat flux sensor 7a is disposed in a region adjacent to the first bearing 1a in the axial direction, the flow rate of the lubricating fluid is relatively large in the first flow path and the second flow path. The first branch path and the second branch path may be arranged apart from the junction part, that is, the first supply port 32a and the first discharge port 36a and the region adjacent to the axial direction. Specifically, the first heat flux sensor 7a can be disposed adjacent to the first branch path in which the flow rate of the lubricating fluid is relatively small in the first flow path. Therefore, the first heat flux sensor 7a can detect a change in the heat flux generated from the first bearing 1a with high accuracy and high speed. This is due to the following reason.
 軸受装置内に生じる熱流束の変化は、軸受装置内での発熱作用および冷却作用、ならびに軸受装置外への放熱作用等のバランスが変化することにより、引き起こされる。第1熱流束センサ7aが第1の軸受1a内での発熱作用の変化に伴う熱流束の変化を高精度かつ高速に検出するためには、第1熱流束センサ7aは第1の軸受1aの近くに配置されるのが好ましい。一方で、第1の軸受1aに近い領域ほど、第1の軸受1aの内部空間を流れる潤滑用流体による冷却作用を強く受ける。さらに、潤滑用流体の流量が相対的に多くなる第1供給口32aまたは第1排出口36aに近い領域ほど、潤滑用流体による上記冷却作用を強く受ける。そのため、例えば第1熱流束センサ7aが第1供給口32aまたは第1排出口36aの近くに配置された場合、該第1熱流束センサ7aでは第1の軸受1a内での発熱作用の変化に伴う熱流束の変化を高精度かつ高速に検出し得ないことが懸念される。 The change in the heat flux generated in the bearing device is caused by a change in the balance of the heat generation and cooling operations in the bearing device and the heat dissipation action to the outside of the bearing device. In order for the first heat flux sensor 7a to detect the change of the heat flux accompanying the change of the heat generating action in the first bearing 1a with high accuracy and high speed, the first heat flux sensor 7a is used for the first bearing 1a. It is preferable to arrange it close. On the other hand, the closer to the first bearing 1a, the stronger the cooling action by the lubricating fluid flowing in the internal space of the first bearing 1a. Further, the region closer to the first supply port 32a or the first discharge port 36a where the flow rate of the lubricating fluid is relatively increased is more strongly subjected to the cooling action by the lubricating fluid. Therefore, for example, when the first heat flux sensor 7a is disposed near the first supply port 32a or the first discharge port 36a, the first heat flux sensor 7a changes the heat generation action in the first bearing 1a. There is concern that the accompanying change in heat flux cannot be detected with high accuracy and high speed.
 これに対し、第1供給口32aおよび第1排出口36aと上記周方向に間隔を隔てて配置された第1熱流束センサ7aは、上記合流部から離れて配置されているため、第1の軸受1aの近くに配置されても潤滑用流体による冷却作用の影響を受けにくく、発熱作用の変化に伴う熱流束の変化を高精度かつ高速に検出することができる。 On the other hand, the first heat flux sensor 7a, which is disposed at a distance in the circumferential direction from the first supply port 32a and the first discharge port 36a, is disposed away from the merging portion. Even if it is arranged near the bearing 1a, it is hardly affected by the cooling action by the lubricating fluid, and the change in the heat flux accompanying the change in the heat generation action can be detected with high accuracy and at high speed.
 第2熱流束センサ7bも、上述した第1熱流束センサ7aと同様の理由により第1熱流束センサ7aと同様の効果を奏することができる。 The second heat flux sensor 7b can also achieve the same effect as the first heat flux sensor 7a for the same reason as the first heat flux sensor 7a described above.
 なお、第1供給口32aは、例えば上記軸方向において第2供給口32bと重ならないように配置されていてもよい。この場合、第1熱流束センサ7aは、上記軸方向から軸受装置を視たときに、第1供給口32aおよび第1排出口36aと上記周方向に間隔を隔てて配置されている限りにおいて、第2供給口32bと上記軸方向に重なるように配置されていてもよい。第1排出口36aは、例えば上記軸方向において第2排出口36bと重ならないように配置されていてもよい。この場合、第1熱流束センサ7aは、上記軸方向から軸受装置を視たときに、第1供給口32aおよび第1排出口36aと上記周方向に間隔を隔てて配置されている限りにおいて、第2供給口32bまたは第2排出口36bと上記軸方向に重なるように配置されていてもよい。第2熱流束センサ7bは、上記軸方向から軸受装置を視たときに、第2供給口32bおよび第2排出口36bと上記周方向に間隔を隔てて配置されている限りにおいて、第1供給口32aまたは第1排出口36aと上記軸方向に重なるように配置されていてもよい。 In addition, the 1st supply port 32a may be arrange | positioned so that it may not overlap with the 2nd supply port 32b in the said axial direction, for example. In this case, as long as the first heat flux sensor 7a is disposed at a distance in the circumferential direction from the first supply port 32a and the first discharge port 36a when the bearing device is viewed from the axial direction, You may arrange | position so that the 2nd supply port 32b may overlap with the said axial direction. For example, the first discharge port 36a may be arranged so as not to overlap the second discharge port 36b in the axial direction. In this case, as long as the first heat flux sensor 7a is disposed at a distance in the circumferential direction from the first supply port 32a and the first discharge port 36a when the bearing device is viewed from the axial direction, You may arrange | position so that the 2nd supply port 32b or the 2nd discharge port 36b may overlap with the said axial direction. As long as the second heat flux sensor 7b is arranged at a distance from the second supply port 32b and the second discharge port 36b in the circumferential direction when the bearing device is viewed from the axial direction, the first supply is performed. You may arrange | position so that the opening | mouth 32a or the 1st discharge port 36a may overlap with the said axial direction.
 また、潤滑用流体排出装置は、潤滑用流体供給装置と一体として構成されていてもよい。供給路および排出路は、潤滑用流体を循環させる循環路の各一部として構成されていてもよい。 Further, the lubricating fluid discharge device may be configured integrally with the lubricating fluid supply device. The supply path and the discharge path may be configured as a part of a circulation path for circulating the lubricating fluid.
 第1の軸受1aおよび第2の軸受1bには、上記軸方向に予圧が付与されている。ハウジング18は、第1の軸受1aの外輪2aの外径面に接する内径面に対して内側に突出しており、外輪2aの上記軸方向の端面に接する端面18aを有している。主軸17は、第2の軸受1bの内輪4bの内径面に接する外径面に対して外側に突出しており、内輪4bの上記軸方向の端面に接する端面17aを有している。主軸17の端面17aおよびハウジング18の端面18aは、互いに対向する方向を向くように設けられている。第1の軸受1aの外輪2a、外輪間座13、および第2の軸受1bの外輪2bは、ハウジング18の端面18aと前蓋60との間に挟まれている。第1の軸受1aの内輪4a、内輪間座14、および第2の軸受1bの内輪4bは、ナット61と主軸17の端面17aとの間に挟まれている。第1の軸受1a,第2の軸受1bに付与される上記予圧は、端面18aと前蓋60との間の上記軸方向の幅と、端面17aとナット61との間の上記軸方向の幅との差によって定められる。端面17aとナット61との間の上記軸方向の幅との差は、ナット61の締め付け量によって変化する。 A preload is applied to the first bearing 1a and the second bearing 1b in the axial direction. The housing 18 protrudes inward with respect to the inner diameter surface that contacts the outer diameter surface of the outer ring 2a of the first bearing 1a, and has an end surface 18a that contacts the end surface in the axial direction of the outer ring 2a. The main shaft 17 protrudes outward with respect to the outer diameter surface in contact with the inner diameter surface of the inner ring 4b of the second bearing 1b, and has an end surface 17a in contact with the end surface in the axial direction of the inner ring 4b. The end surface 17a of the main shaft 17 and the end surface 18a of the housing 18 are provided so as to face each other. The outer ring 2a of the first bearing 1a, the outer ring spacer 13 and the outer ring 2b of the second bearing 1b are sandwiched between the end face 18a of the housing 18 and the front lid 60. The inner ring 4 a of the first bearing 1 a, the inner ring spacer 14, and the inner ring 4 b of the second bearing 1 b are sandwiched between the nut 61 and the end surface 17 a of the main shaft 17. The preload applied to the first bearing 1 a and the second bearing 1 b includes the axial width between the end surface 18 a and the front lid 60 and the axial width between the end surface 17 a and the nut 61. It is determined by the difference. The difference between the end face 17 a and the nut 61 in the axial direction varies depending on the tightening amount of the nut 61.
 図18に示されるように、実施の形態5に係る軸受装置の第1供給路31aは、1つの軸受の内部空間に潤滑油を供給するための複数(例えば3つ)の第1供給口32aを有していてもよい。複数の第1供給口32aは、上記周方向に互いに間隔を隔てて配置されており、かつ上記周方向に第1排出口36aと間隔を隔てて配置されている。例えば、複数の第1供給口32aは上記周方向に互いに等間隔に並んで配置されており、第1排出口36aは上記周方向に隣り合う2つの第1供給口32a間の中央に配置されている。第1熱流束センサ7aは、上記周方向において、第1排出口36aを挟んで隣り合う1組の第1排出口36aとは異なる他の組の第1排出口36a間に配置されている。このようにしても、第1熱流束センサ7aは、複数の第1供給口32aおよび第1排出口36aと上記周方向に間隔を隔てて配置されているため、第1の軸受1aの近くに配置されても潤滑用流体による冷却作用の影響を受けにくく、発熱作用の変化に伴う熱流束の変化を高精度かつ高速に検出することができる。なお、第2供給路31bも、上記第1供給路31aと同様の構成を有していてもよい。 As shown in FIG. 18, the first supply path 31a of the bearing device according to the fifth embodiment has a plurality of (for example, three) first supply ports 32a for supplying lubricating oil to the internal space of one bearing. You may have. The plurality of first supply ports 32a are arranged at intervals in the circumferential direction, and are arranged at intervals from the first discharge ports 36a in the circumferential direction. For example, the plurality of first supply ports 32a are arranged at equal intervals in the circumferential direction, and the first discharge port 36a is arranged at the center between the two first supply ports 32a adjacent in the circumferential direction. ing. The 1st heat flux sensor 7a is arrange | positioned in the said circumferential direction between the 1st discharge ports 36a of another set different from the 1st set of 1st discharge ports 36a on both sides of the 1st discharge port 36a. Even in this case, the first heat flux sensor 7a is disposed at a distance from the plurality of first supply ports 32a and the first discharge ports 36a in the circumferential direction, so that the first heat flux sensor 7a is close to the first bearing 1a. Even if it is disposed, it is difficult to be influenced by the cooling action by the lubricating fluid, and the change in the heat flux accompanying the change in the heat generation action can be detected with high accuracy and at high speed. Note that the second supply path 31b may have the same configuration as the first supply path 31a.
 図19に示されるように、実施の形態5に係る軸受装置の熱流束センサ7は、図1に示される軸受装置の熱流束センサ7と同様に、外輪2の内径面6のうち、転動体3に当接する軌道面6A(図1参照)以外の部分に配置されていてもよい。このような熱流束センサ7も、軸受装置を上記軸方向から視たときに、供給口32および排出口36と上記周方向に間隔を隔てて配置されている。これにより、該熱流束センサ7は、軸受1の近くに配置されても潤滑用流体による冷却作用の影響を受けにくく、発熱作用の変化に伴う熱流束の変化を高精度かつ高速に検出することができる。 As shown in FIG. 19, the heat flux sensor 7 of the bearing device according to the fifth embodiment is the same as the heat flux sensor 7 of the bearing device shown in FIG. 3 may be disposed in a portion other than the raceway surface 6A (see FIG. 1) that abuts the track 3. Such a heat flux sensor 7 is also disposed at a distance from the supply port 32 and the discharge port 36 in the circumferential direction when the bearing device is viewed from the axial direction. As a result, even when the heat flux sensor 7 is disposed near the bearing 1, the heat flux sensor 7 is not easily affected by the cooling action by the lubricating fluid, and can detect the change in the heat flux accompanying the change in the heat generation action with high accuracy and high speed. Can do.
 なお、以上の実施の形態1~5では、熱流束センサを軸受または間座の非回転側に設けたが、熱流束センサを回転側に設けても良い。 In the first to fifth embodiments described above, the heat flux sensor is provided on the non-rotating side of the bearing or spacer, but the heat flux sensor may be provided on the rotating side.
 また、以上の実施の形態1~5において、熱流束センサ7の表面に潤滑油が付着して、熱流の検出精度が悪化しないように、熱流束センサ7と対向する回転雰囲気温度を測定する面には撥油処理を施すとよい。 Further, in Embodiments 1 to 5 described above, the surface for measuring the temperature of the rotating atmosphere facing the heat flux sensor 7 so that the lubricating oil adheres to the surface of the heat flux sensor 7 and the heat flow detection accuracy does not deteriorate. The oil repellent treatment may be applied.
 実施の形態1~5に係る軸受装置が適用される装置は、特に制限されるものではないが、例えば工作機械のビルトインモータ方式のスピンドル装置である。図20は、実施の形態5に係る軸受装置404を備えるスピンドル装置500を示す。図20に示されるように、スピンドル装置500は、例えば上記実施の形態5に係る軸受装置、主軸17、ハウジング18、モータ80、軸受84および外筒41を主に備える。主軸17およびハウジング18は、図8に示されるそれらと基本的に同様の構成を備えている。主軸17は、軸受装置の軸受1および軸受84によって回転可能に支持されている。軸受84の軸方向は、上記軸方向に沿っている。第1の軸受1aおよび第2の軸受1bと軸受84とは、上記軸方向においてモータ80を挟むように配置されている。第1の軸受1aおよび第2の軸受1bは例えばアンギュラ玉軸受である。軸受84は例えば円筒ころ軸受である。第1の軸受1aおよび第2の軸受1bは、主軸17に作用するラジアル荷重およびアキシアル荷重を支持する。軸受84は主軸17に作用するラジアル荷重を支持する。 A device to which the bearing device according to the first to fifth embodiments is applied is not particularly limited, but is, for example, a built-in motor type spindle device of a machine tool. FIG. 20 shows a spindle device 500 including a bearing device 404 according to the fifth embodiment. As shown in FIG. 20, the spindle device 500 mainly includes, for example, the bearing device according to the fifth embodiment, the main shaft 17, the housing 18, the motor 80, the bearing 84, and the outer cylinder 41. The main shaft 17 and the housing 18 have basically the same configuration as those shown in FIG. The main shaft 17 is rotatably supported by the bearing 1 and the bearing 84 of the bearing device. The axial direction of the bearing 84 is along the axial direction. The first bearing 1a, the second bearing 1b, and the bearing 84 are arranged so as to sandwich the motor 80 in the axial direction. The first bearing 1a and the second bearing 1b are, for example, angular ball bearings. The bearing 84 is, for example, a cylindrical roller bearing. The first bearing 1 a and the second bearing 1 b support a radial load and an axial load that act on the main shaft 17. The bearing 84 supports a radial load acting on the main shaft 17.
 ハウジング18は、外筒41に固定されている。ハウジング18の外径面が外筒41の内径面に接している。モータ80のステータ81は、外筒41に固定されている。ステータ81の外径面が外筒41の内径面に接している。モータ80のロータ82は、主軸17に固定されている。ロータ82は、例えば円筒部材83を介して主軸17に固定されている。円筒部材83は、環状に設けられており、その内側に主軸17が挿通されている。 The housing 18 is fixed to the outer cylinder 41. The outer diameter surface of the housing 18 is in contact with the inner diameter surface of the outer cylinder 41. A stator 81 of the motor 80 is fixed to the outer cylinder 41. The outer diameter surface of the stator 81 is in contact with the inner diameter surface of the outer cylinder 41. The rotor 82 of the motor 80 is fixed to the main shaft 17. The rotor 82 is fixed to the main shaft 17 via a cylindrical member 83, for example. The cylindrical member 83 is provided in an annular shape, and the main shaft 17 is inserted inside the cylindrical member 83.
 軸受84の外輪は、上記軸方向において、円筒部材83に固定された位置決め部材85と外輪押さえ86との間に挟まれている。外輪押さえ86は、端部材87に固定されている。軸受84の外輪は、上記径方向において端部材87の内側に配置されており、主軸17の上記軸方向における伸縮に応じて外輪押さえ86および端部材87に対して摺動するように設けられている。端部材87は、外筒41に固定されている。 The outer ring of the bearing 84 is sandwiched between the positioning member 85 fixed to the cylindrical member 83 and the outer ring retainer 86 in the axial direction. The outer ring retainer 86 is fixed to the end member 87. The outer ring of the bearing 84 is disposed inside the end member 87 in the radial direction, and is provided so as to slide with respect to the outer ring retainer 86 and the end member 87 in accordance with the expansion and contraction of the main shaft 17 in the axial direction. Yes. The end member 87 is fixed to the outer cylinder 41.
 軸受84の内輪は、上記軸方向において、円筒部材83および内輪押さえ88の間に挟まれている。円筒部材83、軸受84の内輪、および内輪押さえ88は、主軸17およびナット89によって上記軸方向に位置決めされている。位置決め部材85、外輪押さえ86、端部材87、内輪押さえ88、およびナット89は、環状に設けられており、その内側に主軸17が挿通されている。 The inner ring of the bearing 84 is sandwiched between the cylindrical member 83 and the inner ring retainer 88 in the axial direction. The cylindrical member 83, the inner ring of the bearing 84, and the inner ring retainer 88 are positioned in the axial direction by the main shaft 17 and the nut 89. The positioning member 85, the outer ring retainer 86, the end member 87, the inner ring retainer 88, and the nut 89 are provided in an annular shape, and the main shaft 17 is inserted through the inside thereof.
 スピンドル装置には、軸受装置を冷却するための冷却部が設けられている。冷却部は、軸受装置の外部に配置されている。冷却部は、例えば冷却媒体が流通する流通路を含む。流通路は、例えばハウジング18の外径面に形成された螺旋状の溝18bと外筒41の内径面とによって区画される空間として設けられている。冷却部は、スピンドル装置の使用状態において上記溝18b内に冷却媒体を流通させることにより、軸受装置を冷却する。第1熱流束センサ7aおよび第2熱流束センサ7bは、上記冷却部よりも第1の軸受1aおよび第2の軸受1bの近くに配置されている。スピンドル装置には、モータ80を冷却するためのモータ冷却部が設けられるが、ここでは図示しない。 The spindle device is provided with a cooling unit for cooling the bearing device. The cooling unit is disposed outside the bearing device. The cooling unit includes a flow path through which a cooling medium flows, for example. For example, the flow passage is provided as a space defined by a spiral groove 18 b formed on the outer diameter surface of the housing 18 and an inner diameter surface of the outer cylinder 41. The cooling unit cools the bearing device by circulating a cooling medium in the groove 18b when the spindle device is in use. The first heat flux sensor 7a and the second heat flux sensor 7b are disposed closer to the first bearing 1a and the second bearing 1b than the cooling unit. The spindle device is provided with a motor cooling unit for cooling the motor 80, but is not shown here.
 このようなスピンドル装置は、上記軸受装置を備えているため、熱流束センサがハウジングの外部に配置されたスピンドル装置と比べて、第1熱流束センサ7aおよび第2熱流束センサ7bによって第1の軸受1aおよび第2の軸受1bから生じた熱流束の変化を高精度かつ高速に検出できる。 Since such a spindle device includes the bearing device, the first heat flux sensor 7a and the second heat flux sensor 7b are used for the first heat flux sensor 7b as compared with the spindle device in which the heat flux sensor is disposed outside the housing. It is possible to detect a change in heat flux generated from the bearing 1a and the second bearing 1b with high accuracy and high speed.
 図21に示されるように、上記スピンドル装置では、スピンドル装置の動作を制御する制御装置600が、熱流束センサ7の出力に基づいて軸受1の異常を診断してもよい。制御装置600は判定部601を含む。判定部601は、熱流束センサ7の出力、スピンドル装置のモータ80の回転数、潤滑条件および冷却条件等の機械情報D1、および軸受1の異常の有無を判定するために予め定められた判定基準D2に基づき、軸受1の異常の有無を判定する。なお、軸受1の異常とは、例えば軸受1の焼付きの発生またはそのおそれである。この場合、軸受装置の上記送信部は、熱流束センサ7の出力を上記制御装置600の判定部601に送信するように設けられている。制御装置600は、判定部601による判定結果に基づき、モータ80の回転数、潤滑条件、および冷却条件の少なくともいずれかを変更するように設けられている。なお、判定部601は、少なくとも熱流束センサ7の出力と、軸受1の異常の有無を判定するために予め定められた判定基準D2とに基づき、軸受1の異常の有無を判定してもよい。 21, in the above spindle device, the control device 600 that controls the operation of the spindle device may diagnose an abnormality of the bearing 1 based on the output of the heat flux sensor 7. The control device 600 includes a determination unit 601. The determination unit 601 determines the output of the heat flux sensor 7, the rotational speed of the motor 80 of the spindle device, the machine information D1 such as the lubrication condition and the cooling condition, and the predetermined determination criteria for determining whether there is an abnormality in the bearing 1. Based on D2, the presence or absence of abnormality of the bearing 1 is determined. The abnormality of the bearing 1 is, for example, the occurrence of seizure of the bearing 1 or the fear thereof. In this case, the transmission unit of the bearing device is provided to transmit the output of the heat flux sensor 7 to the determination unit 601 of the control device 600. The control device 600 is provided so as to change at least one of the rotational speed of the motor 80, the lubrication condition, and the cooling condition based on the determination result by the determination unit 601. The determination unit 601 may determine whether there is an abnormality in the bearing 1 based on at least the output of the heat flux sensor 7 and a determination criterion D2 that is predetermined in order to determine whether there is an abnormality in the bearing 1. .
 また、上記判定部601は、上記異常診断部と同様に、熱流束センサ7およびそれ以外のセンサの各出力に基づいて軸受1の異常を診断することもできる。図22に示されるように、上記判定部601は、例えば、熱流束センサ7に加えて、温度センサ602、加速度センサ603、および荷重センサ604の各出力に基づいて軸受1の異常を診断する。温度センサ602は、例えば第1の軸受1aおよび第2の軸受1bの潤滑不良に伴う外輪間座13の温度上昇を検出するように設けられている。図23に示されるように、温度センサ602は、例えば上記軸方向において第1の軸受1aおよび第2の軸受1bの各々に対向する外輪間座13の各端面に配置されている。加速度センサ603は、例えば第1の軸受1aおよび第2の軸受1bの各軌道面の剥離に伴う上記軸方向および上記径方向の少なくともいずれかの主軸17の振動を検出するように設けられている。図23に示されるように、加速度センサ603は、例えば上記軸方向において第1の軸受1aおよび第2の軸受1bの各々と対向する外輪間座13の各端面に、温度センサ602と並んで配置されている。荷重センサ604は、例えば第1の軸受1aおよび第2の軸受1bに付与される上記軸方向の予圧の変化を検出するように設けられている。図23に示されるように、荷重センサ604は、例えば上記軸方向において第2の軸受1bの外輪2bと外輪間座13との間を接続するように配置されている。荷重センサ604は、例えば薄膜センサであり、圧力により電気抵抗が変化する。 Also, the determination unit 601 can diagnose the abnormality of the bearing 1 based on the outputs of the heat flux sensor 7 and other sensors, similarly to the abnormality diagnosis unit. As shown in FIG. 22, the determination unit 601 diagnoses an abnormality of the bearing 1 based on outputs of the temperature sensor 602, the acceleration sensor 603, and the load sensor 604 in addition to the heat flux sensor 7, for example. The temperature sensor 602 is provided so as to detect an increase in the temperature of the outer ring spacer 13 due to, for example, poor lubrication of the first bearing 1a and the second bearing 1b. As shown in FIG. 23, for example, the temperature sensor 602 is disposed on each end face of the outer ring spacer 13 that faces each of the first bearing 1a and the second bearing 1b in the axial direction. The acceleration sensor 603 is provided so as to detect, for example, vibration of the main shaft 17 in at least one of the axial direction and the radial direction accompanying the separation of the raceway surfaces of the first bearing 1a and the second bearing 1b. . As shown in FIG. 23, the acceleration sensor 603 is arranged side by side with the temperature sensor 602, for example, on each end face of the outer ring spacer 13 facing each of the first bearing 1a and the second bearing 1b in the axial direction. Has been. The load sensor 604 is provided to detect a change in the axial preload applied to the first bearing 1a and the second bearing 1b, for example. As shown in FIG. 23, the load sensor 604 is disposed so as to connect, for example, the outer ring 2b of the second bearing 1b and the outer ring spacer 13 in the axial direction. The load sensor 604 is, for example, a thin film sensor, and the electric resistance changes with pressure.
 また、上記判定部601は、熱流束センサ7、温度センサ602、加速度センサ603、および荷重センサ604の各出力に加えて、さらにモータ80の回転速度に基づいて軸受1の異常を診断するように設けられていてもよい。上記判定部601は、モータ80の回転速度を、モータ80から出力された回転センサ信号として取得するように設けられていてもよい。また、図24に示されるように、上記判定部601は、内輪間座14に固定された図示しない磁気リングと外輪間座13に固定された回転センサ(磁気センサ)605とによって測定される回転速度として取得するように設けられていてもよい。 Further, the determination unit 601 diagnoses the abnormality of the bearing 1 based on the rotation speed of the motor 80 in addition to the outputs of the heat flux sensor 7, the temperature sensor 602, the acceleration sensor 603, and the load sensor 604. It may be provided. The determination unit 601 may be provided so as to acquire the rotation speed of the motor 80 as a rotation sensor signal output from the motor 80. Further, as shown in FIG. 24, the determination unit 601 performs rotation measured by a magnetic ring (not shown) fixed to the inner ring spacer 14 and a rotation sensor (magnetic sensor) 605 fixed to the outer ring spacer 13. It may be provided so as to be acquired as a speed.
 上記スピンドル装置においても、上記異常診断部が軸受1の異常を診断することができる。上記異常診断部は、例えば外輪間座13に配置されていてもよい。具体的には、図25に示されるように、上記異常診断部は、外輪間座13の外径面に配置された基板610に実装されていてもよい。このような上記異常診断部と熱流束センサ7との間の距離は、上記異常診断部が軸受装置の外部、特にスピンドル装置の外部に配置された異常診断部と熱流束センサ7との間の距離と比べて短い。そのため、外輪間座13に配置された上記異常診断部は、軸受装置の外部に配置された上記異常診断部が取得する熱流束センサ7の出力信号と比べて、ノイズの影響が低減された出力信号に基づいて上記異常の有無を判定することができる。 Also in the spindle device, the abnormality diagnosis unit can diagnose the abnormality of the bearing 1. The abnormality diagnosis unit may be disposed in the outer ring spacer 13, for example. Specifically, as shown in FIG. 25, the abnormality diagnosis unit may be mounted on a substrate 610 disposed on the outer diameter surface of the outer ring spacer 13. The distance between the abnormality diagnosing unit and the heat flux sensor 7 is such that the abnormality diagnosing unit is located outside the bearing device, in particular, between the abnormality diagnosing unit and the heat flux sensor 7 arranged outside the spindle device. Short compared to distance. Therefore, the abnormality diagnosis unit arranged in the outer ring spacer 13 has an output in which the influence of noise is reduced compared to the output signal of the heat flux sensor 7 acquired by the abnormality diagnosis unit arranged outside the bearing device. Based on the signal, the presence or absence of the abnormality can be determined.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1 軸受、2 外輪、3 転動体、4 内輪、5 保持器、6,21 内径面、6A,11,12,106A 軌道面、7 熱流束センサ、8 回転雰囲気、9 内径部、10 外径部、13 外輪間座、14 内輪間座、15 外輪間座外径部、16 内輪間座内径部、17 主軸、18 ハウジング、19 突出部、20 内輪外径面、22 温度センサ、23 非接触温度センサ、30 配線、80 駆動モータ、100 異常診断部、106 外径面、200 ワイヤレス送信装置、201,302 信号処理部、202 データ送信部、300 受信装置、301 データ受信部、303 異常判定部。 1 bearing, 2 outer ring, 3 rolling element, 4 inner ring, 5 cage, 6,21 inner diameter surface, 6A, 11, 12, 106A raceway surface, 7 heat flux sensor, 8 rotating atmosphere, 9 inner diameter portion, 10 outer diameter portion , 13 Outer ring spacer, 14 Inner ring spacer, 15 Outer ring spacer outer diameter part, 16 Inner ring spacer inner diameter part, 17 Main shaft, 18 Housing, 19 Protruding part, 20 Inner ring outer diameter surface, 22 Temperature sensor, 23 Non-contact temperature Sensor, 30 wiring, 80 drive motor, 100 abnormality diagnosis unit, 106 outer diameter surface, 200 wireless transmission device, 201, 302 signal processing unit, 202 data transmission unit, 300 reception device, 301 data reception unit, 303 abnormality determination unit.

Claims (15)

  1.  単一の軸受または複数の軸受と間座の構造で回転体を支持する軸受装置であって、
     前記軸受は、内輪と外輪とを含み、
     前記内輪、前記外輪、または前記間座に配置され、熱流束を検出する熱流束センサを備える、軸受装置。
    A bearing device that supports a rotating body with a structure of a single bearing or a plurality of bearings and a spacer,
    The bearing includes an inner ring and an outer ring,
    A bearing device provided with a heat flux sensor which is arranged in the inner ring, the outer ring, or the spacer and detects a heat flux.
  2.  前記間座は、外輪間座と内輪間座とを含み、
     前記熱流束センサは、前記内輪間座および前記外輪間座のうち非回転側の間座に配置される、請求項1に記載の軸受装置。
    The spacer includes an outer ring spacer and an inner ring spacer,
    The bearing device according to claim 1, wherein the heat flux sensor is disposed in a non-rotating side spacer of the inner ring spacer and the outer ring spacer.
  3.  前記外輪間座が、前記非回転側の間座であり、
     前記外輪間座は、
     前記軸受の軸方向において前記外輪に隣接し、かつ前記軸受の径方向において前記内輪間座と間隔を隔てて配置されている本体部と、
     前記本体部の側面から前記内輪の外径面に向けて突出する突出部とを含み、
     前記熱流束センサは、前記内輪の外径面に対向するように前記突出部に固定されている、請求項2に記載の軸受装置。
    The outer ring spacer is the non-rotating side spacer;
    The outer ring spacer is
    A main body portion that is adjacent to the outer ring in the axial direction of the bearing and spaced from the inner ring spacer in the radial direction of the bearing;
    A projecting portion projecting from the side surface of the main body portion toward the outer diameter surface of the inner ring,
    The bearing device according to claim 2, wherein the heat flux sensor is fixed to the protrusion so as to face an outer diameter surface of the inner ring.
  4.  前記外輪間座が、前記非回転側の間座であり、
     前記熱流束センサは、前記外輪間座の内径面上に固定されている、請求項2に記載の軸受装置。
    The outer ring spacer is the non-rotating side spacer;
    The bearing device according to claim 2, wherein the heat flux sensor is fixed on an inner diameter surface of the outer ring spacer.
  5.  前記間座は、外輪間座と内輪間座とを含み、
     前記熱流束センサは、前記内輪間座および前記外輪間座のうち回転側の間座に配置される、請求項1に記載の軸受装置。
    The spacer includes an outer ring spacer and an inner ring spacer,
    The bearing device according to claim 1, wherein the heat flux sensor is disposed on a rotating side spacer of the inner ring spacer and the outer ring spacer.
  6.  前記熱流束センサは、前記内輪および前記外輪のうち非回転側の軌道輪に配置される、請求項1に記載の軸受装置。 The bearing device according to claim 1, wherein the heat flux sensor is disposed on a non-rotating raceway ring of the inner ring and the outer ring.
  7.  前記熱流束センサは、前記内輪および前記外輪のうち回転側の軌道輪に配置される、請求項1に記載の軸受装置。 The bearing device according to claim 1, wherein the heat flux sensor is disposed on a rotating raceway of the inner ring and the outer ring.
  8.  前記熱流束センサは、前記軸受の幅方向の内部で、前記内輪の外径面の軌道面以外の部分または前記外輪の内径面の軌道面以外の部分に配置される、請求項6または7に記載の軸受装置。 The heat flux sensor according to claim 6 or 7, wherein the heat flux sensor is disposed in a portion other than the raceway surface of the outer diameter surface of the inner ring or a portion other than the raceway surface of the inner diameter surface of the outer ring, in the width direction of the bearing. The bearing device described.
  9.  前記熱流束センサの出力情報をワイヤレス送信する送信部をさらに備え、
     前記送信部は、前記軸受の異常判断を行なう受信装置に前記熱流束センサの出力情報を送信するように構成される、請求項1に記載の軸受装置。
    A transmitter that wirelessly transmits output information of the heat flux sensor;
    The bearing device according to claim 1, wherein the transmission unit is configured to transmit output information of the heat flux sensor to a receiving device that performs abnormality determination of the bearing.
  10.  前記熱流束センサの出力に基づいて前記軸受の異常を診断する異常診断部をさらに備える、請求項1~9のいずれか1項に記載の軸受装置。 The bearing device according to any one of claims 1 to 9, further comprising an abnormality diagnosis unit that diagnoses an abnormality of the bearing based on an output of the heat flux sensor.
  11.  前記熱流束センサとは別に配置した温度センサをさらに備え、
     前記熱流束センサの出力、前記温度センサの出力は、前記異常診断部に送信され、前記異常診断部は、前記熱流束センサの出力、前記温度センサの出力および回転速度信号に基づいて前記軸受の異常を診断する、請求項10に記載の軸受装置。
    A temperature sensor arranged separately from the heat flux sensor;
    The output of the heat flux sensor and the output of the temperature sensor are transmitted to the abnormality diagnosis unit, and the abnormality diagnosis unit is configured to output the bearing of the bearing based on the output of the heat flux sensor, the output of the temperature sensor, and the rotation speed signal. The bearing device according to claim 10, which diagnoses an abnormality.
  12.  前記内輪と前記外輪との間に位置する前記軸受の内部空間に潤滑用流体を供給する供給路をさらに備え、
     前記供給路は、前記内部空間に面して配置されている少なくとも1つの供給口を有し、
     前記熱流束センサは、前記軸受の軸方向から前記軸受装置を視たときに、前記少なくとも1つの供給口と前記軸受の周方向に間隔を隔てて配置されている、請求項1~11のいずれか1項に記載の軸受装置。
    A supply path for supplying a lubricating fluid to an internal space of the bearing located between the inner ring and the outer ring;
    The supply path has at least one supply port arranged facing the internal space,
    The heat flux sensor is disposed at a distance from the at least one supply port in the circumferential direction of the bearing when the bearing device is viewed from the axial direction of the bearing. The bearing device according to claim 1.
  13.  前記供給路は、前記内部空間に面して配置されている複数の供給口を有し、
     前記複数の供給口は、前記周方向に互いに間隔を隔てて配置されており、
     前記熱流束センサは、前記軸方向から前記軸受装置を視たときに、前記複数の供給口のうち前記周方向に隣り合う2つの間の中央に配置されている、請求項12に記載の軸受装置。
    The supply path has a plurality of supply ports arranged facing the internal space,
    The plurality of supply ports are arranged at intervals in the circumferential direction,
    The bearing according to claim 12, wherein the heat flux sensor is disposed at a center between two of the plurality of supply ports adjacent in the circumferential direction when the bearing device is viewed from the axial direction. apparatus.
  14.  前記内輪と前記外輪との間に位置する前記軸受の内部空間から潤滑用流体を排出する排出路をさらに備え、
     前記排出路は、前記内部空間に面して配置された少なくとも1つの排出口を有し、
     前記少なくとも1つの排出口は、前記軸方向から前記軸受装置を視たときに、前記少なくとも1つの供給口と前記周方向に間隔を隔てて配置されており、
     前記熱流束センサは、前記軸方向から前記軸受装置を視たときに、前記少なくとも1つの排出口と前記周方向に間隔を隔てて配置されている、請求項12または13に記載の軸受装置。
    A discharge passage for discharging a lubricating fluid from an internal space of the bearing located between the inner ring and the outer ring;
    The discharge path has at least one discharge port arranged facing the internal space,
    The at least one discharge port is disposed at a distance from the at least one supply port in the circumferential direction when the bearing device is viewed from the axial direction.
    The bearing device according to claim 12 or 13, wherein the heat flux sensor is disposed at a distance from the at least one discharge port in the circumferential direction when the bearing device is viewed from the axial direction.
  15.  請求項1~14のいずれか1項に記載の軸受装置と、
     前記軸受装置を支持するハウジングとを備える、スピンドル装置。
    A bearing device according to any one of claims 1 to 14,
    A spindle device comprising a housing for supporting the bearing device.
PCT/JP2019/004617 2018-02-13 2019-02-08 Bearing device and spindle device WO2019159838A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19754234.3A EP3754218A4 (en) 2018-02-13 2019-02-08 Bearing device and spindle device
CN201980010890.5A CN111670311B (en) 2018-02-13 2019-02-08 Bearing device and spindle device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-022950 2018-02-13
JP2018022950 2018-02-13
JP2018190852A JP7362239B2 (en) 2018-02-13 2018-10-09 Bearing devices and spindle devices
JP2018-190852 2018-10-09

Publications (1)

Publication Number Publication Date
WO2019159838A1 true WO2019159838A1 (en) 2019-08-22

Family

ID=67619318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004617 WO2019159838A1 (en) 2018-02-13 2019-02-08 Bearing device and spindle device

Country Status (1)

Country Link
WO (1) WO2019159838A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050814A (en) * 2019-09-26 2021-04-01 Ntn株式会社 Bearing device and spacer
WO2022059573A1 (en) * 2020-09-16 2022-03-24 Ntn株式会社 Bearing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340922A (en) * 2001-01-25 2002-11-27 Nsk Ltd Rotation detector for wheel
JP2009068533A (en) 2007-09-11 2009-04-02 Ntn Corp Bearing device
JP2016131004A (en) * 2015-01-15 2016-07-21 日本精工株式会社 Bearing with wireless sensor
JP2016166832A (en) 2015-03-10 2016-09-15 株式会社日本自動車部品総合研究所 Heat flux sensor
JP2017026078A (en) 2015-07-24 2017-02-02 株式会社ジェイテクト Bearing device
JP2017090318A (en) * 2015-11-12 2017-05-25 株式会社デンソー Assembled condition diagnosis device
JP2017187451A (en) * 2016-04-08 2017-10-12 株式会社デンソー Monitoring device
JP2017187450A (en) * 2016-04-08 2017-10-12 株式会社デンソー Heat flux meter and abnormality diagnosis device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340922A (en) * 2001-01-25 2002-11-27 Nsk Ltd Rotation detector for wheel
JP2009068533A (en) 2007-09-11 2009-04-02 Ntn Corp Bearing device
JP2016131004A (en) * 2015-01-15 2016-07-21 日本精工株式会社 Bearing with wireless sensor
JP2016166832A (en) 2015-03-10 2016-09-15 株式会社日本自動車部品総合研究所 Heat flux sensor
JP2017026078A (en) 2015-07-24 2017-02-02 株式会社ジェイテクト Bearing device
JP2017090318A (en) * 2015-11-12 2017-05-25 株式会社デンソー Assembled condition diagnosis device
JP2017187451A (en) * 2016-04-08 2017-10-12 株式会社デンソー Monitoring device
JP2017187450A (en) * 2016-04-08 2017-10-12 株式会社デンソー Heat flux meter and abnormality diagnosis device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3754218A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050814A (en) * 2019-09-26 2021-04-01 Ntn株式会社 Bearing device and spacer
WO2021059919A1 (en) * 2019-09-26 2021-04-01 Ntn株式会社 Bearing device and spacer
JP7290530B2 (en) 2019-09-26 2023-06-13 Ntn株式会社 Bearing device and spacer
US11940010B2 (en) 2019-09-26 2024-03-26 Ntn Corporation Bearing apparatus and spacer
WO2022059573A1 (en) * 2020-09-16 2022-03-24 Ntn株式会社 Bearing device

Similar Documents

Publication Publication Date Title
JP7362239B2 (en) Bearing devices and spindle devices
JP4993492B2 (en) Bearing device
KR20100014772A (en) A sensorized bearing unit
JP2010217167A (en) Bearing device and spindle device of machine tool
WO2019159838A1 (en) Bearing device and spindle device
JP2013050193A (en) Bearing device
EP3260838B1 (en) Abnormality diagnosis system
JP5842965B2 (en) Spindle device of machine tool provided with bearing device with load sensor
CN113453826A (en) Bearing device and spindle device
JP6967495B2 (en) Bearing equipment
JP5359262B2 (en) Spindle device of machine tool and machine tool
WO2020166542A1 (en) Bearing device and spindle device
WO2022059573A1 (en) Bearing device
JP2020060227A (en) Bearing device
WO2021059919A1 (en) Bearing device and spacer
JP2012037013A (en) Bearing device
JP2020070863A (en) Bearing device, spindle device, and abnormality determination method
CN113056620A (en) Bearing device
CN115038538A (en) Calculation method, bearing device, and spindle device of machine tool
JP4066145B2 (en) Rolling bearing with sensor
WO2021065361A1 (en) Bearing device and machine tool
JPH03163214A (en) Bearing device
JP2020070861A (en) Bearing device, spindle device, and abnormality determination method
JP2020070862A (en) Bearing device
JP2020003027A (en) Bearing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019754234

Country of ref document: EP

Effective date: 20200914