JP2012037013A - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP2012037013A
JP2012037013A JP2010179958A JP2010179958A JP2012037013A JP 2012037013 A JP2012037013 A JP 2012037013A JP 2010179958 A JP2010179958 A JP 2010179958A JP 2010179958 A JP2010179958 A JP 2010179958A JP 2012037013 A JP2012037013 A JP 2012037013A
Authority
JP
Japan
Prior art keywords
spacer
bearing
temperature sensor
temperature
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010179958A
Other languages
Japanese (ja)
Inventor
Masatoshi Mizutani
政敏 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010179958A priority Critical patent/JP2012037013A/en
Publication of JP2012037013A publication Critical patent/JP2012037013A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a bearing device that can rapidly measure a temperature of a bearing race ring, enhance temperature measurement accuracy of the bearing race ring and improve the accuracy of abnormality prediction and responsiveness of a bearing.SOLUTION: The bearing device is configured to receive preload by placing a spacer between race rings of a plurality of anti-friction bearings 3, 3 arranged in an axial direction. The spacer includes an outer ring spacer 5 laid between outer rings 3g, 3g arranged side by side in the axial direction, and an inner ring spacer 4 laid between inner rings 3i, 3i. The inner ring 3i includes an inner ring side surface abutting on the inner ring spacer 4 and a chamfered detected surface 10 at a corner part of an inner ring outer peripheral surface. The outer ring spacer 5 includes a non-contact temperature sensor 7 for measuring the temperature of the detected surface 10 in a non-contact manner.

Description

この発明は、工作機械の主軸スピンドルなどに使用される軸受装置に関する。   The present invention relates to a bearing device used for a spindle of a machine tool.

工作機械のスピンドル装置では、軸受に異常が起こる前に、その予兆を検出して軸受の異常を未然に防ぐ要求がある。この軸受の異常を検出するために、回転している軸受の軌道輪の温度を、非接触温度センサで検出している例がある(特許文献1)。   In a spindle device of a machine tool, there is a need to detect a sign of the bearing before the abnormality occurs to prevent the bearing from being abnormal. In order to detect this bearing abnormality, there is an example in which the temperature of the bearing ring of the rotating bearing is detected by a non-contact temperature sensor (Patent Document 1).

特開2009−68533号公報JP 2009-68533 A

前述の軌道輪の温度を検出している例では、軸受の回転輪の温度を非接触温度計で測定するのに、軸受軌道輪に接する間座の温度を測定している。一般的に間座は、軸受軌道輪と熱膨張係数が同じである鋼材などで製作され、主軸などに圧入されている。そのため、間座の温度を測定して軸受軌道輪の温度を推定する場合、軸受軌道輪から熱が伝わるのに時間がかかり、温度測定に時間差が生じてしまう問題点がある。また、間座と軸受軌道輪との間に温度差ができ、軸受軌道輪の温度測定精度が悪化する問題点がある。   In the example in which the temperature of the bearing ring is detected, the temperature of the spacer in contact with the bearing ring is measured in order to measure the temperature of the rotating ring of the bearing with a non-contact thermometer. Generally, the spacer is made of a steel material having the same thermal expansion coefficient as that of the bearing race and is press-fitted into a main shaft or the like. Therefore, when the temperature of the spacer is measured to estimate the temperature of the bearing race, it takes time for heat to be transmitted from the bearing race and there is a problem that a time difference occurs in temperature measurement. Further, there is a problem that a temperature difference is generated between the spacer and the bearing raceway, and the temperature measurement accuracy of the bearing raceway is deteriorated.

この発明の目的は、軸受軌道輪の温度を迅速に測定可能とでき、且つ軸受軌道輪の温度測定精度を高め、軸受の異常予測の精度および応答性を高めることができる軸受装置を提供することである。   An object of the present invention is to provide a bearing device that can quickly measure the temperature of a bearing race, can improve the temperature measurement accuracy of the bearing race, and can improve the accuracy and responsiveness of a bearing abnormality prediction. It is.

この発明の軸受装置は、軸方向に並ぶ複数の転がり軸受の軌道輪間に間座を介在させて予圧を受けるように構成し、前記間座は、軸方向に並ぶ外輪間に介在する外輪間座と、内輪間に介在する内輪間座とがある軸受装置において、前記内外輪のうちの回転側軌道輪について、外輪間座および内輪間座のうちの回転側間座に当接する回転側軌道輪の側面と、この回転側軌道輪における軌道面側の周面との角部に面取状の被検出面を設け、前記外輪間座および内輪間座のうちの固定側間座に、前記面取状の被検出面の温度を非接触で測定する非接触温度センサを設けたことを特徴とする。   A bearing device according to the present invention is configured to receive a preload by interposing a spacer between race rings of a plurality of rolling bearings arranged in the axial direction, and the spacer is between outer rings interposed between outer rings arranged in the axial direction. In the bearing device having a seat and an inner ring spacer interposed between the inner rings, the rotation side raceway that contacts the rotation side spacer of the outer ring spacer and the inner ring spacer with respect to the rotation side raceway of the inner and outer rings. A chamfered surface to be detected is provided at a corner between the side surface of the ring and the circumferential surface on the raceway surface side of the rotating side raceway, and the fixed side spacer of the outer ring spacer and the inner ring spacer is A non-contact temperature sensor for measuring the temperature of a chamfered surface to be detected in a non-contact manner is provided.

この構成によると、固定側間座に設けた非接触温度センサにより、回転側軌道輪の被検出面の温度を非接触で測定する。非接触温度センサは、従来技術のように間座の温度を測定するのではなく、回転側軌道輪の一部である被検出面を直接測定する。これにより、軸受回転時、非接触温度センサの測定面と、被検出面の表面との距離を一定に保つことが可能となる。したがって、軸受回転時、被検出面の表面に対し、非接触温度センサで測定可能な面積を一定に保つことができる。
このように、回転側軌道輪の被検出面を非接触温度センサで直接測定するため、回転側軌道輪の温度を迅速に測定することができ、従来の間座と軸受軌道輪との間の温度差、温度測定の時間差が解消される。また、回転側軌道輪に面取り状の被検出面を設け、この面を非接触温度センサで検出するため、非接触温度センサと正対面する面の面積が大きくなり、温度検出精度が高くなる。すなわち、間座が隣接した軸受軌道輪の温度を軸受外の非接触温度センサにより測定しようとした場合、軌道輪の軸受空間側の周面に非接触温度センサを対向させて測定することになるが、その周面に対して非接触温度センサは斜めに対面することになる。そのため精度の良い温度検出が困難であるが、面取り状の被検出面である傾斜した被検出面を設けると、軸受軸心に対して斜め方向の配置姿勢となる非接触温度センサに対して、被検出面を正対面させることができる。そのため、温度検出精度が高くなる。本発明によると、軸受軌道輪の温度を迅速に測定可能とでき、且つ軸受軌道輪の温度測定精度を高め、軸受の異常予測の精度および応答性を高めることができる。
According to this configuration, the temperature of the detection surface of the rotating raceway is measured in a noncontact manner by the noncontact temperature sensor provided in the fixed spacer. The non-contact temperature sensor does not measure the temperature of the spacer as in the prior art, but directly measures the detected surface that is a part of the rotating side race. This makes it possible to keep the distance between the measurement surface of the non-contact temperature sensor and the surface of the detected surface constant during rotation of the bearing. Therefore, the area measurable by the non-contact temperature sensor can be kept constant with respect to the surface of the surface to be detected during rotation of the bearing.
In this way, since the surface to be detected of the rotating raceway is directly measured by the non-contact temperature sensor, the temperature of the rotating raceway can be measured quickly, and the conventional spacer between the bearing raceway and the bearing raceway can be measured. The temperature difference and temperature measurement time difference are eliminated. Further, since a chamfered surface to be detected is provided on the rotation side raceway and this surface is detected by the non-contact temperature sensor, the area of the surface facing the non-contact temperature sensor is increased, and the temperature detection accuracy is increased. That is, when the temperature of the bearing ring adjacent to the spacer is to be measured by a non-contact temperature sensor outside the bearing, the temperature is measured with the non-contact temperature sensor facing the peripheral surface of the bearing ring on the bearing space side. However, the non-contact temperature sensor faces diagonally with respect to the peripheral surface. Therefore, accurate temperature detection is difficult, but providing a tilted surface to be detected, which is a chamfered surface to be detected, with respect to a non-contact temperature sensor that is arranged obliquely with respect to the bearing axis, The detected surface can be made to face directly. Therefore, the temperature detection accuracy is increased. According to the present invention, the temperature of the bearing race can be quickly measured, the temperature measurement accuracy of the bearing race can be increased, and the accuracy and responsiveness of the bearing abnormality prediction can be improved.

前記非接触温度センサは、前記面取り状の被検出面に対向して固定側間座に取り付けられても良い。このように面取り状の被検出面に対向するように非接触温度センサを取り付けることで、非接触温度センサに対して正対面させる被検出面の面積を大きくすることができる。これにより、回転側軌道輪の温度測定精度を容易に高めることができる。
前記非接触温度センサは、被測定物からの赤外線の放射を検出するセンサであっても良い。この場合、非接触温度センサは、前記回転側軌道輪の面取り状の被検出面から放射される赤外線を検出する。これにより回転側軌道輪の温度を測定できる。この非接触温度センサとして、焦電型赤外センサやサーモパイル等が適用可能である。
The non-contact temperature sensor may be attached to a fixed spacer so as to face the chamfered detection surface. By attaching the non-contact temperature sensor so as to face the chamfered detection surface in this way, the area of the detection surface that faces the non-contact temperature sensor can be increased. Thereby, the temperature measurement precision of a rotation side track ring can be raised easily.
The non-contact temperature sensor may be a sensor that detects infrared radiation from the object to be measured. In this case, the non-contact temperature sensor detects infrared rays emitted from the chamfered surface to be detected of the rotating side race. Thereby, the temperature of the rotation side raceway can be measured. As this non-contact temperature sensor, a pyroelectric infrared sensor, a thermopile, or the like is applicable.

前記固定側間座に、この固定側間座の温度または内外輪のうちの固定側軌道輪の温度を測定する他の温度センサを設け、前記他の温度センサにより測定される温度および前記非接触温度センサにより測定される温度と、前記回転側軌道輪の回転速度とから、軸受の予圧を推定する予圧推定手段を設けても良い。軸受の運転により軸受温度が上昇すると回転側軌道輪等の膨張に起因して予圧が初期設定値よりも大きくなる。この関係を演算式またはテーブル等で設定しておき、予圧を推定することができる。この場合、予圧推定手段は、固定側軌道輪および回転側軌道輪両方の温度と、前記回転速度とを、前記演算式またはテーブル等に照らし、軸受にかかる予圧をより正確に推定することができる。推定された軸受の予圧値は、軸受予圧の制御や工作機械の加工状態のモニタ等に使用することもできる。   The fixed side spacer is provided with another temperature sensor for measuring the temperature of the fixed side spacer or the temperature of the fixed side raceway of the inner and outer rings, and the temperature measured by the other temperature sensor and the non-contact Preload estimation means for estimating the preload of the bearing from the temperature measured by the temperature sensor and the rotation speed of the rotating raceway may be provided. When the bearing temperature rises due to the operation of the bearing, the preload becomes larger than the initial set value due to the expansion of the rotating side race ring and the like. The preload can be estimated by setting this relationship by an arithmetic expression or a table. In this case, the preload estimating means can estimate the preload applied to the bearing more accurately by comparing the temperature of both the fixed-side raceway ring and the rotation-side raceway ring and the rotational speed with the arithmetic expression or the table. . The estimated bearing preload value can be used for controlling the bearing preload, monitoring the machining state of the machine tool, and the like.

この発明において、前記固定側間座の軸方向端部における少なくとも円周方向一箇所にスリットを形成し、このスリットに、前記他の温度センサおよび前記非接触温度センサを設けても良い。この場合、他の温度センサおよび非接触温度センサを、軸受に近づけて配置することができる。したがって、軌道輪の温度をより正確に測定することができ、これにより、軸受にかかる予圧を正確に推定することができる。
これらの発明において、前記他の温度センサおよび非接触温度センサにより測定される両温度から、軸受の異常を検出する異常検出手段を設けても良い。内外輪のいずれか一方の軌道輪の温度が、他方の軌道輪の温度よりも上昇する場合であっても、異常検出手段は、前記両温度から軸受の異常を検出するため、軸受の異常を迅速に検出することができる。
固定側軌道輪および回転側軌道輪の温度を測定して軸受の異常検出を行うので、固定側軌道輪のみ温度を測定しているときよりも、軸受の異常予測を精度良く適切なタイミングで行うことができる。また、間座の温度を測定せず、軌道輪の温度を直接測定することにより、温度測定の時間差および温度差を小さくすることができるので、さらに異常予測の精度および応答性を高めることができる。
In the present invention, a slit may be formed at least in one circumferential direction at the axial end of the fixed side spacer, and the other temperature sensor and the non-contact temperature sensor may be provided in the slit. In this case, other temperature sensors and non-contact temperature sensors can be disposed close to the bearings. Therefore, the temperature of the bearing ring can be measured more accurately, and thereby the preload applied to the bearing can be accurately estimated.
In these inventions, an abnormality detecting means for detecting an abnormality of the bearing from both temperatures measured by the other temperature sensor and the non-contact temperature sensor may be provided. Even when the temperature of one of the inner and outer rings is higher than the temperature of the other bearing ring, the abnormality detection means detects the abnormality of the bearing from the two temperatures, so the abnormality of the bearing is detected. It can be detected quickly.
Because the bearing abnormality is detected by measuring the temperature of the stationary raceway and the rotating raceway, it is possible to accurately predict the bearing abnormality at an appropriate timing compared to when measuring the temperature of only the stationary raceway. be able to. Further, by directly measuring the temperature of the bearing ring without measuring the spacer temperature, the time difference and temperature difference of the temperature measurement can be reduced, so that the accuracy and responsiveness of abnormality prediction can be further improved. .

この発明の軸受装置は、軸方向に並ぶ複数の転がり軸受の軌道輪間に間座を介在させて予圧を受けるように構成し、前記間座は、軸方向に並ぶ外輪間に介在する外輪間座と、内輪間に介在する内輪間座とがある軸受装置において、前記内外輪のうちの回転側軌道輪について、外輪間座および内輪間座のうちの回転側間座に当接する回転側軌道輪の側面と、この回転側軌道輪における軌道面側の周面との角部に面取状の被検出面を設け、前記外輪間座および内輪間座のうちの固定側間座に、前記被検出面の温度を非接触で測定する非接触温度センサを設けたため、軸受軌道輪の温度を迅速に測定可能とでき、且つ軸受軌道輪の温度測定精度を高め、軸受の異常予測の精度および応答性を高めることができる。   A bearing device according to the present invention is configured to receive a preload by interposing a spacer between race rings of a plurality of rolling bearings arranged in the axial direction, and the spacer is between outer rings interposed between outer rings arranged in the axial direction. In the bearing device having a seat and an inner ring spacer interposed between the inner rings, the rotation side raceway that contacts the rotation side spacer of the outer ring spacer and the inner ring spacer with respect to the rotation side raceway of the inner and outer rings. A chamfered surface to be detected is provided at a corner between the side surface of the ring and the circumferential surface on the raceway surface side of the rotating side raceway, and the fixed side spacer of the outer ring spacer and the inner ring spacer is Since a non-contact temperature sensor that measures the temperature of the surface to be detected in a non-contact manner is provided, the temperature of the bearing race can be measured quickly, and the temperature measurement accuracy of the bearing race is increased, and the accuracy of bearing abnormality prediction is improved. Responsiveness can be improved.

この発明の第1の実施形態に係る軸受装置の断面図である。It is sectional drawing of the bearing apparatus which concerns on 1st Embodiment of this invention. 同軸受装置の要部の断面図である。It is sectional drawing of the principal part of the bearing apparatus. 図2のIII- III線端面図である。FIG. 3 is an end view taken along line III-III in FIG. 2. この発明の他の実施形態に係る軸受装置の要部の断面図である。It is sectional drawing of the principal part of the bearing apparatus which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る軸受装置の要部の断面図である。It is sectional drawing of the principal part of the bearing apparatus which concerns on other embodiment of this invention.

この発明の第1の実施形態を図1ないし図3と共に説明する。この第1の実施形態にかかる軸受装置は、ハウジング1に軸2を複数の軸受3で回転自在に支持したものである。この軸受装置は、例えば、工作機械のスピンドル装置に応用され、その場合、軸2はスピンドル装置の主軸2となる。   A first embodiment of the present invention will be described with reference to FIGS. In the bearing device according to the first embodiment, a shaft 2 is rotatably supported on a housing 1 by a plurality of bearings 3. This bearing device is applied to, for example, a spindle device of a machine tool. In this case, the shaft 2 becomes the main shaft 2 of the spindle device.

図1に示すように、主軸2には、軸方向に離隔した複数の軸受3を締まり嵌め状態で嵌合し、内輪3i,3i間にリング状の内輪間座4を、外輪3g,3g間にリング状の外輪間座5を介在させている。この例では、内輪間座4が回転側間座となり、外輪間座5が固定側間座となる。内輪3iが回転側軌道輪となり、外輪3gが固定側軌道輪となる。軸受3は、内輪3iの軌道面3iaと、外輪3gの軌道面3gaとの間に複数の転動体Tを介在させた転がり軸受である。前記複数の転動体Tは、保持器Rtで円周方向一定間隔おきに保持されている。軸受3は、軸方向の予圧を付与することが可能な軸受であり、アンギュラ玉軸受、深溝玉軸受、またはテーパころ軸受等が用いられる。図示の例ではアンギュラ玉軸受が用いられ、2個の軸受3,3が背面組合わせで設置されている。   As shown in FIG. 1, a plurality of axially spaced bearings 3 are fitted into the main shaft 2 in an interference fit state, and a ring-shaped inner ring spacer 4 is interposed between the inner rings 3i and 3i, and between the outer rings 3g and 3g. Is provided with a ring-shaped outer ring spacer 5. In this example, the inner ring spacer 4 is a rotating side spacer, and the outer ring spacer 5 is a fixed side spacer. The inner ring 3i is a rotation side race and the outer ring 3g is a fixed side race. The bearing 3 is a rolling bearing in which a plurality of rolling elements T are interposed between the raceway surface 3ia of the inner ring 3i and the raceway surface 3ga of the outer ring 3g. The plurality of rolling elements T are held at regular intervals in the circumferential direction by a cage Rt. The bearing 3 is a bearing capable of applying an axial preload, and an angular ball bearing, a deep groove ball bearing, a tapered roller bearing, or the like is used. In the illustrated example, an angular ball bearing is used, and the two bearings 3 and 3 are installed in a back surface combination.

外輪間座5には、後述する温度センサ6と非接触温度センサ7とが設置されている。温度センサ6は、外輪間座5の温度を検出するセンサである。外輪3gの熱は、外輪間座5に熱伝導により伝えられ、外輪温度が温度センサ6により求められる。非接触温度センサ7は、内輪3iの表面温度を非接触で検出するセンサである。またこの主軸装置には、主軸2の回転速度を検出する回転センサS1が設けられている。   The outer ring spacer 5 is provided with a temperature sensor 6 and a non-contact temperature sensor 7 which will be described later. The temperature sensor 6 is a sensor that detects the temperature of the outer ring spacer 5. The heat of the outer ring 3g is transmitted to the outer ring spacer 5 by heat conduction, and the outer ring temperature is obtained by the temperature sensor 6. The non-contact temperature sensor 7 is a sensor that detects the surface temperature of the inner ring 3i in a non-contact manner. The spindle device is provided with a rotation sensor S1 for detecting the rotation speed of the spindle 2.

ハウジング1は、ハウジング本体13と、蓋部材Fbとでなる。ハウジング本体13には、2個の軸受3,3および外輪間座5を設置する円筒孔1bが形成されている。図1左側の軸受3の外輪正面は、ハウジング1の底面1cに当接され、同軸受3の内輪背面は、主軸2の先端側に形成される大径段部2aに当接された状態で組み込まれる。
外輪間座5の軸方向両端部は、それぞれ、外径側に外輪背面に当接する当接面5aと、この当接面5aに段部を介して内径側に連なる軸受3に当接しない非当接面5bとを有する。
The housing 1 includes a housing body 13 and a lid member Fb. The housing body 13 is formed with a cylindrical hole 1b in which the two bearings 3 and 3 and the outer ring spacer 5 are installed. The front surface of the outer ring of the bearing 3 on the left side of FIG. 1 is in contact with the bottom surface 1 c of the housing 1, and the back surface of the inner ring of the bearing 3 is in contact with the large-diameter step portion 2 a formed on the front end side of the main shaft 2. Incorporated.
Both end portions in the axial direction of the outer ring spacer 5 are not in contact with the bearing surface 5a that contacts the rear surface of the outer ring on the outer diameter side, and the bearing 3 that continues to the inner diameter side of the contact surface 5a via a stepped portion. A contact surface 5b.

2個の軸受3,3、内外輪間座4,5、および主軸2がハウジング本体13に設置された状態で、前記円筒孔1bを塞ぐ蓋部材Fbがハウジング本体13にボルト(図示せず)により適切な締付けトルクで固定される。蓋部材Fbは、ハウジング本体13に固定された状態で円筒孔1b内における右側の軸受3側に突出し、前記軸受3の外輪正面に当接する環状の突出部Fbaを有する。   With the two bearings 3, 3, the inner and outer ring spacers 4, 5, and the main shaft 2 installed in the housing body 13, a lid member Fb that closes the cylindrical hole 1 b is bolted to the housing body 13 (not shown). Is fixed with an appropriate tightening torque. The lid member Fb has an annular protrusion Fba that protrudes toward the right bearing 3 in the cylindrical hole 1b in a state of being fixed to the housing body 13 and abuts against the front surface of the outer ring of the bearing 3.

主軸2の基端側つまり図1右側には、軸受3を嵌合する嵌合面よりも小径の小径軸部が設けられ、この小径軸部の外周面に雄ねじ2bが形成されている。この雄ねじ2bにナット9が螺合するように構成されている。ハウジング1に2個の軸受3,3、内外輪間座4,5、および主軸2が設置された状態で、外輪間座5の軸方向寸法つまり幅寸法は、内輪間座4の幅寸法と異なっており、図1右側の軸受3の内輪背面に筒状部材8を介して当接するナット9を締め付けることにより、これら外輪間座5、内輪間座4の幅寸法差に応じて軸受に予圧が付与される。   On the proximal end side of the main shaft 2, that is, on the right side in FIG. 1, a small-diameter shaft portion smaller in diameter than the fitting surface for fitting the bearing 3 is provided, and a male screw 2 b is formed on the outer peripheral surface of the small-diameter shaft portion. A nut 9 is configured to be screwed into the male screw 2b. In the state where the two bearings 3, 3, the inner and outer ring spacers 4, 5 and the main shaft 2 are installed in the housing 1, the axial dimension, that is, the width dimension of the outer ring spacer 5 is the same as the width dimension of the inner ring spacer 4. The nut 9 that is in contact with the back surface of the inner ring of the bearing 3 on the right side of FIG. 1 via the tubular member 8 is tightened to preload the bearing according to the width dimension difference between the outer ring spacer 5 and the inner ring spacer 4. Is granted.

外輪間座5の軸方向両端部における円周方向一箇所にスリットSL,SLをそれぞれ形成し、各スリットSL,SLに、それぞれ温度センサ6、非接触温度センサ7が設置されている。ここで軸方向右端部における、温度センサ6および非接触温度センサ7と、軸方向左端部における、温度センサ6および非接触温度センサ7とは、左右対象構造であるので、軸方向左端部におけるセンサ6,7についてのみ説明する。
図2に示すように、外輪間座5において、スリットSLの一部を成す溝底面SLaに、温度センサ6が固着されている。温度センサ6は、例えば、熱電対、側温抵抗体、サーミスタ等により実現される。
Slits SL and SL are formed at one circumferential position at both axial ends of the outer ring spacer 5, and a temperature sensor 6 and a non-contact temperature sensor 7 are installed in each of the slits SL and SL. Here, the temperature sensor 6 and the non-contact temperature sensor 7 at the right end portion in the axial direction and the temperature sensor 6 and the non-contact temperature sensor 7 at the left end portion in the axial direction are left and right target structures, and therefore the sensor at the left end portion in the axial direction. Only 6 and 7 will be described.
As shown in FIG. 2, in the outer ring spacer 5, a temperature sensor 6 is fixed to a groove bottom surface SLa that forms a part of the slit SL. The temperature sensor 6 is realized by, for example, a thermocouple, a side temperature resistor, a thermistor, or the like.

図3に示すように、スリットSLの前記溝底面SLaは、外輪間座5の軸方向端部における半径方向外方側の環状の当接面5aに切欠き形成されている。すなわち溝底面SLaは、環状の当接面5aにおける円周方向一箇所に、温度センサ6を設けるために切欠き形成されている。この例では、図2に示すように、溝底面SLaは、この外輪間座5の非当接面5bよりも深く、且つ、当接面5aに平行に切欠き形成され、同溝底面SLaに設けた温度センサ6が外輪背面に干渉しないように配置される。   As shown in FIG. 3, the groove bottom surface SLa of the slit SL is formed in a notch in an annular contact surface 5 a on the radially outer side at the axial end portion of the outer ring spacer 5. That is, the groove bottom surface SLa is notched to provide the temperature sensor 6 at one place in the circumferential direction on the annular contact surface 5a. In this example, as shown in FIG. 2, the groove bottom surface SLa is deeper than the non-contact surface 5b of the outer ring spacer 5 and is notched in parallel to the contact surface 5a. The provided temperature sensor 6 is disposed so as not to interfere with the rear surface of the outer ring.

外輪間座5における、スリットSLの一部を成すテーパ状溝底面SLbに、非接触温度センサ7が固着されている。テーパ状溝底面SLbは、溝底面SLaと略同位相で且つ溝底面SLaよりも幅狭に形成されている。また、テーパ状溝底面SLbは、外輪間座5の軸方向端部における半径方向中間付近部に、当接面5aから非当接面5bにわたってテーパ状に切欠き形成されている。このテーパ状溝底面SLbは、外輪間座5の軸方向端部に対して、定められたテーパ角度α1(α1は例えば45度)をもって形成されている。このテーパ角度α1は、テーパ状溝底面SLbが、内輪3iの角部に設けた面取状の被検出面10の表面に対し平行となり、非接触温度センサ7に対して、被検出面10を正対面させるように定められる。なお、テーパ状溝底面SLbの内径側縁部から、内輪3i側に向かう溝底面SLcが形成されている。   A non-contact temperature sensor 7 is fixed to a tapered groove bottom surface SLb that forms a part of the slit SL in the outer ring spacer 5. The tapered groove bottom surface SLb is formed in substantially the same phase as the groove bottom surface SLa and narrower than the groove bottom surface SLa. Further, the tapered groove bottom surface SLb is formed in a tapered shape from the abutting surface 5a to the non-abutting surface 5b in the vicinity of the middle in the radial direction at the axial end portion of the outer ring spacer 5. The tapered groove bottom surface SLb is formed with a predetermined taper angle α1 (α1 is 45 degrees, for example) with respect to the axial end of the outer ring spacer 5. This taper angle α1 is such that the tapered groove bottom surface SLb is parallel to the surface of the chamfered detected surface 10 provided at the corner of the inner ring 3i, and the detected surface 10 is It is determined to face each other. A groove bottom surface SLc is formed from the inner diameter side edge of the tapered groove bottom surface SLb toward the inner ring 3i.

前記テーパ状溝底面SLbに取り付けられる非接触温度センサ7として、例えば、焦電型赤外センサやサーモパイル等が適用可能である。ただし、非接触温度センサ7は、焦電型赤外センサ、サーモパイルだけに限定されるものではない。非接触温度センサ7はこの例では円筒状に形成され、この非接触温度センサ7の長手方向の基端部がテーパ状溝底面SLbに取り付けられ、同非接触温度センサ7の長手方向の先端部7a(測定面7a)を、内輪3iの被検出面10に対向すなわち正対面させている。これにより非接触温度センサ7は、被検出面10の表面温度を非接触で測定可能である。   As the non-contact temperature sensor 7 attached to the tapered groove bottom surface SLb, for example, a pyroelectric infrared sensor or a thermopile can be applied. However, the non-contact temperature sensor 7 is not limited to a pyroelectric infrared sensor or a thermopile. In this example, the non-contact temperature sensor 7 is formed in a cylindrical shape, and the base end portion in the longitudinal direction of the non-contact temperature sensor 7 is attached to the tapered groove bottom surface SLb. 7a (measurement surface 7a) faces the detected surface 10 of the inner ring 3i, i.e., faces the surface of the inner ring 3i. Thereby, the non-contact temperature sensor 7 can measure the surface temperature of the detected surface 10 in a non-contact manner.

図2に示すように、内輪3iの被検出面10は、内輪間座4に当接する内輪3iの側面3hと、この内輪3iにおける軌道面側の周面3dつまり内輪外周面3dとの角部の全周に設けられる。なお、内輪3iは、回転しているため非接触温度センサ7に対抗する面が常に変化するので、被検出面10は角部の全周に設ける必要がある。周方向の一部だけに形成した場合、角部の効果はあまりない。この被検出面10は、内輪3iの前記角部を角面取りすることにより形成される。被検出面10の軸方向寸法L1および径方向寸法L2は、非接触温度センサ7の測定面7aの表面積、同測定面7aと被検出面10との間の距離等に応じて規定される。また、被検出面10を非接触温度センサ7の測定面7aと平行にするため、テーパ角度α1が関係する。なお、内輪3iの他の角部は、他の部材との干渉を考慮して、前記被検出面10の軸方向寸法等よりも小さい半径寸法から成る丸面取りが施されている。   As shown in FIG. 2, the detected surface 10 of the inner ring 3i is a corner portion between the side surface 3h of the inner ring 3i that contacts the inner ring spacer 4 and the circumferential surface 3d on the raceway surface side of the inner ring 3i, that is, the inner ring outer circumferential surface 3d. It is provided all around. Since the inner ring 3i is rotating and the surface facing the non-contact temperature sensor 7 is constantly changed, the detected surface 10 needs to be provided on the entire circumference of the corner. When it is formed only in a part in the circumferential direction, the effect of the corner is not so much. The detected surface 10 is formed by chamfering the corner portion of the inner ring 3i. The axial dimension L1 and the radial dimension L2 of the detection surface 10 are defined according to the surface area of the measurement surface 7a of the non-contact temperature sensor 7, the distance between the measurement surface 7a and the detection surface 10, and the like. Further, in order to make the detected surface 10 parallel to the measurement surface 7a of the non-contact temperature sensor 7, the taper angle α1 is related. The other corners of the inner ring 3i are rounded with a radius smaller than the axial dimension of the detected surface 10 in consideration of interference with other members.

図1に示すように、温度センサ6、非接触温度センサ7の出力部である配線Cdは、ハウジング1に設けられた孔1aを介して、ハウジング1外に引き出され、転がり軸受の異常を検出する異常検出手段Eaに電気的に接続されている。異常検出手段Eaは予圧推定手段Yaを含む。この予圧推定手段Yaは、温度センサ6により測定される温度、および非接触温度センサ7により測定される温度と、前記回転センサS1により測定される主軸2の回転速度とから、軸受3にかかる予圧を推定する。予圧推定手段Yaは、温度センサ6により測定される温度、および非接触温度センサ7により測定される温度と、主軸2の回転速度を検出する回転センサS1により測定される回転速度と、予圧との関係を演算式またはテーブル等で設定した図示外の関係設定手段を有し、求められる内外輪3i,3gの温度と、主軸2の回転速度とを前記関係設定手段に照らし、軸受予圧を推定する。推定された軸受の予圧値は、軸受予圧の制御や工作機械の加工状態のモニタ等に使用することもできる。予圧推定手段Yaは、独立して設けられた電子回路であっても、またスピンドル装置を制御する制御装置の一部であっても良い。   As shown in FIG. 1, the wiring Cd, which is the output part of the temperature sensor 6 and the non-contact temperature sensor 7, is pulled out of the housing 1 through a hole 1 a provided in the housing 1 to detect an abnormality in the rolling bearing. Is electrically connected to the abnormality detecting means Ea. The abnormality detection means Ea includes preload estimation means Ya. This preload estimating means Ya is a preload applied to the bearing 3 from the temperature measured by the temperature sensor 6, the temperature measured by the non-contact temperature sensor 7, and the rotational speed of the spindle 2 measured by the rotation sensor S1. Is estimated. The preload estimating means Ya includes a temperature measured by the temperature sensor 6, a temperature measured by the non-contact temperature sensor 7, a rotation speed measured by the rotation sensor S1 that detects the rotation speed of the spindle 2, and the preload. A relationship setting unit (not shown) in which the relationship is set by an arithmetic expression or a table or the like is provided, and the bearing preload is estimated by comparing the calculated temperatures of the inner and outer rings 3i and 3g and the rotational speed of the main shaft 2 with the relationship setting unit. . The estimated bearing preload value can be used for controlling the bearing preload, monitoring the machining state of the machine tool, and the like. The preload estimation means Ya may be an electronic circuit provided independently, or may be a part of a control device that controls the spindle device.

以上説明した主軸装置の作用、効果について説明する。
スピンドル装置の図示外の駆動源により主軸2が回転し、軸受3の温度が上昇して内輪3iが膨張すると、予圧が初期設定値よりも大きくなる。ここで、外輪間座5の軸方向両端部の当接面5aは外輪背面に当接しているため、外輪3gの熱は、外輪間座5に熱伝導により伝えられ、温度センサ6により求められる。外輪3gの温度は、外輪間座5の材質固有の熱伝導率、外輪間座5の前記当接面5aから温度センサ6までの距離等に基づき補正されて求められる。この例では、外輪間座5の軸方向両端部のスリットSLに温度センサ6を設置したため、外輪間座5の前記当接面5aから温度センサ6までの距離をできるだけ短縮することができる。したがって、外輪3gの温度を迅速に測定することができ、且つ、外輪3gの温度測定精度を高めることができる。
The operation and effect of the spindle device described above will be described.
When the spindle 2 is rotated by a drive source (not shown) of the spindle device, the temperature of the bearing 3 rises and the inner ring 3i expands, the preload becomes larger than the initial set value. Here, the contact surfaces 5a at both ends in the axial direction of the outer ring spacer 5 are in contact with the back surface of the outer ring, so that the heat of the outer ring 3g is transmitted to the outer ring spacer 5 by heat conduction and is obtained by the temperature sensor 6. . The temperature of the outer ring 3g is obtained by correction based on the material specific heat conductivity of the outer ring spacer 5, the distance from the contact surface 5a of the outer ring spacer 5 to the temperature sensor 6, and the like. In this example, since the temperature sensor 6 is installed in the slit SL at both axial ends of the outer ring spacer 5, the distance from the contact surface 5a of the outer ring spacer 5 to the temperature sensor 6 can be shortened as much as possible. Therefore, the temperature of the outer ring 3g can be measured quickly, and the temperature measurement accuracy of the outer ring 3g can be increased.

内輪3iの温度は、この内輪3iの被検出面10に対向する非接触温度センサ7により非接触で直接測定される。非接触温度センサ7は、従来技術のように間座の温度を測定するのではなく、内輪3iの一部である被検出面10を直接測定する。これにより、軸受回転時、非接触温度センサ7の測定面7aと、被検出面10の表面との距離を一定に保つことが可能となる。したがって、軸受回転時、被検出面10の表面に対し、非接触温度センサ7で測定可能な面積を一定に保つことができる。
このように、内輪3iの被検出面10を非接触温度センサ7で直接測定するため、内輪3iの温度を迅速に測定することができ、従来の間座と軸受軌道輪との間の温度差、温度測定の時間差が解消される。非接触温度センサ7に対向する部分に、面取状の被検出面10を施して非接触温度センサ7と対向する面の面積を大きくしたので、内輪3iの温度検出精度が高くなる。この例では、回転側軌道輪である内輪3iのうち、軌道面側の内輪外周面3dと、内輪間座4に当接する内輪側面3hとの角部に面取り状の被検出面10を設け、この面を非接触温度センサ7で検出するため、非接触温度センサ7と正対面する面の面積が大きくなり、これにより温度検出精度が高くなる。すなわち、内輪間座が隣接した内輪の温度を軸受外の非接触温度センサにより測定しようとした場合、軌道輪の軸受空間側の周面に非接触温度センサを対向させて測定することになるが、その周面に対して非接触温度センサは斜めに対面することになる。そのため精度の良い温度検出が困難であるが、面取り状の被検出面10である傾斜した被検出面10を設けると、軸受軸心に対して斜め方向の配置姿勢となる非接触温度センサ7に対して、被検出面10を正対面させることができる。そのため、温度検出精度が高くなる。
したがって、内外輪3i,3gの温度を迅速に測定可能とでき、且つ内外輪3i,3gの温度測定精度を高め、軸受の異常予測の精度および応答性を高めることができる。
非接触温度センサ7は、被検出面10に対向して外輪間座5に取り付けられている。このように被検出面10に対向するように非接触温度センサ7を取り付けることで、非接触温度センサ7に対して正対面させる被検出面10の面積を大きくすることができる。これにより、回転側軌道輪である内輪3iの温度測定精度を容易に高めることができる。この被検出面10は、内輪3iにおいて、他の部材との干渉等を考慮して施される他の角部の面取りよりも軸方向寸法L1、および径方向寸法L2が大きく形成される。したがって、被検出面10の表面積を、他の角部の面取りの表面積よりも大きく設定し得る。これにより、軸受軸心に対して斜め方向の配置姿勢となる非接触温度センサ7に対して、被検出面10を確実に正対面させることができる。そのため、内輪3iの温度測定精度を容易に高めることができる。
The temperature of the inner ring 3i is directly measured in a non-contact manner by a non-contact temperature sensor 7 facing the detected surface 10 of the inner ring 3i. The non-contact temperature sensor 7 does not measure the temperature of the spacer as in the prior art, but directly measures the detected surface 10 that is a part of the inner ring 3i. This makes it possible to keep the distance between the measurement surface 7a of the non-contact temperature sensor 7 and the surface of the detected surface 10 constant during rotation of the bearing. Therefore, the area measurable with the non-contact temperature sensor 7 can be kept constant with respect to the surface of the surface 10 to be detected during rotation of the bearing.
In this way, since the detected surface 10 of the inner ring 3i is directly measured by the non-contact temperature sensor 7, the temperature of the inner ring 3i can be quickly measured, and the temperature difference between the conventional spacer and the bearing raceway ring. The time difference of temperature measurement is eliminated. Since the chamfered surface 10 to be detected is applied to the portion facing the non-contact temperature sensor 7 to increase the area of the surface facing the non-contact temperature sensor 7, the temperature detection accuracy of the inner ring 3i is increased. In this example, a chamfered surface 10 to be detected is provided at the corner between the inner ring outer peripheral surface 3d on the raceway surface side and the inner ring side surface 3h in contact with the inner ring spacer 4 among the inner rings 3i that are rotation side raceways. Since this surface is detected by the non-contact temperature sensor 7, the area of the surface facing the non-contact temperature sensor 7 is increased, thereby increasing the temperature detection accuracy. That is, when the temperature of the inner ring adjacent to the inner ring spacer is to be measured by a non-contact temperature sensor outside the bearing, the measurement is performed with the non-contact temperature sensor facing the peripheral surface of the bearing ring on the bearing space side. The non-contact temperature sensor faces diagonally with respect to the peripheral surface. Therefore, accurate temperature detection is difficult. However, when the inclined detection surface 10 which is a chamfered detection surface 10 is provided, the non-contact temperature sensor 7 is arranged in an oblique orientation with respect to the bearing axis. On the other hand, the detected surface 10 can be made to face directly. Therefore, the temperature detection accuracy is increased.
Accordingly, the temperature of the inner and outer rings 3i and 3g can be measured quickly, the temperature measurement accuracy of the inner and outer rings 3i and 3g can be increased, and the accuracy and responsiveness of the bearing abnormality prediction can be increased.
The non-contact temperature sensor 7 is attached to the outer ring spacer 5 so as to face the detected surface 10. By attaching the non-contact temperature sensor 7 so as to face the detected surface 10 in this way, the area of the detected surface 10 that faces the non-contact temperature sensor 7 can be increased. Thereby, the temperature measurement accuracy of the inner ring 3i which is the rotation side raceway can be easily increased. In the inner ring 3i, the detected surface 10 is formed with an axial dimension L1 and a radial dimension L2 larger than the chamfering of other corners that are performed in consideration of interference with other members. Therefore, the surface area of the detected surface 10 can be set larger than the surface area of the chamfers of other corners. Thereby, the to-be-detected surface 10 can be reliably faced with respect to the non-contact temperature sensor 7 which becomes the arrangement | positioning attitude | position of the diagonal direction with respect to a bearing shaft center. Therefore, the temperature measurement accuracy of the inner ring 3i can be easily increased.

予圧推定手段Yaは、このように求められる内外輪3i,3gの温度と、主軸2の回転速度とから軸受にかかる予圧を推定する。
異常検出手段Eaは、前記予圧推定手段Yaにより推定された軸受3の予圧と、温度センサ6により求められる外輪温度と、非接触温度センサ7で測定される内輪温度とに基づき軸受3の異常を検出する。異常検出手段Eaは、これら内外輪温度と予圧との関係を得演算式またはテーブル等で設定した図示外の関係設定手段を有し、求めた内外輪温度、予圧を前記関係設定手段に照らし、軸受異常であるか否かを判定する。異常検出手段Eaは、求めた内外輪温度等に比例する電気信号のピーク電圧を測定し、このピーク電圧が所定の閾値外となったとき、軸受異常であると判定するようにしても良い。この異常検出手段Eaは、独立して設けられた電子回路であっても、またスピンドル装置を制御する制御装置の一部であっても良い。
The preload estimating means Ya estimates the preload applied to the bearing from the temperatures of the inner and outer rings 3i, 3g thus obtained and the rotational speed of the main shaft 2.
The abnormality detection means Ea detects an abnormality of the bearing 3 based on the preload of the bearing 3 estimated by the preload estimation means Ya, the outer ring temperature obtained by the temperature sensor 6 and the inner ring temperature measured by the non-contact temperature sensor 7. To detect. The abnormality detection means Ea has a relation setting means (not shown) in which the relationship between the inner and outer ring temperatures and the preload is obtained and set by an arithmetic expression or a table or the like. It is determined whether or not the bearing is abnormal. The abnormality detecting means Ea may measure the peak voltage of the electric signal proportional to the obtained inner / outer ring temperature or the like, and determine that the bearing is abnormal when the peak voltage is outside a predetermined threshold. The abnormality detection means Ea may be an electronic circuit provided independently, or may be a part of a control device that controls the spindle device.

この発明の他の実施形態を図4、図5と共に説明する。特に説明する部分を除き、構成の他の部分は、先行して説明した形態と同様とする。
図4に示すように、温度センサ6を、外輪背面に接するように、外輪間座5の軸方向両端部のスリットSLに設置しても良い。図5に示すように、温度センサ6が固着されたスリットSLに、熱伝導率が高い材料から成るモールド材Mdを充填しても良い。これら図4、図5の構成によると、外輪3gの熱が温度センサ6に伝わり易くなるため、外輪3gの温度を迅速に測定可能とできるうえ、外輪3gの温度測定精度を高めることができる。また、図5の場合、温度センサ6の全体がモールド材Mdに覆われることにより、潤滑剤等に対する密閉性を高めることができる。
Another embodiment of the present invention will be described with reference to FIGS. Except for the part specifically described, the other parts of the configuration are the same as those described above.
As shown in FIG. 4, the temperature sensor 6 may be installed in the slits SL at both ends in the axial direction of the outer ring spacer 5 so as to contact the back surface of the outer ring. As shown in FIG. 5, the slit SL to which the temperature sensor 6 is fixed may be filled with a molding material Md made of a material having high thermal conductivity. 4 and 5, the heat of the outer ring 3g is easily transmitted to the temperature sensor 6, so that the temperature of the outer ring 3g can be measured quickly and the temperature measurement accuracy of the outer ring 3g can be increased. In the case of FIG. 5, the entire temperature sensor 6 is covered with the molding material Md, so that the sealing performance against the lubricant or the like can be improved.

図示しないが、非接触温度センサ7の測定面7aを除く大部分を、モールド材で覆っても良い。
以上説明した軸受装置を、スピンドル装置以外の装置、ロボット等に適用することも可能である。各実施形態では、2個の軸受を背面組み合わせで設置したが、正面組み合わせで設置する場合もあり得る。また、軸受の個数は2個に必ずしも限定されるものではない。前記スピンドル装置以外の装置において、例えば、内輪固定、外輪回転形の軸受装置に適用しても良い。この場合、センサ等の出力用の配線を、軸内部を通して軸受装置外に引き出すことが望ましい。
Although not shown, most of the non-contact temperature sensor 7 except the measurement surface 7a may be covered with a molding material.
The bearing device described above can also be applied to devices other than spindle devices, robots, and the like. In each embodiment, the two bearings are installed in the rear combination, but may be installed in the front combination. Further, the number of bearings is not necessarily limited to two. In apparatuses other than the spindle apparatus, for example, the present invention may be applied to an inner ring fixed and outer ring rotating type bearing apparatus. In this case, it is desirable to draw out the output wiring of the sensor or the like outside the bearing device through the inside of the shaft.

3…軸受
3i…内輪
3d…内輪外周面
3g…外輪
3h…側面
4…内輪間座
5…外輪間座
6…温度センサ
7…非接触温度センサ
10…面取状の被検出面
Ea…異常検出手段
Ya…予圧推定手段
S1…回転センサ
SL…スリット
DESCRIPTION OF SYMBOLS 3 ... Bearing 3i ... Inner ring 3d ... Inner ring outer peripheral surface 3g ... Outer ring 3h ... Side surface 4 ... Inner ring spacer 5 ... Outer ring spacer 6 ... Temperature sensor 7 ... Non-contact temperature sensor 10 ... Chamfered detected surface Ea ... Abnormality detection Means Ya ... Preload estimation means S1 ... Rotation sensor SL ... Slit

Claims (7)

軸方向に並ぶ複数の転がり軸受の軌道輪間に間座を介在させて予圧を受けるように構成し、前記間座は、軸方向に並ぶ外輪間に介在する外輪間座と、内輪間に介在する内輪間座とがある軸受装置において、
前記内外輪のうちの回転側軌道輪について、外輪間座および内輪間座のうちの回転側間座に当接する回転側軌道輪の側面と、この回転側軌道輪における軌道面側の周面との角部に面取り状の被検出面を設け、
前記外輪間座および内輪間座のうちの固定側間座に、前記被検出面の温度を非接触で測定する非接触温度センサを設けたことを特徴とする軸受装置。
It is configured to receive a preload by interposing a spacer between the bearing rings of a plurality of rolling bearings aligned in the axial direction, and the spacer is interposed between the outer ring spacer interposed between the outer rings aligned in the axial direction and the inner ring. In a bearing device having an inner ring spacer
Regarding the rotation side raceway of the inner and outer rings, the side surface of the rotation side raceway that contacts the rotation side spacer of the outer ring spacer and the inner ring spacer, and the raceway side peripheral surface of the rotation side raceway ring, Provide a chamfered surface to be detected at the corner of
A bearing device, wherein a non-contact temperature sensor that measures the temperature of the detected surface in a non-contact manner is provided in a fixed-side spacer of the outer ring spacer and the inner ring spacer.
請求項1において、前記非接触温度センサは、前記被検出面に対向して固定側間座に取り付けられている軸受装置。   The bearing device according to claim 1, wherein the non-contact temperature sensor is attached to a fixed spacer so as to face the detected surface. 請求項1または請求項2において、前記非接触温度センサは、被測定物からの赤外線の放射を検出するセンサである軸受装置。   3. The bearing device according to claim 1, wherein the non-contact temperature sensor is a sensor that detects infrared radiation from a measurement object. 請求項1ないし請求項3のいずれか1項において、前記固定側間座に、この固定側間座の温度または内外輪のうちの固定側軌道輪の温度を測定する他の温度センサを設け、
前記他の温度センサにより測定される温度および前記非接触温度センサにより測定される温度と、前記回転側軌道輪の回転速度とから、軸受の予圧を推定する予圧推定手段を設けた軸受装置。
In any one of Claims 1 thru / or Claim 3, other temperature sensors which measure the temperature of this fixed side spacer or the temperature of the fixed side track ring of the inner and outer rings are provided in the fixed side spacer,
A bearing device provided with preload estimation means for estimating a bearing preload from a temperature measured by the other temperature sensor and a temperature measured by the non-contact temperature sensor, and a rotation speed of the rotating raceway.
請求項4において、前記固定側間座の軸方向端部における少なくとも円周方向一箇所にスリットを形成し、このスリットに、前記他の温度センサおよび前記非接触温度センサを設けた軸受装置。   5. The bearing device according to claim 4, wherein a slit is formed at least in one circumferential direction at an axial end of the fixed side spacer, and the other temperature sensor and the non-contact temperature sensor are provided in the slit. 請求項4または請求項5において、前記他の温度センサおよび非接触温度センサにより測定される両温度から、軸受の異常を検出する異常検出手段を設けた軸受装置。   6. The bearing device according to claim 4 or 5, wherein abnormality detecting means is provided for detecting abnormality of the bearing from both temperatures measured by the other temperature sensor and the non-contact temperature sensor. 請求項4または請求項5において、前記他の温度センサおよび非接触温度センサにより測定される両温度と、前記予圧推定手段により推定された軸受の予圧とに基づき軸受の異常を検出する異常検出手段を設けた軸受装置。   6. The abnormality detection means according to claim 4 or 5, wherein an abnormality of the bearing is detected based on both temperatures measured by the other temperature sensor and the non-contact temperature sensor and the preload of the bearing estimated by the preload estimation means. Bearing device provided with.
JP2010179958A 2010-08-11 2010-08-11 Bearing device Pending JP2012037013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179958A JP2012037013A (en) 2010-08-11 2010-08-11 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179958A JP2012037013A (en) 2010-08-11 2010-08-11 Bearing device

Publications (1)

Publication Number Publication Date
JP2012037013A true JP2012037013A (en) 2012-02-23

Family

ID=45849225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179958A Pending JP2012037013A (en) 2010-08-11 2010-08-11 Bearing device

Country Status (1)

Country Link
JP (1) JP2012037013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026078A (en) * 2015-07-24 2017-02-02 株式会社ジェイテクト Bearing device
JP2019152287A (en) * 2018-03-05 2019-09-12 Ntn株式会社 Bearing device
WO2020166542A1 (en) * 2019-02-12 2020-08-20 Ntn株式会社 Bearing device and spindle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026078A (en) * 2015-07-24 2017-02-02 株式会社ジェイテクト Bearing device
JP2019152287A (en) * 2018-03-05 2019-09-12 Ntn株式会社 Bearing device
WO2020166542A1 (en) * 2019-02-12 2020-08-20 Ntn株式会社 Bearing device and spindle device

Similar Documents

Publication Publication Date Title
JP4993492B2 (en) Bearing device
US10464113B2 (en) Monitoring device
JP7362239B2 (en) Bearing devices and spindle devices
JP6601034B2 (en) Bearing device
TWI733779B (en) Bearing device
JP2012021574A (en) Bearing device
JP5910331B2 (en) Positioning device
JP2012037013A (en) Bearing device
JP2014228021A (en) Rolling bearing with sensor, motor and actuator
WO2020050129A1 (en) Bearing device
US20090009018A1 (en) Magnetic bearing unit
JP5609134B2 (en) Spindle device of machine tool provided with bearing device with load sensor
WO2019159838A1 (en) Bearing device and spindle device
US20170033728A1 (en) Motor control device capable of measuring temperature of rotor and motor provided therewith
JP2009275736A (en) Bearing device
JP2020133889A (en) Bearing device and spindle device
JP2005133891A (en) Preload measuring method and device for bearing
WO2020166542A1 (en) Bearing device and spindle device
WO2021059919A1 (en) Bearing device and spacer
JP4866684B2 (en) Rolling bearing device for wheels
JP4066145B2 (en) Rolling bearing with sensor
JP2014129849A (en) Bearing rotation state measuring monitoring device
JP2012251874A (en) Temperature measurement device for rotary machine
JP5003397B2 (en) Rotational support device state quantity measuring device
JP2006177834A (en) Rolling bearing unit having sensor