WO2021065361A1 - Bearing device and machine tool - Google Patents

Bearing device and machine tool Download PDF

Info

Publication number
WO2021065361A1
WO2021065361A1 PCT/JP2020/033796 JP2020033796W WO2021065361A1 WO 2021065361 A1 WO2021065361 A1 WO 2021065361A1 JP 2020033796 W JP2020033796 W JP 2020033796W WO 2021065361 A1 WO2021065361 A1 WO 2021065361A1
Authority
WO
WIPO (PCT)
Prior art keywords
support portion
heat flux
bearing device
flux sensor
bearing
Prior art date
Application number
PCT/JP2020/033796
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 橋爪
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2021065361A1 publication Critical patent/WO2021065361A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/077Fixing them on the shaft or housing with interposition of an element between housing and outer race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature

Definitions

  • the present invention relates to a bearing device and a machine tool.
  • the temperature of the bearing device used in the machine tool rises above the normal state when an abnormality such as burning occurs in the bearing.
  • a technique for detecting an abnormality in a bearing device by detecting a temperature change in the bearing device is known.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2019-138464
  • Patent Document 1 describes a bearing device capable of detecting a temperature change of the bearing device by a heat flux sensor.
  • the air temperature in the bearing device changes as the rotating body rotates.
  • the surface of the heat flux sensor measures the air temperature inside the bearing device.
  • the heat flux sensor measures the heat flux based on the temperature difference between the temperature on the front surface and the temperature on the back surface of the heat flux sensor. As the temperature difference between the temperature on the front surface and the temperature on the back surface of the heat flux sensor increases, the output of the heat flux sensor increases, so that the sensitivity of the heat flux sensor improves.
  • the back surface of the heat flux sensor measures the temperature of the inner ring, the outer ring, or the spacer arranged on the non-rotating side. These temperatures are lower than the air temperature in the bearing device. Therefore, as these temperatures become lower, the temperature difference between the temperature of the front surface of the heat flux sensor and the temperature of the back surface becomes larger, so that the sensitivity of the heat flux sensor is improved.
  • the temperature difference between the temperature on the front surface and the temperature on the back surface of the heat flux sensor is insufficient. Therefore, the sensitivity of the heat flux sensor is insufficient. Therefore, the sensitivity of the heat flux sensor to detect the temperature change in the bearing device is insufficient.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a bearing device and a machine tool in which a heat flux sensor can detect a temperature change in the bearing device with high sensitivity.
  • the bearing device of the present invention includes a bearing, a heat flux sensor, a first support portion, and a second support portion.
  • the bearing is for supporting the rotating body.
  • the heat flux sensor detects the heat flux.
  • the first support portion supports the heat flux sensor.
  • the second support portion supports the bearing.
  • the first support portion is fixed to the second support portion.
  • the first support portion has a higher thermal conductivity than the second support portion.
  • the bearing device further comprises a fixed spacer adjacent to the bearing.
  • the fixed spacer includes a first support portion and a second support portion.
  • the bearing device further comprises a housing attached to a fixed spacer.
  • the housing includes a refrigerant flow path through which the refrigerant can flow.
  • the housing is configured to be cooled by the refrigerant flowing through the refrigerant flow path.
  • the first support is in contact with the housing.
  • the bearing device further comprises a fixed spacer adjacent to the bearing and a housing attached to the fixed spacer.
  • the fixed spacer comprises a first support portion.
  • the housing includes a second support.
  • the bearing device further comprises a fixed spacer adjacent to the bearing and a housing attached to the fixed spacer.
  • the housing includes a first support and a second support.
  • the bearing device further comprises a fixed spacer adjacent to the bearing, a housing attached to the fixed spacer, and a front lid adjacent to the housing.
  • the anterior lid includes a first support and a second support.
  • the bearing includes an inner ring and an outer ring facing the inner ring.
  • the first support portion has a protruding portion protruding from the second support portion between the inner ring and the outer ring.
  • the heat flux sensor is supported by the protrusion.
  • the machine tool includes the above bearing device and a motor for rotating the rotating body.
  • FIG. 2 shows schematic the structure of the bearing apparatus which concerns on Embodiment 1 of this invention. It is an enlarged view of the II region of FIG. It is sectional drawing which follows the line III-III of FIG. It is sectional drawing corresponding to FIG. 2 in the bearing apparatus which concerns on 1st modification of Embodiment 1 of this invention. It is sectional drawing corresponding to FIG. 2 in the bearing apparatus which concerns on 2nd modification of Embodiment 1 of this invention. It is sectional drawing corresponding to FIG. 2 in the bearing apparatus which concerns on Embodiment 2 of this invention. It is sectional drawing corresponding to FIG. 2 in the bearing apparatus which concerns on Embodiment 3 of this invention.
  • the bearing device 100 includes a bearing 3, a heat flux sensor 4, a fixed spacer 5, a housing 6, a front lid 7, a rotating body 8, and a rotating spacer 9.
  • the fixed spacer 5 includes a first support portion 1 and a second support portion 2.
  • the rotating body 8 extends along the central axis CL.
  • the rotating body 8 is supported by the bearing 3.
  • the rotating body 8 can be rotated by the motor 300 (see FIG. 10) with the central axis CL as the center of rotation.
  • the rotating body 8 is rotatably supported while being inserted into the inner ring 31 (see FIG. 2) of the bearing 3.
  • the connecting member 37 is fixed to the rotating body 8 by a screw 36.
  • the bearing 3 is for supporting the rotating body 8.
  • the bearing device 100 includes two bearings 3.
  • the bearing 3 is, for example, a rolling bearing 3 such as an angular contact ball bearing.
  • the bearing 3 includes an inner ring 31, an outer ring 32, a cage 33 and a rolling element 34.
  • the inner ring 31 supports the rotating body 8.
  • a rolling element 34 is arranged between the inner ring 31 and the outer ring 32.
  • the inner ring 31 and the outer ring 32 are configured to be slidable on the rolling element 34.
  • the outer ring 32 is fixed to the housing 6.
  • the outer ring 32 is fixed to the housing 6 so as not to rotate even when the rotating body 8 is rotating.
  • a collar 38 and an inner ring retainer 35 are arranged outside the inner ring 31 in the extending direction of the rotating body 8.
  • the inner ring 31 is sandwiched between the collar 38 and the rotary spacer 9. By tightening the inner ring retainer 35, stress is applied to the inner ring 31 via the collar 38, so that the inner ring 31 is fixed to the rotating body 8.
  • the inner ring 31 is either a rotating wheel or a non-rotating wheel.
  • the outer ring 32 is either a rotating wheel or a non-rotating wheel. In the present embodiment, the inner ring 31 is a rotating wheel. In the present embodiment, the outer ring 32 is a non-rotating ring.
  • the inner ring 31 may be a non-rotating wheel, and the outer ring 32 may be a rotating wheel.
  • the rolling element 34 contains, for example, a plurality of balls.
  • the cage 33 holds the rolling element 34.
  • the cage 33 has a portion arranged between each of the plurality of balls of the rolling element 34.
  • bearings 3 Although two bearings 3 are shown in FIG. 1, the number of bearings 3 may be one or three or more.
  • the first support portion 1 supports the heat flux sensor 4.
  • the back surface portion 41 of the heat flux sensor 4 is fixed to the first support portion 1.
  • the first support portion 1 is fixed to the second support portion 2 by press fitting, adhesion, screwing, or the like.
  • the first support portion 1 faces the rotary spacer 9 at a distance.
  • the first support portion 1 surrounds the central axis CL of the rotating body 8.
  • the first support portion 1 is configured so that the wiring member 43 of the heat flux sensor 4 can be inserted.
  • the shape of the first support portion 1 may be, for example, a ring shape or a C-shape.
  • FIG. 1 shows a bearing device 100 including a plurality of first support portions 1, as shown in FIG. 4, the bearing device 100 may include a single first support portion 1. Good.
  • the first support portion 1 has a higher thermal conductivity than the second support portion 2.
  • the material of the first support portion 1 is, for example, aluminum (Al) or copper (Cu).
  • the material of the first support portion 1 may be appropriately determined as long as it is a material having a higher thermal conductivity than that of the second support portion 2.
  • the second support portion 2 supports the bearing 3.
  • the first support portion 1 is fixed to the second support portion 2.
  • the material of the second support portion 2 is, for example, iron (Fe) or steel.
  • the material of the second support portion 2 may be appropriately determined as long as it is a material having a lower thermal conductivity than that of the first support portion 1.
  • the fixed spacer 5 is adjacent to the bearing 3.
  • the fixed spacer 5 is an outer ring spacer adjacent to the outer ring 32.
  • the fixed spacer 5 is sandwiched between the outer rings 32 of the two bearings 3.
  • the fixed spacer 5 faces the rotating spacer 9 at intervals.
  • the rotary spacer 9 is adjacent to the inner ring 31.
  • the rotary spacer 9 is sandwiched between the two inner rings 31.
  • an internal space 30 is formed between the housing 6 and the rotating body 8.
  • the interior space 30 is filled with air.
  • the interior space 30 includes a first space 301 and a second space 302.
  • the first space 301 is formed between the inner ring 31 and the outer ring 32.
  • the second space 302 is formed between the fixed spacer 5 and the rotary spacer 9.
  • the second space 302 is continuously formed with the first space 301.
  • the inner ring 31 and the outer ring 32 arranged in the first space 301 generate heat as described later. Therefore, the temperature of the air in the first space 301 is higher than the temperature of the air in the second space 302.
  • the housing 6 is attached to the fixed spacer 5.
  • the housing 6 is configured so that the bearing 3 can be inserted.
  • the shape of the housing 6 is, for example, a hollow tubular shape.
  • the housing 6 includes a refrigerant flow path 61 through which the refrigerant 62 can flow.
  • the housing 6 is configured to be cooled by the refrigerant 62 flowing through the refrigerant flow path 61.
  • the refrigerant flow path 61 surrounds the central axis CL of the rotating body 8.
  • the refrigerant 62 is, for example, water.
  • the refrigerant 62 may be a liquid or a gas.
  • the refrigerant 62 is, for example, oil, air, or the like.
  • the housing 6 includes a main body portion 63, a jacket outer cylinder 64, and an O-ring 65.
  • the main body 63 is attached to the bearing 3 and the fixed spacer 5.
  • the jacket outer cylinder 64 is attached to the main body 63.
  • the refrigerant flow path 61 is a flow path through which a refrigerant for cooling the bearing device 100 flows.
  • O-rings 65 are fitted at both ends of the refrigerant flow path 61.
  • the heat flux sensor 4 detects the heat flux Q.
  • the heat flux sensor 4 is arranged in the first support portion 1.
  • the heat flux sensor 4 has a back surface portion 41 and a front surface portion 42 facing the back surface portion 41.
  • the back surface portion 41 of the heat flux sensor 4 is fixed to the surface surface of the first support portion 1 with an adhesive or the like.
  • the surface portion 42 of the heat flux sensor 4 is arranged in the internal space 30.
  • the back surface portion 41 of the heat flux sensor 4 measures the surface temperature of the first support portion 1.
  • the surface portion 42 of the heat flux sensor 4 measures the temperature of the air in the internal space 30.
  • the heat flux sensor 4 is connected to the wiring member 43.
  • the wiring member 43 is connected to an external device or an internal device (not shown).
  • the heat flux sensor 4 may be arranged in the direction toward the bearing 3. Specifically, the heat flux sensor 4 may be arranged toward the sliding portion between the inner ring 31 or the outer ring 32 and the rolling element 34. Desirably, the heat flux sensor 4 is arranged so as to be close to the heat generating portion of the bearing device 100.
  • the heat flux sensor 4 passes through the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 by using the temperature difference between the temperature of the back surface portion 41 and the temperature of the front surface portion 42.
  • the heat flux Q is being measured.
  • the heat flux sensor 4 measures the heat flux Q by converting the temperature difference between the temperature of the back surface portion 41 and the temperature of the front surface portion 42 of the heat flux sensor 4 into an output voltage by the Seebeck effect.
  • the heat flux passing between the two points is caused by the temperature difference between the two points.
  • the heat flux flows from the one with the higher temperature to the one with the lower temperature. Therefore, the size of the heat flux Q passing through the heat flux sensor 4 increases as the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 increases. Therefore, as the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 increases, the sensitivity of the heat flux sensor 4 to detect the heat flux Q increases. As the sensitivity of the heat flux sensor 4 to detect the heat flux Q increases, the sensitivity of detecting the temperature change of the bearing device 100 increases.
  • one of the front surface portion 42 and the back surface portion 41 of the heat flux sensor 4 is arranged so as to be close to the portion (heat generation portion) where the heat flux sensor 4 is least cooled, and the other of the front surface portion 42 and the back surface portion 41 of the heat flux sensor 4 is the most cooled. It is desirable to arrange it so that it is close to the part to be used. As a result, the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 becomes large, so that the heat flux Q passing through the heat flux sensor 4 becomes large, and the sensitivity of the heat flux sensor 4 becomes high.
  • the front surface portion 42 of the heat flux sensor 4 is arranged so as to approach the heat generating portion, and the back surface portion 41 is arranged so as to approach the portion to be cooled most.
  • the bearing device 100 may include a plurality of heat flux sensors 4.
  • the plurality of heat flux sensors 4 are connected to a control unit (not shown).
  • the difference between the heat flux Q and the rate of change of the heat flux Q measured by the plurality of heat flux sensors 4 is calculated by a control unit (not shown).
  • the presence or absence of an abnormal change in the bearing device 100 is determined.
  • the presence or absence of an abnormal change in the bearing device 100 can be determined by comparing the difference between the heat flux Q or the rate of change of the heat flux Q measured by the plurality of heat flux sensors 4 with a preset threshold value. It may be determined.
  • FIG. 3 shows one heat flux sensor 4 provided on the circumference centered on the central axis (see FIG. 1), but a plurality of heat flux sensors 4 are provided on the same circumference. You may.
  • the temperature of the bearing device 100 rises during operation in a normal state. Specifically, the surface temperature of the inner ring 31 and the outer ring 32 rises due to the friction between the raceway surfaces of the inner ring 31 and the outer ring 32 and the rolling element 34. Further, the heat generated in the motor 300 (see FIG. 10) raises the overall temperature of the bearing device 100. As a result, in particular, the temperature of the air in the internal space 30 rises. The temperature of the air in the first space 301 in which the inner ring 31 and the outer ring 32 are arranged is higher than that in the second space 302.
  • the temperature of the bearing device 100 rises even during operation in a state deviating from the normal state (abnormal state).
  • the temperature rise of the bearing device 100 in the abnormal state is larger than the temperature rise of the bearing device 100 in the normal state.
  • the temperature rise of the air in the internal space 30 of the bearing device 100 in the abnormal state is larger than the temperature rise of the air in the internal space 30 of the bearing device 100 in the normal state.
  • the contact surface pressure between the rolling element 34 and the inner ring 31 or the contact surface pressure between the rolling element 34 and the outer ring 32 increases.
  • the friction between the rolling element 34 and the raceway surface of the inner ring 31 or the outer ring 32 becomes larger than in the normal state. Therefore, in the abnormal state, the temperature rise of the bearing device 100 becomes larger than in the normal state.
  • the outer ring 32 and the fixed spacer 5 are cooled by the housing 6 in both the normal state and the abnormal state. Therefore, the rate of increase in the surface temperature of the outer ring 32 and the fixed spacer 5 is lower than the rate of increase in the air temperature in the internal space 30.
  • the surface temperature of the outer ring 32 and the fixed spacer 5 is lower than the air temperature of the internal space 30 and the surface temperature of the inner ring 31. Since the inner ring 31 is in contact with the rotating body 8, it is not cooled as much as the outer ring 32.
  • the heat capacity of the air in the internal space 30 is smaller than the heat capacity of the rotating body 8, the bearing 3, the first support portion 1 and the second support portion 2. Therefore, the air temperature of the internal space 30 is more likely to change than the surface temperature of the first support portion 1. Specifically, the air temperature of the internal space 30 is higher than the surface temperature of the first support portion 1. Therefore, there is a temperature difference between the first support portion 1 and the air in the internal space 30. Therefore, as shown in FIG. 2, the heat flux Q is generated in the direction from the internal space 30 toward the first support portion 1.
  • the air temperature of the internal space 30 in the abnormal state is higher than the air temperature of the internal space 30 in the normal state. Therefore, the temperature difference between the air temperature of the internal space 30 and the surface temperature of the first support portion 1 in the abnormal state is the temperature difference between the air temperature of the internal space 30 and the surface temperature of the first support portion 1 in the normal state. Greater than. Therefore, the heat flux Q in the abnormal state is larger than the heat flux Q in the normal state.
  • the heat flux sensor 4 measures the change in the heat flux Q or the rate of change of the heat flux Q per unit time by detecting the heat flux Q. When a change in the heat flux Q or a change rate of the heat flux Q per unit time is observed to deviate from the normal state (abnormal change), it is determined that an abnormality has occurred in the bearing device 100.
  • FIG. 11 is a cross-sectional view corresponding to FIG. 2 in the bearing device 100 according to the comparative example.
  • the bearing device 100 according to the comparative example does not include the first support portion 1. Therefore, the back surface portion 41 of the heat flux sensor 4 of the bearing device 100 according to the comparative example is in contact with a member having a lower thermal conductivity than the member with which the heat flux sensor 4 according to the present embodiment is in contact.
  • the back surface portion 41 of the heat flux sensor 4 has a higher thermal conductivity than the second support portion 2. It is fixed to. Therefore, the heat flux sensor 4 detects a change in the temperature of the bearing 3 earlier than when it is fixed to the second support portion 2. Further, since the first support portion 1 and the second support portion 2 are cooled by the housing 6, the heat flux sensor 4 is cooled faster than when it is fixed to the second support portion 2. Therefore, the back surface portion 41 of the heat flux sensor 4 is cooled faster than when it is fixed to the second support portion 2.
  • the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 is larger than the temperature difference in the comparative example. Therefore, the heat flux Q is larger than the heat flux Q in the comparative example.
  • the heat flux sensor 4 is supported by the first support portion 1 having a higher thermal conductivity than the second support portion 2. Therefore, it is cooled more than when it is supported by the second support portion 2. Therefore, the temperature difference between the back surface portion 41 of the heat flux sensor 4 fixed to the first support portion 1 and the front surface portion 42 of the heat flux sensor 4 arranged in the internal space 30 is larger than the temperature difference in the comparative example. , Easy to grow. Therefore, the heat flux Q tends to be larger than the heat flux Q in the comparative example. Therefore, since the heat flux sensor 4 can easily detect the heat flux Q, the temperature change in the bearing device 100 can be detected with high sensitivity.
  • the fixed spacer 5 includes a first support portion 1 and a second support portion 2. Therefore, the fixed spacer 5 can be provided with the first support portion 1 and the second support portion 2. Therefore, it is possible to increase the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 supported by the first support portion 1 of the fixed spacer 5.
  • the housing 6 is attached to the fixed spacer 5 and is configured to be cooled by the refrigerant 62 flowing through the refrigerant flow path 61. Therefore, the housing 6 cools the fixed spacer 5.
  • the back surface portion 41 of the heat flux sensor 4 supported by the first support portion 1 of the fixed spacer 5 is cooled. Therefore, the temperature difference between the back surface portion 41 of the heat flux sensor 4 and the front surface portion 42 of the heat flux sensor 4 measuring the air temperature of the internal space 30 becomes large. Therefore, the heat flux Q detected by the heat flux sensor 4 becomes large. Therefore, the sensitivity of the heat flux sensor 4 can be increased.
  • the heat flux sensor 4 since the heat flux sensor 4 is arranged in the direction toward the bearing 3, the heat flux sensor 4 can detect the temperature change of the bearing 3 with high sensitivity.
  • the housing 6 since the housing 6 is cooled, the housing 6 cools the bearing 3. As a result, the temperature of the bearing 3 can be lowered, so that seizure of the inner ring 31 and the outer ring 32 of the bearing 3 can be suppressed.
  • the heat capacity of the fixed spacer 5 is relatively large. Therefore, it takes time from the rise in the surface temperature of the bearing 3 to the rise in the surface temperature of the first support portion 1 of the fixed spacer 5.
  • the heat capacity of the air in the internal space 30 is relatively small. Therefore, the time from the rise of the surface temperature of the bearing 3 to the rise of the air temperature of the internal space 30 is shorter than the time until the surface temperature of the first support portion 1 rises. That is, the air temperature of the internal space 30 changes more sensitively than the surface temperature of the first support portion 1. Therefore, the heat flux Q generated by the temperature difference between the surface temperature of the first support portion 1 and the air temperature of the internal space 30 changes sharply.
  • the temperature sensor If only the surface temperature of the first support portion 1 is measured by the temperature sensor, it takes time from the occurrence of the temperature rise of the bearing 3 to the detection of the temperature rise of the first support portion 1. Therefore, when a temperature sensor is used, for example, when the temperature rise of the bearing 3 is detected, the inner ring 31 or the outer ring 32 of the bearing 3 may have already seized.
  • the heat flux sensor 4 detects the temperature change of the bearing 3 by detecting the heat flux Q using the temperature difference between the surface temperature of the first support portion 1 and the air temperature of the internal space 30. Therefore, the temperature change of the bearing 3 can be detected more sensitively than when the temperature sensor is used.
  • the first support portion 1 is in contact with the housing 6.
  • the first support portion 1 is thermally connected to the housing 6.
  • the heat flux sensor 4 is thermally connected to the housing 6 with the first support portion 1 sandwiched therein. By cooling the housing 6, the first support portion 1 is cooled, so that the back surface portion 41 of the heat flux sensor 4 is cooled.
  • the second support portion 2 is arranged so as to penetrate the center of the fixed spacer 5.
  • the first support portion 1 is arranged so as to surround the periphery of the second support portion 2.
  • the bearing device 100 since the first support portion 1 is supported by the housing 6, the first support portion 1 is directly cooled by the housing 6. Therefore, the back surface portion 41 of the heat flux sensor 4 supported by the first support portion 1 can be cooled faster than when the first support portion 1 is not in contact with the housing 6. Further, the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 can be larger than when the first support portion 1 is not in contact with the housing 6. Therefore, the sensitivity of the heat flux sensor 4 to detect the temperature change can be increased.
  • the fixed spacer 5 is composed of the first support portion 1. That is, the entire fixed spacer 5 constitutes the first support portion 1.
  • the housing 6 includes a second support portion 2.
  • the fixed spacer 5 is supported by the housing 6. Therefore, the first support portion 1 is cooled by the refrigerant flow path 61 (see FIG. 1) of the housing 6.
  • the fixed spacer 5 is made of a material having a higher thermal conductivity than the housing 6.
  • the fixed spacer 5 may be made of aluminum (Al), and the main body 63 (see FIG. 1) of the housing 6 may be made of iron (Fe) or the like.
  • the fixed spacer 5 is composed of the first support portion 1, and the housing 6 includes the second support portion 2. Therefore, since only the first support portion 1 is cooled by the refrigerant flow path 61 (see FIG. 1) of the housing 6, the heat flux sensor 4 is more efficient than the case where the fixed spacer 5 is not composed of only the first support portion 1. Can be cooled. Therefore, since the temperature of the back surface portion 41 of the heat flux sensor 4 can be efficiently lowered, the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 can be efficiently increased. Therefore, the sensitivity of the heat flux sensor 4 to detect the temperature change can be increased.
  • the fixed spacer 5 is composed of the first support portion 1, the fixed spacer 5 can be formed of a single material. Therefore, the manufacturing cost of the fixed spacer 5 can be reduced.
  • the housing 6 includes a first support portion 1 and a second support portion 2. Specifically, the first support portion 1 is arranged in the main body portion 63 of the housing 6. Since the first support portion 1 is arranged near the opening of the housing 6, the heat flux sensor 4 is arranged near the opening of the housing 6. Further, since the first support portion 1 is arranged in the vicinity of the bearing 3, the heat flux sensor 4 is arranged in the vicinity of the bearing 3.
  • the front lid 7 includes the first support portion 1 and the second support portion 2.
  • the front lid 7 is arranged so as to be adjacent to the housing 6.
  • the front lid 7 is configured to be removable from the housing 6.
  • the front lid 7 is arranged in the opening of the housing 6.
  • the front lid 7 is configured to seal a part of the opening of the housing 6.
  • the front lid 7 is in contact with the outer ring 32 (see FIG. 2).
  • the front lid 7 fixes the outer ring 32 (see FIG. 2) by sandwiching the outer ring 32 (see FIG. 2) together with the housing 6 and the fixed spacer 5.
  • the housing 6 includes a first support portion 1 and a second support portion 2. Therefore, the housing 6 can be provided with the first support portion 1 and the second support portion 2. Therefore, it is possible to increase the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 supported by the first support portion 1 of the housing 6.
  • the front lid 7 includes a first support portion 1 and a second support portion 2. Therefore, the front lid 7 can be provided with the first support portion 1 and the second support portion 2. Therefore, it is possible to increase the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 supported by the first support portion 1 of the front lid 7.
  • the heat flux sensor 4 Since the heat flux sensor 4 is arranged near the opening of the housing 6, access to the heat flux sensor 4 becomes easy. Therefore, maintenance of the heat flux sensor 4 becomes easy.
  • the heat flux sensor 4 is also configured to be removable from the housing 6, so that the heat flux sensor 4 can be easily handled. Therefore, in particular, the wiring member 43 (see FIG. 3) of the heat flux sensor 4 can be easily routed.
  • the existing bearing device 100 By replacing the front lid 7 of the existing bearing device 100 that does not include the heat flux sensor 4 with the front lid 7 of the present embodiment, the existing bearing device 100 is arranged on the front lid 7 of the present embodiment.
  • a heat flux sensor 4 can be provided. Further, since the front lid 7 can be easily replaced, it is easy to provide the existing bearing device 100 with the heat flux sensor 4 arranged on the front lid 7 of the present embodiment.
  • the first support portion 1 has a protruding portion 11.
  • the protruding portion 11 projects from the second support portion 2 between the inner ring 31 and the outer ring 32.
  • the heat flux sensor 4 is supported by the protrusion 11.
  • the protrusion 11 and the heat flux sensor 4 are inserted between the inner ring 31 and the outer ring 32.
  • the protrusion 11 and the heat flux sensor 4 enter the first space 301 of the internal space 30.
  • the heat flux sensor 4 faces either the inner ring 31 or the outer ring 32.
  • the heat flux sensor 4 faces the inner ring 31.
  • the surface portion 42 of the heat flux sensor 4 is close to the heat generating portion of the inner ring 31 or the outer ring 32.
  • the heat generating portion is the raceway surface of the inner ring 31 or the outer ring 32.
  • the surface portion 42 of the heat flux sensor 4 is close to the raceway surface of the inner ring 31 or the outer ring 32.
  • the surface portion 42 of the heat flux sensor 4 is close to the raceway surface of the inner ring 31.
  • the air temperature of the first space 301 in which the heat generating portion of the inner ring 31 or the outer ring 32 is arranged is higher than the air temperature of the second space 302 away from the heat generating portion of the inner ring 31 or the outer ring 32.
  • the air temperature of the first space 301 changes faster than the air temperature of the second space 302.
  • the heat flux sensor 4 measures the air temperature in the first space 301.
  • the heat flux sensor 4 is supported by the protrusion 11. Therefore, the surface portion 42 of the heat flux sensor 4 can be brought close to the heat generating portion of the inner ring 31 or the outer ring 32. Therefore, the heat flux sensor 4 can measure the air temperature of the first space 301 in which the heat generating portion of the inner ring 31 or the outer ring 32 is arranged. Therefore, the temperature change in the bearing device 100 can be detected quickly.
  • the bearing device 100 As the machine tool 200 according to the present embodiment, the bearing device 100 according to any one of the above-described first to fifth embodiments can be used.
  • the configuration of the machine tool 200 according to the fifth embodiment will be described with reference to FIG.
  • the bearing device 100 of the sixth embodiment has the same configuration and operation and effect as those of the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description will not be repeated.
  • the machine tool 200 includes a bearing device 100 according to any one of the first to fifth embodiments, and a motor 300 for rotating the rotating body 8.
  • the machine tool 200 is, for example, a spindle device.
  • the rotating body 8 is, for example, a main shaft.
  • the bearing device 100 rotatably supports the rotating body 8 rotated by the motor 300.
  • the machine tool 200 according to the present embodiment includes the bearing device 100 described above. Therefore, the heat flux sensor 4 can detect the temperature change in the bearing device 100 with high sensitivity during the operation of the machine tool 200. As a result, it is possible to suppress the seizure of the bearing device 100, and thus it is possible to prevent the machine tool 200 from failing.

Abstract

This bearing device (100) comprises a bearing (3), a heat flux sensor (4), a first support part (1), and a second support part (2). The bearing (3) is for supporting a rotating element (8). The heat flux sensor (4) detects heat flux. The first support part (1) supports the heat flux sensor (4). The second support part (2) supports the bearing (3). The first support part (1) is fixed to the second support part (2). The first support part (1) has a higher heat conductivity than the second support part (2).

Description

軸受装置および工作機械Bearing equipment and machine tools
 本発明は、軸受装置および工作機械に関する。 The present invention relates to a bearing device and a machine tool.
 工作機械に用いられる軸受装置の温度は、軸受において焼損などの異常が発生すると正常の状態よりも上昇する。軸受装置の温度変化を検出することによって軸受装置の異常を検出する技術が知られている。 The temperature of the bearing device used in the machine tool rises above the normal state when an abnormality such as burning occurs in the bearing. A technique for detecting an abnormality in a bearing device by detecting a temperature change in the bearing device is known.
 例えば、特開2019-138464号公報(特許文献1)には、熱流束センサによって軸受装置の温度変化を検出することが可能な軸受装置が記載されている。この公報に記載された軸受装置においては、回転体が回転することにより軸受装置内の空気温度が変化する。熱流束センサの表面は、軸受装置内の空気温度を計測する。 For example, Japanese Patent Application Laid-Open No. 2019-138464 (Patent Document 1) describes a bearing device capable of detecting a temperature change of the bearing device by a heat flux sensor. In the bearing device described in this publication, the air temperature in the bearing device changes as the rotating body rotates. The surface of the heat flux sensor measures the air temperature inside the bearing device.
 熱流束センサは、熱流束センサの表面の温度と裏面の温度との温度差によって、熱流束を計測する。熱流束センサの表面の温度と裏面の温度との温度差が大きくなるほど、この熱流束センサの出力が大きくなるため、熱流束センサの感度が向上する。 The heat flux sensor measures the heat flux based on the temperature difference between the temperature on the front surface and the temperature on the back surface of the heat flux sensor. As the temperature difference between the temperature on the front surface and the temperature on the back surface of the heat flux sensor increases, the output of the heat flux sensor increases, so that the sensitivity of the heat flux sensor improves.
特開2019-138464号公報Japanese Unexamined Patent Publication No. 2019-138464
 上記公報に記載された軸受装置においては、熱流束センサの裏面は、非回転側に配置された内輪、外輪、または間座の温度を計測する。これらの温度は、軸受装置内の空気温度よりも低い。このため、これらの温度が低くなるほど、熱流束センサの表面の温度と裏面の温度との温度差が大きくなるため、熱流束センサの感度が向上する。 In the bearing device described in the above publication, the back surface of the heat flux sensor measures the temperature of the inner ring, the outer ring, or the spacer arranged on the non-rotating side. These temperatures are lower than the air temperature in the bearing device. Therefore, as these temperatures become lower, the temperature difference between the temperature of the front surface of the heat flux sensor and the temperature of the back surface becomes larger, so that the sensitivity of the heat flux sensor is improved.
 しかしながら、上記公報に記載された軸受装置においては、熱流束センサの表面の温度と裏面の温度との温度差が不十分である。よって、熱流束センサの感度は不十分である。したがって、熱流束センサが軸受装置内の温度変化を検出する感度は不十分である。 However, in the bearing device described in the above publication, the temperature difference between the temperature on the front surface and the temperature on the back surface of the heat flux sensor is insufficient. Therefore, the sensitivity of the heat flux sensor is insufficient. Therefore, the sensitivity of the heat flux sensor to detect the temperature change in the bearing device is insufficient.
 本発明は上記課題に鑑みてなされたものであり、その目的は、熱流束センサが軸受装置内の温度変化を感度良く検出できる軸受装置および工作機械を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a bearing device and a machine tool in which a heat flux sensor can detect a temperature change in the bearing device with high sensitivity.
 本発明の軸受装置は、軸受と、熱流束センサと、第1支持部と、第2支持部とを備えている。軸受は、回転体を支持するためのものである。熱流束センサは、熱流束を検出する。第1支持部は、熱流束センサを支持している。第2支持部は、軸受を支持している。第2支持部には、第1支持部が固定されている。第1支持部は、第2支持部よりも高い熱伝導率を有している。 The bearing device of the present invention includes a bearing, a heat flux sensor, a first support portion, and a second support portion. The bearing is for supporting the rotating body. The heat flux sensor detects the heat flux. The first support portion supports the heat flux sensor. The second support portion supports the bearing. The first support portion is fixed to the second support portion. The first support portion has a higher thermal conductivity than the second support portion.
 好ましくは、軸受装置は、軸受と隣り合う固定間座をさらに備えている。固定間座は、第1支持部および第2支持部を含んでいる。 Preferably, the bearing device further comprises a fixed spacer adjacent to the bearing. The fixed spacer includes a first support portion and a second support portion.
 好ましくは、軸受装置は、固定間座に取り付けられたハウジングをさらに備えている。ハウジングは、冷媒が流通可能な冷媒流路を含んでいる。ハウジングは、冷媒流路に流通する冷媒により冷却されるように構成されている。 Preferably, the bearing device further comprises a housing attached to a fixed spacer. The housing includes a refrigerant flow path through which the refrigerant can flow. The housing is configured to be cooled by the refrigerant flowing through the refrigerant flow path.
 好ましくは、第1支持部は、ハウジングに接している。
 好ましくは、軸受装置は、軸受と隣り合う固定間座と、固定間座に取り付けられたハウジングとをさらに備えている。固定間座は、第1支持部からなる。ハウジングは、第2支持部を含んでいる。
Preferably, the first support is in contact with the housing.
Preferably, the bearing device further comprises a fixed spacer adjacent to the bearing and a housing attached to the fixed spacer. The fixed spacer comprises a first support portion. The housing includes a second support.
 好ましくは、軸受装置は、軸受と隣り合う固定間座と、固定間座に取り付けられたハウジングとをさらに備えている。ハウジングは、第1支持部および第2支持部を含んでいる。 Preferably, the bearing device further comprises a fixed spacer adjacent to the bearing and a housing attached to the fixed spacer. The housing includes a first support and a second support.
 好ましくは、軸受装置は、軸受と隣り合う固定間座と、固定間座に取り付けられたハウジングと、ハウジングに隣り合う前蓋とをさらに備えている。前蓋は、第1支持部および第2支持部を含んでいる。 Preferably, the bearing device further comprises a fixed spacer adjacent to the bearing, a housing attached to the fixed spacer, and a front lid adjacent to the housing. The anterior lid includes a first support and a second support.
 好ましくは、軸受は、内輪および内輪と向かい合う外輪を含んでいる。第1支持部は、内輪と外輪との間に第2支持部から突出している突出部を有している。熱流束センサは、突出部に支持されている。 Preferably, the bearing includes an inner ring and an outer ring facing the inner ring. The first support portion has a protruding portion protruding from the second support portion between the inner ring and the outer ring. The heat flux sensor is supported by the protrusion.
 好ましくは、工作装置は、上記の軸受装置と、回転体を回転させるモータとを備えている。 Preferably, the machine tool includes the above bearing device and a motor for rotating the rotating body.
 以上説明したように、本発明によれば、熱流束センサが軸受装置内の温度変化を感度良く検出できる軸受装置および工作機械を実現できる。 As described above, according to the present invention, it is possible to realize a bearing device and a machine tool in which a heat flux sensor can detect a temperature change in the bearing device with high sensitivity.
本発明の実施の形態1に係る軸受装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the bearing apparatus which concerns on Embodiment 1 of this invention. 図1のII領域の拡大図である。It is an enlarged view of the II region of FIG. 図1のIII-III線に沿う断面図である。It is sectional drawing which follows the line III-III of FIG. 本発明の実施の形態1の第1の変形例に係る軸受装置における図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 in the bearing apparatus which concerns on 1st modification of Embodiment 1 of this invention. 本発明の実施の形態1の第2の変形例に係る軸受装置における図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 in the bearing apparatus which concerns on 2nd modification of Embodiment 1 of this invention. 本発明の実施の形態2に係る軸受装置における図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 in the bearing apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る軸受装置における図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 in the bearing apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る軸受装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the bearing apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る半導体装置における図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 in the semiconductor device which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る工作機械の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the machine tool which concerns on Embodiment 6 of this invention. 比較例に係る軸受装置における図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 in the bearing apparatus which concerns on a comparative example.
 以下、本発明の実施の形態について図に基づいて説明する。なお、以下では、同一または相当する部分に同一の符号を付すものとし、重複する説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, the same or corresponding parts will be designated by the same reference numerals, and duplicate description will not be repeated.
 [実施の形態1]
 〈軸受装置100の構成について〉
 主に図1~図3を用いて、実施の形態1に係る軸受装置100の構成を説明する。軸受装置100は、軸受3と、熱流束センサ4と、固定間座5と、ハウジング6と、前蓋7と、回転体8と、回転間座9とを含んでいる。本実施の形態において、固定間座5は、第1支持部1および第2支持部2を含んでいる。
[Embodiment 1]
<About the configuration of the bearing device 100>
The configuration of the bearing device 100 according to the first embodiment will be described mainly with reference to FIGS. 1 to 3. The bearing device 100 includes a bearing 3, a heat flux sensor 4, a fixed spacer 5, a housing 6, a front lid 7, a rotating body 8, and a rotating spacer 9. In the present embodiment, the fixed spacer 5 includes a first support portion 1 and a second support portion 2.
 図1に示されるように、回転体8は、中心軸CLに沿って延在している。回転体8は、軸受3に支持されている。回転体8は、中心軸CLを回転中心として、モータ300(図10参照)によって回転され得る。回転体8は、軸受3の内輪31(図2参照)に挿入された状態で回転可能に支持されている。回転体8に、ネジ36により接続部材37が固定されている。 As shown in FIG. 1, the rotating body 8 extends along the central axis CL. The rotating body 8 is supported by the bearing 3. The rotating body 8 can be rotated by the motor 300 (see FIG. 10) with the central axis CL as the center of rotation. The rotating body 8 is rotatably supported while being inserted into the inner ring 31 (see FIG. 2) of the bearing 3. The connecting member 37 is fixed to the rotating body 8 by a screw 36.
 軸受3は、回転体8を支持するためのものである。本実施の形態では、軸受装置100は、2つの軸受3を含んでいる。軸受3は、例えば、アンギュラ玉軸受などの転がり軸受3である。図2に示されるように、軸受3は、内輪31、外輪32、保持器33および転動体34を含んでいる。内輪31は、回転体8を支持している。内輪31および外輪32の間に、転動体34が配置されている。内輪31および外輪32は転動体34に摺動可能に構成されている。外輪32は、ハウジング6に固定されている。 The bearing 3 is for supporting the rotating body 8. In this embodiment, the bearing device 100 includes two bearings 3. The bearing 3 is, for example, a rolling bearing 3 such as an angular contact ball bearing. As shown in FIG. 2, the bearing 3 includes an inner ring 31, an outer ring 32, a cage 33 and a rolling element 34. The inner ring 31 supports the rotating body 8. A rolling element 34 is arranged between the inner ring 31 and the outer ring 32. The inner ring 31 and the outer ring 32 are configured to be slidable on the rolling element 34. The outer ring 32 is fixed to the housing 6.
 本実施の形態において、外輪32は、回転体8が回転している際にも回転しないように、ハウジング6に固定されている。回転体8の延在方向において内輪31の外側にカラー38および内輪押さえ35が配置されている。内輪31は、カラー38と回転間座9によって挟み込まれている。内輪押さえ35が締め付けられることで、カラー38を介して内輪31に応力が加えられることにより、内輪31が回転体8に固定されている。 In the present embodiment, the outer ring 32 is fixed to the housing 6 so as not to rotate even when the rotating body 8 is rotating. A collar 38 and an inner ring retainer 35 are arranged outside the inner ring 31 in the extending direction of the rotating body 8. The inner ring 31 is sandwiched between the collar 38 and the rotary spacer 9. By tightening the inner ring retainer 35, stress is applied to the inner ring 31 via the collar 38, so that the inner ring 31 is fixed to the rotating body 8.
 内輪31は、回転輪および非回転輪のいずれか一方である。外輪32は、回転輪および非回転輪のいずれか他方である。本実施の形態において、内輪31は、回転輪である。本実施の形態において、外輪32は、非回転輪である。なお、内輪31が非回転輪であり、かつ外輪32が回転輪であってもよい。 The inner ring 31 is either a rotating wheel or a non-rotating wheel. The outer ring 32 is either a rotating wheel or a non-rotating wheel. In the present embodiment, the inner ring 31 is a rotating wheel. In the present embodiment, the outer ring 32 is a non-rotating ring. The inner ring 31 may be a non-rotating wheel, and the outer ring 32 may be a rotating wheel.
 転動体34は、例えば、複数の玉を含んでいる。保持器33は、転動体34を保持している。保持器33は、転動体34の複数の玉の各々の間に配置された部分を有している。 The rolling element 34 contains, for example, a plurality of balls. The cage 33 holds the rolling element 34. The cage 33 has a portion arranged between each of the plurality of balls of the rolling element 34.
 図1には軸受3は2つ示されているが、軸受3の個数は1つであってもよいし、3つ以上であってもよい。 Although two bearings 3 are shown in FIG. 1, the number of bearings 3 may be one or three or more.
 図2に示されるように、第1支持部1は、熱流束センサ4を支持している。第1支持部1には、熱流束センサ4の裏面部41が固定されている。第1支持部1は、圧入、接着またはねじ止めなどによって第2支持部2に固定されている。第1支持部1は、回転間座9と間隔をあけて向かい合っている。図3に示されるように、第1支持部1は、回転体8の中心軸CLを取り囲んでいる。図3に示されるように、第1支持部1は、熱流束センサ4の配線部材43が挿入可能に構成されている。第1支持部1の形状は、例えば、環形状であってもよいし、C字形状であってもよい。図1には複数の第1支持部1を含んでいる軸受装置100が示されているが、図4に示されるように、軸受装置100は単一の第1支持部1を含んでいてもよい。 As shown in FIG. 2, the first support portion 1 supports the heat flux sensor 4. The back surface portion 41 of the heat flux sensor 4 is fixed to the first support portion 1. The first support portion 1 is fixed to the second support portion 2 by press fitting, adhesion, screwing, or the like. The first support portion 1 faces the rotary spacer 9 at a distance. As shown in FIG. 3, the first support portion 1 surrounds the central axis CL of the rotating body 8. As shown in FIG. 3, the first support portion 1 is configured so that the wiring member 43 of the heat flux sensor 4 can be inserted. The shape of the first support portion 1 may be, for example, a ring shape or a C-shape. Although FIG. 1 shows a bearing device 100 including a plurality of first support portions 1, as shown in FIG. 4, the bearing device 100 may include a single first support portion 1. Good.
 第1支持部1は、第2支持部2よりも高い熱伝導率を有している。第1支持部1の材料は、例えば、アルミニウム(Al)または銅(Cu)などである。第1支持部1の材料は、第2支持部2よりも高い熱伝導率を有している材料であれば、適宜に決められてもよい。 The first support portion 1 has a higher thermal conductivity than the second support portion 2. The material of the first support portion 1 is, for example, aluminum (Al) or copper (Cu). The material of the first support portion 1 may be appropriately determined as long as it is a material having a higher thermal conductivity than that of the second support portion 2.
 図2に示されるように、第2支持部2は、軸受3を支持している。第2支持部2には、第1支持部1が固定されている。第2支持部2の材料は、例えば、鉄(Fe)または鋼などである。第2支持部2の材料は、第1支持部1よりも低い熱伝導率を有している材料であれば、適宜に決められてもよい。 As shown in FIG. 2, the second support portion 2 supports the bearing 3. The first support portion 1 is fixed to the second support portion 2. The material of the second support portion 2 is, for example, iron (Fe) or steel. The material of the second support portion 2 may be appropriately determined as long as it is a material having a lower thermal conductivity than that of the first support portion 1.
 図2に示されるように、固定間座5は、軸受3と隣り合っている。本実施の形態においては、固定間座5は、外輪32と隣り合っている外輪間座である。固定間座5は、2つの軸受3の外輪32の間に挟み込まれている。固定間座5は、回転間座9と間隔をあけて向かい合っている。回転間座9は、内輪31と隣り合っている。回転間座9は、2つの内輪31の間に挟み込まれている。 As shown in FIG. 2, the fixed spacer 5 is adjacent to the bearing 3. In the present embodiment, the fixed spacer 5 is an outer ring spacer adjacent to the outer ring 32. The fixed spacer 5 is sandwiched between the outer rings 32 of the two bearings 3. The fixed spacer 5 faces the rotating spacer 9 at intervals. The rotary spacer 9 is adjacent to the inner ring 31. The rotary spacer 9 is sandwiched between the two inner rings 31.
 図2に示されるように、ハウジング6と回転体8との間には、内部空間30が形成されている。内部空間30は、空気によって満たされている。内部空間30は、第1空間301および第2空間302を含んでいる。第1空間301は、内輪31と外輪32との間に形成されている。第2空間302は、固定間座5と回転間座9との間に形成されている。第2空間302は、第1空間301と連続的に形成されている。第1空間301に配置されている内輪31および外輪32は、後述するように発熱する。このため、第1空間301の空気の温度は、第2空間302の空気の温度よりも高い。 As shown in FIG. 2, an internal space 30 is formed between the housing 6 and the rotating body 8. The interior space 30 is filled with air. The interior space 30 includes a first space 301 and a second space 302. The first space 301 is formed between the inner ring 31 and the outer ring 32. The second space 302 is formed between the fixed spacer 5 and the rotary spacer 9. The second space 302 is continuously formed with the first space 301. The inner ring 31 and the outer ring 32 arranged in the first space 301 generate heat as described later. Therefore, the temperature of the air in the first space 301 is higher than the temperature of the air in the second space 302.
 図1に示されるように、ハウジング6は、固定間座5に取り付けられている。ハウジング6は、軸受3を挿入可能に構成されている。ハウジング6の形状は、例えば、中空の筒形状である。ハウジング6は、冷媒62が流通可能な冷媒流路61を含んでいる。ハウジング6は、冷媒流路61に流通する冷媒62により冷却されるように構成されている。 As shown in FIG. 1, the housing 6 is attached to the fixed spacer 5. The housing 6 is configured so that the bearing 3 can be inserted. The shape of the housing 6 is, for example, a hollow tubular shape. The housing 6 includes a refrigerant flow path 61 through which the refrigerant 62 can flow. The housing 6 is configured to be cooled by the refrigerant 62 flowing through the refrigerant flow path 61.
 図1に示されるように、冷媒流路61は、回転体8の中心軸CLを囲んでいる。冷媒62は、例えば、水である。冷媒62は、液体であってもよいし、気体であってもよい。具体的には、冷媒62は、例えば、オイル、または空気などである。 As shown in FIG. 1, the refrigerant flow path 61 surrounds the central axis CL of the rotating body 8. The refrigerant 62 is, for example, water. The refrigerant 62 may be a liquid or a gas. Specifically, the refrigerant 62 is, for example, oil, air, or the like.
 図1に示されるように、ハウジング6は、本体部63と、ジャケット外筒64と、Oリング65を含んでいる。本体部63は、軸受3および固定間座5に取り付けられている。ジャケット外筒64は、本体部63に取り付けられている。冷媒流路61は、軸受装置100を冷却するための冷媒を流す流路である。冷媒流路61の両端には、Oリング65が嵌入されている。Oリング65がジャケット外筒64とハウジング6との間の隙間を密封することで、冷媒62が冷媒流路61から漏洩することが抑制される。ハウジング6が冷媒流路61を流れる冷媒62によって冷却されるため、固定間座5が冷却される。よって、第1支持部1および熱流束センサ4が冷却される。 As shown in FIG. 1, the housing 6 includes a main body portion 63, a jacket outer cylinder 64, and an O-ring 65. The main body 63 is attached to the bearing 3 and the fixed spacer 5. The jacket outer cylinder 64 is attached to the main body 63. The refrigerant flow path 61 is a flow path through which a refrigerant for cooling the bearing device 100 flows. O-rings 65 are fitted at both ends of the refrigerant flow path 61. By sealing the gap between the jacket outer cylinder 64 and the housing 6 by the O-ring 65, leakage of the refrigerant 62 from the refrigerant flow path 61 is suppressed. Since the housing 6 is cooled by the refrigerant 62 flowing through the refrigerant flow path 61, the fixed spacer 5 is cooled. Therefore, the first support portion 1 and the heat flux sensor 4 are cooled.
 〈熱流束センサ4の構成について〉
 図2に示されるように、熱流束センサ4は、熱流束Qを検出する。熱流束センサ4は、第1支持部1に配置されている。熱流束センサ4は、裏面部41と、裏面部41と対向する表面部42とを有している。熱流束センサ4の裏面部41は、第1支持部1の表面に接着剤等によって固定されている。熱流束センサ4の表面部42は、内部空間30に配置されている。熱流束センサ4の裏面部41は、第1支持部1の表面温度を計測する。熱流束センサ4の表面部42は、内部空間30の空気の温度を計測する。図3に示されるように、熱流束センサ4は、配線部材43に接続されている。配線部材43は、図示されない外部機器または内部機器に接続されている。
<About the configuration of the heat flux sensor 4>
As shown in FIG. 2, the heat flux sensor 4 detects the heat flux Q. The heat flux sensor 4 is arranged in the first support portion 1. The heat flux sensor 4 has a back surface portion 41 and a front surface portion 42 facing the back surface portion 41. The back surface portion 41 of the heat flux sensor 4 is fixed to the surface surface of the first support portion 1 with an adhesive or the like. The surface portion 42 of the heat flux sensor 4 is arranged in the internal space 30. The back surface portion 41 of the heat flux sensor 4 measures the surface temperature of the first support portion 1. The surface portion 42 of the heat flux sensor 4 measures the temperature of the air in the internal space 30. As shown in FIG. 3, the heat flux sensor 4 is connected to the wiring member 43. The wiring member 43 is connected to an external device or an internal device (not shown).
 図5に示されるように、熱流束センサ4は軸受3に向かう方向に配置されていてもよい。具体的には、熱流束センサ4は、内輪31または外輪32と転動体34との摺動部に向けて配置されていてもよい。望ましくは、熱流束センサ4は、軸受装置100の発熱部と近づくように配置されている。 As shown in FIG. 5, the heat flux sensor 4 may be arranged in the direction toward the bearing 3. Specifically, the heat flux sensor 4 may be arranged toward the sliding portion between the inner ring 31 or the outer ring 32 and the rolling element 34. Desirably, the heat flux sensor 4 is arranged so as to be close to the heat generating portion of the bearing device 100.
 図2に示されるように、熱流束センサ4は、裏面部41の温度と表面部42の温度との温度差を用いることで、熱流束センサ4の裏面部41と表面部42とを通過する熱流束Qを計測している。具体的には、熱流束センサ4は、熱流束センサ4の裏面部41の温度と表面部42の温度との温度差をゼーベック効果によって出力電圧に変換することによって、熱流束Qを計測する。 As shown in FIG. 2, the heat flux sensor 4 passes through the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 by using the temperature difference between the temperature of the back surface portion 41 and the temperature of the front surface portion 42. The heat flux Q is being measured. Specifically, the heat flux sensor 4 measures the heat flux Q by converting the temperature difference between the temperature of the back surface portion 41 and the temperature of the front surface portion 42 of the heat flux sensor 4 into an output voltage by the Seebeck effect.
 2点間を通る熱流束は、2点間の温度差によって生じている。熱流束は、温度が高い方から温度が低い方へと向かって流れている。このため、熱流束センサ4を通る熱流束Qの大きさは、熱流束センサ4の裏面部41と表面部42との温度差が大きくなるにつれて、大きくなる。よって、熱流束センサ4の裏面部41と表面部42との温度差が大きくなるにつれて、熱流束センサ4が熱流束Qを検出する感度が高くなる。熱流束センサ4が熱流束Qを検出する感度が高くなることによって、軸受装置100の温度変化が検出される感度が高くなる。 The heat flux passing between the two points is caused by the temperature difference between the two points. The heat flux flows from the one with the higher temperature to the one with the lower temperature. Therefore, the size of the heat flux Q passing through the heat flux sensor 4 increases as the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 increases. Therefore, as the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 increases, the sensitivity of the heat flux sensor 4 to detect the heat flux Q increases. As the sensitivity of the heat flux sensor 4 to detect the heat flux Q increases, the sensitivity of detecting the temperature change of the bearing device 100 increases.
 したがって、熱流束センサ4の表面部42および裏面部41の一方が最も冷却されない部位(発熱部位)と近づくように配置され、かつ熱流束センサ4の表面部42および裏面部41の他方が最も冷却される部位と近づくように配置されることが望ましい。これにより、熱流束センサ4の裏面部41と表面部42との温度差が大きくなるため、熱流束センサ4を通る熱流束Qが大きくなり、熱流束センサ4の感度が高くなる。本実施の形態においては、熱流束センサ4の表面部42が発熱部位に近づくように配置され、かつ裏面部41が最も冷却される部位に近づくように配置されている。 Therefore, one of the front surface portion 42 and the back surface portion 41 of the heat flux sensor 4 is arranged so as to be close to the portion (heat generation portion) where the heat flux sensor 4 is least cooled, and the other of the front surface portion 42 and the back surface portion 41 of the heat flux sensor 4 is the most cooled. It is desirable to arrange it so that it is close to the part to be used. As a result, the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 becomes large, so that the heat flux Q passing through the heat flux sensor 4 becomes large, and the sensitivity of the heat flux sensor 4 becomes high. In the present embodiment, the front surface portion 42 of the heat flux sensor 4 is arranged so as to approach the heat generating portion, and the back surface portion 41 is arranged so as to approach the portion to be cooled most.
 図1に示されるように、軸受装置100は、複数の熱流束センサ4を含んでいてもよい。複数の熱流束センサ4は、図示しない制御部に接続されている。複数の熱流束センサ4が計測した熱流束Qまたは熱流束Qの変化率の各々の差は、図示しない制御部によって算出される。これにより、軸受装置100での異常な変化の有無が判定される。例えば、複数の熱流束センサ4が計測した熱流束Qまたは熱流束Qの変化率の各々の差が、予め設定された閾値と比較されることで、軸受装置100での異常な変化の有無が判定されてもよい。 As shown in FIG. 1, the bearing device 100 may include a plurality of heat flux sensors 4. The plurality of heat flux sensors 4 are connected to a control unit (not shown). The difference between the heat flux Q and the rate of change of the heat flux Q measured by the plurality of heat flux sensors 4 is calculated by a control unit (not shown). Thereby, the presence or absence of an abnormal change in the bearing device 100 is determined. For example, the presence or absence of an abnormal change in the bearing device 100 can be determined by comparing the difference between the heat flux Q or the rate of change of the heat flux Q measured by the plurality of heat flux sensors 4 with a preset threshold value. It may be determined.
 図3には中心軸(図1参照)を中心とする円周上に設けられた1つの熱流束センサ4が示されているが、同一円周上に複数の熱流束センサ4が設けられていてもよい。 FIG. 3 shows one heat flux sensor 4 provided on the circumference centered on the central axis (see FIG. 1), but a plurality of heat flux sensors 4 are provided on the same circumference. You may.
 〈軸受装置100における温度および熱流束Qの変化について〉
 次に、図2を用いて、実施の形態1に係る軸受装置100における温度および熱流束Qの変化について説明する。
<Changes in temperature and heat flux Q in bearing device 100>
Next, changes in temperature and heat flux Q in the bearing device 100 according to the first embodiment will be described with reference to FIG.
 軸受装置100の温度は、正常状態における運転において、上昇する。具体的には、内輪31および外輪32の軌道面と転動体34との摩擦によって、内輪31および外輪32の表面温度が上昇する。また、モータ300(図10参照)において発生した熱によって、軸受装置100の全体の温度が上昇する。これらによって、特に、内部空間30の空気の温度は、上昇する。内輪31および外輪32が配置されている第1空間301の空気の温度は、第2空間302よりも上昇する。 The temperature of the bearing device 100 rises during operation in a normal state. Specifically, the surface temperature of the inner ring 31 and the outer ring 32 rises due to the friction between the raceway surfaces of the inner ring 31 and the outer ring 32 and the rolling element 34. Further, the heat generated in the motor 300 (see FIG. 10) raises the overall temperature of the bearing device 100. As a result, in particular, the temperature of the air in the internal space 30 rises. The temperature of the air in the first space 301 in which the inner ring 31 and the outer ring 32 are arranged is higher than that in the second space 302.
 軸受装置100の温度は、正常状態から逸脱した状態(異常の状態)における運転においても、上昇する。異常状態における軸受装置100の温度上昇は、正常状態における軸受装置100の温度上昇よりも大きい。具体的には、異常の状態における軸受装置100の内部空間30の空気の温度上昇は、正常状態における軸受装置100の内部空間30の空気の温度上昇よりも大きい。 The temperature of the bearing device 100 rises even during operation in a state deviating from the normal state (abnormal state). The temperature rise of the bearing device 100 in the abnormal state is larger than the temperature rise of the bearing device 100 in the normal state. Specifically, the temperature rise of the air in the internal space 30 of the bearing device 100 in the abnormal state is larger than the temperature rise of the air in the internal space 30 of the bearing device 100 in the normal state.
 例えば、異常状態において内輪31および外輪32への予圧が上昇することで、転動体34と内輪31との接触面圧または転動体34と外輪32との接触面圧が増加する。これにより、転動体34と内輪31または外輪32の軌道面との摩擦が正常状態よりも大きくなる。よって、異常状態において、軸受装置100の温度上昇は、正常状態よりも大きくなる。 For example, when the preload on the inner ring 31 and the outer ring 32 increases in an abnormal state, the contact surface pressure between the rolling element 34 and the inner ring 31 or the contact surface pressure between the rolling element 34 and the outer ring 32 increases. As a result, the friction between the rolling element 34 and the raceway surface of the inner ring 31 or the outer ring 32 becomes larger than in the normal state. Therefore, in the abnormal state, the temperature rise of the bearing device 100 becomes larger than in the normal state.
 正常状態および異常状態のいずれにおいても、外輪32および固定間座5は、ハウジング6によって冷却されている。このため、外輪32および固定間座5の表面温度の上昇率は、内部空間30の空気温度の上昇率よりも低い。外輪32および固定間座5の表面温度は、内部空間30の空気温度および内輪31の表面温度よりも低い。なお、内輪31は回転体8と接しているため、外輪32よりも冷却されない。 The outer ring 32 and the fixed spacer 5 are cooled by the housing 6 in both the normal state and the abnormal state. Therefore, the rate of increase in the surface temperature of the outer ring 32 and the fixed spacer 5 is lower than the rate of increase in the air temperature in the internal space 30. The surface temperature of the outer ring 32 and the fixed spacer 5 is lower than the air temperature of the internal space 30 and the surface temperature of the inner ring 31. Since the inner ring 31 is in contact with the rotating body 8, it is not cooled as much as the outer ring 32.
 正常状態および異常状態のいずれにおいても、内部空間30の空気の熱容量は、回転体8、軸受3、第1支持部1および第2支持部2の熱容量よりも小さい。このため、内部空間30の空気温度は、第1支持部1の表面温度よりも変化しやすい。具体的には、内部空間30の空気温度は、第1支持部1の表面温度よりも上昇している。よって、第1支持部1と内部空間30の空気との間には、温度差が生じている。したがって、図2に示されるように、内部空間30から第1支持部1に向かう方向に熱流束Qが発生している。 In both the normal state and the abnormal state, the heat capacity of the air in the internal space 30 is smaller than the heat capacity of the rotating body 8, the bearing 3, the first support portion 1 and the second support portion 2. Therefore, the air temperature of the internal space 30 is more likely to change than the surface temperature of the first support portion 1. Specifically, the air temperature of the internal space 30 is higher than the surface temperature of the first support portion 1. Therefore, there is a temperature difference between the first support portion 1 and the air in the internal space 30. Therefore, as shown in FIG. 2, the heat flux Q is generated in the direction from the internal space 30 toward the first support portion 1.
 異常状態における内部空間30の空気温度は、正常状態における内部空間30の空気温度よりも高い。このため、異常状態における内部空間30の空気温度と第1支持部1の表面温度と温度差は、正常状態における内部空間30の空気温度と第1支持部1の表面温度との間の温度差よりも大きい。よって、異常状態における熱流束Qは、正常状態における熱流束Qよりも大きい。 The air temperature of the internal space 30 in the abnormal state is higher than the air temperature of the internal space 30 in the normal state. Therefore, the temperature difference between the air temperature of the internal space 30 and the surface temperature of the first support portion 1 in the abnormal state is the temperature difference between the air temperature of the internal space 30 and the surface temperature of the first support portion 1 in the normal state. Greater than. Therefore, the heat flux Q in the abnormal state is larger than the heat flux Q in the normal state.
 熱流束センサ4は、熱流束Qを検出することで、熱流束Qの変化、または熱流束Qの単位時間あたりの変化率を計測している。熱流束Qの変化、または熱流束Qの単位時間あたりの変化率について、正常状態から逸脱する変化(異常な変化)がみられた場合に、軸受装置100に異常が発生したと判断される。 The heat flux sensor 4 measures the change in the heat flux Q or the rate of change of the heat flux Q per unit time by detecting the heat flux Q. When a change in the heat flux Q or a change rate of the heat flux Q per unit time is observed to deviate from the normal state (abnormal change), it is determined that an abnormality has occurred in the bearing device 100.
 〈第1支持部1および第2支持部2の温度および熱流束Qの変化について〉
 次に、図2および図11を用いて、実施の形態1に係る軸受装置100の第1支持部1および第2支持部2における温度および熱流束Qの変化について説明する。
<Changes in temperature and heat flux Q of the first support portion 1 and the second support portion 2>
Next, changes in temperature and heat flux Q in the first support portion 1 and the second support portion 2 of the bearing device 100 according to the first embodiment will be described with reference to FIGS. 2 and 11.
 図11は、比較例に係る軸受装置100における図2に対応する断面図である。比較例に係る軸受装置100は、第1支持部1を含んでいない。このため、比較例に係る軸受装置100の熱流束センサ4の裏面部41は、本実施の形態に係る熱流束センサ4が接している部材よりも低い熱伝導率を有する部材と接している。 FIG. 11 is a cross-sectional view corresponding to FIG. 2 in the bearing device 100 according to the comparative example. The bearing device 100 according to the comparative example does not include the first support portion 1. Therefore, the back surface portion 41 of the heat flux sensor 4 of the bearing device 100 according to the comparative example is in contact with a member having a lower thermal conductivity than the member with which the heat flux sensor 4 according to the present embodiment is in contact.
 一方で、本実施の形態に係る軸受装置100においては、図2に示されるように、熱流束センサ4の裏面部41が第2支持部2よりも高い熱伝導率を有する第1支持部1に固定されている。このため、熱流束センサ4は、第2支持部2に固定されている場合よりも、軸受3の温度の変化を早く検出する。また、第1支持部1および第2支持部2がハウジング6によって冷却されるため、熱流束センサ4は、第2支持部2に固定されている場合よりも早く冷却される。このため、熱流束センサ4の裏面部41は、第2支持部2に固定されている場合よりも早く冷却される。 On the other hand, in the bearing device 100 according to the present embodiment, as shown in FIG. 2, the back surface portion 41 of the heat flux sensor 4 has a higher thermal conductivity than the second support portion 2. It is fixed to. Therefore, the heat flux sensor 4 detects a change in the temperature of the bearing 3 earlier than when it is fixed to the second support portion 2. Further, since the first support portion 1 and the second support portion 2 are cooled by the housing 6, the heat flux sensor 4 is cooled faster than when it is fixed to the second support portion 2. Therefore, the back surface portion 41 of the heat flux sensor 4 is cooled faster than when it is fixed to the second support portion 2.
 したがって、熱流束センサ4の裏面部41と表面部42との温度差は、比較例における温度差よりも、大きくなる。よって、熱流束Qは、比較例における熱流束Qよりも大きくなる。 Therefore, the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 is larger than the temperature difference in the comparative example. Therefore, the heat flux Q is larger than the heat flux Q in the comparative example.
 〈作用効果について〉
 本実施の形態に係る軸受装置100によれば、図2に示されるように、熱流束センサ4は、第2支持部2よりも高い熱伝導率を有している第1支持部1に支持されているため、第2支持部2に支持されている場合よりも冷却される。このため、第1支持部1に固定されている熱流束センサ4の裏面部41と内部空間30に配置された熱流束センサ4の表面部42との温度差は、比較例における温度差よりも、大きくなりやすい。よって、熱流束Qは、比較例における熱流束Qよりも大きくなりやすい。したがって、熱流束センサ4が熱流束Qを検出しやすいため、軸受装置100内の温度変化を感度良く検出できる。
<About action and effect>
According to the bearing device 100 according to the present embodiment, as shown in FIG. 2, the heat flux sensor 4 is supported by the first support portion 1 having a higher thermal conductivity than the second support portion 2. Therefore, it is cooled more than when it is supported by the second support portion 2. Therefore, the temperature difference between the back surface portion 41 of the heat flux sensor 4 fixed to the first support portion 1 and the front surface portion 42 of the heat flux sensor 4 arranged in the internal space 30 is larger than the temperature difference in the comparative example. , Easy to grow. Therefore, the heat flux Q tends to be larger than the heat flux Q in the comparative example. Therefore, since the heat flux sensor 4 can easily detect the heat flux Q, the temperature change in the bearing device 100 can be detected with high sensitivity.
 図1に示されるように、固定間座5は、第1支持部1および第2支持部2を含んでいる。このため、固定間座5に第1支持部1および第2支持部2を設けることが可能となる。したがって、固定間座5の第1支持部1に支持された熱流束センサ4の裏面部41と表面部42との温度差を大きくすることが可能となる。 As shown in FIG. 1, the fixed spacer 5 includes a first support portion 1 and a second support portion 2. Therefore, the fixed spacer 5 can be provided with the first support portion 1 and the second support portion 2. Therefore, it is possible to increase the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 supported by the first support portion 1 of the fixed spacer 5.
 図1に示されるように、ハウジング6が固定間座5に取り付けられており、かつ冷媒流路61に流通する冷媒62により冷却されるように構成されている。このため、ハウジング6によって固定間座5が冷却される。これにより、図2に示されるように、固定間座5の第1支持部1に支持されている熱流束センサ4の裏面部41が冷却される。このため、熱流束センサ4の裏面部41と、内部空間30の空気温度を計測している熱流束センサ4の表面部42との温度差が大きくなる。よって、熱流束センサ4が検出する熱流束Qが大きくなる。したがって、熱流束センサ4の感度を高めることができる。 As shown in FIG. 1, the housing 6 is attached to the fixed spacer 5 and is configured to be cooled by the refrigerant 62 flowing through the refrigerant flow path 61. Therefore, the housing 6 cools the fixed spacer 5. As a result, as shown in FIG. 2, the back surface portion 41 of the heat flux sensor 4 supported by the first support portion 1 of the fixed spacer 5 is cooled. Therefore, the temperature difference between the back surface portion 41 of the heat flux sensor 4 and the front surface portion 42 of the heat flux sensor 4 measuring the air temperature of the internal space 30 becomes large. Therefore, the heat flux Q detected by the heat flux sensor 4 becomes large. Therefore, the sensitivity of the heat flux sensor 4 can be increased.
 図5に示されるように、熱流束センサ4が軸受3に向かう方向に配置されているため、熱流束センサ4は、軸受3の温度変化を感度良く検出できる。 As shown in FIG. 5, since the heat flux sensor 4 is arranged in the direction toward the bearing 3, the heat flux sensor 4 can detect the temperature change of the bearing 3 with high sensitivity.
 図1に示されるように、ハウジング6が冷却されるため、ハウジング6によって軸受3が冷却される。これにより、軸受3の温度を低くすることができるため、軸受3の内輪31および外輪32の焼付きを抑制することができる。 As shown in FIG. 1, since the housing 6 is cooled, the housing 6 cools the bearing 3. As a result, the temperature of the bearing 3 can be lowered, so that seizure of the inner ring 31 and the outer ring 32 of the bearing 3 can be suppressed.
 固定間座5の熱容量は、相対的に大きい。このため、軸受3の表面温度が上昇してから固定間座5の第1支持部1の表面温度が上昇するまでには、時間がかかる。一方で、内部空間30の空気の熱容量は、相対的に小さい。このため、軸受3の表面温度が上昇してから内部空間30の空気温度が上昇するまでの時間は、第1支持部1の表面温度が上昇するまでの時間よりも短い。すなわち、内部空間30の空気温度は、第1支持部1の表面温度よりも鋭敏に変化している。よって、第1支持部1の表面温度と内部空間30の空気温度との温度差によって生じる熱流束Qは、鋭敏に変化している。 The heat capacity of the fixed spacer 5 is relatively large. Therefore, it takes time from the rise in the surface temperature of the bearing 3 to the rise in the surface temperature of the first support portion 1 of the fixed spacer 5. On the other hand, the heat capacity of the air in the internal space 30 is relatively small. Therefore, the time from the rise of the surface temperature of the bearing 3 to the rise of the air temperature of the internal space 30 is shorter than the time until the surface temperature of the first support portion 1 rises. That is, the air temperature of the internal space 30 changes more sensitively than the surface temperature of the first support portion 1. Therefore, the heat flux Q generated by the temperature difference between the surface temperature of the first support portion 1 and the air temperature of the internal space 30 changes sharply.
 仮に、第1支持部1の表面温度のみが温度センサによって計測される場合、軸受3の温度上昇が発生してから第1支持部1の温度上昇が検出されるまでに時間がかかる。このため、温度センサが用いられる場合には、例えば、軸受3の温度上昇が検出された時点で、既に軸受3の内輪31または外輪32に焼付きが発生している可能性がある。 If only the surface temperature of the first support portion 1 is measured by the temperature sensor, it takes time from the occurrence of the temperature rise of the bearing 3 to the detection of the temperature rise of the first support portion 1. Therefore, when a temperature sensor is used, for example, when the temperature rise of the bearing 3 is detected, the inner ring 31 or the outer ring 32 of the bearing 3 may have already seized.
 本実施の形態においては、熱流束センサ4が第1支持部1の表面温度と内部空間30の空気温度との温度差を用いて熱流束Qを検出することによって、軸受3の温度変化が検出されているため、温度センサが用いられる場合よりも鋭敏に軸受3の温度変化が検出され得る。 In the present embodiment, the heat flux sensor 4 detects the temperature change of the bearing 3 by detecting the heat flux Q using the temperature difference between the surface temperature of the first support portion 1 and the air temperature of the internal space 30. Therefore, the temperature change of the bearing 3 can be detected more sensitively than when the temperature sensor is used.
 [実施の形態2]
 次に、図6を用いて、実施の形態2に係る軸受装置100の構成を説明する。実施の形態2は、特に説明しない限り、上記の実施の形態1と同一の構成および作用効果を有している。したがって、上記の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
[Embodiment 2]
Next, the configuration of the bearing device 100 according to the second embodiment will be described with reference to FIG. Unless otherwise specified, the second embodiment has the same configuration and effects as those of the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description will not be repeated.
 本実施の形態において、第1支持部1は、ハウジング6に接している。第1支持部1は、ハウジング6と熱的に接続されている。熱流束センサ4は、第1支持部1を挟み込んでハウジング6と熱的に接続されている。ハウジング6が冷却されることにより、第1支持部1が冷却されるため、熱流束センサ4の裏面部41が冷却される。第2支持部2は、固定間座5の中央を貫通するように配置されている。第1支持部1は、第2支持部2の周囲を囲むように配置されている。 In the present embodiment, the first support portion 1 is in contact with the housing 6. The first support portion 1 is thermally connected to the housing 6. The heat flux sensor 4 is thermally connected to the housing 6 with the first support portion 1 sandwiched therein. By cooling the housing 6, the first support portion 1 is cooled, so that the back surface portion 41 of the heat flux sensor 4 is cooled. The second support portion 2 is arranged so as to penetrate the center of the fixed spacer 5. The first support portion 1 is arranged so as to surround the periphery of the second support portion 2.
 〈作用効果について〉
 本実施の形態に係る軸受装置100によれば、第1支持部1はハウジング6に支持されているため、ハウジング6によって第1支持部1が直接的に冷却される。よって、第1支持部1に支持された熱流束センサ4の裏面部41は、第1支持部1がハウジング6に接していない場合よりも早く冷却され得る。また、熱流束センサ4の裏面部41と表面部42との温度差は、第1支持部1がハウジング6に接していない場合よりも大きくなり得る。したがって、熱流束センサ4が温度変化を検出する感度を高くできる。
<About action and effect>
According to the bearing device 100 according to the present embodiment, since the first support portion 1 is supported by the housing 6, the first support portion 1 is directly cooled by the housing 6. Therefore, the back surface portion 41 of the heat flux sensor 4 supported by the first support portion 1 can be cooled faster than when the first support portion 1 is not in contact with the housing 6. Further, the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 can be larger than when the first support portion 1 is not in contact with the housing 6. Therefore, the sensitivity of the heat flux sensor 4 to detect the temperature change can be increased.
 [実施の形態3]
 次に、図7を用いて、実施の形態3に係る軸受装置100の構成を説明する。実施の形態3は、特に説明しない限り、上記の実施の形態1と同一の構成および作用効果を有している。したがって、上記の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
[Embodiment 3]
Next, the configuration of the bearing device 100 according to the third embodiment will be described with reference to FIG. 7. Unless otherwise specified, the third embodiment has the same configuration and effects as those of the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description will not be repeated.
 図7に示されるように、本実施の形態において、固定間座5は、第1支持部1からなる。つまり、固定間座5の全体が第1支持部1を構成している。ハウジング6は、第2支持部2を含んでいる。 As shown in FIG. 7, in the present embodiment, the fixed spacer 5 is composed of the first support portion 1. That is, the entire fixed spacer 5 constitutes the first support portion 1. The housing 6 includes a second support portion 2.
 固定間座5は、ハウジング6に支持されている。このため、第1支持部1は、ハウジング6の冷媒流路61(図1参照)によって冷却される。固定間座5は、ハウジング6よりも高い熱伝導率を有している材料によって形成されている。例えば、固定間座5がアルミニウム(Al)によって形成され、ハウジング6の本体部63(図1参照)が鉄(Fe)などによって形成されていてもよい。 The fixed spacer 5 is supported by the housing 6. Therefore, the first support portion 1 is cooled by the refrigerant flow path 61 (see FIG. 1) of the housing 6. The fixed spacer 5 is made of a material having a higher thermal conductivity than the housing 6. For example, the fixed spacer 5 may be made of aluminum (Al), and the main body 63 (see FIG. 1) of the housing 6 may be made of iron (Fe) or the like.
 〈作用効果について〉
 図7に示されるように、本実施の形態に係る軸受装置100によれば、固定間座5が第1支持部1からなり、ハウジング6が第2支持部2を含んでいる。したがって、ハウジング6の冷媒流路61(図1参照)によって第1支持部1のみが冷却されるため、熱流束センサ4は固定間座5が第1支持部1のみからならない場合よりも効率良く冷却され得る。このため、熱流束センサ4の裏面部41の温度が効率良く低くされ得るため、熱流束センサ4の裏面部41と表面部42との温度差が効率良く大きくされ得る。よって、熱流束センサ4が温度変化を検出する感度を高くできる。
<About action and effect>
As shown in FIG. 7, according to the bearing device 100 according to the present embodiment, the fixed spacer 5 is composed of the first support portion 1, and the housing 6 includes the second support portion 2. Therefore, since only the first support portion 1 is cooled by the refrigerant flow path 61 (see FIG. 1) of the housing 6, the heat flux sensor 4 is more efficient than the case where the fixed spacer 5 is not composed of only the first support portion 1. Can be cooled. Therefore, since the temperature of the back surface portion 41 of the heat flux sensor 4 can be efficiently lowered, the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 can be efficiently increased. Therefore, the sensitivity of the heat flux sensor 4 to detect the temperature change can be increased.
 固定間座5が第1支持部1からなるため、固定間座5を単一の材料によって形成することができる。このため、固定間座5の製造コストを減少させることができる。 Since the fixed spacer 5 is composed of the first support portion 1, the fixed spacer 5 can be formed of a single material. Therefore, the manufacturing cost of the fixed spacer 5 can be reduced.
 [実施の形態4]
 次に、図8を用いて、実施の形態4に係る軸受装置100の構成を説明する。実施の形態4は、特に説明しない限り、上記の実施の形態1と同一の構成および作用効果を有している。したがって、上記の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
[Embodiment 4]
Next, the configuration of the bearing device 100 according to the fourth embodiment will be described with reference to FIG. Unless otherwise specified, the fourth embodiment has the same configuration and effects as those of the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description will not be repeated.
 図8に示されるように、本実施の形態において、ハウジング6は、第1支持部1および第2支持部2を含んでいる。具体的には、第1支持部1は、ハウジング6の本体部63に配置されている。第1支持部1がハウジング6の開口部の近傍に配置されているため、熱流束センサ4がハウジング6の開口部の近傍に配置されている。また、第1支持部1が軸受3の近傍に配置されているため、熱流束センサ4が軸受3の近傍に配置されている。 As shown in FIG. 8, in the present embodiment, the housing 6 includes a first support portion 1 and a second support portion 2. Specifically, the first support portion 1 is arranged in the main body portion 63 of the housing 6. Since the first support portion 1 is arranged near the opening of the housing 6, the heat flux sensor 4 is arranged near the opening of the housing 6. Further, since the first support portion 1 is arranged in the vicinity of the bearing 3, the heat flux sensor 4 is arranged in the vicinity of the bearing 3.
 図8に示されるように、本実施の形態において、前蓋7は、第1支持部1および第2支持部2を含んでいる。前蓋7はハウジング6に隣り合うように配置されている。前蓋7は、ハウジング6に対して着脱可能に構成されている。前蓋7は、ハウジング6の開口部に配置されている。前蓋7は、ハウジング6の開口部の一部を封止するように構成されている。前蓋7は、外輪32(図2参照)と接している。前蓋7は、ハウジング6および固定間座5とともに外輪32(図2参照)を挟み込むことで、外輪32(図2参照)を固定している。 As shown in FIG. 8, in the present embodiment, the front lid 7 includes the first support portion 1 and the second support portion 2. The front lid 7 is arranged so as to be adjacent to the housing 6. The front lid 7 is configured to be removable from the housing 6. The front lid 7 is arranged in the opening of the housing 6. The front lid 7 is configured to seal a part of the opening of the housing 6. The front lid 7 is in contact with the outer ring 32 (see FIG. 2). The front lid 7 fixes the outer ring 32 (see FIG. 2) by sandwiching the outer ring 32 (see FIG. 2) together with the housing 6 and the fixed spacer 5.
 〈作用効果について〉
 図8に示されるように、本実施の形態に係る軸受装置100によれば、ハウジング6は、第1支持部1および第2支持部2を含んでいる。このため、ハウジング6に第1支持部1および第2支持部2を設けることが可能となる。したがって、ハウジング6の第1支持部1に支持された熱流束センサ4の裏面部41と表面部42との温度差を大きくすることが可能となる。
<About action and effect>
As shown in FIG. 8, according to the bearing device 100 according to the present embodiment, the housing 6 includes a first support portion 1 and a second support portion 2. Therefore, the housing 6 can be provided with the first support portion 1 and the second support portion 2. Therefore, it is possible to increase the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 supported by the first support portion 1 of the housing 6.
 前蓋7は、第1支持部1および第2支持部2を含んでいる。このため、前蓋7に第1支持部1および第2支持部2を設けることが可能となる。したがって、前蓋7の第1支持部1に支持された熱流束センサ4の裏面部41と表面部42との温度差を大きくすることが可能となる。 The front lid 7 includes a first support portion 1 and a second support portion 2. Therefore, the front lid 7 can be provided with the first support portion 1 and the second support portion 2. Therefore, it is possible to increase the temperature difference between the back surface portion 41 and the front surface portion 42 of the heat flux sensor 4 supported by the first support portion 1 of the front lid 7.
 熱流束センサ4がハウジング6の開口部の近傍に配置されているため、熱流束センサ4へのアクセスが容易になる。このため、熱流束センサ4のメンテナンスが容易になる。 Since the heat flux sensor 4 is arranged near the opening of the housing 6, access to the heat flux sensor 4 becomes easy. Therefore, maintenance of the heat flux sensor 4 becomes easy.
 前蓋7がハウジング6に対して着脱可能に構成されていることにより、熱流束センサ4もハウジング6に対して着脱可能に構成されているため、熱流束センサ4の取り回しが容易になる。このため、特に熱流束センサ4の配線部材43(図3参照)の取り回しが容易になる。 Since the front lid 7 is configured to be removable from the housing 6, the heat flux sensor 4 is also configured to be removable from the housing 6, so that the heat flux sensor 4 can be easily handled. Therefore, in particular, the wiring member 43 (see FIG. 3) of the heat flux sensor 4 can be easily routed.
 熱流束センサ4を含んでいない既存の軸受装置100の前蓋7を本実施の形態の前蓋7と交換することによって、既存の軸受装置100に本実施の形態の前蓋7に配置された熱流束センサ4を設けることができる。また、前蓋7は容易に交換され得るため、既存の軸受装置100に本実施の形態の前蓋7に配置された熱流束センサ4を設けることが容易である。 By replacing the front lid 7 of the existing bearing device 100 that does not include the heat flux sensor 4 with the front lid 7 of the present embodiment, the existing bearing device 100 is arranged on the front lid 7 of the present embodiment. A heat flux sensor 4 can be provided. Further, since the front lid 7 can be easily replaced, it is easy to provide the existing bearing device 100 with the heat flux sensor 4 arranged on the front lid 7 of the present embodiment.
 [実施の形態5]
 次に、図9を用いて、実施の形態5に係る軸受装置100の構成を説明する。実施の形態5は、特に説明しない限り、上記の実施の形態1と同一の構成および作用効果を有している。したがって、上記の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
[Embodiment 5]
Next, the configuration of the bearing device 100 according to the fifth embodiment will be described with reference to FIG. Unless otherwise specified, the fifth embodiment has the same configuration and effects as those of the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description will not be repeated.
 図9に示されるように、第1支持部1は、突出部11を有している。突出部11は、内輪31と外輪32との間に第2支持部2から突出している。熱流束センサ4は、突出部11に支持されている。 As shown in FIG. 9, the first support portion 1 has a protruding portion 11. The protruding portion 11 projects from the second support portion 2 between the inner ring 31 and the outer ring 32. The heat flux sensor 4 is supported by the protrusion 11.
 図9に示されるように、突出部11および熱流束センサ4は、内輪31と外輪32との間に入り込んでいる。突出部11および熱流束センサ4は、内部空間30の第1空間301に入り込んでいる。熱流束センサ4は、内輪31または外輪32のいずれか一方と向かい合っている。本実施の形態では、熱流束センサ4は、内輪31と向かい合っている。熱流束センサ4の表面部42は、内輪31または外輪32の発熱部に近接している。発熱部は、具体的には、内輪31または外輪32の軌道面である。熱流束センサ4の表面部42は、具体的には、内輪31または外輪32の軌道面に近接している。本実施の形態では、熱流束センサ4の表面部42は、内輪31の軌道面に近接している。 As shown in FIG. 9, the protrusion 11 and the heat flux sensor 4 are inserted between the inner ring 31 and the outer ring 32. The protrusion 11 and the heat flux sensor 4 enter the first space 301 of the internal space 30. The heat flux sensor 4 faces either the inner ring 31 or the outer ring 32. In this embodiment, the heat flux sensor 4 faces the inner ring 31. The surface portion 42 of the heat flux sensor 4 is close to the heat generating portion of the inner ring 31 or the outer ring 32. Specifically, the heat generating portion is the raceway surface of the inner ring 31 or the outer ring 32. Specifically, the surface portion 42 of the heat flux sensor 4 is close to the raceway surface of the inner ring 31 or the outer ring 32. In the present embodiment, the surface portion 42 of the heat flux sensor 4 is close to the raceway surface of the inner ring 31.
 内輪31または外輪32の発熱部が配置されている第1空間301の空気温度は、内輪31または外輪32の発熱部から離れた第2空間302の空気温度よりも高い。軸受3の温度が変化した場合に、第1空間301の空気温度は、第2空間302の空気温度よりも早く変化する。熱流束センサ4は、第1空間301の空気温度を計測している。 The air temperature of the first space 301 in which the heat generating portion of the inner ring 31 or the outer ring 32 is arranged is higher than the air temperature of the second space 302 away from the heat generating portion of the inner ring 31 or the outer ring 32. When the temperature of the bearing 3 changes, the air temperature of the first space 301 changes faster than the air temperature of the second space 302. The heat flux sensor 4 measures the air temperature in the first space 301.
 〈作用効果について〉
 本実施の形態に係る軸受装置100によれば、熱流束センサ4は突出部11に支持されている。このため、熱流束センサ4の表面部42が内輪31または外輪32の発熱部に近接できる。このため、熱流束センサ4は、内輪31または外輪32の発熱部が配置されている第1空間301の空気温度を計測できる。よって、軸受装置100内の温度変化をいち早く検出することができる。
<About action and effect>
According to the bearing device 100 according to the present embodiment, the heat flux sensor 4 is supported by the protrusion 11. Therefore, the surface portion 42 of the heat flux sensor 4 can be brought close to the heat generating portion of the inner ring 31 or the outer ring 32. Therefore, the heat flux sensor 4 can measure the air temperature of the first space 301 in which the heat generating portion of the inner ring 31 or the outer ring 32 is arranged. Therefore, the temperature change in the bearing device 100 can be detected quickly.
 [実施の形態6]
 本実施の形態に係る工作機械200は、上述した実施の形態1から実施の形態5のいずれかに係る軸受装置100を用いることができる。図10を用いて、実施の形態5に係る工作機械200の構成を説明する。実施の形態6の軸受装置100は、特に説明しない限り、上記の実施の形態1と同一の構成および作用効果を有している。したがって、上記の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
[Embodiment 6]
As the machine tool 200 according to the present embodiment, the bearing device 100 according to any one of the above-described first to fifth embodiments can be used. The configuration of the machine tool 200 according to the fifth embodiment will be described with reference to FIG. Unless otherwise specified, the bearing device 100 of the sixth embodiment has the same configuration and operation and effect as those of the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description will not be repeated.
 工作機械200は、実施の形態1から実施の形態5のいずれかに係る軸受装置100と、回転体8を回転させるモータ300とを含んでいる。工作機械200は、例えば、スピンドル装置である。回転体8は、例えば、主軸である。軸受装置100は、モータ300によって回転される回転体8を回転可能に支持している。 The machine tool 200 includes a bearing device 100 according to any one of the first to fifth embodiments, and a motor 300 for rotating the rotating body 8. The machine tool 200 is, for example, a spindle device. The rotating body 8 is, for example, a main shaft. The bearing device 100 rotatably supports the rotating body 8 rotated by the motor 300.
 〈作用効果について〉
 本実施の形態に係る工作機械200は、上記の軸受装置100を含んでいる。このため、工作機械200の運転中に熱流束センサ4が軸受装置100内の温度変化を感度良く検出できる。これにより、軸受装置100が焼付くことを抑制することができるため、工作機械200が故障することを抑制することができる。
<About action and effect>
The machine tool 200 according to the present embodiment includes the bearing device 100 described above. Therefore, the heat flux sensor 4 can detect the temperature change in the bearing device 100 with high sensitivity during the operation of the machine tool 200. As a result, it is possible to suppress the seizure of the bearing device 100, and thus it is possible to prevent the machine tool 200 from failing.
 上記の各実施の形態は適宜組み合わせることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
Each of the above embodiments can be combined as appropriate.
It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 第1支持部、2 第2支持部、3 軸受、4 熱流束センサ、5 固定間座、6 ハウジング、7 前蓋、8 回転体、11 突出部、31 内輪、32 外輪、61 冷媒流路、62 冷媒、100 軸受装置、200 工作機械、300 モータ、Q 熱流束。 1 1st support, 2 2nd support, 3 bearings, 4 heat flux sensor, 5 fixed spacer, 6 housing, 7 front lid, 8 rotating body, 11 protruding part, 31 inner ring, 32 outer ring, 61 refrigerant flow path , 62 Refrigerant, 100 Bearing device, 200 Machine tool, 300 Motor, Q Heat flux.

Claims (9)

  1.  回転体を支持するための軸受と、
     熱流束を検出する熱流束センサと、
     前記熱流束センサを支持する第1支持部と、
     前記軸受を支持し、かつ前記第1支持部が固定された第2支持部とを備え、
     前記第1支持部は、前記第2支持部よりも高い熱伝導率を有している、軸受装置。
    Bearings to support the rotating body and
    A heat flux sensor that detects heat flux and
    The first support portion that supports the heat flux sensor and
    A second support portion that supports the bearing and has the first support portion fixed thereto is provided.
    The first support portion is a bearing device having a higher thermal conductivity than the second support portion.
  2.  前記軸受と隣り合う固定間座をさらに備え、
     前記固定間座は、前記第1支持部および前記第2支持部を含む、請求項1に記載の軸受装置。
    Further provided with a fixed spacer adjacent to the bearing
    The bearing device according to claim 1, wherein the fixed spacer includes the first support portion and the second support portion.
  3.  前記固定間座に取り付けられたハウジングをさらに備え、
     前記ハウジングは、冷媒が流通可能な冷媒流路を含み、
     前記ハウジングは、前記冷媒流路に流通する前記冷媒により冷却されるように構成されている、請求項2に記載の軸受装置。
    Further provided with a housing attached to the fixed spacer
    The housing includes a refrigerant flow path through which the refrigerant can flow.
    The bearing device according to claim 2, wherein the housing is configured to be cooled by the refrigerant flowing in the refrigerant flow path.
  4.  前記第1支持部は、前記ハウジングに接している、請求項3に記載の軸受装置。 The bearing device according to claim 3, wherein the first support portion is in contact with the housing.
  5.  前記軸受と隣り合う固定間座と、
     前記固定間座に取り付けられたハウジングとをさらに備え、
     前記固定間座は、前記第1支持部からなり、
     前記ハウジングは、前記第2支持部を含む、請求項1に記載の軸受装置。
    A fixed spacer adjacent to the bearing,
    Further provided with a housing attached to the fixed spacer
    The fixed spacer comprises the first support portion.
    The bearing device according to claim 1, wherein the housing includes the second support portion.
  6.  前記軸受と隣り合う固定間座と、
     前記固定間座に取り付けられたハウジングとをさらに備え、
     前記ハウジングは、前記第1支持部および前記第2支持部を含む、請求項1に記載の軸受装置。
    A fixed spacer adjacent to the bearing,
    Further provided with a housing attached to the fixed spacer
    The bearing device according to claim 1, wherein the housing includes the first support portion and the second support portion.
  7.  前記軸受と隣り合う固定間座と、
     前記固定間座に取り付けられたハウジングと、
     前記ハウジングに隣り合う前蓋とをさらに備え、
     前記前蓋は、前記第1支持部および前記第2支持部を含む、請求項1に記載の軸受装置。
    A fixed spacer adjacent to the bearing,
    With the housing attached to the fixed spacer,
    Further provided with a front lid adjacent to the housing
    The bearing device according to claim 1, wherein the front lid includes the first support portion and the second support portion.
  8.  前記軸受は、内輪および前記内輪と向かい合う外輪を含み、
     前記第1支持部は、前記内輪と前記外輪との間に前記第2支持部から突出している突出部を有し、
     前記熱流束センサは、前記突出部に支持されている、請求項1~7のいずれか1項に記載の軸受装置。
    The bearing includes an inner ring and an outer ring facing the inner ring.
    The first support portion has a protruding portion protruding from the second support portion between the inner ring and the outer ring.
    The bearing device according to any one of claims 1 to 7, wherein the heat flux sensor is supported by the protruding portion.
  9.  請求項1~8のいずれか1項に記載の前記軸受装置と、
     前記回転体を回転させるモータとを備える、工作機械。
    The bearing device according to any one of claims 1 to 8.
    A machine tool including a motor for rotating the rotating body.
PCT/JP2020/033796 2019-09-30 2020-09-07 Bearing device and machine tool WO2021065361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-178948 2019-09-30
JP2019178948A JP2021055744A (en) 2019-09-30 2019-09-30 Bearing device and machine tool

Publications (1)

Publication Number Publication Date
WO2021065361A1 true WO2021065361A1 (en) 2021-04-08

Family

ID=75270304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033796 WO2021065361A1 (en) 2019-09-30 2020-09-07 Bearing device and machine tool

Country Status (2)

Country Link
JP (1) JP2021055744A (en)
WO (1) WO2021065361A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187451A (en) * 2016-04-08 2017-10-12 株式会社デンソー Monitoring device
JP2017187450A (en) * 2016-04-08 2017-10-12 株式会社デンソー Heat flux meter and abnormality diagnosis device
JP2019138464A (en) * 2018-02-13 2019-08-22 Ntn株式会社 Bearing device and spindle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187451A (en) * 2016-04-08 2017-10-12 株式会社デンソー Monitoring device
JP2017187450A (en) * 2016-04-08 2017-10-12 株式会社デンソー Heat flux meter and abnormality diagnosis device
JP2019138464A (en) * 2018-02-13 2019-08-22 Ntn株式会社 Bearing device and spindle device

Also Published As

Publication number Publication date
JP2021055744A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
TWI737678B (en) Rotary union, rotary device, and method for operating a rotary device
JP7362239B2 (en) Bearing devices and spindle devices
JP4993492B2 (en) Bearing device
JP7195329B2 (en) Mechanical seals for sealing fluid-conducting passages and/or spaces and methods for monitoring the wear of mechanical seals
KR101484838B1 (en) Multi-component force measurement spindle unit of tire testing machine
TW201734329A (en) Bearing device
JP2013050193A (en) Bearing device
WO2013187322A1 (en) Breakdown-predicting mechanical seal system for sealing high-temperature seal fluid
JP5842965B2 (en) Spindle device of machine tool provided with bearing device with load sensor
WO2021065361A1 (en) Bearing device and machine tool
EP3180529B1 (en) Rotor bearing temperature sensor
JP2012021574A (en) Bearing device
WO2019159838A1 (en) Bearing device and spindle device
JP2014163434A (en) Temperature detecting device, temperature detection system, bearing pad, bearing device and rotary machine
JP2020133889A (en) Bearing device and spindle device
JP6967495B2 (en) Bearing equipment
WO2021059919A1 (en) Bearing device and spacer
WO2020166542A1 (en) Bearing device and spindle device
JP2020075341A (en) Cooling structure of machine tool main spindle
JP7411405B2 (en) Bearing devices, spindle devices, bearings, and spacers
CN116323051A (en) Bearing device
JPH03163214A (en) Bearing device
JP4020237B2 (en) Sealing device for vacuum equipment
RU2085291C1 (en) Grinding roll
CN115038538A (en) Calculation method, bearing device, and spindle device of machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871229

Country of ref document: EP

Kind code of ref document: A1