WO2020166465A1 - 画像処理装置、画像処理方法、及びプログラム - Google Patents

画像処理装置、画像処理方法、及びプログラム Download PDF

Info

Publication number
WO2020166465A1
WO2020166465A1 PCT/JP2020/004457 JP2020004457W WO2020166465A1 WO 2020166465 A1 WO2020166465 A1 WO 2020166465A1 JP 2020004457 W JP2020004457 W JP 2020004457W WO 2020166465 A1 WO2020166465 A1 WO 2020166465A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
resolution
aberration
eye
inspected
Prior art date
Application number
PCT/JP2020/004457
Other languages
English (en)
French (fr)
Inventor
小野 光洋
田中 信也
宏治 野里
耕平 竹野
和英 宮田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019214381A external-priority patent/JP2020131017A/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2020166465A1 publication Critical patent/WO2020166465A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the present invention relates to an image processing device, an image processing method and a program, and further to an ophthalmologic imaging system.
  • OCT Optical Coherence Tomography: optical coherence tomography apparatus or optical coherence tomography
  • OCT Optical Coherence Tomography
  • TD-OCT Time Domain OCT: time domain method
  • SD-OCT Spectral Domain OCT: spectral domain method
  • Non-Patent Document 1 shows an example of AO-OCT.
  • These AO-SLO and AO-OCT generally measure the wavefront of return light by the Shack-Hartmann wavefront sensor method.
  • the Shack-Hartmann wavefront sensor system measures the wavefront of return light by injecting measurement light into the eye and receiving the return light with a CCD camera through a microlens array.
  • the deformable mirror and the spatial phase modulator are driven so as to correct the measured wavefront, and the fundus is photographed through them.
  • it is possible to capture a planar image or a tomographic image with high resolution of the fundus by reducing unclear portions in the captured image (Patent Document 1).
  • the present invention has been made in view of such a situation, and one of its purposes is to acquire an image with high resolution with a simple configuration.
  • Image acquisition means for acquiring an image of the first resolution of the eye to be inspected;
  • Aberration acquisition means for acquiring information about the aberration of the eye to be inspected,
  • Image processing means for generating an image of a second resolution higher than the first resolution from the image of the first resolution and the information about the aberration using a learned model.
  • FIG. 1 shows a schematic configuration of an example of an ophthalmologic photographing device that photographs a fundus image serving as teacher data.
  • FIG. 2 is a schematic diagram of a Shack-Hartmann sensor in the ophthalmologic imaging apparatus shown in FIG. 1.
  • FIG. 2B is a schematic view of the Shack-Hartmann sensor shown in FIG. 2A viewed from the position indicated by A-A′.
  • FIG. 3 shows schematic diagrams of wavefronts measured by the Shack-Hartmann sensor shown in FIGS. 2A to 2C.
  • FIG. 2 is a block diagram illustrating a configuration of an image processing unit of the ophthalmologic photographing apparatus shown in FIG. 1.
  • 6 is a flowchart illustrating an imaging control process when obtaining learning data used to generate a learned model used in the first embodiment.
  • 5B is a flowchart illustrating the aberration correction process in FIG. 5A.
  • 5 is a flowchart illustrating processing executed by the CNN processing unit illustrated in FIG. 4.
  • 1 shows a schematic configuration of an example of an ophthalmologic photographing apparatus that photographs a fundus image according to the first embodiment.
  • 9 is a block diagram illustrating a configuration of an image processing unit according to Modification Example 1.
  • FIG. 9 is a block diagram illustrating a configuration of an image processing unit according to Modification 2.
  • FIG. 6 is a flowchart illustrating a shooting control process according to the first embodiment.
  • 1 shows a schematic configuration of an example of an ophthalmologic imaging apparatus that captures a tomographic image serving as teacher data.
  • 9 is a flowchart illustrating an imaging control process when obtaining learning data used to generate a learned model used in the third embodiment.
  • 3 shows a schematic configuration of an example of an ophthalmologic imaging apparatus that captures a tomographic image according to a third embodiment.
  • 9 is a block diagram illustrating a configuration of an image processing unit according to Modification Example 1.
  • FIG. 9 is a block diagram illustrating a configuration of an image processing unit according to Modification 2.
  • FIG. 9 is a flowchart illustrating a shooting control process according to a third embodiment.
  • 9 is a flowchart illustrating a shooting control process according to a fourth embodiment.
  • the fundus of the eye is observed with the above-described ophthalmologic apparatus having a high NA, for example, as will be described in the following examples, the observation target is, for example, a photoreceptor cell.
  • a value that can be quantitatively evaluated which is a resolution
  • a resolution can be measured as a distance between these lines when two lines lined up are photographed and it is possible to visually recognize that these lines are two lines.
  • the cell walls of two photoreceptor cells correspond to this. If the image has a high resolution, the presence of individual photoreceptor cells can be visually recognized, and if the image has a low resolution, the cell wall of photoreceptor cells cannot be visually recognized, and individual photoreceptor cells cannot be distinguished.
  • the object to be measured is the eye, and in order to reduce the influence of the aberration of the eye to be examined in the image obtained by photographing the eye to be examined (for example, the fundus image), A learned model used in the process of correcting the fundus image is generated in advance. Then, an example will be described in which the learned model generated is used to perform image correction for reducing the influence of the aberration generated in the eye to be inspected in the captured fundus image.
  • ⁇ Learning data creation device First, a method for acquiring learning data composed of input data used for learning image processing parameters and teacher data will be described.
  • an ophthalmologic imaging apparatus used to acquire a fundus image or the like that serves as learning data will be described.
  • the first embodiment relates to image processing when a fundus image is obtained using AO-SLO, and FIG. 1 shows a schematic configuration of the AO-SLO that obtains an aberration-corrected fundus image.
  • the AO-SLO (ophthalmologic imaging apparatus 1) shown in FIG. 1 includes a light source 101, an adaptive optical system, a scanning optical system 109-1, a tracking control system, a light intensity sensor 114, a control unit 117, an image processing unit 118, and a display. 119 is provided.
  • the adaptive optics system includes a wavefront measurement system and an aberration correction system.
  • the wavefront measuring system measures the wavefront shape of the return light from the fundus of the light with which the eye 111 to be inspected is irradiated.
  • the aberration correction system corrects the aberration caused by the eye 111 to be inspected according to the measured wavefront shape.
  • the scanning optical system scans the fundus with the light with which the eye 111 to be inspected is irradiated.
  • the control unit 117 controls the light source 101, the wavefront measurement system, the aberration correction system, and the scanning optical system, and the light intensity sensor 114 outputs a signal for generating a fundus image from the returned light.
  • the control unit 117 uses the output of the light intensity sensor 114 to generate a fundus image and the like.
  • the image processing unit 118 uses the various information obtained from the light intensity sensor 114 and the like to execute the above-described learning data generation and the like.
  • the display 119 displays images and the like generated by the control unit 117 and the image processing unit 118.
  • the ophthalmologic photographing apparatus 1 is illustrated as a form in which the image processing unit 118 and the display 119 are integrated, but these may be partially or wholly separate. Further, only the image processing unit 118 may be the image processing device. In this case, it may be further connected to a plurality of ophthalmologic imaging apparatuses via an arbitrary network such as the Internet. Further, it may be configured to have a learned model to be described later in the cloud system, to transmit the image of the first resolution and the information regarding the aberration via the system server, and to receive the image of the second resolution.
  • the ophthalmologic imaging apparatus 1 shown in FIG. 1 is an example of a fundus imaging apparatus having an adaptive optics function, and another known fundus imaging apparatus having an adaptive optics function can be used. Hereinafter, each of these exemplified configurations will be described in detail.
  • an SLD light source (Super Luminescent Diode) having a wavelength of 795 nm was used as the light source 101.
  • the wavelength of the light source 101 is not particularly limited, but is preferably about 750 to 1500 nm for fundus imaging in order to reduce the glare of the subject and maintain the resolution.
  • the SLD light source is used here, other lasers or the like may also be used.
  • the light emitted from the light source 101 is commonly used for fundus imaging and wavefront measurement, but the light emitted from different light sources may be used to combine these lights in the middle of the optical path. ..
  • the light emitted from the light source 101 passes through the single mode optical fiber 102 and is emitted by the collimator 103 as parallel light rays (measurement light 105).
  • the polarization of the emitted light may be adjusted by a polarization adjuster (not shown) provided in the path of the single mode optical fiber 102.
  • a polarization adjuster (not shown) provided in the path of the single mode optical fiber 102.
  • an optical component for adjusting polarization may be arranged in the optical path after being emitted from the collimator 103.
  • the polarization adjuster is adjusted so that the polarization of the light emitted from the collimator 103 becomes a polarization component horizontal to the plane of the drawing.
  • the emitted measurement light 105 passes through the first light splitting unit 104 composed of a beam splitter and is guided to the adaptive optical system.
  • the adaptive optics system is composed of a second light splitting unit 106, a wavefront sensor 115, a wavefront correction device 108, and reflection mirrors 107-1 to 107-4 for guiding the measurement light and the like.
  • the reflection mirrors 107-1 to 107-4 are installed so that at least the pupil of the eye 111 to be inspected and the wavefront sensor 115 and the wavefront correction device 108 are in an optically conjugate relationship.
  • a beam splitter is used here as the second light splitting unit 106.
  • the measurement light 105 that has passed through the second light splitting unit 106 is reflected by the reflection mirrors 107-1 and 107-2 and enters the wavefront correction device 108.
  • the measurement light 105 reflected by the wavefront correction device 108 is further reflected by the reflection mirrors 107-3 and 107-4 and guided to the scanning optical system.
  • a deformable mirror is used as the wavefront correction device 108.
  • the deformable mirror is a mirror whose reflection surface is divided into a plurality of regions, and by changing the angle of each region, the wavefront of the reflected light from the subject's eye or the measurement light 105 can be changed.
  • a spatial phase modulator using a liquid crystal element can be used instead of the deformable mirror. In that case, two spatial phase modulators may be used to correct all the polarization components of the return light from the eye to be examined.
  • the measurement light 105 reflected by the reflection mirrors 107-3 and 107-4 is one-dimensionally or two-dimensionally scanned by the scanning optical system 109-1.
  • one resonant scanner and one galvano scanner are used for the scanning optical system 109-1 for main scanning (horizontal fundus direction) and sub-scanning (vertical fundus direction).
  • the scanner used for the scanning optical system 109-1 is not limited to this mode, and two galvano scanners can also be used. Also, other known scanners can be used.
  • an optical element such as a mirror or lens may be used between each scanner.
  • a tracking mirror 109-2 is further arranged as a tracking control system in addition to the scanning optical system.
  • the tracking mirror 109-2 is connected to the tracking control unit 120, and receives an instruction to change the scanning position of the measurement light from the tracking control unit 120 so as to correct the influence of the eye movement in the acquired image.
  • the tracking mirror 109-2 is composed of two galvanometer scanners, and can move the photographing area in two directions.
  • the scanning optical system 109-1 may double as the tracking mirror 109-2.
  • the tracking mirror 109-2 may correspond to only the scanning direction of the resonance scanner of the scanning optical system 109-1 and the tracking mirror 109-2 may be a two-dimensional mirror.
  • a relay optical system (not shown) may be used in order to make the scanning optical system 109-1 and the tracking mirror 109-2 optically conjugate with each other.
  • the measurement light 105 deflected by the scanning optical system 109-1 and the tracking mirror 109-2 is applied to the eye 111 to be inspected through the objective lenses 110-1 and 110-2.
  • the measurement light 105 with which the eye 111 to be inspected is scanned by the fundus and is reflected or scattered to become return light.
  • By adjusting the positions of the objective lenses 110-1 and 110-2 it is possible to appropriately irradiate the measurement light 105 according to the diopter of the eye 111 to be inspected.
  • the lens is used for the objective unit, these may be configured by a spherical mirror or the like.
  • the beam diameter of the measurement light 105 with which the eye 111 to be examined is irradiated is 6 mm, and when the wavefront aberration is corrected, a spot with a diameter of 3.5 ⁇ m is formed on the fundus.
  • the return light reflected or scattered from the retina of the eye to be inspected 111 travels in the opposite direction on the path when it is incident, and a part of the return light is reflected by the wavefront sensor 115 by the second light splitting unit 106 to change the wavefront of the return light. Used to measure.
  • the light reflected by the second light splitting unit 106 toward the wavefront sensor 115 passes through the relay optical system and enters the wavefront sensor 115.
  • An aperture 121 is installed between the relay optical systems so that unnecessary return light from a lens or the like does not enter the wavefront sensor 115.
  • FIG. 2A shows a schematic view of the Shack-Hartmann sensor.
  • the light 201 for measuring the wavefront is focused on the focal plane 204 on the CCD sensor 203 through the microlens array 202.
  • FIG. 2B is a diagram showing a state viewed from the position indicated by A-A′ in FIG. 2A, and the microlens array 202 includes a plurality of microlenses 205. Since the light 201 is condensed on the CCD sensor 203 through each microlens 205, the light 201 is divided into the same number of spots as the number of the microlens 205 through which the light 201 has passed and condensed.
  • FIG. 2C shows a state where the light 201 is condensed in a spot shape on the CCD sensor 203.
  • the light becomes a luminous flux and is condensed as a spot 206.
  • the wavefront of the incident light is calculated from the position of each spot 206.
  • the inclination of the wavefront at each aberration measurement point is calculated from the difference between the reference position and the measured focus position when the wavefront of each spot has no aberration. By integrating this inclination, the phase information at each aberration measurement point can be obtained. It is also possible to calculate the Zernike coefficient (Zernike coefficient) from the difference between the reference position of each spot and the measured position.
  • Fig. 3A shows a schematic diagram when the wavefront of light having spherical aberration is measured.
  • the light 201 is assumed to be formed by a spherical wavefront as indicated by a broken line 207.
  • the light 201 is condensed by the microlens array 202 at a position in the vertical direction of the wavefront.
  • the obtained condensed state of each spot 206 on the CCD sensor 203 is shown in FIG. 3B. Since the light 201 has spherical aberration, the spot 206 is condensed in a state of being deviated to the center.
  • the wavefront of the light 201 can be known.
  • the Shack-Hartmann sensor having the 30 ⁇ 40 microlens array is used in the illustrated ophthalmologic imaging apparatus 1, the wavefront measuring apparatus used is not limited to this, and various known wavefront measuring apparatuses can be used. ..
  • a part of the return light transmitted through the second light splitting unit 106 is reflected by the first light splitting unit 104, and is guided to the light intensity sensor 114 through the collimator 112 and the optical fiber 113.
  • the light intensity sensor 114 converts the received light into an electric signal according to its intensity.
  • the light intensity sensor 114 is connected to the control unit 117, and this electric signal sent to the control unit 117 is imaged as a fundus image by the control unit 117.
  • the control unit 117 is also connected to the image processing unit 118, and the configured fundus image is displayed on the display 119 via the image processing unit 118.
  • the wavefront sensor 115 is connected to the adaptive optics control unit 116 and transmits the measured wavefront to the adaptive optics control unit 116.
  • the adaptive optics control unit 116 is also connected to the wavefront correction device 108, and the wavefront correction device 108 modulates the wavefront instructed by the adaptive optics control unit 116. That is, the adaptive optics control unit 116 calculates a modulation amount (correction amount) for each region of the wavefront correction device 108 that corrects a wavefront having no aberration based on the wavefront obtained as the measurement result of the wavefront sensor 115. .. Then, the wavefront correction device 108 is instructed to perform such modulation.
  • the measurement of the wavefront and the instruction to the wavefront correction device 108 are repeatedly executed, and the feedback control is always performed so that the optimum wavefront is obtained.
  • the objective lenses 110-1 and 110-2 have an optical system corresponding to the diopter of the eye to be inspected like the exemplified ophthalmologic imaging apparatus 1, the objective lenses 110-1 and 110-2 are adjusted well. Is important. By appropriately adjusting the position, it becomes unnecessary to correct the defocus component, which accounts for most of the aberration of the eye to be inspected, by the wavefront correction device 108 when executing the aberration correction processing.
  • the aperture 121 arranged immediately in front of the wavefront sensor 115 cuts unnecessary light so that the aberration can be measured more accurately. However, if the defocus of the aberration of the eye 111 to be inspected is not corrected, the return light from the retina, which should be originally passed, is also spread in the aperture 121 part, and most of it is cut by the aperture 121. ..
  • the image processing unit 118 includes an image acquisition unit 401, a CNN processing unit 402, a learning processing unit 403, and a storage unit 404.
  • the image acquisition unit 401 acquires, via the control unit 117, imaging data of the fundus and data acquired via the ophthalmologic imaging apparatus 1 such as a Hartmann image described later.
  • the image acquisition unit 401 includes an aberration information acquisition unit 405 that acquires aberration information such as a Hartmann image.
  • the aberration information acquisition unit 405 may be provided independently of the image acquisition unit 401.
  • the CNN processing unit 402 executes image processing using a convolutional neural network, which will be described later, and generates an aberration-corrected fundus image from the input fundus image before aberration correction and information regarding the aberration.
  • the learning processing unit 403 performs learning processing of the convolutional neural network referred to by the CNN processing unit 402, and generates a learned model described later.
  • the storage unit 404 can store each of the above-described various types of data acquired via the control unit 117 in association with each other, and can store the learned model generated by the learning processing unit 403.
  • the image processing unit 118 generates a learned model by using the learning data acquired by using the above-described ophthalmologic imaging apparatus 1.
  • an imaging control flow for obtaining a wavefront-corrected fundus image serving as learning teacher data according to the present embodiment will be described with reference to the flowcharts of FIGS. 5A and 5B.
  • step S501 the control unit 117 that receives an instruction from the inspector operates the light source 101 to start emission of light. It is assumed that the ophthalmologic imaging apparatus 1 is roughly aligned with the eye 111 to be inspected in advance by a known method when executing the process of step S501. Further, in the present embodiment, since the light for image capturing and the light for measuring wavefront are the same, the execution of the process of step S501 enables the photographing of the fundus and the wavefront measurement of return light.
  • step S502 the control unit 117 generates a fundus image (fundus plane image) based on the output of the light intensity sensor 114, and displays it on the display 119.
  • the control unit 117 moves an electric stage (not shown) in accordance with an inspector's input based on the fundus image displayed on the display 119 to perform approximate focus adjustment (rough focus adjustment) in the ophthalmologic imaging apparatus 1.
  • Focus adjustment is performed, for example, by maximizing the brightness value of the fundus image.
  • the rough focus adjustment is performed by the inspector, the rough focus adjustment may be performed by the control unit 117 based on the brightness value described above.
  • step S502 the control unit 117 further performs XY fine alignment of the imaging unit with respect to the eye 111 to be inspected.
  • the inspector observes the Hartmann image of the wavefront sensor 115 displayed on the display 119.
  • the wavefront sensor 115 is adjusted so that its center position is aligned with the optical axis of the ophthalmologic imaging apparatus 1 or the like.
  • the inspector can perform the alignment in the X direction and the Y direction by adjusting the position of the ophthalmologic imaging apparatus 1 with respect to the eye 111 to be inspected so that the Hartmann image is aligned with the center of the wavefront sensor 115.
  • step S503 the control unit 117 uses the wavefront sensor 115 to acquire a Hartmann image from the return light from the fundus. At that time, the control unit 117 recognizes the spot image obtained from the Hartmann image and acquires the number and the arrangement thereof. Then, based on the number and arrangement of the acquired spot images, the adaptive optics control unit 116 outputs an instruction for wavefront correction to the wavefront correction device 108.
  • step S504 the control unit 117 calculates the number of spot images (spot number n) included in the Hartmann image output from the adaptive optics control unit 116. In the following step S505, the control unit 117 determines whether the number of spots is sufficient. If the number of spots is sufficient for shooting (the number of spots n ⁇ the predetermined number N), the flow moves to the next step S506. If the number of spots is not sufficient, the flow returns to step S502 after the elapse of a certain time, and the position adjustment processing of step S502 and subsequent steps are repeated.
  • step S506 the control unit 117 calculates the focus value F from the measured spot by a known method.
  • step S507 the control unit 117 determines whether or not the focus position has been corrected so that the calculated focus value F becomes sufficiently small. Specifically, it is determined whether or not the calculated focus value F satisfies F ⁇ predetermined focus value F′. If the focus value has been corrected to be sufficiently small, the flow moves to the next step S508. If the focus value is not corrected to be sufficiently small, the flow returns to step S502 after a certain period of time, and the processing after the position adjustment in step S502 is repeated.
  • step S508 the control unit 117 first photographs the fundus without correcting aberrations.
  • the photographing may notify the inspector that the flow has reached step S508, and the inspector may determine the start, or the control unit 117 may determine execution of the imaging.
  • the wavefront correction device 108 is set to an initial state in which aberration is not corrected, and imaging is executed. Further, at that time, shooting parameters are also set.
  • the photographing parameters include the position and size of the photographing region of the fundus image, the number of frames in the case of a moving image, the frame rate, the presence/absence of recording. These imaging parameters may be set by the inspector, or may be set as predetermined by the control unit 117, such as according to preset parameters. After acquiring the fundus image captured without aberration correction, the flow moves to step S509.
  • step S509 the control unit 117 controls the wavefront correction device 108 via the adaptive optics control unit 116 to perform aberration correction processing.
  • step S510 the control unit 117 performs imaging of the fundus with the aberration corrected.
  • the parameters set in step S508 are used as the shooting parameters.
  • step S510 the control unit 117 also acquires the aberration information exemplified in the Hartmann image obtained when performing the wavefront correction in step S509, and stores the aberration information in the storage unit 404 to use as input data. May be.
  • the aberration information in this case is preferably the aberration information after the focus adjustment by adjusting the positions of the objective lenses 110-1 and 110-2 and before the aberration correction by the wavefront correction device 108.
  • step S511 the flow moves to step S511.
  • step S511 the control unit 117 determines whether or not there is, for example, an instruction to end photographing by the inspector. If the instruction to end shooting has not been received, the flow returns to step S508. Then, the photographing in the state without aberration correction, the aberration correction processing, and the photographing in the state with aberration correction from step S508 to step S510 are repeatedly executed until there is an instruction to end the photographing. If it is determined in step S511 that the control unit 117 has instructed to end shooting, the series of shooting processes is ended.
  • step S507 the aberration correction processing executed in step S507 will be described with reference to the flowchart shown in FIG. 5B.
  • the adaptive optics control unit 116 measures the aberration of the return light by the wavefront sensor 115 and acquires the aberration information.
  • the adaptive optics control unit 116 calculates the correction amount of the aberration corrected by the wavefront correction device 108 based on the measurement result.
  • the adaptive optics control unit 116 drives the wavefront correction device 108 based on the calculated correction amount.
  • the aberration measurement in step S521 is performed by measuring the spot of the Shack-Hartmann sensor and calculating the movement amount (deviation amount) of the spot position of each measurement point from the reference position. Generally, this amount of movement is represented by the amount of displacement in the X and Y directions.
  • the illustrated ophthalmologic imaging apparatus 1 uses a Shack-Hartmann sensor having a 30 ⁇ 40 microlens array. Therefore, when the measurement light is incident on all the lens arrays, the amount of movement of the spot at 1200 measurement points is calculated at 30 ⁇ 40. Using the data of the spot movement amount, the adaptive optics control unit 116 calculates the correction amount in step S522.
  • the correction amount of the aberration is obtained based on the movement amount of the spot obtained by the Shack-Hartmann sensor, and the wavefront correction device 108 is controlled based on the correction amount.
  • the aberration correction method is not limited to this method. Other than this method, for example, it is also possible to calculate the Zernike coefficient for expressing the wavefront from the measured movement amount of the spot. Therefore, the wavefront correction device 108 may be controlled based on the obtained Zernike coefficient.
  • the aberration information such as the Hartmann image obtained in S521, the fundus image captured before the aberration correction obtained in step S508, and the fundus image captured after the aberration correction obtained in step S510 correspond to each other. It is attached and stored in the storage unit 404. Further, by storing the time information of the photographing together with these information, it is possible to link the Hartmann image and the fundus image obtained at approximately the same time. Further, the aberration of the eye 111 to be examined changes moment by moment. For this reason, it is desirable that the fundus image and the Hartmann image that have not been corrected for aberration be acquired at approximately the same time and be associated with each other.
  • the aberration information and the fundus image, and the fundus image after the aberration correction are associated with each other to be a learning pair, and by generating a learned model from these learning pairs, a fundus image in which the influence of aberration is appropriately reduced is generated. it can.
  • the image processing unit 118 is used to generate a learned model that is a machine learning model according to a machine learning algorithm such as deep learning. The method for doing so will be described.
  • the learned model is generated by the learning processing unit 403.
  • the image acquisition unit 401 acquires the fundus image acquired before the above-described aberration correction and the fundus image acquired after the aberration correction.
  • the aberration information acquisition unit 405 included in the image acquisition unit 401 acquires the Hartmann image as the aberration information.
  • the images acquired by the image acquisition unit 401 and the aberration information acquisition unit 405 are sent to the learning processing unit 403.
  • the fundus image and the Hartmann image acquired before the aberration correction are used in the learning processing unit 403 as an input image that becomes the input data described below, and the fundus image that is acquired after the aberration correction is an output image that becomes the teacher data described below.
  • the learned model described here means training (learning) using a suitable learning data (learning data) in advance for a machine learning model according to an arbitrary machine learning algorithm such as deep learning. It is a model obtained by.
  • the learning data is composed of one or more pairs of input data and teacher data.
  • a fundus image and a Hartmann image captured without aberration correction are used as input data (input image), and an eye fundus image captured with aberration correction is used as teacher data (output image).
  • the learning processing unit 403 uses the learning data described above to generate a learned model by CNN (Convolutional Neural Network) processing, which is a type of deep learning.
  • FIG. 6 is a diagram showing a configuration of a learned model used in the learning processing unit 403.
  • the learned model according to this embodiment includes a fundus image encoder network 601, a combination processing unit 602, a decoder network 603, a Hartmann image encoder network 604, and a feature extraction network 605.
  • the learned model shown in the figure is composed of a plurality of layer groups that are responsible for processing and outputting the input data group. Types of the plurality of layer groups include a convolution layer, an activation layer, an activation layer, a downsampling layer, an upsampling layer, and a merging layer.
  • the convolution layer is a layer that performs convolution processing on the input value group according to the parameters such as the set kernel size of the filter, the number of filters, the stride value, and the dilation value.
  • the kernel size of this filter may be changed according to the number of dimensions of the input image.
  • the activation layer determines the activation of the total sum of input signals, and is composed of, for example, a step function, a sigmoid function, and a ReLU (Rectified Linear Unit).
  • the down-sampling (Pooling) layer is a layer that performs processing such as Max Pooling processing to reduce the number of output value groups to less than the number of input value groups by thinning out or combining the input value groups. ..
  • the upsampling layer performs processing such as linear interpolation processing to make the number of output value groups larger than the number of input value groups by duplicating the input value group or adding the value interpolated from the input value group. It is a layer to do.
  • the combining layer is a layer that inputs a value group such as an output value group of a certain layer or a pixel value group forming an image from a plurality of sources, and performs a process of combining them by adding or combining them. ..
  • the fundus image encoder network 601 and the Hartmann image encoder network 604 perform a convolution operation using a plurality of encoding layers on the fundus image and the Hartmann image that have not been subjected to aberration correction (wavefront correction) of input data.
  • Each encoding layer has one or more convolution processing units and pooling processing units, and is configured to internally hold the results of each layer.
  • the feature extraction network 605 can extract the feature data indicating the aberration from the input data image and output it as vector data.
  • the combination processing unit 602 can copy the output of the feature extraction network 605 according to the size at the time of combination and combine it with the fundus image encoder network 601.
  • the fundus image obtained without performing the wavefront aberration correction by the wavefront correction device 108 and the Hartmann image including the aberration information are used as the input data. Further, a fundus image obtained by correcting the wavefront aberration by the wavefront correction device 108 is used as the teacher data.
  • the aberration of the eye to be inspected may change with the passage of time due to, for example, eye fatigue during the examination. Therefore, as these learning data, it is preferable to use an image group captured at the shortest possible time interval.
  • the learned model is machine-learned using these learning data, and the network parameter for correcting the aberration is obtained using the learned model.
  • FIG. 7A shows a schematic configuration of an ophthalmologic imaging apparatus 700 that performs wavefront correction using a learned model without using the wavefront correction device 108 shown in FIG. 1 in this embodiment. It should be noted that in the ophthalmologic imaging apparatus 700, configurations having the same functions as those of the ophthalmologic imaging apparatus 1 shown in FIG. 1 will be denoted by the same reference numerals, and description thereof will be omitted here.
  • the ophthalmologic imaging apparatus 700 shown in FIG. 7A has a configuration in which the wavefront correction device 108 and the reflection mirrors 107-1 to 107-4 for guiding light thereto are removed from the ophthalmologic imaging apparatus 1 shown in FIG. ..
  • the adaptive optics control unit 716 since the wavefront correction device 108 does not exist, the adaptive optics control unit 716 does not control it. Further, the control unit 717 also does not perform control related to wavefront correction.
  • the image processing unit 718 uses the learned model generated by the image processing unit 118 described above, but does not execute generation of a new learned model, and therefore the image processing unit 718 includes the learning processing unit 403 in the image processing unit 118. You don't have to.
  • the ophthalmologic imaging apparatus 700 illustrated here is illustrated as a configuration excluding the wavefront correction device 108 and the reflection mirrors 107-1 to 107-4.
  • these configurations are mere examples, and the configurations may be such that the corresponding members and arrangements have the same or almost the same optical characteristics.
  • the light emitted from the light source 101 passes through the single-mode optical fiber 102 and is emitted by the collimator 103 as parallel light rays (measurement light 105) to the optical path of the measurement light.
  • the emitted measurement light 105 passes through the first light splitting unit 104 including a beam splitter and is guided to the adaptive optical system.
  • the adaptive optical system includes the second light splitting unit 106 and the wavefront sensor 115.
  • the measurement light 105 that has passed through the second light splitting unit 106 is guided to the scanning optical system 109-1, and is scanned one-dimensionally or two-dimensionally by the scanning optical system 109-1.
  • the measurement light 105 deflected by the scanning optical system 109-1 and the tracking mirror 109-2 is applied to the eye 111 to be inspected as light having a beam diameter of 6 mm via the objective lenses 110-1 and 110-2.
  • the measurement light with which the eye 111 to be inspected is scanned by the fundus of the eye and reflected or scattered to become return light.
  • By adjusting the positions of the objective lenses 110-1 and 110-2 it is possible to irradiate an appropriate measurement position on the fundus of the eye 111 to be examined in accordance with the diopter of the eye 111 to be examined.
  • the return light reflected or scattered from the retina of the fundus of the eye 111 to be examined travels in the opposite direction on the path of the incident light, and a part of the return light is reflected by the wavefront sensor 115 by the second light splitting unit 106 to return the return light. Used to measure wavefront.
  • the light reflected by the second light splitting unit 106 toward the wavefront sensor 115 passes through the relay optical system and enters the wavefront sensor 115.
  • An aperture 121 is installed between the relay optical systems.
  • a part of the return light transmitted through the second light splitting unit 106 is reflected by the first light splitting unit 104 and guided to the light intensity sensor 114 via the collimator 112 and the optical fiber 113.
  • the light intensity sensor 114 converts the received light into an electric signal according to its intensity, and outputs this to the control unit 717.
  • the control unit 717 images the obtained electric signal as a fundus image. Further, the generated image is displayed on the display 119 via the image processing unit 718.
  • the wavefront sensor 115 is connected to the adaptive optics control unit 716, and transmits information (aberration information) about the wavefront measured by the wavefront sensor 115 to the adaptive optics control unit 716.
  • the aberration information obtained as image information called a Hartmann image and the fundus image generated by the control unit 717 are stored in the storage unit 404, respectively.
  • the information and the image are also stored together with the time information when they are acquired, so that the Hartmann image and the fundus image obtained at approximately the same time can be linked.
  • step S807 the same processing as the processing performed in steps S501 to S507 described in FIG. 5A is executed.
  • the control unit 717 determines that the calculated focus value F is corrected to be sufficiently small, and the flow moves to step S808.
  • step S808 the wavefront sensor 115 measures the aberration of the return light and acquires the aberration information.
  • the obtained aberration information is stored in the storage unit 404 as image information called a Hartmann image.
  • step S809 the control unit 717 photographs the fundus and acquires the fundus image.
  • step S508 in FIG. 5A the above-described imaging parameters are also set.
  • step S810 the Hartmann image obtained in step S803 and the fundus image obtained in step S809 are input to the network created as a learned model.
  • the image processing unit 718 executes image correction of the fundus image from the input fundus image and Hartmann image by using the learned model, and generates a fundus image obtained in a state in which the aberration is corrected.
  • step S811 ends, the flow moves to step S811.
  • the process executed in step S811 is the same as the process executed in step S511 described above, and thus the description thereof is omitted here.
  • the fundus image obtained after the aberration correction is generated from the acquired fundus image and the Hartmann image (information about the aberration).
  • the Hartmann image information about the aberration.
  • the adaptive optics is suitable for correcting high-order aberrations with a small correction amount, but it is difficult to accurately correct low-order aberrations that require a large correction amount. Therefore, for example, input data and teacher data are obtained in a state where low-order aberrations are corrected (reduced) using a cross cylinder, and low-order aberrations are corrected for a learned model generated from them. By inputting a fundus image or the like, a suitably aberration-corrected fundus image can be obtained. In this case, the input information regarding the aberration is information regarding higher-order aberrations.
  • the cross cylinder is an optical member composed of a combination of two cylinder lenses, and having a function of correcting low-order aberrations such as astigmatism by changing the relative angle and the total angle of the combination. Further, the cross cylinder may be provided, for example, in the arrangement of the objective lenses 110-1 and 110-2, and these objective lenses can also play the role.
  • the processing for generating the fundus image that is likely to be acquired after the aberration correction described in the above-mentioned embodiment is premised on that the Hartmann image is appropriately obtained. Therefore, for example, when the number of spots in the Hartmann image acquired in step S803 is smaller than the input data or the amount of positional deviation of each spot is larger than the input data, a warning may be given to the user. ..
  • the control unit 717 compares the number of spots set in advance as a threshold value or the positional deviation amount of each spot with those actually measured, and when either or both of them exceeds the threshold value, for example, a display is performed. This may be displayed on 119.
  • the learned model is generated in the image processing unit 118 attached to the ophthalmologic photographing apparatus 1.
  • the image processing unit 118 that generates the learned model and the ophthalmologic photographing apparatus 1 integrally, it is easy to align the timing of photographing the image set as the learning data.
  • these can be separated, and can be configured as an arithmetic unit such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the image processing unit 118 is constructed as a single device as a device for generating a learned model, these image groups are acquired from a plurality of ophthalmologic imaging devices and storage devices via a network or the like, and a learned model is generated. May be. In this case, these image groups need only be acquired at the shortest possible time intervals and be associated with each other.
  • the CNN processing unit 402 and the learning processing unit 403 may be configured by using, for example, a general-purpose computer, or may be configured by using a dedicated computer for the ophthalmologic imaging apparatuses 1 and 700. Further, these processing units may be configured by a CPU and an MPU (Micro Processing Unit) not shown, and the storage unit 404 may be configured by a storage medium including a memory such as an optical disk or a ROM (Read Only Memory). Each component other than the storage unit 404 of the image processing unit (118, 718) may be configured by a software module executed by a processor such as a CPU or MPU. In addition, each of the constituent elements may be configured by a circuit that performs a specific function such as an ASIC or an independent device. The storage unit 404 may be configured by any storage medium such as an optical disk or a memory, for example.
  • control unit (117, 717) may have one or more processors such as CPU and storage media such as ROM. Therefore, each component of the control unit (117, 717) is connected to at least one processor and at least one storage medium, and functions when the processor executes the program stored in the storage medium. May be configured as.
  • the processor is not limited to the CPU and MPU, and may be a GPU or the like.
  • the image processing apparatus includes the image acquisition unit (image acquisition unit 401), the aberration acquisition unit (aberration information acquisition unit 405), and the image processing unit (CNN processing unit).
  • the image acquisition unit acquires, for example, a fundus image before aberration correction as an image of the eye 111 to be inspected having the first resolution.
  • the aberration acquisition unit acquires information regarding the aberration of the eye 111 to be inspected, which is exemplified by the Hartmann image.
  • the image processing means uses the learned model described above to reduce the aberration contained in the image of the first resolution or the influence thereof based on the image of the first resolution and the information on the aberration, thereby achieving a high resolution.
  • a second resolution image of The image of the second resolution is an image having a higher resolution than the image of the first resolution, which is highly likely to be obtained by acquiring the fundus image of the eye to be inspected in the state where the aberration correction is performed.
  • the image with the first resolution is an image containing the photoreceptor cells of the eye to be examined
  • the image with the second resolution is also an image containing the photoreceptor cells.
  • the photoreceptor cell region in the image of the second resolution is more discriminated than the photoreceptor cell region in the image of the first resolution. It will be easy.
  • high resolution and low resolution are relative, and an example in which a high resolution image makes it easier to discriminate individual photoreceptor cells than a low resolution image is shown.
  • a resolution of about 5 ⁇ m that facilitates the discrimination of individual photoreceptor cells is called high resolution, and a resolution of about 20 ⁇ m that does not facilitate the discrimination of individual photoreceptor cells is used.
  • the resolution is low, the numerical value is not limited to this.
  • the image processing apparatus described above may further include a storage unit (storage unit 404).
  • the storage unit stores the Hartmann image and the like acquired when the image with the first resolution before aberration correction is acquired, in association with the image with the first resolution.
  • the aberration of the eye to be inspected often changes with the passage of time, and the image before aberration correction and the Hartmann image acquired at about the same time as the acquisition of the image may be stored in association with each other.
  • the influence of the aberration can be more accurately reduced and acquired.
  • Such a fundus image can be obtained.
  • the above-described image processing unit 118 further includes an image generating unit and an aberration information generating unit, and constitutes an ophthalmic photographing system.
  • the image generation unit (light intensity sensor 114, control unit 717) that acquires the fundus image as the AO-SLO generates the fundus image as the AO-SLO by using the return light from the eye 111 to which the illumination light is irradiated. ..
  • the aberration information generation means (wavefront sensor 115, adaptive optics control unit 116) generates the above-mentioned information regarding the aberration.
  • the information regarding the aberration may be a Hartmann image obtained from the return light of the light applied to the eye 111 to be inspected, or a Zernike coefficient obtained from the Hartmann image.
  • the present embodiment can configure the invention as a learned model.
  • the learned model is obtained using the input data and the teacher data.
  • the input data includes a fundus image of the eye 111 and information about the aberration of the eye acquired in association with the fundus image.
  • the teacher data is a fundus image acquired so as to correspond to the fundus image obtained as input data in the eye 111 to be inspected with the aberration reduced.
  • the ophthalmologic photographing apparatus 1 shown in FIG. 1 can constitute a learned model generation apparatus.
  • the learned model generation device includes an input data acquisition unit that acquires the above-described input data, a teacher data acquisition unit that acquires teacher data, and a learning processing unit that generates a learned model using these input data and teacher data ( Learning means).
  • the input data acquisition unit has, for example, a configuration that executes the process of step S508 in FIG. 5A and a configuration that executes the process of step S511 in FIG. 5B. Further, the teacher data acquisition unit has a configuration for executing the process of step S508 of FIG. 5A.
  • the fundus image described above is preferably obtained even if this learned model is used. In some cases, it cannot be done. In this modification, a learned model that can deal with such a case will be described.
  • the learned model described above is generated for each shooting position or each layer to be focused.
  • the imaging position include the above-described macula and its vicinity, the optic disc and its vicinity, and other regions on the fundus.
  • examples of the layer to be focused include at least two layers of a photoreceptor cell (inner segment and outer segment) and its vicinity, and an optic nerve fiber layer and its vicinity.
  • a learned model previously generated for the photographing position and layer is selected. I'll do it.
  • the image before the aberration correction for the photographing position and the layer and the Hartmann image obtained when the image is acquired are input to the image processing unit 718.
  • the image processing unit 718 may select these learned models stored in the storage unit 404 in response to an instruction such as an imaging mode performed when the inspector executes imaging.
  • the image processing unit 718 in the present modification example further includes a selection unit 406, and the selection unit 406 selects the learned model generated by the learning processing unit 403 according to the input from the inspector or the like. Then, the CNN processing unit 402 is made to use this.
  • the information regarding the inspection object to be considered when generating the learned model is not limited to the above-described imaging position (region) and layer (retinal layer).
  • information about a specific object in the retina may be required, for example.
  • the object to be imaged is at least one of the photoreceptors, retinal capillaries, main retinal blood vessels, choroidal blood vessels, and the shadows of white blood cells running through the capillaries, a trained model corresponding to these is generated in advance.
  • the learned data corresponding to this is obtained by using the input data and the teacher data obtained by selecting only the image in which the one is captured. You should keep it.
  • the learned model generated in this way it is possible to suitably obtain an image (image that can be acquired after aberration correction) that is likely to be obtained by correcting the aberration of the imaging target.
  • a selection unit that selects a learned model used by the image processing unit 718 from a plurality of learned models is further provided.
  • the plurality of learned models include the acquisition position of the fundus image, the position where the ophthalmologic imaging apparatus 700 is focused when acquiring the fundus image, and the image acquisition of the eye 111 to be inspected when acquiring the fundus image. It is preferable to include a trained model according to at least one of the object. This makes it possible to obtain an image that can be acquired by appropriately reducing the influence of aberration according to the imaged site and the like.
  • a learned model is generated for each imaging region and each layer to be focused, and also for each imaging target, and each of the learned models is selected and used at the time of imaging and after the aberration correction.
  • An image that can be acquired is properly obtained.
  • information regarding the capturing site, the layer to be focused on, or the capturing target is added to the input data.
  • the teacher data corresponds to these input data, and is an image in which an imaging part, a layer to be focused, or an aberration-corrected image of an object to be imaged.
  • FIG. 7C is a block diagram showing the functional arrangement of the image processing unit 718 according to this modification in the same manner as in FIG.
  • the image acquisition unit 401 in the present modification further includes an image information acquisition unit 406′.
  • the image information acquisition unit 406′ acquires information regarding image capturing, such as an imaged region used when the learning processing unit 403 generates a learned model, a layer to be focused, or information regarding an imaged object.
  • the learning processing unit 403 acquires the information regarding the image capturing as one of the input data.
  • the present modified example even when an arbitrary part or position of the eye to be inspected is imaged by the ophthalmologic image capturing apparatus 700, the input imaged part or the layer to which the focus is applied by the learned model, Alternatively, it is possible to omit the process of selecting the object to be photographed. That is, by inputting the acquired image, the Hartmann image acquired substantially at the same time, and the information regarding the imaging region, it is possible to obtain an image that can be acquired when aberration correction is performed according to these regions and positions.
  • the information regarding the region to be imaged is further added. Should also be input to the network of trained models.
  • the information regarding the imaged region for example, the acquisition position of the fundus image, the position where the fundus image is focused, and the object of image acquisition by the eye 111 to be acquired when acquiring the image, It is preferable to include at least one of the above.
  • the Hartmann image is included in the input data and the input image as information about the wavefront (aberration).
  • the Hartmann image is an image showing the wavefront shape of the return light, and the aberration of the wavefront can be easily known from the image.
  • the aberration information included in the return light is also included in the image that has not been subjected to aberration correction. Therefore, it is possible to obtain a learned model by using as an input data an image which is not corrected for aberration and shows the influence of the wavefront aberration, and using an image in which the influence of the aberration after the aberration correction is reduced as teacher data.
  • an image that can be acquired after the aberration correction by the image processing unit 718 without using the Hartmann image is obtained.
  • Example 2 As described above, in the first embodiment and its modification, an image called a Hartmann image is used as the information regarding the input data and the aberration input to the learned model.
  • numerical data representing aberrations such as Zernike coefficients, are used as input data or the like instead of Hartmann images.
  • a fundus image in which the aberration is not corrected and a Zernike coefficient representing the aberration are used as the input data.
  • the teacher data a fundus image captured by correcting aberration is used.
  • the ophthalmologic photographing apparatus 1 exemplified in the first embodiment can be used to create the teacher data. Since the Zernike coefficient is numerical data, it can be set arbitrarily.
  • the information about the aberration to be input in the learned model is different only in that the image of the first embodiment is changed to the Zernike coefficient, and the configuration of the ophthalmologic imaging apparatus 700 is not different from that of the first embodiment. The description is omitted.
  • the Zernike coefficient is obtained by expressing the aberration information by a polynomial, and when using this as input data, it is necessary to select up to what coefficient, and the order of Coefficient information is not reflected.
  • a Hartmann image it is possible to reflect all aberration information and obtain a fundus image that compensates for this information.
  • the Zernike coefficient when the Zernike coefficient is used, by performing image conversion using the Zernike coefficient, it is possible to create an image in which the influence of aberration is occurring arbitrarily. Therefore, for example, when creating the data used to generate the learned model, by performing image conversion using a plurality of different types of Zernike coefficients on the image after the aberration correction, a plurality of Zernike coefficients corresponding to the used Zernike coefficients are obtained. An image before aberration correction can be obtained. For this reason, it is not necessary to photograph the fundus before the actual aberration correction. Therefore, according to the Zernike coefficient, the single teacher data obtained by the ophthalmologic photographing apparatus 1 including the adaptive optics system used in the first embodiment is used.
  • a plurality of uncorrected images are obtained. That is, the Zernike coefficient is used to arbitrarily obtain the image before the aberration correction, that is, the input data in the learning data from the image after the aberration correction (teaching data). Specifically, a two-dimensional PSF (point spread function) is obtained from an arbitrary Zernike coefficient (aberration coefficient), and a pre-obtained aberration-corrected image and the obtained PSF are convoluted. As a result, an image before aberration correction corresponding to the Zernike coefficient is obtained.
  • PSF point spread function
  • the Zernike coefficient is obtained by converting the Hartmann image acquired by the ophthalmologic imaging apparatus 1 in the control unit 117, for example. Specifically, the shift amounts ⁇ x and ⁇ y between the focal position of each microlens of the microlens array 202 and the corresponding reference point position (focal position in the case of no aberration) and the focal length f of the microlens are acquired. .. Then, the obtained values of the shift amount and the focal length are stored in the storage unit 404 through the control unit 117. Letting W(X, Y) be the wavefront of the reflected light from the fundus, W can be polynomial approximated by the Zernike polynomial as in the following equation (1).
  • the Zernike coefficient Cij is calculated by the least square approximation that minimizes the squared error of the obtained shift amount and the focal length f and the approximate expression obtained by substituting the expression (1) into the expressions (2) and (3).
  • the Zernike coefficient Cij thus obtained and the photographed fundus image are input to the learned CNN.
  • the CNN processing unit 402 performs image conversion using the learned model to obtain a fundus image that can be acquired after aberration correction.
  • the user may be notified that the coefficient in the learned model has been exceeded.
  • an image that can be acquired after the aberration correction without using the wavefront correction device is obtained. It is preferably obtained. Further, by using the Zernike coefficient as the aberration correction information, it is possible to preferably obtain the learning data for generating the appropriate learned model even if there is no image before the aberration correction actually. That is, since any data other than the data actually photographed using adaptive optics can be used for learning as learning data, the number of data can be easily increased. Therefore, when an image that can be acquired after aberration correction is obtained using the learned model, it is possible to improve the degree of similarity with the image obtained by actually performing aberration correction.
  • the present embodiment can configure the invention as a learned model.
  • the learned model is obtained using the input data and the teacher data.
  • the teacher data is a fundus image acquired from the eye 111 to be inspected with the aberration reduced.
  • the input data is the fundus image before aberration correction generated from the fundus image after aberration reduction using the Zernike coefficient indicating the aberration of the eye 111 and the Zernike coefficient.
  • the learned model generation device that generates this learned model also constitutes the present invention.
  • the learned model generation device is an input data acquisition unit that acquires the above-mentioned input data, a teacher data acquisition unit that acquires teacher data, and a learning process that generates a learned model using these input data and teacher data.
  • the processing means (learning means) is provided.
  • the teacher data acquisition unit has a configuration for executing the process of step S508 of FIG. 5A, for example.
  • the input data acquisition unit converts the fundus image obtained by the teacher data acquisition unit using an arbitrary Zernike coefficient to generate a fundus image before aberration reduction.
  • the aberration of the fundus image obtained without using the adaptive optics system is obtained by using the learned model in which the fundus image captured by the ophthalmologic imaging apparatus (AO-SLO) having the adaptive optics system is generated as the teacher data.
  • AO-SLO ophthalmologic imaging apparatus
  • the method of correcting the above has been described.
  • an embodiment will be described in which the present invention is applied to tomographic imaging (imaging by AO-OCT) instead of AO-SLO.
  • ⁇ Learning data creation device First, a method for acquiring learning data composed of input data used for learning image processing parameters and teacher data will be described.
  • an ophthalmologic imaging apparatus used to acquire a fundus tomographic image serving as learning data will be described.
  • FIG. 9 components having the same operations as those of the first embodiment (ophthalmologic imaging apparatus 1) will be denoted by the same reference numerals, and description thereof will be omitted here.
  • Example 3 relates to image processing in the case of obtaining a fundus tomographic image using AO-OCT, and FIG. 9 shows a schematic configuration of the AO-OCT for obtaining an aberration-corrected fundus tomographic image.
  • the AO-OCT (ophthalmic imaging apparatus 900) shown in FIG. 9 further includes an OCT imaging section in addition to the SLO imaging section shown as the main part of the ophthalmic imaging apparatus 1 shown in FIG. Below, the added OCT imaging part is demonstrated.
  • the OCT imaging unit includes an OCT light source 901, a fiber coupler 903, collimators 906 and 910, an optical path length varying unit 907, a spectroscope 909, a light splitting unit 911, and an optical fiber that propagates light between them.
  • an SLD light source with a wavelength of 840 nm is used in the illustrated ophthalmic imaging apparatus 900.
  • the OCT light source 901 may be any one that emits light with low coherence, and an SLD light source having a wavelength width of 30 nm or more is preferably used.
  • an ultrashort pulse laser such as a titanium sapphire laser can be used for the OCT light source 901.
  • the light emitted from the OCT light source 901 passes through the single mode optical fiber 902 and is guided to the fiber coupler 903.
  • the path of the light from the OCT light source 901 is branched into the path of the optical fiber 904 and the path of the optical fiber 905 by the fiber coupler 903.
  • a fiber coupler having a branching ratio of 10:90 is used, 10% of the input light quantity is guided to the optical fiber 904 as measurement light, and the remaining 90% is optical fiber 905 as reference light. Be led to.
  • the measurement light passing through the optical fiber 904 is emitted as parallel light by the collimator 910.
  • the emitted measurement light is reflected by the light splitting unit 911 composed of a beam splitter and guided to the adaptive optical system.
  • the subsequent configuration is similar to that of the ophthalmologic imaging apparatus 1, and the measurement light is applied to the eye 111 to be inspected via the adaptive optical system and the scanning optical system.
  • the reflected and scattered light of the measurement light from the fundus of the eye 111 to be inspected travels the same path again, is guided to the optical fiber 904, and reaches the fiber coupler 903.
  • the reference light that has passed through the optical fiber 905 is emitted by the collimator 906, reflected by the optical path length varying unit 907, and returned to the fiber coupler 903 again.
  • the measurement light and the reference light that have reached the fiber coupler 903 are combined and guided to the spectroscope 909 through the optical fiber 908.
  • the spectroscope 909 further disperses the interference light obtained by the multiplexing for each frequency to generate an interference signal according to the frequency.
  • the control unit 917 performs known image generation processing on the obtained interference signal to generate a tomographic image of the fundus of the eye 111 to be inspected.
  • the illustrated ophthalmologic imaging apparatus 900 operates as a normal OCT and can capture a tomographic image with a wide angle of view (wide angle of view image).
  • the illustrated ophthalmologic imaging apparatus 900 is configured as an SD-OCT equipped with an adaptive optics system, but the form of OCT is not limited to that illustrated.
  • OCT may be a known OCT such as time domain OCT, SS-OCT (Sweet Source Coherence Tomography), or the like.
  • SS-OCT Signal Source Coherence Tomography
  • light sources that generate lights of different wavelengths at different times are used, and a spectroscopic element for acquiring spectrum information is unnecessary.
  • SS-OCT it is possible to acquire a high-depth image including not only the retina but also the choroid.
  • the image processing unit 918 generates a learned model by using the learning data acquired by using the above-described ophthalmic photographing apparatus 900.
  • an imaging control flow for imaging a wavefront-corrected tomographic image which is the learning data for learning of the present embodiment, will be described using the flowchart of FIG.
  • step S1001 the control unit 917 that receives an instruction from the inspector operates the OCT light source 901 and the light source 101 of the SLO imaging unit to start emission of light. It is assumed that the ophthalmic imaging apparatus 900 is roughly aligned with the eye 111 to be inspected in advance by a known method when executing the process of step S1001.
  • the timing for turning on the OCT light source 901 is not limited to this.
  • the OCT light source 901 may be turned on after the rough focus adjustment in step S1002 described below.
  • step S1002 the control unit 917 generates a fundus image (fundus plane image) based on the output of the light intensity sensor 114, and displays it on the display 119.
  • the control unit 917 moves the electric stage (not shown) in accordance with the input of the examiner based on the fundus image displayed on the display 119, and performs approximate focus adjustment (rough focus adjustment) of the SLO imaging unit and the OCT imaging unit. Adjustment). Focus adjustment is performed, for example, by maximizing the brightness value of the fundus image. Although the rough focus adjustment is performed by the inspector, it may be performed by the control unit 917 based on the above-described brightness value.
  • step S1002 the control unit 917 further performs XY fine alignment of the imaging unit with respect to the eye 111 to be inspected.
  • the inspector observes the Hartmann image of the wavefront sensor 115 displayed on the display 119.
  • fine alignment in the X direction and the Y direction of the SLO imaging unit and the OCT imaging unit with respect to the eye 111 is performed according to the input of the inspector who observed the position of the Hartmann image.
  • the wavefront sensor 115 is adjusted so that its center position is aligned with the optical axis of the OCT imaging unit or the like.
  • the inspector adjusts the positions of the OCT imaging unit and the like with respect to the eye 111 to be inspected so that the Hartmann image is aligned with the center of the wavefront sensor 115, thereby aligning the imaging units in the X and Y directions. be able to.
  • step S1003 the control unit 917 acquires the Hartmann image from the return light from the fundus using the wavefront sensor 115. At that time, the control unit 917 recognizes the spot image obtained from the Hartmann image and acquires the number and the arrangement thereof. Then, based on the number and arrangement of the acquired spot images, the adaptive optics control unit 116 outputs an instruction for wavefront correction to the wavefront correction device 108.
  • step S1004 the control unit 917 calculates the number of spot images (spot number n) included in the Hartmann image output from the adaptive optics control unit 116.
  • step S1005 the control unit 917 determines whether the number of spots is sufficient. When the number of spots sufficient for photographing (spot number n ⁇ predetermined number N) is reached, the flow moves to the next step S1006. If the number of spots is not sufficient, the flow returns to step S1002 after the lapse of a certain time, and the process of position adjustment in step S1002 and the subsequent steps are repeated.
  • step S1006 the control unit 917 adjusts the optical path length. Specifically, the inspector controls the optical path length varying unit 907 and adjusts the optical path length of the reference light in response to the reference light path length adjusting bar (not shown) displayed on the display 119. By adjusting the optical path length, an image of a desired layer in the tomographic image acquired by using the OCT imaging unit and displayed on the display 119 can be displayed at a desired position in the tomographic image display region.
  • the control unit 917 is automatically operated so that the process of identifying a predetermined layer from the tomographic image is combined and the predetermined layer is displayed at a desired position.
  • the optical path length may be adjusted with. The flow moves to step S1007 when a predetermined time has elapsed after the adjustment of the optical path length or when the input of the end of the adjustment is received.
  • the control unit 917 starts fundus tracking. Specifically, the control unit 917 that functions as the eye movement detecting unit calculates the amount of positional deviation (the amount of movement of the eye 111 to be inspected) from the feature points of the fundus image acquired using the SLO imaging unit. The control unit 917 controls the tracking mirror 109-2 by the tracking control unit 120 based on the calculated position shift amount. Accordingly, the ophthalmologic imaging apparatus 900 can acquire, for example, a plurality of tomographic images used when performing noise processing by superimposing tomographic images, a moving image, a 3D volume image, and the like, with a small positional deviation.
  • the fundus tracking is started, the flow moves to step S1008.
  • step S1008 the control unit 917 first captures a tomographic image without correcting aberrations.
  • the photographing may notify the inspector that the flow has reached step S1008, and the inspector may determine the start, or the control unit 917 may determine execution of the photographing.
  • the wavefront correction device 108 is set to an initial state in which aberration is not corrected, and imaging is executed. Further, at that time, shooting parameters are also set.
  • the imaging parameters include the position and size of the imaging area of the tomographic image, the number of frames in the case of a moving image, the frame rate, the presence/absence of recording, and the like. These imaging parameters may be set by the inspector, or may be set as predetermined by the control unit 917 such as according to preset parameters.
  • the interference light between the measurement light and the reference light is received by the spectroscope 909 and converted into a voltage signal. Furthermore, the obtained voltage signal group is converted into a digital value, and the control unit 917 saves and processes the data.
  • the control unit 917 generates a tomographic image of the fundus by processing the data based on the interference light. After acquiring the fundus image captured without aberration correction, the flow moves to step S1009.
  • step S1009 the control unit 917 controls the wavefront correction device 108 via the adaptive optics control unit 116 to perform aberration correction processing.
  • the flow moves to step S1010.
  • step S1010 the control unit 917 captures a tomographic image with the aberration corrected.
  • the parameters set in step S1008 are used as the shooting parameters.
  • step S1010 the control unit 917 also acquires the aberration information exemplified in the Hartmann image obtained in the aberration correction of step S1009, and stores this in the storage unit 404 to be input data. Good.
  • step S1011 After capturing the tomographic image, the flow moves to step S1011.
  • step S ⁇ b>1011 the control unit 917 determines whether or not there is, for example, a photographing end instruction from the inspector. If the instruction to end shooting has not been received, the flow returns to step S1008. Then, the shooting without aberration correction, the aberration correction processing, and the shooting with aberration correction from step S1008 to step S1010 are repeatedly executed until the shooting end instruction. If it is determined in step S1011 that the control unit 917 has instructed to end shooting, the series of shooting processes is ended.
  • the aberration information such as the Hartmann image obtained in step S1009 and the fundus image obtained in step S1008 without aberration correction are photographed at approximately the same time and are stored in the storage unit 404 in association with each other.
  • the aberration-corrected fundus image obtained in step S1010 is stored in the storage unit 404 in association with the aberration information and the fundus image. Further, by storing the shooting time information together with these pieces of information, it is possible to link the Hartmann image obtained at approximately the same time, the fundus image before aberration correction, and the fundus image after aberration correction.
  • learning data used for the aberration correction processing in AO-OCT can be obtained.
  • aberration information such as a Hartmann image and a tomographic image before aberration correction are obtained as input data, and a tomographic image after aberration correction is obtained as teacher data.
  • the generation of the learned model is the same as the processing described in the first embodiment, and thus the description thereof is omitted here.
  • FIG. 11A shows a schematic configuration of an ophthalmologic imaging apparatus 1100 that performs wavefront correction using a learned model without using the wavefront correction device 108 shown in FIG. 9 in this embodiment. It should be noted that configurations of the ophthalmologic imaging apparatus 1100 that have the same functions as those of the ophthalmologic imaging apparatus 900 shown in FIG. 9 will be denoted by the same reference numerals, and description thereof will be omitted here.
  • the ophthalmologic imaging apparatus 1100 illustrated in FIG. 11A has a configuration in which the wavefront correction device 108 and the reflection mirrors 107-1 to 107-4 for guiding light to the ophthalmologic imaging apparatus 900 illustrated in FIG. 9 are removed. .. Specifically, in this embodiment, since the wavefront correction device 108 does not exist, the adaptive optics control unit 1116 does not perform the control. Further, the control unit 1117 also does not perform control related to wavefront correction.
  • the image processing unit 1118 uses the learned model generated by the image processing unit 918 described above, but does not execute the generation of a new learned model. Therefore, the image processing unit 1118 performs the learning process in the image processing unit 118 shown in FIG.
  • the unit 403 may not be included.
  • the present embodiment it is possible to use the learned model generated by the above-described ophthalmologic imaging apparatus 900 and obtain a tomographic image of the fundus that has been subjected to aberration correction without using the wavefront correction device 108.
  • the shooting control flow according to this embodiment will be described below with reference to the flowchart of FIG.
  • steps S1201 to S1207 the same processing as steps S1001 to S1007 described in FIG. 10 is executed.
  • fundus tracking is started in step S1207
  • the flow moves to step S1208, and the control unit 1117 captures a tomographic image of the fundus.
  • shooting parameters are also set as in step S1008 in FIG.
  • the flow moves to step S1209.
  • step S1209 the Hartmann image obtained in step S1203 and the tomographic image obtained in step S1208 are input to the network created as a learned model.
  • the image processing unit 1118 executes image correction of the tomographic image by using the learned model from the input tomographic image and Hartmann image, and a tomographic image that can be acquired after the aberration correction (can be acquired after the aberration correction). Such a tomographic image) is generated.
  • a tomographic image that can be acquired after aberration correction is generated from the acquired tomographic image and Hartmann image (aberration information). This makes it possible to obtain a tomographic image that can be obtained after aberration correction without the need for the wavefront correction device 108 and the reflection mirrors 107-1 to 107-4 for guiding the light.
  • the cross cylinder is used as the aberration correcting means to perform the correction of the low-order aberrations in advance, and the tomographic image and the Hartmann image from the returning light after the correction of the low-order aberrations are obtained.
  • these may be used as input data.
  • a warning may be given to the inspector.
  • the above-described image processing unit 1118 further includes an image generating unit and an aberration information generating unit, and constitutes an ophthalmic photographing system.
  • the image generation unit (spectrometer 909, control unit 1117) that acquires a tomographic image as AO-OCT corresponds to the return light from the fundus of the eye 111 to be inspected, which is irradiated with the measurement light, as the AO-OCT.
  • a tomographic image (first image) is generated using the interference light obtained from the reference light.
  • the aberration information generation means (wavefront sensor 115, adaptive optics control unit 1116) generates the above-mentioned information regarding the aberration.
  • the information regarding the aberration may be a Hartmann image obtained from the return light of the light applied to the eye 111 to be inspected, or a Zernike coefficient obtained from the Hartmann image.
  • the target to be focused is a layer that generates an EnFace image in the depth direction of the retina.
  • the image used for diagnosis is the EnFace image
  • the learned model for the EnFace image described above is generated for each layer to be focused or for each depth.
  • the layer to be focused include, for example, layers existing in at least two or more fundus including the retinal pigment epithelium and its vicinity and the choroid layer and its vicinity.
  • the EnFace image before aberration correction and the Hartmann image obtained almost at the same time are used as input data for each of the layers to be focused.
  • EnFace images after aberration correction are acquired for each shooting position or each layer to be focused so as to correspond to each input data, and these are used as teacher data.
  • the learned model generated for the layer is selected in advance. Then, the EnFace image before aberration correction for the layer and the Hartmann image obtained when the tomographic image is acquired are input to the image processing unit 918. As a result, an EnFace image that can be acquired after aberration correction in the layer is appropriately obtained by using an appropriate learned model.
  • the image processing unit 1118 may select these learned models stored in the storage unit 404 in response to an instruction such as an imaging mode performed when the inspector executes imaging.
  • FIG. 11B is a block diagram showing the functional configuration of the image processing unit 1118 according to this modification in the same manner as in FIG.
  • the image processing unit 1118 according to the present modification further includes a selection unit 406, and the selection unit 406 selects the learned model generated by the learning processing unit 403 according to an input from an inspector or the like. Then, the CNN processing unit 402 is made to use this.
  • the EnFace image obtained by integrating the three-dimensional data of the fundus of the eye 111 to be examined in the depth direction of the fundus is input to the network in the learned model as the image before aberration correction. To be done.
  • an EnFace image with reduced aberration is output as an image whose aberration has been corrected by image processing.
  • a learned model is generated for each layer to be focused, and by selecting and using each learned model at the time of shooting, an EnFace image that can be acquired after aberration correction is suitably obtained.
  • the input data in addition to the three-dimensional data of the fundus and the Hartmann image acquired by OCT, the input data also includes information about the layer to be focused.
  • the teacher data corresponds to these input data, and becomes an aberration-corrected EnFace image in the focusing layer. That is, in the learned model generated in the present modified example, the image processing unit 1118 selects the teacher data according to the input information regarding the focused layer.
  • the image acquisition unit 401 in the present modification further includes an image information acquisition unit 406′.
  • the image information acquisition unit 406′ acquires information about image capturing such as an imaged region used when the learning processing unit 403 generates a learned model, a layer to be focused on, or information about an imaged object.
  • the learning processing unit 403 acquires the information regarding the image capturing as one of the input data.
  • the layer to which the input focus is applied is set by the learned model.
  • the selection process can be omitted. That is, by inputting the acquired three-dimensional data of the fundus, the Hartmann image acquired substantially at the same time, and the information about the imaging site, an EnFace image that can be acquired after aberration correction can be obtained in accordance with these sites and positions. it can.
  • the Hartmann image is included in the input data and the input image as information regarding the wavefront (aberration).
  • the Hartmann image is an image showing the wavefront shape of the return light, and the aberration of the wavefront can be easily known from the image.
  • the aberration information included in the return light is also included in the image that has not been subjected to aberration correction. Therefore, it is possible to obtain a learned model by using the EnFace image that has not been subjected to the aberration correction and shows the influence of the wavefront aberration as the input data and the EnFace image after the aberration correction as the teacher data. That is, if the target is an EnFace image before the aberration correction and the influence of the aberration can be discriminated, the EnFace image that can be acquired after the aberration correction by the image processing unit 1118 without using the Hartmann image. You can also get
  • a three-dimensional image generated from the three-dimensional data of the fundus of the eye 111 to be inspected is input to the network in the learned model as the image before aberration correction.
  • an EnFace image with reduced aberration is output as an image whose aberration has been corrected by image processing.
  • Example 4 In the ophthalmologic imaging apparatus used in this embodiment, a wavefront correction device having a smaller number of divisions of the reflection surface area than the number of divisions of the reflection surface area of the wavefront correction device used when the learned model is generated is used. .. Then, the learned model is used to obtain a fundus image having a higher resolution than that obtained by the wavefront correction device used, from the fundus image obtained by the ophthalmologic imaging apparatus and the aberration information. The details will be described below.
  • the present embodiment is different in that the ophthalmologic imaging apparatus uses a wavefront correction device having a smaller number of divisions of its reflection surface than the wavefront correction device 108 of the ophthalmologic imaging apparatus 1 shown in FIG.
  • the wavefront sensor 115 a wavefront correction device having a large number of divisions is used so as to support high resolution.
  • step S1310 the same processing as the processing performed in steps S801 to S809 described in FIG. 8 is executed.
  • step S1310 the aberration is corrected by the wavefront correction device having the small number of divisions described above.
  • step S1311 the control unit 717 measures the aberration by the wavefront sensor 115 again in a state where the aberration is corrected by the wavefront correction device.
  • the number of divisions of the area of the reflection surface is small, so that the aberration is not corrected to a suitable state.
  • step S1312 the control unit 717 performs imaging of the fundus with the wavefront obtained in step S1310 corrected. After photographing the fundus, the control unit 717 moves the flow to step S1313.
  • the CNN processing unit 402 performs learning on the remaining aberration information (eg, Hartmann image of Example 1) obtained in step S1311, and the fundus image obtained in step S1312, which have already been learned. Input to the network created as a model.
  • the image processing unit 718 executes image correction of the fundus image from the input fundus image and Hartmann image by using the learned model, and generates a fundus image obtained in a state in which the aberration is corrected.
  • step S1314 The process executed in step S1314 is the same as the process executed in step S511 and the like described above, and therefore the description thereof is omitted here.
  • a fundus image that can be obtained in a corrected aberration is obtained by using only a network created as a learned model as in the first embodiment. be able to.
  • the time required for the CNN processing can be shortened by using the image in which the aberration is corrected to some extent by the wavefront correction device having a small number of divisions as the input data. That is, in the present embodiment, an image obtained by using an aberration correction device with a small number of divisions, or an image of the first resolution which is an image obtained without aberration correction, and a Hartmann image corresponding to the image. Use as input data. Further, an image having a second resolution higher than the first resolution, which is obtained by correcting the aberration with the aberration correction device having a large number of divisions, is used as the teacher data.
  • the learned model used in this embodiment is generated using such learning data.
  • the device is an inexpensive wavefront correction device and the number of divisions of its reflecting surface is small, the resolution of the obtained fundus image is not sufficiently high, and only the fundus image in a state where individual photoreceptor cells cannot be easily identified can be obtained.
  • a fundus image with high resolution that facilitates the discrimination of photoreceptor cells can be obtained.
  • the apparatus can be downsized, the cost can be reduced, and the high resolution image quality can be achieved. It becomes possible to obtain.
  • each of the above-described embodiments implements the present invention as an image processing apparatus.
  • the embodiment of the present invention is not limited to the image processing apparatus or the image processing method described in the embodiment. It is also possible to realize the present invention as software that operates on a computer. Further, the CPU of the image processing apparatus controls the entire computer by using computer programs and data stored in the RAM and ROM. Further, it is also possible to control execution of software corresponding to each unit of the image processing apparatus, realize the functions of each unit, and execute each process performed at the time of image processing.
  • the present invention supplies a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program. It can also be realized by the processing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

簡素な構成で高い分解能の画像を取得する。 本発明の一態様に係る画像処理装置は、被検眼の第1の分解能の画像を取得する画像取得手段と、被検眼の収差に関する情報を取得する収差取得手段と、学習済モデルを用いて、第1の分解能の画像と収差に関する情報とから、第1の分解能の画像よりも高い分解能の第2の分解能の画像を生成する画像処理手段と、を備える。

Description

画像処理装置、画像処理方法、及びプログラム
 本発明は、画像処理装置、画像処理方法及びプログラム、更には眼科撮影システムに関する。
 近年、眼科用の撮影装置として、眼底に2次元的にレーザ光を照射してその戻り光を受光して画像化するSLO(Scanning Laser Ophthalmoscope:走査レーザ検眼鏡)が利用されている。また、低コヒーレンス光の干渉を利用したイメージング装置が開発されている。低コヒーレンス光の干渉を利用したOCT(Optical Coherence Tomography:光干渉断層像装置或いは光干渉断層像法)も実用化されている。OCTは、特に、眼底或いはその近傍の断層像を得る目的で用いられている。OCTの種類としては、TD-OCT(Time Domain OCT:タイムドメイン法)や、SD-OCT(Spectral Domain OCT:スペクトラルドメイン法)等を含め、種々のものが開発されてきている。
 特に、このような眼科用の撮影装置は、近年において、照射レーザの高NA化によって、より狭い領域に対してより詳細な観察を可能とする技術の開発が進められている。
 しかしながら、眼底を撮影する場合には、角膜や水晶体等の眼の光学組織を通して撮影をしなければならない。そのため、高NA化を進める場合、これら角膜や水晶体による収差の影響で撮影画像に不明瞭に見える部分が生じる等によって、より詳細な観察が難しくなる。
 そこで、眼による収差を測定し、その収差を補正する補償光学(Adaptive Optics:AO)機能を光学系に組み込んだ、AO-SLOやAO-OCTの研究が進められている。例えば、非特許文献1に、AO-OCTの例が示されている。これらAO-SLOやAO-OCTは、一般的にはシャックハルトマン波面センサー方式によって戻り光の波面を測定する。シャックハルトマン波面センサー方式とは、眼に測定光を入射し、その戻り光を、マイクロレンズアレイを通してCCDカメラで受光することによって戻り光の波面を測定するものである。測定した波面を補正するように、可変形状ミラーや空間位相変調器を駆動し、それらを通して眼底の撮影を行う。これにより、AO-SLOやAO-OCTでは、撮影画像中の不明瞭に見える部分を低減した、眼底の高い分解能を有した平面像や断層像の撮影が可能となる(特許文献1)。
特開2015-221091号公報
 しかしながら、波面補正デバイスや関係する光学系の追加は、眼科撮影装置の制御が複雑化すること、装置が大型化すること、更には高コスト化を招いてしまう。そのため、波面補正デバイス等を用いない簡素な構成で、高い分解能の画像が得られる手法の確立が望まれる。
 本発明は、このような状況に鑑みてなされたものであり、その目的の一つは、簡素な構成で高い分解能の画像を取得することである。
 上記課題を解決するために、本発明の一態様に係る画像処理装置は、
 被検眼の第1の分解能の画像を取得する画像取得手段と、
 前記被検眼の収差に関する情報を取得する収差取得手段と、
 学習済モデルを用いて、前記第1の分解能の画像と前記収差に関する情報とから、前記第1の分解能よりも高い分解能の第2の分解能の画像を生成する画像処理手段と、を備えることを特徴とする。
 本発明によれば、簡素な構成で高い分解能の画像を取得することが可能となる。 
教師データとなる眼底像を撮影する眼科撮影装置の一例の概略構成を示す。 図1に示す眼科撮影装置におけるシャックハルトマンセンサーの模式図を示す。 図2Aに示すシャックハルトマンセンサーをA-A’で示す位置から見た状態を模式的に示す。 図2Aに示すシャックハルトマンセンサーにおいて、CCDセンサー上に光が集光された状態を模式的に示す。 図2A乃至2Cに示すシャックハルトマンセンサーで測定された波面の模式図を示す。 収差を持つ光がシャックハルトマンセンサーのCCDセンサー上に集光された状態を模式的に示す。 図1に示す眼科撮影装置の画像処理部の構成を説明するブロック図を示す。 実施例1で用いる学習済モデルの生成に用いる学習データを得る際の撮影制御処理を説明するフローチャートを示す。 図5Aにおける収差補正処理を説明するフローチャートを示す。 図4に示したCNN処理部で実行される処理を説明するフローチャートを示す。 実施例1に係る、眼底像を撮影する眼科撮影装置の一例の概略構成を示す。 変形例1に係る画像処理部の構成を説明するブロック図を示す。 変形例2に係る画像処理部の構成を説明するブロック図を示す。 実施例1に係る撮影制御処理を説明するフローチャートを示す。 教師データとなる断層像を撮影する眼科撮影装置の一例の概略構成を示す。 実施例3で用いる学習済モデルの生成に用いる学習データを得る際の撮影制御処理を説明するフローチャートを示す。 実施例3に係る、断層像を撮影する眼科撮影装置の一例の概略構成を示す。 変形例1に係る画像処理部の構成を説明するブロック図を示す。 変形例2に係る画像処理部の構成を説明するブロック図を示す。 実施例3に係る撮影制御処理を説明するフローチャートを示す。 実施例4に係る撮影制御処理を説明するフローチャートを示す。
 以下、本発明を実施するための例示的な実施例を、図面を参照して詳細に説明する。ただし、以下の実施例で説明する寸法、材料、形状、及び構成要素の相対的な位置等は任意であり、本発明が適用される装置の構成又は様々な条件に応じて変更できる。また、図面において、同一であるか又は機能的に類似している要素を示すために図面間で同じ参照符号を用いる。なお、上述した高NA化した眼科装置により、例えば以下の実施例で述べるように眼底を観察する場合、観察対象には例えば視細胞があげられる。しかし、収差の影響が顕著な場合、解像度が高い撮像系を用いた場合であっても、視細胞の像自体が滲んだりぼやけたり歪んだりしてしまい、不明瞭な視細胞の像しか観察できない場合が生じる。個々の視細胞の細胞壁等が視認(判別)できないような不明瞭な部分を含む画像を、本明細書では分解能の低い画像と称する。本実施例では、このような分解能の低い画像に対して後述する学習済モデルを用いた画像処理を施すことにより、例えば明瞭な視細胞の像を観察できる、分解能が高くなった画像を提供することを可能とする。なお、本明細書において、分解能とは並べられた2本の線を撮影し、これら線が2本であることが視認できる際のこれらの線間の距離として測定できる、定量的に評価できる値を意味する。上述した例では、2つの視細胞の細胞壁がこれに対応するものと例示できる。高い分解能の画像であれば個々の視細胞の存在が視認でき、低い分解能の画像であれば視細胞の細胞壁を視認できずに個々の視細胞を区別できなくなる。
[実施例1]
 以下、図1乃至8を参照して、本発明の実施例1に係る画像処理装置について説明する。
 なお、本実施例においては、測定対象である被検査物を眼とし、該被検眼を撮影して得た画像(例えば、眼底像)における該被検眼の収差の影響を低減するために、該眼底像の補正を行う処理に用いる学習済モデルを予め生成しておく。そして、生成された学習済モデルを用いて、撮影された眼底像における被検眼で発生した収差の影響を低減するための画像補正をするようにした一例について説明する。なお、本実施例等においては、学習済モデルを用いて撮影された被検眼眼底像に画像処理を施すことで、実際に収差補正を行いながら該被検眼の眼底を撮影することで得られる可能性の高い眼底像、即ち収差補正後に得られるような眼底像を得ている。
<学習データ作成装置>
 まず、画像処理パラメータを学習するために用いる入力データと教師データとからなる学習データの取得方法について説明する。ここでは、学習データとなる眼底像等の取得に用いられる眼科撮影装置について説明する。なお、実施例1は、AO-SLOを用いて眼底像を得る場合の画像処理に関するものであり、図1は収差補正された眼底像を得るAO-SLOの概略構成を示している。
 図1に示すAO-SLO(眼科撮影装置1)には、光源101、補償光学系、走査光学系109-1、追尾制御系、光強度センサー114、制御部117、画像処理部118、及びディスプレイ119が設けられる。補償光学系には、波面測定系と収差補正系とが含まれる。波面測定系は被検眼111に照射された光の眼底からの戻り光の波面形状を測定する。収差補正系は、測定された波面形状に応じて、被検眼111により生じた収差を補正する。走査光学系は、被検眼111に照射する光により眼底を走査する。制御部117はこれら光源101、波面測定系、収差補正系、及び走査光学系を制御し、光強度センサー114は戻り光より眼底像を生成するための信号を出力する。制御部117は光強度センサー114の出力を用いて眼底像等を生成する。画像処理部118は、光強度センサー114等より得られた各種情報を用いて、上述した学習データの生成等を実行する。ディスプレイ119は、制御部117や画像処理部118により生成された画像等を表示する。
 なお、ここでは眼科撮影装置1が画像処理部118やディスプレイ119と一体となった形態を例示しているが、これらを部分的或いは全てを別体としてもよい。更に画像処理部118のみを画像処理装置としてもよい。この場合、更に、インターネット等の任意のネットワークを介して複数の眼科撮影装置と接続してもよい。更には、後述する学習済モデルをクラウドシステムに有し、第1の分解能の画像と収差に関する情報をシステムサーバを介して送信し、第2の分解能の画像を受信する構成としてもよい。また、図1に示す眼科撮影装置1は補償光学機能を備えた眼底撮影装置の一例であって、補償光学機能を有するその他の公知の眼底撮影装置を用いることもできる。以下、例示するこれら各構成について詳述する。
 図1に示す眼科撮影装置1において、光源101には波長795nmのSLD光源(Super Luminescent Diode)を用いた。光源101の波長は特に制限されるものではないが、眼底撮影用としては被検者の眩しさの軽減と分解能維持のために、750~1500nm程度が好適に用いられる。なお、ここではSLD光源を用いたが、その他のレーザ等も用いられる。また、ここでは光源101から出射された光を眼底撮影と波面測定とに共用しているが、それぞれ別光源から出射された光を用い、光路の途中でこれら光を合波する構成としてもよい。
 光源101から出射された光は、単一モード光ファイバー102を通って、コリメータ103により、平行光線(測定光105)として出射される。なお、出射される光の偏光は、単一モード光ファイバー102の経路に具備された不図示の偏光調整器により調整されるとよい。或いは別の構成として、コリメータ103から出射された後の光路に偏光を調整する光学部品を配置してもよい。ここでは、コリメータ103から出射される光の偏光が図の紙面に水平な偏光成分となるように偏光調整器を調整している。
 出射された測定光105はビームスプリッターからなる第1光分割部104を透過し、補償光学系に導光される。補償光学系は、第2光分割部106、波面センサー115、波面補正デバイス108及び、測定光等をこれに導光するための反射ミラー107-1~107-4から構成される。ここで、反射ミラー107-1~107-4は、少なくとも被検眼111の瞳と波面センサー115、波面補正デバイス108とが光学的に共役関係になるように設置される。また、第2光分割部106として、ここではビームスプリッターを用いる。
 第2光分割部106を透過した測定光105は、反射ミラー107-1と107-2で反射されて波面補正デバイス108に入射する。波面補正デバイス108で反射された測定光105は、更に反射ミラー107-3と107-4で反射され、走査光学系に導光される。
 なお、例示した眼科撮影装置1では、波面補正デバイス108として可変形状ミラーを用いた。可変形状ミラーは反射面が複数領域に分割されており、各領域の角度を変えることにより、反射される被検眼からの戻り光或いは測定光105の波面を変化させることができるミラーである。しかし、波面補正デバイスとして、可変形状ミラーの代わりに液晶素子を用いた空間位相変調器を用いることも可能である。その場合、被検眼からの戻り光の全偏光成分を補正するために、2つの空間位相変調器を用いるとよい。
 図1において、反射ミラー107-3,107-4で反射された測定光105は、走査光学系109-1によって、1次元もしくは2次元に走査される。例示した眼科撮影装置1では、走査光学系109-1に主走査用(眼底水平方向)と副走査用(眼底垂直方向)として一つの共振スキャナーと一つのガルバノスキャナーを用いた。しかし、走査光学系109-1に用いるスキャナーはこの態様に限られず、二つのガルバノスキャナーを用いることもできる。また、公知の他のスキャナーを用いることもできる。また、走査光学系109-1内の各スキャナーを光学的な共役状態にするために、各スキャナーの間にミラーやレンズといった光学素子を用いる構成としてもよい。
 例示する眼科撮影装置1では、走査光学系に加え、追尾制御系として、更にトラッキングミラー109-2を配している。トラッキングミラー109-2は、追尾制御部120に接続されており、眼の運動の影響を取得画像において補正するように測定光の走査位置の変更指示を追尾制御部120から受ける。トラッキングミラー109-2は2つのガルバノスキャナーから構成され、撮影領域を更に2方向に移動させることが可能である。しかし、走査光学系109-1がトラッキングミラー109-2を兼ねる構成としてもよい。或いは、トラッキングミラー109-2が走査光学系109-1の共振スキャナーによる走査方向にのみ対応する構成、トラッキングミラー109-2が2次元ミラーである構成としてもよい。また、走査光学系109-1とトラッキングミラー109-2を光学的に共役関係とするために、不図示のリレー光学系を用いてもよい。
 走査光学系109-1及びトラッキングミラー109-2で偏向された測定光105は、対物レンズ110-1,110-2を通して被検眼111に照射される。被検眼111に照射された測定光105は眼底で走査され、反射もしくは散乱されて戻り光となる。対物レンズ110-1,110-2の位置を調整することによって、被検眼111の視度にあわせて、測定光105の適切な照射を行うことが可能となる。なお、対物部にレンズを用いたが、これらを球面ミラー等で構成してもよい。ここで、本実施例において、被検眼111に照射される測定光105のビ-ム径は6mmであり、波面収差が補正された場合は眼底上では直径3.5μmのスポットを形成する。
 被検眼111の網膜から反射もしくは散乱された戻り光は、入射した時の経路を逆向きに進行し、第2光分割部106によってその一部は波面センサー115に反射され、戻り光の波面を測定するために用いられる。第2光分割部106で波面センサー115に向けて反射された光は、リレー光学系を通り、波面センサー115に入射する。リレー光学系の間にはアパーチャー121が設置されており、レンズ等からの不要な戻り光が波面センサー115に入射しないようにされている。
 なお、例示した眼科撮影装置1では、戻り光の波面形状を計測する波面センサー115として、シャックハルトマンセンサーを用いた。以下に図2A乃至2Cを参照してシャックハルトマンセンサーについて説明する。まず、図2Aにシャックハルトマンセンサーの模式図を示す。シャックハルトマンセンサーでは、波面を測定する光201は、マイクロレンズアレイ202を通して、CCDセンサー203上の焦点面204に集光される。図2AのA-A’で示す位置から見た様子を示す図が図2Bであり、マイクロレンズアレイ202は、複数のマイクロレンズ205から構成されている。光201は各マイクロレンズ205を通してCCDセンサー203上に集光されるため、光201は、光201が通過したマイクロレンズ205の個数分のスポットに分割されて集光される。
 図2CにCCDセンサー203上に光201がスポット状に集光された状態を示す。各マイクロレンズを通過することにより光は光束となり、スポット206として各々集光される。そして、この各スポット206の位置から、入射した光の波面を計算する。各スポットの波面に収差がない場合の基準位置と測定された集光位置との差から、各収差測定点における波面の傾きが算出される。この傾きを積分することによって、各収差測定点における位相情報が得られる。また、各スポットの基準位置と測定された位置の差からZernike係数(ゼルニケ係数)を算出することも可能である。
 例えば、図3Aに球面収差を持つ光の波面を測定した場合の模式図を示す。図示した例では、光201は破線207で示すような球面状の波面で形成されているとする。この場合、光201はマイクロレンズアレイ202によって、波面の局所的な垂線方向の位置に集光される。得られたCCDセンサー203上での各スポット206の集光状態を、図3Bに示す。光201が球面収差を持つため、スポット206は中央部に偏った状態で集光される。得られたスポット206それぞれの位置を計算することによって、光201の波面が分かる。なお、例示した眼科撮影装置1では、30×40個のマイクロレンズアレイを有するシャックハルトマンセンサーを用いたが、用いる波面計測装置はこれに限られず、公知の種々の波面計測装置を用いることができる。
 図1において、第2光分割部106を透過した戻り光は第1光分割部104によってその一部が反射され、コリメータ112及び光ファイバー113を通して光強度センサー114に導光される。光強度センサー114は、受光した光を、その強度に応じた電気信号に変換する。光強度センサー114は制御部117に接続されており、制御部117に送られたこの電気信号は制御部117によって眼底像として画像化される。制御部117は画像処理部118にも接続されており、構成された眼底像は画像処理部118を介してディスプレイ119に表示される。
 波面センサー115は補償光学制御部116に接続されており、測定した波面を補償光学制御部116に伝える。補償光学制御部116は波面補正デバイス108にも接続されており、波面補正デバイス108は補償光学制御部116から指示された波面の変調を行う。即ち、補償光学制御部116は波面センサー115の測定結果として取得された波面を基に、収差のない波面へと補正するような波面補正デバイス108の領域ごとの変調量(補正量)を計算する。そして、波面補正デバイス108にそのように変調するように指令する。このような波面の測定と波面補正デバイス108への指示は繰り返し実行され、常に最適な波面となるようにフィードバック制御が行われる。
 例示した眼科撮影装置1のように対物レンズ110-1,110-2で被検眼の視度に対応するような光学系がある場合には、対物レンズ110-1,110-2が良好に調整されていることが重要である。適切にその位置が調整されることで、収差補正処理の実行時に、被検眼の収差の大部分を占めるデフォーカス成分を波面補正デバイス108で補正する必要がなくなる。
 また、眼科撮影装置1では、波面センサー115の直前に配置されたアパーチャー121によって不要光をカットすることでより正確に収差を測定できるようにしている。しかしながら、被検眼111の収差のデフォーカスが補正されていないと、本来は通過させるべき網膜からの戻り光もアパーチャー121部分で広がった状態となり、大部分がアパーチャー121でカットされてしまうことになる。
 更に、収差補正処理を最大限有効に動作させるためには、正しい位置に被検眼111を配置することが重要であり、不図示の前眼部モニターや波面センサー115の信号を見ながら、被検眼の位置を調整する必要がある。なお、図示される波面センサー115からは、例えば、図3Bに示したハルトマン像と呼ばれる画像が得られる。
 次に、上述した眼科撮影装置1に付随して学習データを実際に生成する、本実施例に係る画像処理部118の詳細について、その機能構成をブロック図として示す図4を参照して説明する。画像処理部118は、画像取得部401、CNN処理部402、学習処理部403、及び記憶部404を備えている。画像取得部401は、制御部117を介して、眼底の撮影データ、後述するハルトマン像等の眼科撮影装置1を介して取得されたデータを取得する。画像取得部401は、ハルトマン像等からなる収差情報を取得する収差情報取得部405を含む。なお、収差情報取得部405は画像取得部401とは独立して設けられてもよい。CNN処理部402は、後述する畳み込みニューラルネットワークを用いた画像処理を実行し、入力される収差補正前の眼底像と収差に関する情報とから、収差補正を行った眼底像を生成する。学習処理部403は、CNN処理部402が参照する畳み込みニューラルネットワークの学習処理を行い、後述する学習済モデルを生成する。記憶部404は、制御部117を介して取得した上述した各種データを各々関連付けて記憶でき、学習処理部403が生成した学習済モデルを記憶できる。
 本実施例では、画像処理部118が、上述した眼科撮影装置1を用いて取得した学習データを用いることにより、学習済モデルを生成している。次に、本実施例に係る、学習用の教師データとなる波面補正された眼底像を得るための撮影制御フローに関して、図5A及び5Bのフローチャートを用いて説明する。
 図5Aに示すように、まず、ステップS501では、検査者の指示を受けた制御部117が光源101を動作させ、光の出射を開始させる。なお、ステップS501の処理の実行に際し、予め公知の手法により被検眼111に対して眼科撮影装置1が大まかに位置合わせされていることとする。また、本実施例では、画像撮影用の光と波面測定用の光が同一であるため、ステップS501の処理の実行により、眼底の撮影と戻り光の波面測定とが可能な状態となる。
 次に、ステップS502において、制御部117は光強度センサー114の出力に基づいて眼底像(眼底平面像)を生成し、ディスプレイ119に表示させる。本ステップにおいて、制御部117は、ディスプレイ119に表示される眼底像に基づく検査者の入力に応じて不図示の電動ステージを移動させ、眼科撮影装置1におけるおよそのフォーカス調整(ラフフォーカス調整)を行う。フォーカス調整は、例えば眼底像の輝度値を最大とすることで行われる。なお、このラフフォーカス調整は検査者により行われるが、上述する輝度値に基づいて、制御部117によって実行されてもよい。
 また、ステップS502において、制御部117は更に、被検眼111に対する撮影部のXYファインアライメントを行う。その際、検査者は、ディスプレイ119に表示される波面センサー115のハルトマン像を観察する。例示した眼科撮影装置1におけるXYファインアライメントでは、ハルトマン像の位置を観察した検査者の入力に応じて、被検眼111に対する眼科撮影装置1のX方向及びY方向の細密な位置合わせを行う。ここで波面センサー115は、その中心位置が眼科撮影装置1等の光軸と合うように調整されている。そのため、検査者はハルトマン像が波面センサー115の中心に合うように、被検眼111に対して眼科撮影装置1の位置を調整することで、X方向及びY方向の位置合わせを行うことができる。
 ステップS503では、制御部117は、波面センサー115を用いて眼底からの戻り光からハルトマン像を取得する。その際、制御部117は、ハルトマン像より得られるスポット像を認識し、その数や配置を取得する。そして、取得されたスポット像の数や配置に基づいて、補償光学制御部116は波面補正のための指示を波面補正デバイス108へ出力する。
 ステップS504において、制御部117は、補償光学制御部116より出力されたハルトマン像に含まれるスポット像の数(スポット数n)を算出する。続くステップS505では、制御部117はスポット数が十分な数であるか否かを判定する。撮影に十分なスポット数(スポット数n≧所定数N)となった場合には、フローは次のステップS506へ移行する。スポット数が十分でない場合は、フローは一定時間経過後にステップS502へ戻り、ステップS502の位置調整の処理以降を繰り返す。
 ステップS506では、測定されたスポットから、制御部117が公知の手法でフォーカス値Fを算出する。続くステップS507では、制御部117は、算出されたフォーカス値Fが十分小さくなるようにフォーカス位置が補正されているか否かを判定する。具体的には、算出されたフォーカス値Fが、F≦所定のフォーカス値F’を満たすか否かの判定を実行する。フォーカス値が十分小さく補正されていると、フローは次のステップS508へ移行する。フォーカス値が十分小さく補正されていない場合は、フローは一定時間経過後にステップS502へ戻り、ステップS502の位置調整以降の処理を繰り返す。 
 ステップS508において、制御部117は、まずは収差を補正しない状態での眼底の撮影を行う。なお、撮影は、フローが本ステップS508に到達したことを検査者に通知し、検査者が開始を判断してもよいし、制御部117が撮影の実行を判断してもよい。この時に、補償光学制御部116の制御に基づき、波面補正デバイス108は収差を補正しない初期状態にセットされ、撮影が実行される。また、その際に、撮影のパラメータも設定される。撮影パラメータとしては、眼底像の撮影領域の位置、大きさ、動画像の場合のフレーム数、フレームレート、録画の有無等である。これら撮影パラメータは検査者により設定されてもよく、予め設定されているパラメータによる等、制御部117により所定の設定とされてもよい。収差補正なしで撮影した眼底像を取得した後、フローはステップS509に移行する。
 ステップS509において、制御部117は補償光学制御部116を介して波面補正デバイス108を制御し、収差補正処理を行う。収差補正処理の実行後、フローはステップS510に移行する。ステップS510では、制御部117は、収差が補正された状態での眼底の撮影を行う。その際、撮影のパラメータは、ステップS508で設定したパラメータが用いられる。また、ステップS510において、制御部117は、ステップS509で波面補正をする際に得たハルトマン像に例示される収差情報も合わせて取得し、これを入力データとするために記憶部404に記憶させてもよい。なお、この場合の収差情報は、対物レンズ110-1,110-2の位置の調整によるフォーカス調整後の、波面補正デバイス108により収差補正を行う前の収差情報であることが望ましい。眼底の撮影後、フローはステップS511に移行する。
 ステップS511では、例えば検査者による撮影終了の指示等、の有無が制御部117により判断される。撮影終了の指示を受けていない場合、フローはステップS508に戻る。そして、ステップS508からステップS510までの収差補正のない状態の撮影と、収差補正処理と、収差補正のある状態での撮影とが撮影終了の指示が有るまで繰り返し実行される。また、ステップS511で、制御部117により撮影終了の指示があったと判断された場合には、一連の撮影処理を終了する。
 次に、ステップS507において実行される収差補正処理について、図5Bに示すフローチャートを参照して説明する。収差補正処理が開始されると、まずステップS521において、補償光学制御部116は、波面センサー115により戻り光の収差を測定して収差情報を取得する。次のステップS522では、測定した結果を元に、補償光学制御部116は、波面補正デバイス108で補正する収差の補正量を計算する。
 続くステップS523では、補償光学制御部116は、求めた補正量に基づいて波面補正デバイス108を駆動させる。ここで、ステップS521での収差の測定は、シャックハルトマンセンサーのスポットを計測し、各測定点のスポット位置の基準位置からの移動量(ずれ量)を算出することで行う。一般的に、この移動量はX方向とY方向の変位量で表される。例示した眼科撮影装置1では、30×40のマイクロレンズアレイのシャックハルトマンセンサーを使用している。従って、全レンズアレイに測定光が入射している場合には、30×40で1200の測定点におけるスポットの移動量が算出される。このスポット移動量のデータを用い、補償光学制御部116は、ステップS522で補正量を計算する。
 なお、ここでは、収差補正において、シャックハルトマンセンサーにより得られるスポットの移動量に基づいて収差の補正量を得、当該補正量に基づいて波面補正デバイス108を制御している。しかし収差の補正方法は当該方法に限られない。この方法以外にも、例えば、測定したスポットの移動量から波面を表現するためのゼルニケ係数を算出する事も可能である。よって、求めたゼルニケ係数を基に波面補正デバイス108を制御することとしてもよい。
 ここで、S521で得られたハルトマン像等の収差情報、ステップS508で得られた収差補正前に撮像された眼底像、及びステップS510で得られた収差補正後に撮影された眼底像は、各々対応付けて記憶部404に記憶される。更に、撮影された時刻情報もこれら情報と合わせて記憶させることで、概ね同時刻に得られたハルトマン像と眼底像とをリンクさせることができる。また、被検眼111の収差は、時間の経過と共に刻々と変化する。このため、収差補正されない眼底像とハルトマン像とは略同時刻に取得されたうえで関連付けられることが望ましい。また、収差情報及び眼底像と、収差補正後の眼底像は、各々対応付けて学習ペアとされ、これら学習ペアから学習済モデルを生成することで好適に収差の影響を低減した眼底像が生成できる。
<学習済モデルの生成>
 次に、上述した眼科撮影装置1により得られた眼底像等の学習データを用い、画像処理部118を用いて、ディープラーニング等の機械学習アルゴリズムに従った機械学習モデルである学習済モデルを生成する方法について説明する。なお、この学習済モデルは、学習処理部403により生成される。画像取得部401は、上述した収差補正前に取得した眼底像、及び収差補正後に取得した眼底像を取得する。また、本実施例では、画像取得部401に含まれる収差情報取得部405は、ハルトマン像を収差情報として取得する。画像取得部401及び収差情報取得部405により取得された画像は、学習処理部403に送られる。収差補正前に取得された眼底像及びハルトマン像は後述する入力データとなる入力画像として、収差補正後に取得された眼底像は後述する教師データとなる出力画像として、学習処理部403で用いられる。
 なお、ここで述べる学習済モデルとは、ディープラーニング等の任意の機械学習アルゴリズムに従った機械学習モデルに対して、事前に適切な教師データ(学習データ)を用いてトレーニング(学習)を行うことで得られるモデルである。学習データは、一つ以上の、入力データと教師データとのペア群で構成される。本実施例では、入力データ(入力画像)として収差補正せずに撮影した眼底像及びハルトマン像を用い、教師データ(出力画像)として収差補正して撮影された眼底像を用いる。
 本実施例において、学習処理部403は、上述した学習データを用いてディープラーニングの一種であるCNN(Convolutional Neural Network)処理によって学習済モデルを生成する。図6は、学習処理部403で用いられる学習済モデルの構成を示す図である。本実施例に係る学習済モデルは、眼底像エンコーダネットワーク601、結合処理部602、デコーダネットワーク603、ハルトマン画像エンコーダネットワーク604、及び特徴抽出ネットワーク605を備える。図に示される学習済モデルは、入力データ群を加工して出力する処理を担う複数の層群によって構成される。複数の層群の種類としては、畳み込み(Convolution)層、活性化層(Activation)、ダウンサンプリング(Pooling)層、アップサンプリング(Up Sampling)層、合成(Merger)層がある。
 畳み込み層は、設定されたフィルタのカーネルサイズ、フィルタ数、ストライド値、ダイレーション値等のパラメータに従い、入力値群に対して畳み込み処理を行う層である。なお、このフィルタのカーネルサイズを、入力画像の次元数に応じて変更する構成にしてもよい。活性化層は、入力信号の総和の活性化について決定し、例えばステップ関数、シグモイド関数やReLU(Rectified Linear Unit)で構成される。ダウンサンプリング(Pooling)層は、例えば、Max Pooling処理等、入力値群を間引いたり、合成したりすることによって、出力値群の数を入力値群の数よりも少なくする処理を行う層である。アップサンプリング層は、線形補間処理等、入力値群を複製したり、入力値群から補間した値を追加したりすることによって、出力値群の数を入力値群の数よりも多くする処理を行う層である。合成層は、ある層の出力値群や画像を構成する画素値群等の値群を、複数のソースから入力し、それらを連結したり、加算したりして合成する処理を行う層である。
 眼底像エンコーダネットワーク601とハルトマン画像エンコーダネットワーク604は、入力データの収差補正(波面補正)されていない眼底像とハルトマン像に対して複数のエンコード層による畳み込み演算を行う。各エンコード層は、1以上の畳み込み処理部とプーリング処理部を有し、各層の結果が内部的に保持できるように構成される。
 特徴抽出ネットワーク605は、入力データとされた画像から収差を示す特徴データを抽出してベクトルデータとして出力することができる。結合処理部602は、特徴抽出ネットワーク605の出力を結合時のサイズに合わせて複製し、眼底像エンコーダネットワーク601に結合することができる。
 上述したように、入力データとしては、波面補正デバイス108による波面の収差補正を行わずに得た眼底像と、収差の情報が含まれるハルトマン像とを用いる。また、教師データとして、波面補正デバイス108による波面の収差補正を行って得た眼底像を用いる。なお、被検眼の収差は、例えば検査時の眼の疲労等により時間の経過に応じて変化する可能性がある。従って、これら学習データとしては、可能な限り短い時間間隔で撮影された画像群を用いることが好ましい。本実施例では、これら学習データを用いて、学習済モデルを機械学習し、この学習済モデルを用いて収差を補正するネットワークパラメータを得る。
<CNNによる収差補正を用いた撮影>
 次に、上述した学習処理部403で得た学習済モデルを用いて、眼底像を撮影する方法について、図7Aを参照して説明する。図7Aは、本実施例において、図1に示した波面補正デバイス108を用いることなしに、学習済モデルを用いて波面補正を実施する眼科撮影装置700の概略構成を示す。なお、眼科撮影装置700において図1に示した眼科撮影装置1と同様の機能を呈する構成については、同一の参照符号を用いて示すこととし、ここでの説明は省略する。
 図7Aに示す眼科撮影装置700は、図1に示す眼科撮影装置1から、波面補正デバイス108、及びこれに導光するための反射ミラー107-1~107-4をのぞいた構成となっている。具体的には、本実施例では、波面補正デバイス108が存在しないことから、補償光学制御部716はその制御を行わない。また、制御部717も波面補正に関連する制御を行わない。画像処理部718は上述した画像処理部118で生成した学習済モデルを用いるが新たな学習済モデルの生成を実行せず、従って当該画像処理部718は画像処理部118における学習処理部403を含まなくともよい。なお、ここで例示した眼科撮影装置700では、波面補正デバイス108、及び反射ミラー107-1~107-4をのぞく構成として例示している。しかし、これら構成は例示であって、対応する部材及び配置が、同一又はほぼ同一の光学特性を有するように構成をのぞくこととしてもよい。
 眼科撮影装置700において、光源101から照射された光は、単一モード光ファイバー102を通り、コリメータ103により平行光線(測定光105)として測定光の光路に出射される。出射された測定光105は、ビームスプリッターからなる第1光分割部104を透過し、補償光学系に導光される。眼科撮影装置700において、補償光学系は、第2光分割部106及び波面センサー115から構成される。
 第2光分割部106を透過した測定光105は走査光学系109-1に導光され、該走査光学系109-1によって、1次元もしくは2次元に走査される。走査光学系109-1及びトラッキングミラー109-2で偏向された測定光105は、対物レンズ110-1,110-2を介して被検眼111に、ビーム径6mmの光として照射される。被検眼111に照射された測定光は眼底で走査され反射もしくは散乱されて戻り光となる。対物レンズ110-1,110-2の位置を調整することによって、被検眼111の視度にあわせて被検眼111の眼底の適切な測定位置の照射を行うことが可能となる。
 被検眼111の眼底の網膜から反射もしくは散乱された戻り光は、入射した時の経路を逆向きに進行し、第2光分割部106によってその一部は波面センサー115に反射され、戻り光の波面を測定するために用いられる。第2光分割部106で波面センサー115に向けて反射された光は、リレー光学系を通り、波面センサー115に入射する。リレー光学系の間にはアパーチャー121が設置されている。
 第2光分割部106を透過した戻り光は第1光分割部104によってその一部が反射され、コリメータ112及び光ファイバー113を介して光強度センサー114に導光される。光強度センサー114は、受光した光をその強度に応じた電気信号に変換し、これを制御部717に出力する。制御部717は、得られた電気信号を眼底像として画像化する。また、生成された画像は、画像処理部718を介し、ディスプレイ119に表示される。
 波面センサー115は補償光学制御部716に接続され、該波面センサー115が測定した波面に関する情報(収差情報)を補償光学制御部716に伝える。ここで、ハルトマン像と呼ばれる画像情報として得られた収差情報と、制御部717によって生成された眼底像とは、それぞれ記憶部404により記憶される。その際に、これら情報及び画像を、これらを取得した時刻情報も付加して記憶することで、概ね同時刻に得られたハルトマン像と眼底像とをリンクさせることができる。
 これにより、本実施例では、上述した眼科撮影装置1により生成した学習済モデルを用い、波面補正デバイス108を用いることなく、収差補正を行って取得したような眼底像を取得することが可能となる。以下に、本実施例に係る撮影制御フローに関して、図8のフローチャートを用いて説明する。
 図8に示すように、ステップS801からステップS807では、図5Aで述べたステップS501からステップS507で行われた処理と同様の処理が実行される。ステップS807において、制御部717によって、算出されたフォーカス値Fが十分小さく補正されていると判定される、フローはステップS808に移行する。ステップS808では、波面センサー115により戻り光の収差を測定して収差情報を取得する。得られた収差情報は、ハルトマン像という画像情報として記憶部404に記憶される。
 次のステップS809において、制御部717は眼底の撮影を行い、眼底像を取得する。その際、図5AにおけるステップS508と同様に、上述した撮影のパラメータも設定される。眼底像の取得後、フローはステップS810に移行する。ステップS810では、ステップS803において得られたハルトマン像と、ステップS809において得られた眼底像とを、学習済モデルとして作成されたネットワークへ入力する。画像処理部718は、入力された眼底像及びハルトマン像から、学習済モデルを用いることで眼底像の画像補正を実行し、収差が補正された状態で得られるような眼底像を生成する。ステップS810の処理の終了後、フローはステップS811に移行される。なお、ステップS811で実行される処理は、上述したステップS511で実行される処理と同様であるため、ここでの説明は割愛する。
 以上に述べたように、本実施例では、取得した眼底像とハルトマン像(収差に関する情報)とから収差補正後に得られるような眼底像を生成している。そして、これにより、波面補正デバイス108及びこれに導光するための反射ミラー107-1~107-4を必要とせずに収差の補正された状態で取得される可能性の高い眼底像を得ることができる。 
 なお、補償光学系は、補正量が小さい高次の収差の補正には好適であるが、大きな補正量を要する低次の収差についてはこれを高精度に補正することは難しい。そのため、例えば、クロスシリンダーを用いて低次の収差を補正した(低減した)状態で入力データと教師データとを得ておき、これらから生成した学習済モデルに対して低次の収差を補正した眼底像等を入力することで、好適に収差補正された眼底像が得られる。この場合、入力される収差に関する情報は、高次の収差に関する情報となる。なお、クロスシリンダーとは、2つのシリンダーレンズの組み合わせからなり、これらの相対角度と組み合わせの全体角度とを変えることにより非点収差等の低次の収差を補正する機能を有する光学部材である。また、該クロスシリンダーは、例えば対物レンズ110-1,110-2の配置に設けてもよく、これら対物レンズにその役割を担わすこともできる。
 また、上述した実施例で述べた収差補正後に取得される可能性の高い眼底像を生成する処理は、ハルトマン像が好適に得られていることを前提としている。従って、例えばステップS803で取得されたハルトマン像におけるスポットの数が入力データよりも少ない、もしくは各スポットの位置ずれ量が入力データよりも大きい場合には、使用者に警告を出すようにしてもよい。この場合、制御部717は、予め閾値として設定されたスポットの数或いは各スポットの位置ずれ量と実際に測定されたそれらとを比較して、いずれか又は両者が閾値を超えた場合に例えばディスプレイ119にこれを表示させるとよい。
 また、上述した実施例では、眼科撮影装置1に付随させた画像処理部118において学習済モデルを生成している。学習済モデルを生成する画像処理部118と眼科撮影装置1とが一体として配置されることにより、学習データとしての画像セットを撮影するタイミングが揃え易くなる。しかし、これらは別体とすることも可能であり、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等の演算装置として構成することもできる。この場合、学習済モデルを生成する装置として画像処理部118を単独の装置として構築し、ネットワーク等を介して複数の眼科撮影装置や記憶装置からこれら画像群を取得し、学習済モデルを生成してもよい。この場合、これら画像群が可能な限り短い時間間隔で取得されており、互いに関連付けられていればよい。
 また、CNN処理部402及び学習処理部403は、例えば汎用のコンピュータを用いて構成されてもよく、眼科撮影装置1,700の専用のコンピュータを用いて構成されてもよい。また、これら処理部を不図示のCPUやMPU(Micro Processing Unit)、から構成し、記憶部404を光学ディスクやROM(Read Only Memory)等のメモリを含む記憶媒体から構成してもよい。画像処理部(118,718)の記憶部404以外の各構成要素は、CPUやMPU等のプロセッサーによって実行されるソフトウェアモジュールにより構成されてよい。また、当該各構成要素は、ASIC等の特定の機能を果たす回路や独立した装置等によって構成されてもよい。記憶部404は、例えば、光学ディスクやメモリ等の任意の記憶媒体によって構成されてもよい。
 なお、制御部(117,717)が備えるCPU等のプロセッサー及びROM等の記憶媒体は1つであってもよいし複数であってもよい。そのため、制御部(117,717)の各構成要素は、少なくとも1以上のプロセッサーと少なくとも1つの記憶媒体とが接続され、該プロセッサーが該記憶媒体に記憶されたプログラムを実行した場合に機能するように構成されてもよい。なお、プロセッサーはCPUやMPUに限定されるものではなく、GPU等であってもよい。
 上述したように、本実施例に係る画像処理装置は、画像取得手段(画像取得部401)、収差取得手段(収差情報取得部405)、及び画像処理手段(CNN処理部)を備える。画像取得手段は、収差補正前の例えば眼底像を、被検眼111の第1の分解能の画像として取得する。また、収差取得手段は、ハルトマン像に例示される被検眼111の収差に関する情報を取得する。画像処理手段は、上述した学習済モデルを用いて、第1の分解能の画像と収差に関する情報とに基づいて、第1の分解能の画像に含まれる収差或いはその影響を低減することで、高い分解能の第2の分解能の画像を生成する。この第2の分解能の画像は、収差補正を行った状態で被検眼の眼底像を取得することで得られる可能性の高い、第1の分解能の画像より高い解像感を有する画像である。例えば、第1の分解能の画像が被検眼の視細胞を含む画像である場合、第2の分解能の画像も該視細胞を含む画像となる。しかし、第2の分解能の画像は第1の分解能の画像よりも高い分解能を有することから、第2の分解能の画像における視細胞領域は、第1の分解能の画像における視細胞領域よりも判別が容易となる。なお、本実施例において、分解能の高い、低いは相対的なものであり、高い分解能の画像が低い分解能の画像よりも個々の視細胞の判別が容易となる例を示している。具体的な数値例として、本実施例においては、個々の視細胞の判別が容易となる約5μm程度の分解能を高い分解能と呼び、個々の視細胞の判別が容易ではない約20μm程度の分解能を低い分解能とするが、数値はこれに限定されない。
 また、上述した画像処理装置は、記憶手段(記憶部404)を更に備えるとよい。記憶手段は、収差補正前の第1の分解能の画像を取得した際に取得されたハルトマン像等を、該第1の分解能の画像に関連付けて記憶する。被検眼の収差は、時間の経過に伴って変化する場合が多く、収差補正前の画像と該画像の取得とほぼ同時刻に取得したハルトマン像とを関連付けて記憶するとよい。この場合、学習済モデルの生成に際し、更に、これらの取得時から極短い時間間隔で得た教師データ用の収差補正後の画像を用いることで、より的確に収差の影響を低減して取得できるような眼底像が得られる。
 また、本実施例において眼科撮影装置700として例示したように、上述した画像処理部118は、画像生成手段と収差情報生成手段とを更に備えて、眼科撮影システムを構成する。AO-SLOとして眼底像を取得する画像生成手段(光強度センサー114,制御部717)は、AO-SLOとして、照明光が照射された被検眼111からの戻り光を用いて眼底像を生成する。収差情報生成手段(波面センサー115,補償光学制御部116)は、上述した収差に関する情報を生成する。なお、収差に関する情報は、被検眼111に照射した光の戻り光より得られるハルトマン像、又は該ハルトマン像から得られるゼルニケ係数であるとよい。
 更に、本実施例は、学習済モデルとしても発明を構成できる。この場合、学習済モデルは入力データと教師データとを用いて得られる。入力データは、被検眼111の眼底像と該眼底像と関連付けて取得された被検眼の収差に関する情報とからなる。教師データは、収差を低減した状態で、被検眼111において入力データとして得た眼底像と対応するように取得された眼底像からなる。更に、図1で示した眼科撮影装置1は、学習済モデルの生成装置を構成できる。学習済モデル生成装置は、上述した入力データを取得する入力データ取得手段と、教師データを取得する教師データ取得手段と、これら入力データ及び教師データを用いて学習済モデルを生成する学習処理手段(学習手段)を備える。入力データ取得手段は、例えば図5AのステップS508の処理を実行する構成と、図5BのステップS511の処理を実行する構成とを有する。また、教師データ取得手段は、図5AのステップS508の処理を実行する構成を有する。
[実施例1の変形例1]
 上述した実施例1では、学習済モデルを用い、収差補正なしで得た眼底像と、該眼底像を得る際に取得したハルトマン像とから収差補正後に取得できるような眼底像を得る例について説明した。しかし、AO-SLOの場合、撮影部位が黄斑や視神経乳頭である場合と、これら以外の領域の場合、撮影される画像自体が相違するため、同一の学習済モデルでの対応は望ましくない。また、フォーカスを合わせる対象は網膜表面のみならず、網膜における視細胞層や視神経線維層といった深さ方向において異なる位置にフォーカスして画像を得ることも診断上多く行われる。上述した学習済モデルが例えば網膜表面を対象として生成されたものの場合、網膜のより深い位置にフォーカスした場合に得られる画像については、この学習済モデルを用いても上述した眼底像が好適に得られない場合もある。本変形例では、このような場合に対処できる学習済モデルについて説明する。
 本変形例では、撮影位置、或いはフォーカスを合わせる層毎に、上述した学習済モデルを生成しておく。撮影位置としては、例えば、上述した黄斑及びその近傍、視神経乳頭及びその近傍、並びにこれら以外の眼底上の領域が例示される。また、フォーカスを合わせる層としては、例えば、視細胞(内節、外節)層及びその近傍、並びに視神経線維層及びその近傍の少なくとも2つが例示される。学習済モデルの生成に際しては、これら撮影位置、或いはフォーカスを合わせる層毎に、収差補正前の画像と略同時に得られるハルトマン像とを入力データとする。また各々の入力データに対応するように、撮影位置、或いはフォーカスを合わせる層毎に収差補正後の画像を取得し、これらを教師データとする。
 実際に図7Aに例示した眼科撮影装置700を用いて任意の撮影位置及び層の収差補正後の画像を生成する際には、予め当該撮影位置及び層に対して生成された学習済モデルを選択しておく。そして、当該撮影位置及び層についての収差補正前の画像と当該画像の取得時に得たハルトマン像とを画像処理部718に入力する。これにより、適切な学習済モデルを用いて、当該撮影位置及び層における収差補正後に取得できるような画像が好適に得られる。この場合、例えば検査者が撮影を実行する際に行われる撮影モード等の指示に対応して、記憶部404に記憶されるこれら学習済モデルを、画像処理部718が選択するとよい。本変形例に係る画像処理部718について、図4と同様の様式にてその機能構成をブロック図として図7Bに示す。図7Bに示すように、本変形例における画像処理部718は選択部406を更に含み、該選択部406は検査者等からの入力に応じて、学習処理部403で生成した学習済モデルを選択し、CNN処理部402にこれを用いさせる。
 なお、学習済モデルの生成に際し、考慮すべき検査対象物に関する情報は、上述した撮影位置(部位)及び層(網膜層)に限られない。眼底を撮影して当該画像に基づいて診断を行う場合、例えば網膜中における特定の対象物についての情報が求められることもある。例えば、フォーカスを合わせる対象が視細胞の場合と、網膜毛細血管の場合とでは同一の学習済モデルでは少なくともいずれかが対応できないことも考えられる。従って、撮影対象物が、視細胞と網膜毛細血管、網膜主要血管、脈絡膜血管、及び毛細血管を走る白血球の影のうちの少なくとも一つである場合、予めこれらに対応した学習済モデルを生成しておくとよい。更に、撮影対象物がこれらの内の一つである場合には、当該一つが写った画像のみを選別して得られた入力データと教師データとを用い、これに対応した学習済モデルを得ておくとよい。このようにして生成された学習済モデルを用いることにより、撮影対象物についての収差補正されることで得られる可能性の高い画像(収差補正後に取得できるような画像)が好適に得られる。
 以上に述べたように、撮影部位等に応じて適切に収差を低減した画像を得るためには、複数の学習済モデルから、画像処理部718によって用いられる学習済モデルを選択する選択手段を更に備えるとよい。この場合、複数の学習済モデルは、眼底像の取得位置、眼底像を取得する際の眼科撮影装置700のフォーカスを合わせた位置、及び眼底像を取得する際の被検眼111での画像取得の対象物、の少なくともいずれかに応じた学習済モデルを含むとよい。これにより、撮影部位等に応じて適切に収差の影響を低減することで取得できるような画像が得られる。
[実施例1の変形例2]
 上述した変形例1では、撮影部位やフォーカスを合わせる層毎、更には撮影対象物毎に学習済モデルを生成しておき、撮影時にはこの個々の学習済モデルを選択して用いて、収差補正後に取得できるような画像を好適に得ている。これに対し、本変形例では、入力データに対し、撮影した画像及びハルトマン像に加え、撮影部位やフォーカスを合わせる層、或いは撮影対象物に関する情報も加えている。教師データは、これら入力データに対応し、撮影部位やフォーカスを合わせる層、或いは撮影対象物における収差補正された画像となる。即ち、本変形例において生成される学習済モデルでは、入力された、撮影部位やフォーカスを合わせる層、或いは撮影対象物に関する情報に応じて、画像処理部718による教師データの選択が行われる。本変形例に係る画像処理部718について、図4と同様の様式にてその機能構成をブロック図として図7Cに示す。図7Cに示すように、本変形例における画像取得部401は画像情報取得部406’を更に含む。画像情報取得部406’は、学習処理部403が学習済モデルを生成する際に用いる撮影部位やフォーカスを合わせる層、或いは撮影対象物に関する情報等の画像撮影に関する情報を取得する。学習処理部403は、学習済モデルの生成に際し、これら画像撮影に関する情報を、入力データの一つとして取得する。
 従って、本変形例によれば、被検眼における任意の部位や位置を眼科撮影装置700により撮影した場合であっても、学習済モデルを介することにより、入力された撮影部位やフォーカスを合わせる層、或いは撮影対象物を選択する処理を省くことができる。即ち、取得した画像、略同時に取得したハルトマン像、及び撮影部位等に関する情報を入力することにより、これら部位や位置に合わせて収差補正を行った場合に取得できるような画像を得ることができる。
 以上に述べたように、単一の学習済モデルを用いて撮影部位等に応じて適切に収差を低減した画像を得るためには、眼底像とハルトマン像とに加え、更に撮影部位等に関する情報も学習済モデルのネットワークに入力されるとよい。この場合、撮影部位等に関する情報としては、例えば、眼底像の取得位置、眼底像を取得する際のフォーカスを合わせた位置、及び画像を取得する際の被検眼111での画像取得の対象物、の少なくともいずれかを含むとよい。
 なお、上述した実施例1並びに変形例1及び2では、入力データ及び入力する画像に、波面(収差)に関する情報としてハルトマン像を含めている。ハルトマン像は戻り光の波面形状を表す像であり、当該画像により波面の収差を容易に知ることができる。しかし、戻り光に含まれる収差情報は、収差補正されていない画像にも含まれている。従って、収差補正されておらず波面収差の影響を示す画像を入力データとし、収差補正後の収差の影響が低減された画像を教師データとして学習済モデルを得ることもできる。即ち、収差補正前の画像であって、収差の影響が判別し得る画像を対象とした場合であれば、ハルトマン像を用いることなく画像処理部718により収差補正後に取得できるような画像を得ることもできる。このように、学習データ、より詳細には教師データとして収差による影響が低減された画像を含む学習済モデルを用いて、収差補正された状態で取得できるような画像を得ることもできる。
[実施例2]
 上述したように、実施例1及びその変形例では、入力データ及び学習済モデルに入力する収差に関する情報として、ハルトマン像と呼ばれる画像を用いている。これに対し、本実施例では、ハルトマン像ではなく、収差を表す数値データである、例えばゼルニケ係数を入力データ等に用いる例について説明する。
<学習データの作成と学習>
 本実施例では、入力データに、収差の補正を行っていない眼底像と、収差を表すゼルニケ係数とを用いる。また、教師データには、収差の補正を行って撮影した眼底像を用いる。なお、本実施例では、この教師データの作成には、例えば実施例1で例示した眼科撮影装置1を用いることができる。ゼルニケ係数は、数値データであるため、任意に設定することができる。また、学習済モデルにおいて入力する収差に関する情報が実施例1の画像からゼルニケ係数に変更された点が異なるのみで、眼科撮影装置700における構成は実施例1の場合と異ならないため、ここでの説明は省略する。
 ここで、ゼルニケ係数は、収差情報を多項式にて表すことによって得られたものであり、これを入力データとする場合に何次の係数まで用いるかを選択する必要があり、用いなかった次数の係数の情報は反映されない。これに対し、ハルトマン像を用いた場合には、収差の情報を全て反映させ、これを補償した眼底像を得ることができる。
 しかし、ゼルニケ係数を用いた場合には、ゼルニケ係数によって画像変換を行うことで、任意に収差の影響が生じている画像が作成できる。従って、例えば学習済モデルの生成に用いるデータを作成する際に、収差補正後の画像に対して異なる複数種類のゼルニケ係数を用いた画像変換を行うことで、用いたゼルニケ係数に応じた複数の収差補正前の画像を得ることができる。このために、実際の収差補正前の眼底を撮影する必要がなくなるため、実施例1で用いた補償光学系を備えた眼科撮影装置1により得た単一の教師データに対し、ゼルニケ係数に応じ複数の補正前の画像が得られる。即ち、ゼルニケ係数を用いて、収差補正後の画像(教師データ)から収差補正前の画像、即ち学習データにおける入力データが任意に得られる。具体的には、任意のゼルニケ係数(収差係数)から2次元のPSF(点像分布関数)を求め、予め取得している収差補正後の画像と求めたPSFのコンボリューションをとる。これにより、ゼルニケ係数に応じた収差補正前の画像が得られる。即ち、教師データである元の収差補正後の画像に対して、入力データとなるゼルニケ係数と該ゼルニケ係数に応じた入力画像とを、変化させたゼルニケ係数の数に応じた数だけ得ることができる。本実施例では、このようにして得られた学習データから学習済モデルを生成し、これを用いて撮影を行う。
<ゼルニケ係数の算出方法>
 なお、ゼルニケ係数は、例えば、眼科撮影装置1により取得されたハルトマン像を制御部117において変換することで得られる。具体的には、マイクロレンズアレイ202の各マイクロレンズの焦点位置と、対応する参照点位置(無収差の場合の焦点位置)とのずれ量Δx、Δy、及びマイクロレンズの焦点距離fを取得する。そして取得したずれ量や焦点距離の値を、制御部117を通じて記憶部404に保存する。眼底からの反射光の波面をW(X、Y)とすると、Wはゼルニケ多項式により以下の式(1)のように多項式近似できる。
Figure JPOXMLDOC01-appb-M000001
 更に、測定されたずれ量と波面は次の偏微分方程式式(2)及び式(3)で表される。 
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
取得されたずれ量及び焦点距離fと、式(1)を式(2)及び(3)に代入した近似式の自乗誤差を最小とする最小二乗近似により、ゼルニケ係数Cijを算出する。
 こうして取得したゼルニケ係数Cijと撮影された眼底像とを学習済みのCNNに入力する。そして、CNN処理部402において学習済モデルを用いて、画像変換することで、収差補正後に取得できるような眼底像を得ることができる。なお、その際に、学習済モデルの生成時に使用した係数よりも大きな係数が入力された場合に、該学習済モデルにおける係数を超えたことを使用者に通知してもよい。
 以上に述べたように、収差補正情報としてゼルニケ係数を用い、学習済モデルを用いて収差補正前の眼底像を変換することにより、波面補正デバイスを用いなくとも収差補正後に取得できるような画像が好適に得られる。また、収差補正情報としてゼルニケ係数を用いることにより、実際に収差補正前の画像が無くとも、適切な学習済モデルを生成するための学習データを好適に得ることができる。即ち、学習データとして実際に補償光学を用いて撮影したデータ以外の任意のデータも学習に用いることができるため、データ数を容易に増やすことができる。このため、学習済モデルを用いて収差補正後に取得できるような画像を得た場合における、実際に収差補正を行って得られる画像との類似度の向上が可能となる。
 更に、本実施例は、学習済モデルとしても発明を構成できる。この場合、学習済モデルは入力データと教師データとを用いて得られる。本実施例の場合、教師データは、収差を低減した状態で被検眼111から取得された眼底像となる。また、入力データは、被検眼111の収差を示すゼルニケ係数を用いて収差低減後の眼底像から生成された収差補正前の眼底像と、該ゼルニケ係数となる。更に、この学習済モデルを生成する学習済モデル生成装置も本発明を構成する。この場合、学習済モデル生成装置は、上述した入力データを取得する入力データ取得手段と、教師データを取得する教師データ取得手段と、これら入力データ及び教師データを用いて学習済モデルを生成する学習処理手段(学習手段)を備える。教師データ取得手段は、例えば、図5AのステップS508の処理を実行する構成を有する。入力データ取得手段は、任意のゼルニケ係数を用いて教師データ取得手段が得た眼底像を変換して、収差低減前の眼底像を生成する。
[実施例3]
 実施例1では、補償光学系を有した眼科撮影装置(AO-SLO)により撮影した眼底像を教師データとして生成した学習済モデルを用いて、補償光学系を用いずに得た眼底像の収差を補正する方法について説明した。これに対し、本実施例では、AO-SLOではなく、本発明を断層像の撮影(AO-OCTによる撮影)に適用した実施例について説明する。
<学習データ作成装置>
 まず、画像処理パラメータを学習するために用いる入力データと教師データとからなる学習データの取得方法について説明する。ここでは、学習データとなる眼底断層像の取得に用いられる眼科撮影装置について説明する。なお、以下に参照する図9において、実施例1(眼科撮影装置1)と同様の作用を呈する構成については同一の参照符号を用いて示すこととし、ここでの説明を省略する。実施例3は、AO-OCTを用いて眼底断層像を得る場合の画像処理に関するものであり、図9は、収差補正された眼底断層像を得るAO-OCTの概略構成を示している。
 図9に示すAO-OCT(眼科撮影装置900)は、図1に示した眼科撮影装置1の主要部として示されたSLO撮影部に対して、更にOCT撮影部を加えている。以下では、加えられたOCT撮影部について説明する。OCT撮影部は、OCT光源901、ファイバーカプラー903、コリメータ906,910、光路長可変部907、分光器909、光分割部911、及びこれらの間で光を伝搬させる光ファイバーを備える。
 OCT光源901には、例示する眼科撮影装置900では波長840nmのSLD光源を用いる。なお、OCT光源901は低干渉性の光を出射するものであればよく、波長幅30nm以上のSLD光源が好適に用いられる。また、チタンサファイアレーザの超短パルスレーザ等をOCT光源901に用いることもできる。OCT光源901から出射された光は、単一モード光ファイバー902を通って、ファイバーカプラー903まで導光される。ファイバーカプラー903によって、OCT光源901からの光の経路は、光ファイバー904の経路と光ファイバー905の経路とに分岐される。例示する眼科撮影装置900において、ファイバーカプラーは10:90の分岐比のものを使用しており、投入光量の10%が測定光として光ファイバー904に導かれ、残りの90%が参照光として光ファイバー905に導かれる。
 光ファイバー904を通った測定光は、コリメータ910により平行な光として出射される。出射された測定光はビームスプリッターからなる光分割部911で反射され、補償光学系に導光される。以降の構成は眼科撮影装置1と同様であり、補償光学系や走査光学系を介して測定光は被検眼111に照射される。測定光の被検眼111の眼底からの反射散乱光は再度同様の経路を進み、光ファイバー904に導光されてファイバーカプラー903に到達する。
 一方、光ファイバー905を通った参照光はコリメータ906で出射され、光路長可変部907で反射して再度ファイバーカプラー903に戻る。ファイバーカプラー903に到達した測定光と参照光は合波され、光ファイバー908を通して分光器909に導光される。分光器909では合波によって得られた干渉光を更に周波数毎に分光し、周波数に応じた干渉信号を生成する。制御部917は、得られた干渉信号に対して公知の画像生成処理を施し、被検眼111の眼底の断層像を生成する。制御部917により、更に光路長可変部907を制御することで、被検眼111の網膜における所望の深さ位置の断層像を取得することができる。なお、図9に示す装置構成で走査光学系109-1による測定光の振り角を大きくし、補償光学制御部116が収差補正を行わないようにしてもよい。これにより図示する眼科撮影装置900は、通常のOCTとしても動作し、広画角な断層像(広画角画像)を撮像できる。 
 また、例示した眼科撮影装置900は、補償光学系を備えたSD-OCTとして構成しているが、OCTの形態は例示したものに限らない。例えば、タイムドメインOCT、SS-OCT(Swept Source Optical Coherence Tomography)等の公知のOCTとすることができる。SS-OCTの場合には異なる波長の光を異なる時間で発生させる光源を用い、スペクトル情報を取得するための分光素子は不要となる。また、SS-OCTでは、網膜だけでなく脈絡膜も画像に含まれる高深達な画像を取得できる。
 例示した眼科撮影装置900では、画像処理部918が、上述した眼科撮影装置900を用いて取得した学習データを用いることにより、学習済モデルを生成している。次に、本実施形態の学習用の教師データとなる波面補正された断層像を撮影する撮影制御フローに関して、図10のフローチャートを用いて説明する。
 図10に示すように、まず。ステップS1001では、検査者の指示を受けた制御部917がOCT光源901及びSLO撮影部の光源101を動作させ、光の出射を開始させる。なお、ステップS1001の処理の実行に際し、予め公知の手法により被検眼111に対して眼科撮影装置900が大まかに位置合わせされていることとする。なお、OCT光源901を点灯するタイミングは、これに限らない。例えば、後述するステップS1002のラフフォーカス調整の後にOCT光源901を点灯してもよい。
 ステップS1002において、制御部917は光強度センサー114の出力に基づいて眼底像(眼底平面像)を生成し、ディスプレイ119に表示させる。本ステップにおいて、制御部917は、ディスプレイ119に表示される眼底像に基づく検査者の入力に応じて不図示の電動ステージを移動させ、SLO撮影部及びOCT撮影部のおよそのフォーカス調整(ラフフォーカス調整)を行う。フォーカス調整は、例えば眼底像の輝度値を最大とすることで行われる。なお、このラフフォーカス調整は検査者により行われるが、上述する輝度値に基づいて、制御部917によって実行されてもよい。
 また、ステップS1002において、制御部917は更に、被検眼111に対する撮影部のXYファインアライメントを行う。その際、検査者は、ディスプレイ119に表示される波面センサー115のハルトマン像を観察する。例示した眼科撮影装置900におけるXYファインアライメントでは、ハルトマン像の位置を観察した検査者の入力に応じて、被検眼111に対するSLO撮影部及びOCT撮影部のX方向及びY方向の細密な位置合わせを行う。ここで波面センサー115は、その中心位置がOCT撮影部等の光軸と合うように調整されている。そのため、検査者はハルトマン像が波面センサー115の中心に合うように、被検眼111に対してOCT撮影部等の位置を調整することで、これら撮影部のX方向及びY方向の位置合わせを行うことができる。
 続く、ステップS1003において、制御部917は、波面センサー115を用いて眼底からの戻り光からハルトマン像を取得する。その際、制御部917は、ハルトマン像より得られるスポット像を認識し、その数や配置を取得する。そして、取得されたスポット像の数や配置に基づいて、補償光学制御部116は波面補正のための指示を波面補正デバイス108へ出力する。
 ステップS1004において、制御部917は、補償光学制御部116より出力されたハルトマン像に含まれるスポット像の数(スポット数n)を算出する。続くステップS1005では、制御部917はスポット数が十分な数であるか否かを判定する。撮影に十分なスポット数(スポット数n≧所定数N)となった場合には、フローは次のステップS1006へ移行する。スポット数が十分でない場合は、フローは一定時間経過後にステップS1002へ戻り、ステップS1002の位置調整の処理以降を繰り返す。
 ステップS1006では、制御部917は光路長を調整する。具体的には、検査者がディスプレイ119上に表示された参照光路長調整バー(不図示)を動かすことに応じて、光路長可変部907を制御し、参照光の光路長を調整する。光路長の調整により、OCT撮影部を用いて取得され、ディスプレイ119上に表示された断層像における所望の層の像を断層像表示領域内の所望の位置に表示させることができる。なお、ここでは検査者により光路長調整を行うこととしているが、例えば断層像から所定の層を特定する処理を組み合わせ、該所定の層が所望の位置に表示されるように制御部917が自動で光路長を調整することとしてもよい。光路長の調整後に所定の時間が経過すること、或いは調整終了の入力を受けることにより、フローはステップS1007に移行する。
 次のステップS1007において、制御部917が眼底トラッキングを開始する。具体的には、眼球運動検出手段として機能する制御部917は、SLO撮影部を用いて取得した眼底像の特徴点から位置ずれ量(被検眼111の動き量)を算出する。制御部917は、算出した位置ずれ量に基づいて、追尾制御部120によりトラッキングミラー109-2を制御する。これにより、眼科撮影装置900は、例えば断層像を重ね合わせてノイズ処理する際に用いる複数の断層像や、動画、3Dボリューム画像等を、位置ずれを小さく抑えて取得することができる。眼底トラッキングが開始されると、フローはステップS1008に移行する。
 ステップS1008において、制御部917は、まずは収差を補正しない状態での断層像の撮影を行う。なお、撮影は、フローが本ステップS1008に到達したことを検査者に通知し、検査者が開始を判断してもよいし、制御部917が撮影の実行を判断してもよい。この時に、補償光学制御部116の制御に基づき、波面補正デバイス108は収差を補正しない初期状態にセットされ、撮影が実行される。また、その際に、撮影のパラメータも設定される。撮影パラメータとしては、断層像の撮影領域の位置、大きさ、動画像の場合のフレーム数、フレームレート、録画の有無等である。これら撮影パラメータは検査者により設定されてもよく、予め設定されているパラメータによる等、制御部917により所定の設定とされてもよい。
 実際の断層像の撮影では、測定光と参照光との干渉光は、分光器909で受光され、電圧信号に変換される。更に、得られた電圧信号群はデジタル値に変換されて、制御部917にてデータの保存及び処理が行われる。制御部917は干渉光に基づくデータを処理することで眼底の断層像を生成する。収差補正なしで撮影した眼底像を取得した後、フローはステップS1009に移行する。
 ステップS1009において、制御部917は補償光学制御部116を介して波面補正デバイス108を制御し、収差補正処理を行う。収差補正処理の実行後、フローはステップS1010に移行する。ステップS1010では、制御部917は、収差が補正された状態での断層像の撮影を行う。その際、撮影のパラメータは、ステップS1008で設定したパラメータが用いられる。また、ステップS1010において、制御部917は、ステップS1009の収差補正の際に得たハルトマン像に例示される収差情報も合わせて取得し、これを入力データとするために記憶部404に記憶させてもよい。断層像の撮影後、フローはステップS1011に移行する。
 ステップS1011では、例えば検査者による撮影終了の指示等、の有無が制御部917により判断される。撮影終了の指示を受けていない場合、フローはステップS1008に戻る。そして、ステップS1008からステップS1010までの収差補正のない状態の撮影と、収差補正処理と、収差補正のある状態での撮影とが撮影終了の指示まで繰り返し実行される。また、ステップS1011で、制御部917により撮影終了の指示があったと判断された場合には、一連の撮影処理を終了する。
 ここで、ステップS1009で得られたハルトマン像等の収差情報、及びステップS1008で得られた収差補正せずに撮像された眼底像は、略同時刻で撮影され、各々関連付けて記憶部404に記憶される。また、ステップS1010で得られた収差補正された眼底像は、先の収差情報及び眼底像と合わせて、対応付けて記憶部404に記憶される。更に、撮影された時刻情報もこれら情報と合わせて記憶させることで、概ね同時刻に得られたハルトマン像と収差補正前の眼底像、及び収差補正後の眼底像をリンクさせることができる。以上の処理により、AO-OCTにおける収差補正処理に用いる学習データが得られる。具体的には、入力データとしてハルトマン像等の収差情報と収差補正前の断層像が、教師データとして収差補正後の断層像が得られる。なお、学習済モデルの生成については実施例1で述べた処理と同様の処理が実行されるためにここでの説明を省略する。
<CNNによる収差補正を用いた撮影>
 次に、上述した学習データを用いて得た学習済モデルを用いて、眼底の断層像を撮影する方法について、図11Aを参照して説明する。図11Aは、本実施例において、図9に示した波面補正デバイス108を用いることなしに、学習済モデルを用いて波面補正を実施する眼科撮影装置1100の概略構成を示す。なお、眼科撮影装置1100において図9に示した眼科撮影装置900と同様の機能を呈する構成については、同一の参照符号を用いて示すこととし、ここでの説明は省略する。
 図11Aに示す眼科撮影装置1100は、図9に示す眼科撮影装置900から、波面補正デバイス108、及びこれに導光するための反射ミラー107-1~107-4をのぞいた構成となっている。具体的には、本実施例では、波面補正デバイス108が存在しないことから、補償光学制御部1116はその制御を行わない。また、制御部1117も波面補正に関連する制御を行わない。画像処理部1118は上述した画像処理部918で生成した学習済モデルを用いるが新たな学習済モデルの生成を実行せず、従って当該画像処理部1118は図1に示す画像処理部118における学習処理部403を含まなくともよい。
 即ち、本実施例では、上述した眼科撮影装置900により生成した学習済モデルを用い、波面補正デバイス108を用いることなく収差補正を行った眼底の断層像を取得することが可能となる。以下に、本実施例に係る撮影制御フローに関して、図12のフローチャートを用いて説明する。
 図12に示すように、ステップS1201からステップS1207では、図10で述べたステップS1001からステップS1007と同様の処理が実行される。ステップS1207において眼底トラッキングが開始されると、フローはステップS1208に移行し、制御部1117により眼底の断層像の撮影が行われる。この時に、図10におけるステップS1008と同様に撮影のパラメータも設定される。断層像の取得後、フローはステップS1209に移行する。
 ステップS1209では、ステップS1203において得られたハルトマン像と、ステップS1208において得られた断層像とを、学習済モデルとして作成されたネットワークへ入力する。画像処理部1118は、入力された断層像及びハルトマン像から、学習済モデルを用いることで断層像の画像補正を実行し、収差補正後に取得される可能性の高い断層像(収差補正後に取得できるような断層像)を生成する。
 以上に述べたように、本実施例では、取得した断層像とハルトマン像(収差情報)とから収差補正後に取得できるような断層像を生成している。そして、これにより、波面補正デバイス108及びこれに導光するための反射ミラー107-1~107-4を必要とせずに収差補正後に取得できるような断層像を得ることが可能となる。
 なお、本実施例においても、実施例1と同様にクロスシリンダーを収差補正手段として用いて低次収差の補正を予め行っておき、低次収差補正後の戻り光からの断層像とハルトマン像とを得てこれらを入力データとして用いてもよい。また、例えばステップS1203にて取得したハルトマン像における各スポットの焦点位置が学習データにおいて得た焦点位置よりも大きくずれている場合には、検査者に警告を出すように構成してもよい。
 また、本実施例において眼科撮影装置1100として例示したように、上述した画像処理部1118は、画像生成手段と収差情報生成手段とを更に備えて、眼科撮影システムを構成する。AO-OCTとして断層像を取得する画像生成手段(分光器909,制御部1117)は、AO-OCTとして、測定光が照射された被検眼111の眼底からの戻り光と、該測定光対応する参照光とから得た干渉光を用いて断層像(第1の画像)を生成する。収差情報生成手段(波面センサー115,補償光学制御部1116)は、上述した収差に関する情報を生成する。なお、収差に関する情報は、被検眼111に照射した光の戻り光より得られるハルトマン像、又は該ハルトマン像から得られるゼルニケ係数であるとよい。
[実施例3の変形例1]
 上述した実施例3では、学習済モデルを用い、収差補正なしで得た断層像と、該断層像を得る際に取得したハルトマン像とから収差補正後に取得できるような断層像を得る例について説明した。ここで、OCTでは、眼底表面上での撮影位置を変えながら複数の断層像を得ることで、眼底の3次元データを取得することができる。そして、この3次元データを例えば特定の層について深さ方向に積算して所謂EnFace画像を生成し、該EnFace画像により診断を行う場合がある。この場合、フォーカスを合わせる対象は網膜の深さ方向におけるEnFace画像を生成する層であることが望ましい。この場合、診断に用いられる画像がEnFace画像であることから、入力データとしてEnFace画像と収差に関する情報(ハルトマン像)と用い、教師データとして収差補正後のEnFace画像を用いるとよい。
 しかし、これらEnFace画像を用いて生成した学習済モデルが、例えば網膜の表層近傍を対象として生成されたものの場合、網膜のより深い位置にフォーカスした場合には収差補正後に取得できるようなEnFace画像が好適に得られない場合もある。本変形例では、このような場合に対処できる学習済モデルについて説明する。
 本変形例では、フォーカスを合わせる層毎に、或いは深さ毎に、上述したEnFace画像についての学習済モデルを生成しておく。フォーカスを合わせる層としては、例えば、網膜色素上皮とその近傍、脈絡膜層とその近傍等を加えた少なくとも2つ以上の眼底において存在する層が例示される。学習済モデルの生成に際しては、これらフォーカスを合わせる層毎に、収差補正前のEnFace画像と略同時に得られるハルトマン像とを入力データとする。また各々の入力データに対応するように、撮影位置、或いはフォーカスを合わせる層毎に収差補正後のEnFace画像を取得し、これらを教師データとする。
 実際に図11Aに例示した眼科撮影装置1100を用いて任意の層の収差補正後のEnFace画像を生成する際には、予め当該層に対して生成された学習済モデルを選択しておく。そして、当該層についての収差補正前のEnFace画像と当該断層像の取得時に得たハルトマン像とを画像処理部918に入力する。これにより、適切な学習済モデルを用いて、当該層における収差補正後に取得できるようなEnFace画像が好適に得られる。この場合、例えば検査者が撮影を実行する際に行われる撮影モード等の指示に対応して、記憶部404に記憶されるこれら学習済モデルを、画像処理部1118が選択するとよい。本変形例に係る画像処理部1118について、図4と同様の様式にてその機能構成をブロック図として図11Bに示す。図11Bに示すように、本変形例における画像処理部1118は選択部406を更に含み、該選択部406は検査者等からの入力に応じて、学習処理部403で生成した学習済モデルを選択し、CNN処理部402にこれを用いさせる。
 上述したように、本変形例において、収差補正前の画像として、被検眼111の眼底における3次元データを眼底の深さ方向に積算することで得たEnFace画像が、学習済モデルにおけるネットワークに入力される。また、画像処理により収差補正された画像として、収差が低減されたEnFace画像が出力される。
[実施例3の変形例2]
 上述した変形例1では、フォーカスを合わせる層毎に学習済モデルを生成しておき、撮影時にはこの個々の学習済モデルを選択して用いることで収差補正後に取得できるようなEnFace画像を好適に得ている。これに対し、本変形例では、入力データに対し、OCTにより取得した眼底の3次元データ及びハルトマン像に加え、フォーカスを合わせる層に関する情報も加えている。教師データは、これら入力データに対応し、フォーカスを合わせる層における収差補正されたEnFace画像となる。即ち、本変形例において生成される学習済モデルでは、入力されたフォーカスを合わせる層に関する情報に応じて、画像処理部1118により教師データの選択が行われる。本変形例に係る画像処理部1118について、図4と同様の様式にてその機能構成をブロック図として図11Cに示す。図11Cに示すように、本変形例における画像取得部401は画像情報取得部406’を更に含む。画像情報取得部406’は、学習処理部403が学習済モデルを生成する際に用いる撮影部位やフォーカスを合わせる層、或いは撮影対象物に関する情報等の画像撮影に関する情報を取得する。学習処理部403は、学習済モデルの生成に際し、これら画像撮影に関する情報を、入力データの一つとして取得する。
 従って、本変形例によれば、被検眼111における眼底の任意の深さ位置を眼科撮影装置1100により撮影した場合であっても、学習済モデルを介することにより、入力されたフォーカスを合わせる層を選択する処理を省くことができる。即ち、取得した眼底の3次元データ、略同時に取得したハルトマン像、及び撮影部位等に関する情報を入力することにより、これら部位や位置に合わせて、収差補正後に取得できるようなEnFace画像を得ることができる。
 なお、上述した実施例3並びに変形例1及び2では、入力データ及び入力する画像に、波面(収差)に関する情報としてハルトマン像を含めている。ハルトマン像は戻り光の波面形状を表す像であり、当該画像により波面の収差を容易に知ることができる。しかし、戻り光に含まれる収差情報は、収差補正されていない画像にも含まれている。従って、収差補正されておらず波面収差の影響を示すEnFace画像を入力データとし、収差補正後のEnFace画像を教師データとして学習済モデルを得ることもできる。即ち、収差補正前のEnFace画像であって、収差の影響が判別し得るEnFace画像を対象とした場合であれば、ハルトマン像を用いることなく画像処理部1118により収差補正後に取得できるようなEnFace画像を得ることもできる。
 本変形例においては、収差補正前の画像として、被検眼111の眼底における3次元データより生成された3次元画像が、学習済モデルにおけるネットワークに入力される。また、画像処理により収差補正された画像として、収差が低減されたEnFace画像が出力される。
[実施例4]
 本実施例において用いる眼科撮影装置では、学習済モデルを生成する際に用いた波面補正デバイスの反射面の領域の分割数に比べて、反射面の領域の分割数が少ない波面補正デバイスが用いられる。そして、学習済モデルを用いて、眼科撮影装置により得られた眼底像と収差情報とから、用いた波面補正デバイスで得られる分解能よりも高い分解能の眼底像を得ることとしている。以下、その詳細について述べる。
<学習データの生成と学習>
 本実施例における学習データの生成とこれらを用いた学習済モデルの生成に関しては、実施例1で説明した通りであるので、ここでの説明は省略する。なお、学習データの生成に際しては、上述したように、実際に被検眼の眼底の撮影時に用いる眼科撮影装置で用いる波面補正デバイスに対して、反射面の分割数が多く、より高い分解能の眼底像が得られる波面補正デバイスが用いられる。
<CNNによる収差補正を用いた撮影>
 本実施例では、眼科撮影装置が、図1に示す眼科撮影装置1の波面補正デバイス108に対し、その反射面の分割数が少ない波面補正デバイスを用いている点が異なる。しかし、波面センサー等のその他の構成は図1で例示したものと同じであるため、ここでの詳細な説明は省略する。波面センサー115は、高い分解能に対応できるように、分割数の多い波面補正デバイスにも対応できるものを用いている。
 次に、上述の眼科撮影装置におけるCNNによる収差補正を用いた撮影について、図13のフローチャートを用いて説明する。なお、図13に示すように、図13のステップS1301からステップS1309では、図8で述べたステップS801~ステップS809で行われた処理と同様の処理が実行される。そして、ステップS1310では、上述した分割数の少ない波面補正デバイスによる収差の補正が行われる。続くステップS1311では、波面補正デバイスにより収差が補正された状態で、制御部717が再度波面センサー115による収差の測定を行う。その際、本実施例で用いた波面補正デバイスは、反射面の領域の分割数が少ないため、収差は好適な状態まで補正されていない。
 ステップS1312では、ステップS1310で得られている波面が補正された状態での眼底の撮影が、制御部717により行われる。眼底の撮影後、制御部717はフローをステップS1313に移行させる。ステップS1313では、CNN処理部402が、ステップS1311で得られている残っている収差の情報(例えば実施例1のハルトマン像)と、ステップS1312で得られている眼底像とを、上述した学習済モデルとして作成されたネットワークへ入力する。画像処理部718は、入力された眼底像及びハルトマン像から、学習済モデルを用いることで眼底像の画像補正を実行し、収差が補正された状態で得られるような眼底像を生成する。ステップS1313の処理の終了後、フローはステップS1314に移行される。なお、ステップS1314で実行される処理は、上述したステップS511等で実行される処理と同様であるため、ここでの説明は割愛する。
 本実施例においても、収差補正デバイスを用いることが無くとも、実施例1と同様に学習済モデルとして作成されたネットワークのみを用いることでも収差が補正された状態で得られるような眼底像を得ることができる。しかし、本実施例のように、分割数の少ない波面補正デバイスによりある程度収差が補正された画像を入力データとすることにより、CNNの処理に要する時間を短縮することが可能となる。即ち、本実施例では、分割数の少ない収差補正デバイスを用いて得た画像、或いは収差補正をしない状態で得た画像である第1の分解能の画像と、該画像と対応するハルトマン画像とを入力データとする。また、分割数の多い収差補正デバイスによって収差補正することで得た、第1の分解能よりも高い第2の分解能の画像を教師データとする。本実施例で用いる学習済モデルは、このような学習データを用いて生成される。
 安価な波面補正デバイスであって、その反射面の分割数が少ない場合、得られる眼底像の分解能は十分に高くなく、個々の視細胞の判別が容易ではない状態の眼底像しか得られない。しかし、本実施例の如く、当該波面補正デバイスを介して得た眼底像と収差情報とを用いることで、視細胞の判別が容易となる高い分解能の眼底像が得られる。このような構成をとることにより、本実施例によれば、比較的簡単な構成、及び、比較的簡単な演算処理で高い分解能の画像を得ることができる。
 以上に述べたように、本発明の各実施例によれば、波面収差の補正光学系を用いた眼科撮影装置に比べて、装置の小型化、低コスト化を実現でき、高分解能な画質を得ることが可能となる。
(その他の実施例)
 上述したそれぞれの実施例は、本発明を画像処理装置として実現したものである。しかしながら、本発明の実施例は画像処理装置或いは、実施例において述べた画像処理方法のみに限定されるものではない。本発明をコンピュータ上で動作するソフトウェアとして実現することも可能である。また、画像処理装置のCPUは、RAMやROMに格納されたコンピュータプログラムやデータを用いてコンピュータ全体の制御を行う。また、画像処理装置の各部に対応するソフトウェアの実行を制御して、各部の機能を実現し、画像処理時に行われる各工程を実行することもできる。
 本発明は、上述の実施例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 以上、実施例及び変形例を参照して本発明について説明したが、本発明は上記実施例及び変形例に限定されるものではない。本発明の趣旨に反しない範囲で変更された発明、及び本発明と均等な発明も本発明に含まれる。また、上述の各実施例及び変形例は、本発明の趣旨に反しない範囲で適宜組み合わせることができる。
 本願は、2019年2月13日提出の日本国特許出願特願2019-023724、及び2019年11月27日提出の日本国特許出願特願2019-214381を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
1、700、900、1100:眼科撮影装置、 101、光源、 114:光強度センサー、 116、716、1116:補償光学制御部、 117、717、917、1117:制御部、 118、718、918、1118:画像処理部、 119:ディスプレイ、401:画像取得部、 402:CNN処理部、 403:学習処理部、 404:記憶部

Claims (22)

  1.  被検眼の第1の分解能の画像を取得する画像取得手段と、
     前記被検眼の収差に関する情報を取得する収差取得手段と、
     学習済モデルを用いて、前記第1の分解能の画像と前記収差に関する情報とから、前記第1の分解能よりも高い分解能の第2の分解能の画像を生成する画像処理手段と、
     を備えることを特徴とする画像処理装置。
  2.  前記被検眼の収差に関する情報は、前記被検眼に照射した光の戻り光より得られるハルトマン像、又は前記ハルトマン像より得られるゼルニケ係数であることを特徴とする請求項1に記載の画像処理装置。
  3.  前記学習済モデルは、被検眼の収差による影響が低減された画像を含む学習データにより得たモデルであることを特徴とする請求項1又は2に記載の画像処理装置。
  4.  前記画像処理手段は、前記第1の分解能の画像と、前記第1の分解能の画像に関連付けて記憶された前記収差に関する情報とから、前記第2の分解能の画像を生成することを特徴とする請求項1乃至3のいずれか1項に記載の画像処理装置。
  5.  前記学習済モデルが、第1の分解能の画像と、該画像と対応するハルトマン画像とを入力データとし、第2の分解能の画像を教師データとして学習することにより得られるモデルであることを特徴とする請求項1乃至4のいずれか1項に記載の画像処理装置。
  6.  被検眼の第1の分解能の画像を取得する画像取得手段と、
     被検眼の収差による影響が低減された画像を含む学習データにより得た学習済モデルを用いて、前記第1の分解能の画像から、前記第1の分解能よりも高い分解能の第2の分解能の画像を生成する画像処理手段と、
     を備えることを特徴とする画像処理装置。
  7.  複数の学習済モデルから、前記画像処理手段によって用いられる学習済モデルを選択する選択手段を更に備えることを特徴とする請求項1乃至6のいずれか1項に記載の画像処理装置。
  8.  前記複数の学習済モデルは、被検眼での前記第1の分解能の画像の取得位置、前記第1の分解能の画像を取得する際の前記画像取得手段のフォーカスを合わせた位置、及び前記第1の分解能の画像を取得する際の被検眼での画像取得の対象物、の少なくともいずれかに応じたモデルを含むことを特徴とする請求項7に記載の画像処理装置。
  9.  前記画像処理手段は、更に、被検眼での前記第1の分解能の画像の取得位置、前記第1の分解能の画像を取得する際のフォーカスを合わせた位置、及び前記第1の分解能の画像を取得する際の被検眼での画像取得の対象物、の少なくともいずれかに関する情報から、前記第2の分解能の画像を生成することを特徴とする請求項1乃至8のいずれか1項に記載の画像処理装置。
  10.  前記第1の分解能の画像は、前記被検眼の眼底における3次元データを前記眼底の深さ方向に積算することで得たEnFace画像であり、
     前記第2の分解能の画像は、収差の影響が低減されたEnFace画像であることを特徴とする請求項1乃至9のいずれか1項に記載の画像処理装置。
  11.  前記第1の分解能の画像は、前記被検眼の眼底の3次元データから生成された3次元画像であり、
     前記第2の分解能の画像は、前記3次元データを前記眼底の深さ方向に積算することで得たEnFace画像であって、収差の影響が低減されたEnFace画像であることを特徴とする請求項1乃至9のいずれか1項に記載の画像処理装置。
  12.  前記第1の分解能の画像は、前記被検眼の視細胞を含む画像であり、前記第2の分解能の画像における視細胞領域は、前記第1の分解能の画像における視細胞領域よりも、前記視細胞の判別が容易であることを特徴とする請求項1乃至11のいずれか1項に記載の画像処理装置。
  13.  光が照射された前記被検眼の眼底からの戻り光を用いて前記第1の分解能の画像を生成する画像生成手段と、
     前記被検眼の収差に関する情報を生成する収差情報生成手段と、
    請求項1乃至12のいずれか1項に記載の画像処理装置と、を備えることを特徴とする眼科撮影システム。
  14.  前記画像生成手段は、前記戻り光と参照光とから得た干渉光を用いて前記第1の分解能の画像を生成することを特徴とする請求項13に記載の眼科撮影システム。
  15.  前記被検眼の収差に関する情報は、高次の収差に関する情報であり、
     前記被検眼の低次の収差による影響を低減する収差補正手段を更に備えることを特徴とする請求項13又は14に記載の眼科撮影システム。
  16.  被検眼の第1の分解能の画像と前記被検眼の収差に関する情報とを入力データとし、前記被検眼の収差による影響が低減された状態で取得された前記被検眼の第2の分解能の画像を教師データとする学習データを、CNNを用いて得られたことを特徴とする学習済モデル。
  17.  ゼルニケ係数を用いて前記第2の分解能の画像から生成された前記収差による影響が生じている前記第1の分解能の画像と、前記収差に関する情報である前記ゼルニケ係数とを入力データとする学習データを、前記CNNを用いて得られたことを特徴とする請求項16に記載の学習済モデル。
  18.  被検眼の第1の分解能の画像と前記被検眼の収差に関する情報とを入力データとして取得する入力データ取得手段と、
     前記被検眼の収差による影響が低減された状態で、前記第1の分解能の画像と対応するように取得された前記被検眼の第2の分解能の画像を教師データとして取得する教師データ取得手段と、
     前記入力データと前記教師データとを含む学習データを用いて学習する学習手段と、
     を備えることを特徴とする学習済モデル生成装置。
  19.  前記入力データ取得手段は、ゼルニケ係数を用いて前記第2の分解能の画像から生成された第1の分解能の画像であって、前記収差による影響が生じている第1の分解能の画像と、前記収差に関する情報である前記ゼルニケ係数とを入力データとして取得することを特徴とする請求項18に記載の学習済モデル生成装置。
  20.  被検眼の第1の分解能の画像を取得する工程と、
     前記被検眼の収差に関する情報を取得する工程と、
     学習済モデルを用いて、前記第1の分解能の画像と前記収差に関する情報とから、前記第1の分解能よりも高い分解能の第2の分解能の画像を生成する工程と、
     を含むことを特徴とする画像処理方法。
  21.  被検眼の第1の分解能の画像を取得する工程と、
     被検眼の収差による影響が低減された画像を含む学習データにより得た学習済モデルを用いて、前記第1の分解能の画像から、前記第1の分解能よりも高い分解能の第2の分解能の画像を生成する工程と、
     を含むことを特徴とする画像処理方法。
  22.  プロセッサーによって実行されると、該プロセッサーに請求項20又は21に記載の画像処理方法の各工程を実行させる、プログラム。
PCT/JP2020/004457 2019-02-13 2020-02-06 画像処理装置、画像処理方法、及びプログラム WO2020166465A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-023724 2019-02-13
JP2019023724 2019-02-13
JP2019214381A JP2020131017A (ja) 2019-02-13 2019-11-27 画像処理装置、画像処理方法、及びプログラム
JP2019-214381 2019-11-27

Publications (1)

Publication Number Publication Date
WO2020166465A1 true WO2020166465A1 (ja) 2020-08-20

Family

ID=72044739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004457 WO2020166465A1 (ja) 2019-02-13 2020-02-06 画像処理装置、画像処理方法、及びプログラム

Country Status (1)

Country Link
WO (1) WO2020166465A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306416A (ja) * 2001-02-09 2002-10-22 Topcon Corp 眼特性測定装置
JP2007181632A (ja) * 2006-01-10 2007-07-19 Topcon Corp 眼底観察装置
JP2007519447A (ja) * 2004-02-02 2007-07-19 イアティア イメージング プロプライアタリー リミティド レンズ系の収差を矯正するための装置及び方法
JP2016022312A (ja) * 2014-07-24 2016-02-08 株式会社トプコン 眼科撮影装置及びその制御方法
JP2018005841A (ja) * 2016-07-08 2018-01-11 株式会社トプコン 医用画像処理方法及び医用画像処理装置
US20180242838A1 (en) * 2015-09-11 2018-08-30 Simon Fraser University Coherence-gated wavefront-sensorless adaptive-optics multi-photon microscopy, and associated systems and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306416A (ja) * 2001-02-09 2002-10-22 Topcon Corp 眼特性測定装置
JP2007519447A (ja) * 2004-02-02 2007-07-19 イアティア イメージング プロプライアタリー リミティド レンズ系の収差を矯正するための装置及び方法
JP2007181632A (ja) * 2006-01-10 2007-07-19 Topcon Corp 眼底観察装置
JP2016022312A (ja) * 2014-07-24 2016-02-08 株式会社トプコン 眼科撮影装置及びその制御方法
US20180242838A1 (en) * 2015-09-11 2018-08-30 Simon Fraser University Coherence-gated wavefront-sensorless adaptive-optics multi-photon microscopy, and associated systems and methods
JP2018005841A (ja) * 2016-07-08 2018-01-11 株式会社トプコン 医用画像処理方法及び医用画像処理装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FEI XIAO ET AL.: "Deblurring adaptive optics retinal images using deep convolutional neural networks", BIOMEDICAL OPTICS EXPRESS, vol. 8, no. 12, 1 December 2017 (2017-12-01), pages 5675 - 5687, XP055678144, DOI: 10.1364/BOE.8.005675 *
LAZAREVA ANFISA ET AL.: "Learning to Deblur Adaptive Optics Retinal Images", INTERNATIONAL CONFERENCE IMAGE ANALYSIS AND RECOGNITION 2017, 2 June 2017 (2017-06-02), pages 497 - 506, XP047417484, DOI: 10.1007/978-3-319-59876-5_55 *

Similar Documents

Publication Publication Date Title
JP4157839B2 (ja) 生体眼の網膜領域撮像方法及びそのシステム
US9339183B2 (en) Aberration correction method, photographing method and photographing apparatus
JP6045895B2 (ja) 眼科観察装置
US20130070988A1 (en) Fundus image acquiring apparatus and control method therefor
JP2020048695A (ja) 眼科情報処理装置、眼科装置、及び眼科情報処理方法
WO2011016437A1 (ja) 網膜用3次元画像生成装置
EP2322082A1 (en) Fundus imaging using adaptive optics
US9867538B2 (en) Method for robust eye tracking and ophthalmologic apparatus therefor
US20150305617A1 (en) Ophthalmic imaging apparatus, control method therefor, and non-transitory computer-readable storage medium
JP5517571B2 (ja) 撮像装置および撮像方法
JP2023126361A (ja) 眼科装置、その制御方法、プログラム、及び記録媒体
JP2013248260A (ja) 撮影装置、制御方法及びプログラム
JP6703839B2 (ja) 眼科計測装置
JP6411792B2 (ja) 調節機能評価装置
JP2017143994A (ja) 眼科撮影装置
WO2017090361A1 (ja) 角膜検査装置
JP6074241B2 (ja) 補償光学装置、撮像装置、補償光学装置の制御方法およびプログラム
JP2023518549A (ja) マルチモーダル網膜撮像プラットフォーム
JP6279682B2 (ja) 眼科観察装置
JP2020131017A (ja) 画像処理装置、画像処理方法、及びプログラム
WO2020166465A1 (ja) 画像処理装置、画像処理方法、及びプログラム
JP2021153786A (ja) 画像処理装置、画像処理方法及びプログラム
JP2016150090A (ja) 撮像装置及びその制御方法
JP2020048825A (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体
JP2019170710A (ja) 眼科装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755799

Country of ref document: EP

Kind code of ref document: A1