WO2020166156A1 - Failure risk assessment system and failure risk assessment method - Google Patents

Failure risk assessment system and failure risk assessment method Download PDF

Info

Publication number
WO2020166156A1
WO2020166156A1 PCT/JP2019/045076 JP2019045076W WO2020166156A1 WO 2020166156 A1 WO2020166156 A1 WO 2020166156A1 JP 2019045076 W JP2019045076 W JP 2019045076W WO 2020166156 A1 WO2020166156 A1 WO 2020166156A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure risk
subsystem
failure
risk evaluation
maintenance
Prior art date
Application number
PCT/JP2019/045076
Other languages
French (fr)
Japanese (ja)
Inventor
亜由美 渡部
嘉成 堀
健二 藤平
飯塚 秀宏
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020166156A1 publication Critical patent/WO2020166156A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management

Definitions

  • the present invention relates to a failure risk evaluation system and a failure risk evaluation method.
  • the system is composed of multiple subsystems consisting of multiple equipment and parts. Therefore, in this specification, a system having a plurality of subsystems is defined as an entire system. For example, when the entire system is an electric motor, the subsystems are the constituent elements of the electric motor, such as the stator and the rotor.
  • the failure risk of the entire system is obtained, it is possible to determine whether to continue the operation of the entire system based on the value of the failure risk of the entire system. Further, it is also possible to determine the subsystem for which maintenance is to be performed, based on the value of the failure risk of each subsystem. When the failure risk of the subsystems that make up the entire system is calculated, the subsystem that requires maintenance is determined from the failure risk of each subsystem, and the failure risk of the entire system is calculated from the failure risk of the subsystems. You can also
  • Patent Document 1 As a method of calculating the failure risk of the entire system from each subsystem, for example, the power supply risk evaluation system of the power supply facility described in Patent Document 1 is disclosed.
  • a power supply system having a connection configuration for each scenario according to an operation mode, a maintenance work mode, etc. is created, and the power supply risk of the created power supply system for each scenario is evaluated.
  • Patent Document 1 With the method disclosed in Patent Document 1 described above, it is necessary to calculate all the failure risks of the subsystems that make up the entire system, and then calculate the failure risk of the entire system from the failure risks of each subsystem.
  • the failure risk of the entire system can be calculated, the failure risk of each subsystem may be unknown. If the failure risk of each subsystem is unknown, the subsystem with a high failure risk cannot be identified. For this reason, the entire system must be frequently maintained, which increases the cost required for maintenance.
  • the present invention has been made in view of such a situation, and an object thereof is to calculate a failure risk of a subsystem having no failure history.
  • a failure risk evaluation system a history acquisition unit that acquires a failure history of the entire system including a plurality of subsystems, and a maintenance history of at least one subsystem selected from the plurality of subsystems, Based on the failure history of the entire system and the maintenance history of at least one subsystem, calculate a failure risk evaluation model to evaluate the failure risk of other subsystems that do not have maintenance history, and calculate the failure risk of other subsystems. And a failure risk evaluation model calculation unit to be obtained.
  • the failure risk evaluation model calculated based on the failure history of the entire system and the maintenance history of at least one subsystem is used to obtain the failure risk of another subsystem having no maintenance history. Will be able to do it properly. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 1 is an overall configuration diagram showing a relationship between a failure risk evaluation system 10 and a failure/maintenance management system 4.
  • the entire system 1 is composed of a plurality of subsystems A, B, C,... N.
  • all subsystems 1 and subsystems A to N are in a relationship in which all the subsystems are inoperable.
  • subsystems when the subsystems A to N are not distinguished, they are called "subsystems".
  • the failure/maintenance management system 4 manages failure history data of the entire system 1 (an example of failure history) and maintenance history data of each subsystem A, B, C,... N (an example of maintenance history).
  • the failure history data of the overall system 1 is stored in the overall system failure DB (Data Base) 2.
  • the maintenance history data of the subsystem A is stored in the subsystem A maintenance DB 3A
  • the maintenance history data of the subsystem C is stored in the subsystem C maintenance DB 3C.
  • the maintenance history data of each subsystem up to the subsystem N is stored in the maintenance DB corresponding to each subsystem.
  • the subsystem B maintenance DB 3B for storing the maintenance history data of the subsystem B may not be provided, so the subsystem B maintenance DB 3B is indicated by a broken line.
  • the failure risk evaluation system 10 calculates the failure risk of the overall system 1 or subsystem currently operating or in the future based on various data managed by the existing overall system 1.
  • the probability of failure of the entire system 1 is calculated as the failure risk of the entire system from the year after the introduction of the entire system 1 to 10 years later, and the probability of the subsystem failure is the subsystem. It is calculated as the failure risk of.
  • the failure risk evaluation system 10 recognizes a subsystem having a high risk based on the failure risk of the entire system 1 and the failure risk of the subsystem, and enables effective maintenance for this subsystem.
  • the total system 1 including a plurality of subsystems A to N is set as a failure risk calculation target, and the total value of the failure risks of each subsystem can be equal to or approximate to the failure risk of the entire system 1.
  • the failure risk of each subsystem is assumed to be a low value within the range where the following formula (1) is satisfied.
  • Subsystem maintenance is performed by replacing the old subsystem with a new subsystem. Therefore, it is assumed that all the maintained subsystems are new and the failure risk of the subsystems immediately after the maintenance is zero.
  • failure risk refers to cumulative failure rate, cumulative hazard rate (for example, the ratio of cumulative value of hazards that occurred in a predetermined period), deterioration degree of system (including entire system and subsystems), system health such as system health.
  • deterioration degree of system including entire system and subsystems
  • system health such as system health.
  • the year after introduction indicates the period from the introduction of the entire system 1 to an arbitrary year (for example, every year) in which the failure risk is calculated.
  • the operating year or the operating period of the entire system 1 may be used instead of the elapsed years after the introduction.
  • the year of introduction of the entire system 1 may be the year in which the entire system 1 is delivered or the year in which the entire system 1 is manufactured.
  • the failure history records the year when the whole system 1 was introduced, and the year when the whole system 1 was stopped or the stop occurred.
  • the stop of the entire system 1 it is preferable to separately describe an abnormal stop in which the entire system 1 cannot operate due to a failure and a stop of the entire system 1 due to other factors other than the failure.
  • the failure history the year when some subsystems are introduced, the year when this subsystem is stopped, etc. may be recorded.
  • the failure history data of the whole system 1 represents, for example, the number of whole systems 1 that have failed in a predetermined period after the introduction of the whole system 1 and the history of the number of failures.
  • the maintenance history is a record of the year that the subsystem was installed and the year that the subsystem was maintained. That is, the maintenance history data of the subsystem is, for example, a history of maintenance performed in a predetermined period after the introduction of the subsystem. Note that the maintenance of the entire system 1 is performed by replacing all subsystems constituting the entire system 1 with new ones.
  • FIG. 2 is a block diagram showing a configuration example of the failure risk evaluation system 10 according to the first embodiment.
  • the failure risk evaluation system 10 includes a history acquisition unit 11, a failure risk evaluation model calculation unit 12, and an evaluation result output unit 13.
  • the failure risk evaluation system 10 makes it possible to determine the failure risk of another subsystem based on the failure history data of the entire system 1 and the maintenance history data of at least one subsystem.
  • the overall system 1 is composed of two subsystems, subsystem A (an example of the first subsystem) and subsystem B (an example of the second subsystem).
  • the maintenance history data of the subsystem A exists, but the maintenance history data of the subsystem B does not exist.
  • the history acquisition unit 11 acquires failure history data of the entire system 1 including a plurality of subsystems and maintenance history data of at least one subsystem selected from the plurality of subsystems.
  • the history acquisition unit 11 acquires the maintenance history data from at least one subsystem having the maintenance history data.
  • the history acquisition unit 11 acquires the failure history data of the entire system 1 from the entire system failure DB 2 and the maintenance history data of the subsystem A from the subsystem A maintenance DB 3A.
  • the history acquisition unit 11 acquires the maintenance history data from the subsystem A maintenance DB 3A, but in another embodiment, the history acquisition unit 11 acquires the maintenance history data from the maintenance DB other than the subsystem A. It is also possible to obtain
  • the failure risk evaluation model calculation unit 12 is a failure risk for evaluating a failure risk of another subsystem having no maintenance history data based on the failure history data of the entire system 1 and the maintenance history data of at least one subsystem. Calculate an evaluation model. Then, the failure risk evaluation model calculation unit 12 obtains the failure risk of other subsystems. Therefore, the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model of the entire system 1 and the subsystems with the years after introduction as an explanatory variable and the failure risk as an objective variable. In the first embodiment, the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model of the overall system 1, and further calculates the failure risk evaluation model of the subsystem A.
  • the evaluation result output unit 13 displays the failure risk evaluation result of the subsystem evaluated by the failure risk evaluation model calculated by the failure risk evaluation model calculation unit 12 on the operation screen of the display device 25 (see FIG. 3 described later). 80 (see FIG. 12, which will be described later) so that it can be displayed.
  • FIG. 3 is a block diagram showing a hardware configuration example of the computer 20.
  • the computer 20 is hardware used as a so-called computer.
  • the computer 20 includes a CPU (Central Processing Unit) 21, a ROM (Read Only Memory) 22, and a RAM (Random Access Memory) 23 that are respectively connected to a bus 24.
  • the computer 20 includes a display device 25, an input device 26, a non-volatile storage 27, and a network interface 28.
  • CPU21 reads the program code of the software which implement
  • the history acquisition unit 11, the failure risk evaluation model calculation unit 12, and the evaluation result output unit 13 according to the present embodiment function as the CPU 21, the ROM 22, and the RAM 23 cooperate with each other.
  • the display device 25 is, for example, a liquid crystal display monitor, and displays the result of processing performed by the computer 20 to the worker.
  • a keyboard, a mouse, or the like is used as the input device 26, for example, and an operator can input a predetermined operation and give an instruction.
  • non-volatile storage 27 for example, HDD (Hard Disk Drive), SSD (Solid State Drive), flexible disk, optical disk, magneto-optical disk, CD-ROM, CD-R, magnetic tape, non-volatile memory, etc. are used.
  • OS Operating System
  • various parameters, and a program for operating the computer 20 are recorded.
  • the ROM 22 and the non-volatile storage 27 permanently record programs and data necessary for the CPU 21 to operate, and are computer-readable non-transitory recording media that store programs executed by the computer 20. It is used as an example.
  • a NIC Network Interface Card
  • various data can be transmitted and received between the devices via a LAN (Local Area Network) connected to a terminal of the NIC, a dedicated line, or the like. It is possible.
  • LAN Local Area Network
  • the failure risk evaluation system 10 targets the entire system 1 composed of two subsystems A and B for failure risk evaluation. Assuming that the subsystem A has a shorter time to failure than the subsystem B and is frequently maintained, the details of specific processing of the failure risk evaluation system 10 will be described below.
  • FIG. 4 is a time chart showing the maintenance history of the plurality of subsystems A.
  • FIG. 4 is a time chart showing the maintenance history of the plurality of subsystems A.
  • overall systems there are a plurality of overall systems 1, there are also a plurality of subsystems A that make up the overall system 1. Therefore, in order to identify the subsystem A, reference numerals such as subsystems A(1) to A(3) are given. For convenience of explanation, it is assumed that each entire system 1 is composed of subsystems A to N. Further, in order to express different overall systems 1, reference numerals are given as in the overall systems (1) to (3).
  • the time chart shows that the operation of the entire system 1 is started (that is, the operation of the subsystems A(1) to A(3) is started), or the subsystems A(1) to A(3) are maintained and introduced into the entire system 1.
  • the subsystem A(1) is operating except when the maintenance shown in the drawing is performed or when the maintenance is stopped. In this case, the maintenance of the subsystem A(1) is carried out, and the year stopped other than the maintenance is recorded in the subsystem A maintenance DB 3A of the subsystem A(1) as the maintenance history data of the subsystem A(1).
  • the subsystem A (2) starts operating, the subsystem A (2) is maintained, and the stopped year is recorded in the subsystem A maintenance DB 3A of the subsystem A (2). Further, after the subsystem A(3) starts operating, the subsystem A(3) is maintained, and the stopped year is recorded in the subsystem A maintenance DB 3A of the subsystem A(3).
  • the history acquisition unit 11 creates a data group in which maintenance history data of subsystems that are configured in common for the plurality of overall systems 1 are collected for each predetermined period.
  • the history acquisition unit 11 is recorded in the subsystem A maintenance DB 3A provided in each of the subsystems A(1) to A(3) after the subsystem A starts operating.
  • a maintenance A execution data group 5 of the subsystem A is prepared for each year when the subsystem A is maintained or stopped.
  • the predetermined period during which the history acquisition unit 11 creates the maintenance A execution data group 5 is arbitrary. Instead of once a year as shown in FIG. 4, an arbitrary predetermined period may be set, such as every six months or every month.
  • the history acquisition unit 11 A record of the maintenance A performed by the subsystems A(1) and A(3) is created as a maintenance A execution data group 5 for the first year. Further, when the maintenance A is performed in the subsystems A(1) and A(2) in the second year after the operation of the subsystem A is started, and when the maintenance A is stopped except the maintenance A, the history acquisition unit 11 causes the subsystem A( Records of maintenance A and stop performed in 1) and A(2) are created as a maintenance A execution data group 5 in the second year. In the third year, maintenance A is not performed in the subsystems A(1) to A(3), so empty data is stored in the maintenance A execution data group 5 in the third year. However, the maintenance A execution data group 5 for the third year may not be created.
  • FIG. 5 is an explanatory diagram showing a data processing flow of the failure risk evaluation system 10 according to the first exemplary embodiment. This data processing flow explains the failure risk evaluation method performed by the failure risk evaluation system 10.
  • FIG. 6 is an explanatory diagram showing a data flow in the failure risk evaluation system 10.
  • the failure risk evaluation system 10 if the failure history of the entire system 1 and one of the two subsystems, for example, the maintenance A execution year when the maintenance of the subsystem A is performed are known. , A failure risk evaluation model of subsystems A and B is calculated. Therefore, assuming the condition that the maintenance history data of the subsystem A exists, the flow of calculating the failure risk of the subsystem in the failure risk evaluation system 10 will be described with reference to FIGS. 3 to 6.
  • the year in which the subsystem A is maintained is the maintenance year of the subsystem A
  • the year in which the subsystem A is maintained after the introduction of the subsystem A is referred to as “maintenance A implementation year”.
  • the period from the year of carrying out maintenance A to the shutdown of the entire system 1 is referred to as "the number of years after maintenance A”.
  • the failure risk of the subsystems A and B and the overall system 1 can be expressed by the following approximate expression (2).
  • Ftotal FA(t ⁇ a)+FB(t ⁇ b) (2)
  • FB Failure risk of subsystems A and B t: Years since installation a
  • b Years after installation when subsystems A and B were last maintained
  • FA(ta) in equation (2) is a function indicating that the risk of failure of subsystem A increases as the years elapsed after the introduction of subsystem A increases.
  • FB(tb) in the equation (2) is also a function indicating that the failure risk of the subsystem B increases as the elapsed years after the introduction of the subsystem B increase. Since the failure risk Ftotal of the entire system 1 is expressed by adding the failure risks of the subsystems A and B, it increases according to the years after the introduction of the subsystems A and B.
  • the history acquisition unit 11 acquires failure history data of the overall system 1 from the overall system failure DB 2 (S1).
  • the history acquisition unit 11 inputs the failure history data for the years after introduction from the overall system failure DB 2 to the failure risk evaluation model calculation unit 12.
  • FIG. 6 the description of the history acquisition unit 11 is omitted.
  • the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model 31 (see FIG. 6) of the overall system 1 based on the failure history data of the overall system 1 (S2). If the whole system 1 is one system, a failure risk evaluation model of the whole system 1 can be obtained from the failure history data of the whole system 1.
  • the horizontal axis of the graph shown in the figure is the years after introduction (denoted as "t” in the figure), and the vertical axis is the failure risk of the overall system 1 (denoted as "F” in the figure).
  • the failure risk Ftotal for the years elapsed after the introduction of the overall system 1 can be obtained by the failure risk evaluation model 31.
  • the failure risk evaluation model calculation unit 12 formulates the failure risk with the elapsed years after introduction as a variable.
  • the formulation is performed by, for example, performing fitting using a Weibull formula, an exponential formula, or the like, and calculating various parameters necessary for the formulation.
  • the history acquisition unit 11 acquires the maintenance history data of the subsystem A from the subsystem A maintenance DB 3A (S3). As described above, since it is assumed that the subsystem A is maintained more frequently than the subsystem B, the subsystem A is maintained multiple times before the subsystem B is maintained once. It
  • the history acquisition unit 11 creates, as the maintenance A implementation data group 5 of the same year, maintenance history data in which the number of years elapsed since the maintenance A is performed on the subsystem A collected from the subsystem A maintenance DB 3A is the same. (S4).
  • the failure risk evaluation model calculation unit 12 is based on the implementation data group of the subsystem A in which the maintenance A was performed in the same year acquired by the history acquisition unit 11 from the subsystem A maintenance DBs 3A(1) to 3A(3). Then, the failure risk evaluation model 32 is calculated for each maintenance A execution data group 5.
  • the maintenance history data of the subsystem A(1) shown in FIG. 4 is stored in the subsystem A maintenance DB 3A(1).
  • the maintenance history data of subsystem A(2) is stored in subsystem A maintenance DB3A(2)
  • the maintenance history data of subsystem A(3) is stored in subsystem A maintenance DB3A(3).
  • FIG. 6 shows an example of the failure risk evaluation model 32 created for each maintenance A execution data group 5.
  • the failure risk evaluation model calculation unit 12 uses the maintenance history data of the subsystem A in which the maintenance history data exists and the failure history data of the entire system 1 to create an evaluation model for calculating the failure risk of the subsystem A. create.
  • the failure risk evaluation model calculation unit 12 calculates a plurality of failure risk evaluation models 32 of the subsystem A (an example of the sub failure risk evaluation model) from the maintenance A execution data group 5, and calculates the entire system 1 from the failure history data of the entire system 1.
  • the failure risk evaluation model 31 of 1 (one example of the overall failure risk evaluation model) is calculated.
  • the failure risk evaluation model calculation unit 12 determines the failure risk of the subsystem A in which the same maintenance A is performed based on the failure risk evaluation model 32 of the subsystem A and the failure risk evaluation model 31 of the entire system 1.
  • the failure risk evaluation model 34 for evaluating is calculated (corresponding to S7).
  • the failure risk evaluation model calculation unit 12 calculates the failure risk FA for each maintenance A implementation data group 5 (see FIG. 4) created for each same year, and the failure risk evaluation model 32 (see FIG. 6). ) Is created (S5).
  • a post-installation elapsed year t1 represented by a vertical dashed line represents a year (for example, the first year after installation) in which the maintenance A is performed on the subsystem A.
  • the post-installation year t2 represents another year in which the maintenance A was performed on the subsystem A (for example, the second year from the installation)
  • the post-installation year t3 represents the subsystem A with respect to the subsystem A. Represents another year in which Maintenance A was performed (eg, 3rd year after installation).
  • the failure risk evaluation model calculation unit 12 can use an index such as a cumulative failure rate, a cumulative hazard rate, or a degree of deterioration. Therefore, in order to calculate the time transition of each failure risk, the failure risk evaluation model calculation unit 12 formulates the value of the failure risk with the elapsed years after introduction as a variable. Similar to the formulation in the overall system 1, the formulation in the subsystem is performed by performing fitting using, for example, a Weibull formula, an exponential function formula, etc., and calculating various parameters necessary for the formulation.
  • the failure risk evaluation model calculation unit 12 calculates the failure risk when the maintenance A execution year is substituted for the variable year after introduction in the failure risk evaluation model created for each maintenance A execution data group 5 of the same year. Calculate the value.
  • the fact that the elapsed year after introduction is equal to the maintenance A execution year means that, when the maintenance A is performed, the subsystem A is replaced with a new one, and thus the elapsed years after the maintenance A corresponds to 0 years. Since it is possible to assume that the failure risk of the subsystem A becomes "0" when the maintenance A is performed in this manner, the value of the failure risk when the elapsed year after the maintenance A is "0" is derived from the subsystem B. ..
  • the failure risks FA(1), FA(2), and FA(3) represented by the failure risk evaluation model gradually increase as the years after introduction, t1, t2, and t3, change. Therefore, the failure risk in the elapsed year 0 after maintenance A derived from the maintenance A execution data group 5 in which the same maintenance A is performed is the subordinate in the maintenance A execution data group 5 in the maintenance A execution data group 5 in which the same maintenance A is performed. It can be said that it is equal to the failure risk FB of the system B.
  • the failure risks FA(1), FA(2), FA(3) may be represented by curves having similar slopes.
  • the failure risk evaluation model calculation unit 12 calculates the failure risk FB of the subsystem B in a plurality of maintenance A execution years based on the maintenance A execution data group 55 in which a plurality of the same maintenance A is executed. Is possible.
  • the failure risk FB of the subsystem B is represented by, for example, a curve connecting failure risks when the year A of each maintenance A of the subsystem A becomes “0”.
  • the failure risk evaluation model calculation unit 12 formulates the failure risk of the subsystem B in the year of implementation of maintenance A. That is, the failure risk evaluation model calculation unit 12 can calculate the failure risk evaluation model 33 of the subsystem B shown in FIG. 6 based on the failure risks FA(1) to FA(3) (S6).
  • the failure risk FA of the subsystem A can be calculated as the difference in each years after introduction.
  • the difference FA between the evaluation model of the failure risk Ftotal of the overall system 1 and the evaluation model of the failure risk FB of the subsystem B corresponds to the failure risk FA of the subsystem A, and the failure risk of the subsystem A.
  • An example of the evaluation model 34 is shown.
  • the failure risk evaluation model calculation unit 12 formulates the failure risk of the subsystem A with the year elapsed after introduction as a variable, and obtains the failure risk evaluation model 34 of the subsystem A (see FIG. 6) (S7).
  • the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model 34 of the subsystem A by subtracting the failure risk of the subsystem B from the failure risk of the entire system 1.
  • the failure risk evaluation model calculation unit 12 performs fitting by using, for example, a Weibull equation, an exponential function equation, and the like, as in the case of the overall system 1 and the subsystem B. It is done by calculating.
  • the failure risk evaluation system 10 the failure risk calculated using the failure history data of the entire system 1 including the subsystems A and B and the maintenance history data of the subsystem A.
  • the failure risk of subsystem A can be obtained by the evaluation model.
  • the failure risk evaluation model calculation unit 12 can evaluate the failure risk of the subsystem A even if there is the subsystem B without maintenance history data, and therefore only the subsystem having a high failure risk needs to be maintained. Therefore, a maintenance plan can be drafted, maintenance personnel and maintenance parts can be appropriately arranged, and the cost for maintenance can be reduced.
  • FIG. 7 is an explanatory diagram showing a data flow in the failure risk evaluation system 10A according to the second embodiment.
  • the process of the failure risk evaluation model calculation unit 12 calculating the failure risk of the entire system 1 based on the failure history data acquired by the history acquisition unit 11 from the entire system failure DB 2 is the same as that of the first embodiment. ..
  • the failure risk of each subsystem and the overall system 1 can be expressed by the following approximate expression (3).
  • Ftotal FA(t ⁇ a)+FB(t ⁇ b)+...+FN(t ⁇ n) (3)
  • the history acquisition unit 11 acquires, for each subsystem, maintenance history data whose maintenance years are the same from the subsystem A maintenance DB 3A, subsystem B maintenance DB 3B,..., Subsystem N maintenance DB 3N. Then, the history acquisition unit 11 creates a maintenance execution data group in which the maintenance history data of subsystems that are configured in common to the plurality of overall systems 1 are collected for each predetermined period.
  • subsystem B maintenance DBs 3B(1) to 3B(3) each having maintenance history data of the existing subsystem B, and maintenance of the subsystem N is performed.
  • the history acquisition unit 11 determines the elapsed years after maintenance ((ta), (tb),..., (tn)) of each subsystem acquired from the maintenance DBs 3A to 3N of each subsystem. Based on this, the same year maintenance implementation data group 35 is created for each combination of the years after maintenance of each maintenance. The same year maintenance implementation data group of each year included in the same year maintenance implementation data group 35 is created up to the same year maintenance implementation data group 35N, such as the same year maintenance implementation data group 35A and the same year maintenance implementation data group 35B.
  • the same-year maintenance execution data group 35A is a data group in which the maintenance history data in which the maintenance A is performed on the subsystem A is collected for each same year
  • the same-year maintenance execution data group 35B includes the maintenance B on the subsystem B. It is a data group in which the maintenance history data that has been performed is collected for each same year.
  • the same year maintenance implementation data group 35N is a data group in which maintenance history data of maintenance N performed on the subsystem N is collected for each same year.
  • the failure risk evaluation model calculation unit 12 calculates a failure risk evaluation model based on the data group selected in ascending order of the post-maintenance elapsed period. Therefore, the failure risk evaluation model calculation unit 12 has the shortest elapsed years after maintenance ((t ⁇ a), (t ⁇ b),..., (t ⁇ n)) for the same year maintenance implementation data groups 35A to 35N. Identify subsystems.
  • the subsystem with the shortest elapsed years after maintenance is referred to as “subsystem A′”.
  • the shortest elapsed year after maintenance means, for example, the first year after the start of the operation of the entire system 1 or the maintenance of the subsystem. That is, the subsystem A′ may be obtained from the same year maintenance implementation data group 35A of the subsystem A, or may be obtained from any of the same year maintenance implementation data groups 35B to 35N other than the subsystem A. ..
  • the failure risk evaluation model calculation unit 12 obtains, for the identified subsystem A′, maintenance history data in which the maintenance timings of the subsystems having the shortest post-maintenance years are the same as in the first embodiment.
  • the same year maintenance A′ execution data group is acquired from the same year maintenance execution data group 35 created by the history acquisition unit 11. Note that the failure risk evaluation model calculation unit 12 excludes maintenance history data indicating that maintenance is performed on another subsystem before maintenance is performed on the subsystem A′.
  • the failure risk evaluation model calculation unit 12 creates a failure risk evaluation model 36 of the same maintenance A'implementation data group with the year elapsed after introduction as an explanatory variable and the failure risk as an objective variable.
  • the failure risk evaluation model calculation unit 12 calculates a failure risk value in the case where the year elapsed since the introduction of the evaluation model matches the maintenance A′ implementation year.
  • the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model and uses the same maintenance year A′ execution data group to calculate the failure risk evaluation model. Calculate the risk FA'. Therefore, the failure risk evaluation model calculation unit 12 formulates the difference of the failure risk FA′exc other than the subsystem A′ with respect to the failure risk Ftotal of the entire system 1 as the failure risk FA′ of the subsystem A′.
  • the failure risk evaluation model 37 of the subsystem A' is shown.
  • the failure risk evaluation model calculation unit 12 calls the subsystem having the shortest maintenance interval next to the subsystem A′ as “subsystem B′”, and similarly to the subsystem A′, the failure risk assessment of the subsystem B′.
  • the model 38 is derived. That the maintenance interval is shortest after the subsystem A'represents, for example, the second year after the start of operation of the overall system 1.
  • the failure risk evaluation model calculation unit 12 excludes maintenance history data indicating that maintenance has been performed on subsystems other than the subsystem A′. In the figure, an example of the failure risk evaluation model 38 of the subsystem B'is shown.
  • the failure risk evaluation model calculation unit 12 formulates the failure risk FB' of the subsystem B'.
  • the failure risk evaluation model calculation unit 12 calculates the difference between the failure risk Ftotal of the entire system 1 and the failure risk FB′exc other than the subsystem B′ and the failure risk FA′ calculated previously.
  • the failure risk FB' of subsystem B' is assumed.
  • the failure risk evaluation model calculation unit 12 calculates the failure risk (FA′(ta′)) of the subsystem A′ based on the years after maintenance of the subsystem A′, and the subsystem is calculated from the difference. Subtract the failure risk of A'.
  • the failure risk evaluation model calculation unit 12 determines the failure risk FB′ based on the failure risk of the entire system 1 and the difference in the maintenance B′ execution year calculated from the failure risk evaluation model of the same maintenance B′ execution data group. calculate.
  • the failure risk evaluation model calculation unit 12 derives a failure risk evaluation model of the subsystem C′ having the shortest maintenance interval next to the subsystem B′ by a similar method. In this way, the failure risk evaluation model calculation unit 12 finally derives the failure risk evaluation models of all subsystems by repeating the process of deriving the failure risk evaluation model for each subsystem.
  • the failure risk of each subsystem is calculated if the failure risk of the entire system 1 and the years after maintenance of each subsystem are known. You can Further, the failure risk evaluation system 10A can calculate the failure risk of each subsystem even if some subsystems are not equivalent to new products when the entire system 1 is introduced.
  • the failure risk evaluation model calculation unit 12 creates the above equation (3) including the years after maintenance of each subsystem for each identical maintenance implementation data group, and creates the failure risk assessment model for each subsystem. To do. Then, the failure risk evaluation model calculation unit 12 may calculate the failure risk evaluation model of each subsystem by deriving the parameters of the failure risk evaluation model by optimization or the like.
  • FIG. 8 is an explanatory diagram showing a data flow in the failure risk evaluation system 10B according to the third embodiment. Here, the flow of data for calculating the failure risk evaluation model of subsystem B will be described.
  • the entire system 1 including subsystems A and B will be described as an example.
  • the failure risk evaluation model 32 for each maintenance A execution data group 5 for evaluating the failure risk FA for the years after the introduction of the subsystem A has already been derived.
  • the failure risk evaluation system 10B includes a failure risk evaluation model DB 8 (an example of failure risk evaluation model storage unit) that stores a failure risk evaluation model for evaluating a failure risk in a predetermined period after the introduction of at least one subsystem. ) Is provided.
  • the failure risk evaluation model DB 8 stores, for example, a failure risk evaluation model 32 that represents the failure risk FA for the years elapsed since the introduction of the subsystem A. Then, the failure risk evaluation model calculation unit 12 can acquire the failure risk evaluation model 32 of the subsystem A from the failure risk evaluation model DB 8.
  • the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model 31 that formulates the failure risk for the years elapsed after the introduction of the overall system 1 based on the failure history data acquired from the overall system failure DB 2. To do. Further, the failure risk evaluation model calculation unit 12 determines whether the subsystem B in the predetermined period has a failure history data of the entire system 1 and the failure risk evaluation model 32 acquired from the failure risk evaluation model DB 8 by the history acquisition unit 11. Calculate the failure risk evaluation model 34
  • the failure risk evaluation model calculation unit 12 determines the overall system 1 and the subsystem A in an arbitrary year after introduction. Calculate the failure risk of. After that, the failure risk evaluation model calculation unit 12 calculates the difference between the failure risks of the entire system 1 and the subsystem A in the years after introduction as the failure risk FB of the subsystem B. Then, the failure risk evaluation model calculation unit 12 repeats this process a plurality of times to calculate the failure risk FB of the subsystem B in the years elapsed after each introduction, and creates the failure risk evaluation model 34 of the subsystem B.
  • the failure risk evaluation system 10B according to the third embodiment described above is different from the first embodiment in that a known failure risk evaluation model for one subsystem is used instead of the maintenance history of the subsystem. This is different from the failure risk evaluation system 10.
  • the failure risk evaluation system 10B according to the present embodiment even if the maintenance history data of the subsystem does not exist, the failure risk evaluation model of the other subsystem can be calculated if the failure risk evaluation model has already been calculated. However, it is a condition that the failure risk of the same subsystem included in the whole system 1 having another different configuration for one subsystem or the subsystem alone over the years has been clarified as an evaluation model.
  • the details of the processing have been described for the entire system 1 including the two subsystems A and B.
  • the failure risk evaluation system 10B according to the present embodiment may be applied to the entire system 1 including N subsystems A, B,..., N. In this case, (N-1) If the failure risk evaluation model of the subsystem is known, the failure risk evaluation model calculation unit 12 can derive the failure risk evaluation model of the subsystem whose failure risk is unknown.
  • FIG. 9 is an explanatory diagram showing a data flow in the failure risk evaluation system 10C according to the fourth embodiment.
  • the failure risk evaluation system 10C includes a quantitative relationship input unit (terminal 7) and a quantitative relationship calculation unit 14.
  • the quantitative relationship input unit inputs a ratio representing a quantitative relationship of mutual failure risks of a plurality of subsystems.
  • the terminal 7 operated by the worker is connected to the quantitative relationship calculation unit 14. The operator can use the terminal 7 to input the quantitative relationship of the failure risk of each subsystem. Therefore, the terminal 7 is used as an example of the quantitative relationship input unit.
  • the quantitative relationship calculation unit 14 calculates the quantitative relationship of the failure risk of each subsystem with respect to the failure risk of the overall system 1 based on the ratio input from the quantitative relationship input unit.
  • the failure risk evaluation system 10C is different from the failure risk evaluation system according to the other embodiments in that the failure risk evaluation system includes the quantitative relationship input unit and the quantitative relationship calculation unit 14.
  • the failure risk of each subsystem A, B, C has a quantitative relationship of 1:2:3. It is assumed that this quantitative relationship is a value found by the product specifications of each subsystem A, B, C, for example.
  • the total value of the failure risks of each subsystem can be equal to or approximate to the failure risk of the entire system 1. Therefore, the ratio of the failure risk of each subsystem to the failure risk of the entire system is input from the terminal 7 as a quantitative relationship.
  • the quantitative relationship calculation unit 14 divides the failure risk of the entire system 1 into the values input from the terminal 7. For example, it is assumed that the quantitative relationship of the failure risks of the subsystems A, B, and C input from the terminal 7 is 1:2:3. For example, when the failure risk of the entire system 1 is 60%, the quantitative relationship calculation unit 14 calculates the failure risks of the subsystems A, B, and C as 10%, 20%, and 30%, respectively, according to the quantitative relationship. To do. After that, the failure risk evaluation model calculation unit 12 evaluates the failure risk of each subsystem based on the failure risk Ftotal of the overall system 1 and the failure risk quantitative relationship calculated for each subsystem by the quantitative relationship calculation unit 14. The model 32 is calculated.
  • the failure risk evaluation system 10C according to the fourth embodiment described above can estimate the failure risk evaluation model of each subsystem by using the quantitative relationship of the failure risk of each subsystem. Therefore, even when the failure risk of each subsystem or the maintenance history of the subsystem associated with the overall system 1 is unknown, it is possible to reliably estimate the failure risk evaluation model of each subsystem.
  • the failure of each subsystem is calculated. It is possible to calculate a risk assessment model.
  • the failure risk evaluation system according to the fifth embodiment also targets the entire system 1 including N subsystems. However, among a plurality of subsystems, the failure risk does not change over time, or the failure risk is "0" or significantly lower than the other subsystems (the failure risk can be approximated to "0") ( Hereinafter, it is assumed that there is a "special subsystem"). The fact that the failure risk does not change with time means that the failure risk remains at a low value and does not change.
  • FIG. 10 is an explanatory diagram showing a data flow in the failure risk evaluation system 10D according to the fifth embodiment.
  • the failure risk evaluation system 10D includes a special subsystem selection unit (terminal 7) that selects a special subsystem and a failure risk setting unit 15 that sets the failure risk of the special subsystem. Therefore, the failure risk evaluation system 10D is different from the failure risk evaluation system according to the other embodiments in that the special subsystem selection unit and the failure risk setting unit 15 are provided.
  • the terminal 7 operated by the worker is connected to the failure risk setting unit 15.
  • the worker can use the terminal 7 to input a special subsystem whose failure risk does not change over time, or a special subsystem having a significantly lower failure risk than other subsystems. Therefore, the terminal 7 is used as an example of the special subsystem selection unit.
  • a special subsystem selection screen 70 is displayed on the terminal 7. On the special subsystem selection screen 70, a subsystem name 71, a special subsystem selection field 72 that does not change over time, and a special subsystem selection field 73 that has a low risk of failure are displayed.
  • the special subsystem selection field 72 displays special subsystems that can be selected by the operator.
  • the subsystems A and C whose check marks are displayed in the special subsystem selection field 72 are shown to be special subsystems.
  • the subsystem B in which the bar "-" is displayed in the special subsystem selection field 72 is not a special subsystem and cannot be selected as a special subsystem.
  • a special subsystem having a significantly low risk of failure is displayed.
  • the subsystem C having a low failure risk and a check mark displayed in the special subsystem selection field 73 has a significantly low failure risk, and thus is indicated as a subsystem that can approximate the failure risk to “0”.
  • the subsystem C having a bar "-" displayed in the special subsystem selection field 73 having a low failure risk cannot approximate the failure risk to "0”.
  • the special subsystem selection field 73 with a low failure risk is grayed out.
  • the failure risk setting unit 15 sets the failure risk to “0” regardless of the years elapsed since the introduction of the selected special subsystem.
  • the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation excluding the failure risk of the special subsystem. At this time, the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model 31 of the overall system 1 obtained from the failure history data of the overall system 1.
  • the subsystem C is selected as a special subsystem that does not change over time, and is also selected as a special subsystem having a low failure risk, and the failure risk of the subsystem C is set to “0”. .. Further, since the subsystem A is selected as a special subsystem that does not change with time, the failure risk is set to a constant value. Then, the failure risk evaluation model calculation unit 12 calculates a failure risk evaluation model 41 for calculating the failure risk of the subsystem B from the difference between the failure risks of the subsystems A and C with respect to the failure risk of the overall system 1.
  • the special subsystem is selected through the terminal 7 used as the special subsystem selection unit.
  • the failure risk setting unit 15 sets the failure risk of the selected special subsystem to a constant value or “0”. Therefore, the failure risk evaluation model calculation unit 12 can reduce the calculation load when calculating the failure risk evaluation model of a subsystem other than the special subsystem.
  • failure risk evaluation system 10D there are a plurality of subsystems that do not have maintenance history of subsystems associated with the overall system 1, failure risk evaluation model of subsystems, and data of quantitative relationship of failure risk of each subsystem. Even if it does, the failure risk of each subsystem can be calculated.
  • the failure risk evaluation system according to the sixth embodiment determines whether or not the failure risk evaluation system according to the first to fifth embodiments described above can be applied to a subsystem that is an object of failure risk evaluation. It is possible.
  • FIG. 11 is an explanatory diagram showing a data flow in the failure risk evaluation system 10E according to the sixth embodiment.
  • the failure risk evaluation system 10E includes an applicability determination unit 16 that determines which of the failure risk evaluation systems 10 to 10D according to the first to fifth embodiments is applicable to the subsystems subject to failure risk evaluation.
  • Prepare The applicability determination unit 16 is realized by the CPU 21 illustrated in FIG. 3 loading the program read from the ROM 22 into the RAM 23 and executing the program.
  • the applicability determination unit 16 determines a process that can be applied to evaluate the failure risk of the subsystem among the processes of evaluating the failure risk (the processes of the first to fifth embodiments).
  • N Total number of subsystems
  • m Number of subsystems selected by the special subsystem selection unit according to the fifth embodiment
  • x Number of subsystems for which failure risk evaluation model is known
  • y Failure risk evaluation model
  • the number of subsystems of y satisfies the relation of N-mx ⁇ 2.
  • the applicability determination unit 16 determines whether either the failure history data of the entire system or the failure risk evaluation model is available as data (S11).
  • the applicability determination unit 16 determines failure history data of the entire system for (N-1) or more subsystems among the N subsystems. It is determined whether the associated maintenance history data is available (S12).
  • the applicability determination unit 16 determines that the maintenance history data associated with the failure history data of the entire system is available (YES in S12), the failure history data of the entire system and the available maintenance history data. It is determined whether or not the number of points satisfies the number required for the processing of the failure risk evaluation system 10 (S13).
  • the failure risk evaluation system 10, 10A shown in the first embodiment or the second embodiment is applied to the failure risk evaluation model of the subsystem. Can be derived (S14). Therefore, the applicability determination unit 16 determines “applicable”, and the evaluation result output unit 13 outputs “applicable” on the screen (S21). When it is determined that “applicable”, the evaluation result output unit 13 outputs the failure risk evaluation model of the subsystem derived by the failure risk evaluation system 10 or 10A on the screen. After that, the processing by the failure risk evaluation system 10 or 10A according to the first embodiment or the second embodiment, which is determined to be “applicable”, is executed (S22), and this processing ends.
  • the applicability determination unit 16 determines that the maintenance history data associated with the failure history data of the entire system is not available in step S12 (NO in S12), or the score of the maintenance history data is determined in step S13.
  • the following process is performed. That is, the applicability determination unit 16 determines (N ⁇ 1) ⁇ x from the number of subsystems (x) for which the failure risk evaluation model is known and the total number (N) of subsystems forming the entire system. It is determined whether or not (S15).
  • the failure risk evaluation system 10B is applied as in the third embodiment.
  • the failure risk evaluation model of the subsystem can be derived (S16). Therefore, the applicability determining unit 16 determines that “Applicable”, and the evaluation result output unit 13 outputs “Applicable” on the screen (S21). When it is determined as “applicable”, the evaluation result output unit 13 outputs the failure risk evaluation model of the subsystem derived by the failure risk evaluation system 10B to the screen.
  • the processing by the failure risk evaluation system 10B according to the third embodiment, which is determined to be “applicable”, is executed (S22), and this processing ends.
  • step S15 when the number (x) of subsystems whose failure risk evaluation model is known is less than (N ⁇ 1) (NO in S15), the applicability determination unit 16 determines Considering the number of subsystems selected by the subsystem selecting unit, it is determined whether N ⁇ m+x+1 is satisfied (S17).
  • the total of the subsystems for which the failure risk evaluation model is known and the subsystems selected as the special subsystems is (N ⁇ 1) or N. Become.
  • the number of subsystems in which the failure risk is unknown is one or less, and the failure risk evaluation model of the subsystem can be derived by applying the failure risk evaluation system 10D as in the fifth embodiment (S18). ). Therefore, the applicability determining unit 16 determines that “Applicable”, and the evaluation result output unit 13 outputs “Applicable” on the screen (S21).
  • the failure risk evaluation model of the subsystem derived by the failure risk evaluation system 10D is output to the screen by the evaluation result output unit 13.
  • the processing by the failure risk evaluation system 10D according to the fifth embodiment, which is determined to be “applicable”, is performed (S22), and this processing ends.
  • the applicability determination unit 16 includes a plurality of subsystems (described as “subsystem y” in the figure) that are not selected by the special subsystem selection unit and have a known quantitative relationship of failure risk. It is determined whether or not (S19).
  • the applicability determination unit 16 determines that the subsystem y that is not selected by the special subsystem selection unit exists (YES in S19), the applicability determination unit 16 applies the failure risk evaluation system 10C as in the fourth embodiment.
  • a failure risk evaluation model of the subsystem can be derived (S20). Therefore, the applicability determining unit 16 determines that “Applicable”, and the evaluation result output unit 13 outputs “Applicable” on the screen (S21). When it is determined as “applicable”, the evaluation result output unit 13 outputs the subsystem failure risk evaluation model derived by the failure risk evaluation system 10C to the screen.
  • the processing by the failure risk evaluation system 10C according to the fourth embodiment, which is determined to be “applicable”, is executed (S22), and this processing ends.
  • the failure risk according to each embodiment cannot be estimated because the quantitative relationship of failure risks of a plurality of subsystems cannot be estimated. Rating system not applicable. Therefore, the applicability determination unit 16 determines that the application is not possible. Further, in step S11, even when neither the failure history of the entire system nor the failure risk evaluation model exists (NO in S11), the failure risk evaluation system according to each embodiment cannot be applied. 16 determines that “not applicable”.
  • the applicability determination unit 16 determines that the application is not applicable, the failure risk evaluation of the entire system and subsystem by the failure risk evaluation system according to each embodiment is not applicable. Therefore, when the applicability determination unit 16 determines “not applicable”, it displays the data “not applicable” and data necessary for making the failure risk evaluation system according to any of the embodiments applicable. In addition, the evaluation result output unit 13 outputs (S23). At this time, “applicable”, “not applicable”, and types of necessary data may be output to a screen or the like and presented to the operator.
  • the failure risk evaluation model of the subsystem and the condition that the evaluation model cannot be derived by the failure risk evaluation system according to each embodiment are excluded. Therefore, it is possible to prevent an abnormal failure risk from being output.
  • the applicability determination unit 16 can appropriately select the failure risk evaluation system according to the applicable embodiment based on the type of data currently possessed. In addition, the applicability determination unit 16 can present the missing data type and the number of data when the subsystem failure risk evaluation model and the evaluation model cannot be derived.
  • FIG. 12 is an explanatory diagram showing a display example of the operation screen 80 output to the display device 25 according to each embodiment.
  • the operation screen 80 is an example of a screen that can be displayed by the evaluation result output unit 13 shown in FIG. 2 when the operator operates the failure risk evaluation system according to each embodiment, for example.
  • the operation screen 80 includes an evaluation target information display unit 81 that displays information about the entire system and subsystems to be evaluated, a failure risk evaluation model selection unit 82, an evaluation data selection unit 83, and a failure risk evaluation result output unit 84.
  • Prepare The operation screen 80 output by the evaluation result output unit 13 includes at least a part of the evaluation target information display unit 81, the failure risk evaluation model selection unit 82, and the evaluation data selection unit 83.
  • the evaluation target information display unit 81 displays the information about the entire system and each subsystem, which is the target of failure risk evaluation, in an enterable manner.
  • the operator can input the names and configurations of the entire system and each subsystem through the evaluation target information display unit 81.
  • the input names and configurations of the entire system and each subsystem are displayed on the evaluation target information display section 81.
  • the name of the entire system is displayed as “XX1”
  • the name of the subsystem A is displayed as “YY1”
  • the name of the subsystem B is displayed as “YY2”.
  • the system configuration diagram shows that the subsystems A and B constitute the entire system.
  • the failure risk evaluation model selection unit 82 displays the failure risk evaluation model used for the entire system and subsystems in a selectable manner. Through the failure risk evaluation model selection unit 82, the operator can select a failure risk evaluation model used for formulating the failure risk for the years elapsed after the introduction of the entire system. The worker may select a general-purpose mathematical expression such as an exponential expression or a Weibull expression from those registered in advance as the failure risk evaluation model, or may input a unique model expression. In FIG. 12, the model 1 is selected as the failure risk evaluation model of the subsystem A, and the model 2 is selected as the failure risk evaluation model of the subsystem B.
  • the failure risk evaluation model selection unit 82 quantitatively determines The relationship is entered.
  • the failure risk evaluation model selection unit 82 inputs that the failure risk is low.
  • the quantitative relationship is not input in FIG. 12, if the ratio indicating the quantitative relationship of each subsystem is input from the terminal 7 shown in FIG. 9, the quantitative relationship calculating unit 14 calculates the ratio. The quantitative relationship of each subsystem created is displayed. Regardless of which failure risk evaluation model is used, the explanatory variable is the elapsed year (or operating period) after introduction, and the objective variable is the failure risk.
  • the evaluation data selection unit 83 selectably displays evaluation data used for failure risk evaluation.
  • the operator selects the data item of the data used by the failure risk evaluation system according to each embodiment to derive the failure risk evaluation model through the evaluation data selection unit 83.
  • the group shown in the data item is an index showing what purpose the entire system and subsystems are used for. For example, even if the subsystem is a pump, the risk of failure varies depending on whether the pump is flushed with water or air. Therefore, even if the pumps are the same, it is possible to select the group by changing the use of the data item such that water is passed through the pump in the group A and air is passed through the pump in the group B.
  • data may be used only for groups in a usage environment similar to the system under evaluation, or data for all groups may be used.
  • the check mark indicates that the group A is selected as the data item used for the failure risk evaluation.
  • the failure risk evaluation result output unit 84 displays a future predicted failure risk display unit 85, a predicted failure risk display unit 86 during maintenance, a recommended maintenance presentation unit 87, and a remarks column 88.
  • the future predictive failure risk display unit 85 displays a change in failure risk of the entire system and each subsystem in the future with respect to the elapsed years after introduction.
  • the predictive failure risk display unit 86 during maintenance execution presents the transition of the failure risk of the entire system and each subsystem when the maintenance displayed in the recommended maintenance presentation unit 87 is implemented, after the introduction.
  • the period 86a in the predicted failure risk display portion 86 at the time of performing maintenance represents a past failure risk evaluation result
  • the period 86b represents a future failure risk evaluation result predicted after the maintenance A is performed.
  • the recommended maintenance presentation unit 87 displays the timing for recommending maintenance for each subsystem.
  • the timing at which maintenance is recommended is set, for example, as the elapsed year (or operating period) after installation when the predicted failure risk of each subsystem or the entire system exceeds a predetermined threshold.
  • the timing for recommending maintenance is displayed as a “!” mark 85a on the future predicted failure risk display portion 85.
  • the remarks column 88 displays a comment for notifying the worker in advance when the failure risk in each subsystem increases.
  • the "! mark 88a shown in the remarks column 88 represents the failure risk evaluation result for the "! mark 85a shown in the recommended maintenance presentation unit 87. Therefore, the operator can confirm the failure risk indicated by the "! mark 88a shown in the remarks column 88 and perform necessary maintenance for the subsystem A.
  • a maintenance service in which the failure risk evaluation system according to each of the above-described embodiments is combined with a sales support system, and the evaluation value obtained by evaluating the failure risk is presented to the maintenance staff through the sales support system. May be.
  • the replacement proposal of the subsystem whose failure risk is predicted can be provided to the customer through the maintenance staff.
  • mapping subsystems with a high failure risk to design drawings, etc. we provide an optimization system for operators that decides the result of failure risk predictions, the number of workers to deal with failures, and the location of workers. You may. As a result, it becomes easy to understand the subsystems having a high failure risk in the entire system, and it becomes possible to appropriately arrange the workers.
  • each of the above-described embodiments is a detailed and specific description of the configuration of an apparatus and a system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of the embodiment described here can be replaced with the configuration of another embodiment, and further, the configuration of another embodiment can be added to the configuration of one embodiment. It is possible. Further, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
  • the control lines and information lines are shown to be necessary for explanation, and not all the control lines and information lines are shown in the product. In reality, it may be considered that almost all the configurations are connected to each other.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A failure risk assessment system equipped with: a history acquisition unit for acquiring the failure history of an overall system comprising a plurality of sub-systems and the maintenance history of one or more sub-systems selected from among the plurality of sub-systems; and a failure risk assessment model calculation unit which obtains the failure risk of a sub-system for which there is no maintenance history by calculating a failure risk assessment model for assessing the failure risk of said sub-system on the basis of the failure history of the overall system and the acquired maintenance history of the one or more sub-systems.

Description

故障リスク評価システム及び故障リスク評価方法Failure risk evaluation system and failure risk evaluation method
 本発明は、故障リスク評価システム及び故障リスク評価方法に関する。 The present invention relates to a failure risk evaluation system and a failure risk evaluation method.
 システムに発生する異常や、異常発生に伴う計画外停止は、緊急の修理や保守コスト、停止に伴う損害を発生させる。これらの損害を回避するため、故障が発生する前にシステムを構成する設備機器の交換、調整等の保守を実施することが有効である。適切な保守タイミングを設定するためには、設備機器の劣化度合を故障リスク、健全度、余寿命等の予測値を用いて最適化する必要がある。設備機器の劣化度合の予測に用いられる故障リスク、健全度、余寿命等は、一般的に、類似や同型の既存機器の保守・点検の履歴や、故障履歴より算出される。  Abnormalities that occur in the system and unplanned outage due to the abnormalities cause urgent repair and maintenance costs, and damage due to the outage. In order to avoid these damages, it is effective to carry out maintenance such as replacement and adjustment of the equipment constituting the system before a failure occurs. In order to set an appropriate maintenance timing, it is necessary to optimize the degree of deterioration of equipment using predicted values such as failure risk, soundness, and remaining life. The failure risk, soundness, remaining life, etc. used to predict the degree of deterioration of equipment are generally calculated from the history of maintenance/inspection of similar or similar existing equipment and failure history.
 一般的に、システムは複数の設備機器や部品等からなる複数のサブシステムで構成されている。そこで、本明細書では、複数のサブシステムを有するシステムを全体システムと定義する。例えば、全体システムを電動機とした場合、サブシステムは電動機の構成要素である固定子、回転子等である。 Generally speaking, the system is composed of multiple subsystems consisting of multiple equipment and parts. Therefore, in this specification, a system having a plurality of subsystems is defined as an entire system. For example, when the entire system is an electric motor, the subsystems are the constituent elements of the electric motor, such as the stator and the rotor.
 全体システムの故障リスクが求まれば、全体システムの故障リスクの値によって全体システムの稼働を継続するか否かを判定することができる。また、各サブシステムの故障リスクの値によって、保守を実施するサブシステムを決定することもできる。全体システムを構成するサブシステムの故障リスクが算出されている場合、各サブシステムの故障リスクから保守が必要なサブシステムを判定し、また、サブシステムの故障リスクから全体システムの故障リスクを算出することもできる。 If the failure risk of the entire system is obtained, it is possible to determine whether to continue the operation of the entire system based on the value of the failure risk of the entire system. Further, it is also possible to determine the subsystem for which maintenance is to be performed, based on the value of the failure risk of each subsystem. When the failure risk of the subsystems that make up the entire system is calculated, the subsystem that requires maintenance is determined from the failure risk of each subsystem, and the failure risk of the entire system is calculated from the failure risk of the subsystems. You can also
 そこで、故障リスクが高く、交換が必要なサブシステムが判明している場合、故障リスクが高いサブシステムのみを保守することで、他のサブシステムは継続して使用することができる。全てのサブシステムを保守すると、多大なコストがかかるが、一部のサブシステムのみを保守することで、コストを大幅に抑えることができる。 Therefore, if the subsystem that has a high failure risk and needs to be replaced is known, other subsystems can continue to be used by maintaining only the subsystem that has a high failure risk. Maintaining all subsystems is very costly, but maintaining only some subsystems can significantly reduce the cost.
 各サブシステムから全体システムの故障リスクを算出する方法として、例えば、特許文献1に記載の電源設備の電力供給リスク評価システムが開示されている。この特許文献1には、「運転モードや保守作業モード等に応じたシナリオ別の接続構成の電力供給システムを作成し、この作成されたシナリオ別の電力供給システムの電力供給リスクを評価する」と記載されている。 As a method of calculating the failure risk of the entire system from each subsystem, for example, the power supply risk evaluation system of the power supply facility described in Patent Document 1 is disclosed. In this Patent Document 1, "a power supply system having a connection configuration for each scenario according to an operation mode, a maintenance work mode, etc. is created, and the power supply risk of the created power supply system for each scenario is evaluated". Have been described.
特開2010-166702号公報JP, 2010-166702, A
 上述した特許文献1に開示された手法では、全体システムを構成するサブシステムの故障リスクを全て算出し、各サブシステムの故障リスクから全体システムの故障リスクを算出する必要がある。しかし、全体システムの故障リスクは算出できるものの、個々のサブシステムの故障リスクが不明な場合がある。各サブシステムの故障リスクが不明な場合、故障リスクが高いサブシステムを特定できない。このため、全体システムを頻繁に保守しなければならず、保守に要するコストが高くなってしまう。 With the method disclosed in Patent Document 1 described above, it is necessary to calculate all the failure risks of the subsystems that make up the entire system, and then calculate the failure risk of the entire system from the failure risks of each subsystem. However, although the failure risk of the entire system can be calculated, the failure risk of each subsystem may be unknown. If the failure risk of each subsystem is unknown, the subsystem with a high failure risk cannot be identified. For this reason, the entire system must be frequently maintained, which increases the cost required for maintenance.
 本発明はこのような状況に鑑みて成されたものであり、故障履歴がないサブシステムの故障リスクを算出することを目的とする。 The present invention has been made in view of such a situation, and an object thereof is to calculate a failure risk of a subsystem having no failure history.
 本発明に係る故障リスク評価システムは、複数のサブシステムで構成される全体システムの故障履歴と、複数のサブシステムから選択された少なくとも一つのサブシステムの保守履歴とを取得する履歴取得部と、全体システムの故障履歴及び少なくとも一つのサブシステムの保守履歴に基づいて、保守履歴がない他のサブシステムの故障リスクを評価するための故障リスク評価モデルを算出し、他のサブシステムの故障リスクを求める故障リスク評価モデル算出部と、を備える。 A failure risk evaluation system according to the present invention, a history acquisition unit that acquires a failure history of the entire system including a plurality of subsystems, and a maintenance history of at least one subsystem selected from the plurality of subsystems, Based on the failure history of the entire system and the maintenance history of at least one subsystem, calculate a failure risk evaluation model to evaluate the failure risk of other subsystems that do not have maintenance history, and calculate the failure risk of other subsystems. And a failure risk evaluation model calculation unit to be obtained.
 本発明によれば、全体システムの故障履歴及び少なくとも一つのサブシステムの保守履歴に基づいて算出した故障リスク評価モデルにより、保守履歴がない他のサブシステムの故障リスクを求めるため、サブシステムの保守を適切に行えるようになる。
 上記した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
According to the present invention, the failure risk evaluation model calculated based on the failure history of the entire system and the maintenance history of at least one subsystem is used to obtain the failure risk of another subsystem having no maintenance history. Will be able to do it properly.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の第1の実施の形態に係る全体システムのシステム構成図である。It is a system block diagram of the whole system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る故障リスク評価システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the failure risk evaluation system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る計算機のハードウェア構成例を示すブロック図である。It is a block diagram showing an example of hardware constitutions of a computer concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る複数のサブシステムの保守履歴を表すタイムチャートである。It is a time chart showing the maintenance history of a plurality of subsystems concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る故障リスク評価システムのデータ処理フローを記載した説明図である。It is explanatory drawing which described the data processing flow of the failure risk evaluation system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る故障リスク評価システムにおけるデータの流れを示す説明図である。It is explanatory drawing which shows the flow of data in the failure risk evaluation system which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る故障リスク評価システムにおけるデータの流れを示す説明図である。It is explanatory drawing which shows the flow of data in the failure risk evaluation system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る故障リスク評価システムにおけるデータの流れを示す説明図である。It is explanatory drawing which shows the flow of data in the failure risk evaluation system which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る故障リスク評価システムにおけるデータの流れを示す説明図である。It is explanatory drawing which shows the flow of data in the failure risk evaluation system which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る故障リスク評価システムにおけるデータの流れを示す説明図である。It is explanatory drawing which shows the flow of data in the failure risk evaluation system which concerns on the 5th Embodiment of this invention. 本発明の第6の実施の形態に係る故障リスク評価システムにおけるデータの流れを示す説明図である。It is explanatory drawing which shows the flow of data in the failure risk evaluation system which concerns on the 6th Embodiment of this invention. 本発明の各実施の形態に係る表示装置に出力される操作画面の表示例を示す説明図である。It is explanatory drawing which shows the example of a display of the operation screen output to the display apparatus which concerns on each embodiment of this invention.
 以下、本発明を実施するための形態について、添付図面を参照して説明する。本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. In this specification and the drawings, components having substantially the same function or configuration are designated by the same reference numerals, and a duplicate description will be omitted.
[前提条件]
 各実施の形態の説明に入る前に、本発明を各実施の形態に適用するための前提条件について説明する。
 図1は、故障リスク評価システム10と、故障・保守管理システム4との関係を表す全体構成図である。
[Prerequisites]
Before starting the description of each embodiment, the preconditions for applying the present invention to each embodiment will be described.
FIG. 1 is an overall configuration diagram showing a relationship between a failure risk evaluation system 10 and a failure/maintenance management system 4.
 全体システム1は、複数のサブシステムA,B,C,…Nによって構成される。本実施の形態において、各サブシステムのいずれか一つでも稼働不可能な状態に陥ると、全てのサブシステムが稼働不可能な状態となる関係性を持つ全体システム1とサブシステムA~Nを想定する。以下の説明において、サブシステムA~Nを区別しない場合には、「サブシステム」と呼ぶ。 The entire system 1 is composed of a plurality of subsystems A, B, C,... N. In the present embodiment, when any one of the subsystems falls into the inoperable state, all subsystems 1 and subsystems A to N are in a relationship in which all the subsystems are inoperable. Suppose. In the following description, when the subsystems A to N are not distinguished, they are called "subsystems".
 故障・保守管理システム4は、全体システム1の故障履歴データ(故障履歴の一例)、各サブシステムA,B,C,…Nの保守履歴データ(保守履歴の一例)を管理する。全体システム1の故障履歴データは、全体システム故障DB(Data Base)2に格納される。また、サブシステムAの保守履歴データは、サブシステムA保守DB3Aに格納され、サブシステムCの保守履歴データは、サブシステムC保守DB3Cに格納される。同様に、サブシステムNまでの各サブシステムの保守履歴データは、各サブシステムに対応した保守DBに格納される。なお、以下の実施の形態では、サブシステムBの保守履歴データを格納するサブシステムB保守DB3Bが設けられないことがあるため、サブシステムB保守DB3Bを破線で表す。 The failure/maintenance management system 4 manages failure history data of the entire system 1 (an example of failure history) and maintenance history data of each subsystem A, B, C,... N (an example of maintenance history). The failure history data of the overall system 1 is stored in the overall system failure DB (Data Base) 2. Further, the maintenance history data of the subsystem A is stored in the subsystem A maintenance DB 3A, and the maintenance history data of the subsystem C is stored in the subsystem C maintenance DB 3C. Similarly, the maintenance history data of each subsystem up to the subsystem N is stored in the maintenance DB corresponding to each subsystem. In the following embodiments, the subsystem B maintenance DB 3B for storing the maintenance history data of the subsystem B may not be provided, so the subsystem B maintenance DB 3B is indicated by a broken line.
 故障リスク評価システム10は、既存の全体システム1で管理される各種のデータに基づいて、現在稼働している、又は今後稼働する全体システム1又はサブシステムの故障リスクを算出する。本実施の形態では、例えば、全体システム1を導入した年から10年後までの間で、全体システム1が故障する確率が全体システムの故障リスクとして算出され、サブシステムが故障する確率がサブシステムの故障リスクとして算出される。 The failure risk evaluation system 10 calculates the failure risk of the overall system 1 or subsystem currently operating or in the future based on various data managed by the existing overall system 1. In the present embodiment, for example, the probability of failure of the entire system 1 is calculated as the failure risk of the entire system from the year after the introduction of the entire system 1 to 10 years later, and the probability of the subsystem failure is the subsystem. It is calculated as the failure risk of.
 全体システム1の緊急停止は損害が発生するため、全体システム1の緊急停止が起こる危険度を事前に判定する必要がある。そこで、故障リスク評価システム10は、全体システム1の故障リスク及びサブシステムの故障リスクに基づいて、危険度の高いサブシステムを把握し、このサブシステムに対する効果的な保守を行えるようにする。 Since an emergency stop of the entire system 1 causes damage, it is necessary to determine the risk of the emergency stop of the entire system 1 in advance. Therefore, the failure risk evaluation system 10 recognizes a subsystem having a high risk based on the failure risk of the entire system 1 and the failure risk of the subsystem, and enables effective maintenance for this subsystem.
 故障リスク評価システム10では、複数のサブシステムA~Nから成る全体システム1を故障リスクの算出対象とし、各サブシステムの故障リスクの合算値が全体システム1の故障リスクと等しい、又は近似できる場合を仮定する。さらに、各サブシステムの故障リスクは下記の式(1)が成り立つ範囲の低い値であることを想定している。また、サブシステムの保守は、古いサブシステムを新しいサブシステムに交換することで行われる。このため、保守されたサブシステムは全て新品となり、保守直後のサブシステムの故障リスクは0になると想定する。 In the failure risk evaluation system 10, the total system 1 including a plurality of subsystems A to N is set as a failure risk calculation target, and the total value of the failure risks of each subsystem can be equal to or approximate to the failure risk of the entire system 1. Suppose Furthermore, the failure risk of each subsystem is assumed to be a low value within the range where the following formula (1) is satisfied. Subsystem maintenance is performed by replacing the old subsystem with a new subsystem. Therefore, it is assumed that all the maintained subsystems are new and the failure risk of the subsystems immediately after the maintenance is zero.
 1-F(t) = (1-FA(t))(1-FB(t))・・・(1-FN(t)) …(1)
  t:導入後経過年(または稼動期間)
  F:全体システムの故障リスク
  FA:サブシステムAの故障リスク
  FB:サブシステムBの故障リスク
  FN:サブシステムNの故障リスク
  なお、FA(t)、FB(t)、FN(t)が小さい時、F(t)≒FA(t)+FB(t)+・・・+FN(t)とする。
1-F(t) = (1-FA(t))(1-FB(t)) (1-FN(t)) (1)
t: Year after introduction (or operating period)
F: failure risk of the entire system FA: failure risk of subsystem A FB: failure risk of subsystem B FN: failure risk of subsystem N When FA(t), FB(t), FN(t) is small , F(t)≈FA(t)+FB(t)+...+FN(t).
 本実施の形態に係るデータの種別として、例えば、故障リスク、導入後経過年、故障履歴、保守履歴を以下に定義する。なお、以下の定義はデータの種別を限定するものではなく、類似の内容であれば、同様に適用できる。
 故障リスクとは、累積故障率、累積ハザード率(例えば、所定期間に発生したハザードの累積値の比率)、システム(全体システム及びサブシステムを含む)の劣化度、システムの健全度等のシステムの故障に関する指標を指す。
 導入後経過年は、全体システム1を導入してから故障リスクを算出する任意の年(例えば、1年毎)までの期間を表す。以下の説明では、導入後経過年として記載するが、算出可能であれば、全体システム1の稼働年や稼働期間を、導入後経過年の代わりに用いてもよい。また、全体システム1の導入年とは、全体システム1を納入した年、又は全体システム1を製造した年としてもよい。
As data types according to the present embodiment, for example, failure risk, years after introduction, failure history, and maintenance history are defined below. It should be noted that the following definitions do not limit the types of data, and can be similarly applied as long as they have similar contents.
Failure risk refers to cumulative failure rate, cumulative hazard rate (for example, the ratio of cumulative value of hazards that occurred in a predetermined period), deterioration degree of system (including entire system and subsystems), system health such as system health. Refers to an indicator of failure.
The year after introduction indicates the period from the introduction of the entire system 1 to an arbitrary year (for example, every year) in which the failure risk is calculated. In the following description, it is described as the elapsed years after the introduction, but if it can be calculated, the operating year or the operating period of the entire system 1 may be used instead of the elapsed years after the introduction. The year of introduction of the entire system 1 may be the year in which the entire system 1 is delivered or the year in which the entire system 1 is manufactured.
 故障履歴は、全体システム1を導入した年、及び全体システム1が停止を実施し、又は停止が発生した年を記録したものである。全体システム1の停止は、故障により全体システム1が稼働できなくなる異常停止と、故障以外のその他の要因による全体システム1の停止を分けて記載したものが好ましい。また、故障履歴として、一部のサブシステムが導入された年、このサブシステムが停止した年等も記録されることがある。全体システム1の故障履歴データは、例えば、全体システム1を導入後の所定期間に故障した全体システム1の数、及び故障回数の履歴を表す。 The failure history records the year when the whole system 1 was introduced, and the year when the whole system 1 was stopped or the stop occurred. As for the stop of the entire system 1, it is preferable to separately describe an abnormal stop in which the entire system 1 cannot operate due to a failure and a stop of the entire system 1 due to other factors other than the failure. In addition, as the failure history, the year when some subsystems are introduced, the year when this subsystem is stopped, etc. may be recorded. The failure history data of the whole system 1 represents, for example, the number of whole systems 1 that have failed in a predetermined period after the introduction of the whole system 1 and the history of the number of failures.
 保守履歴は、サブシステムを導入した年、及びサブシステムの保守を実施した年を記録したものである。つまり、サブシステムの保守履歴データは、例えば、サブシステムの導入後の所定期間に実施された保守の履歴である。なお、全体システム1の保守は、全体システム1を構成する全てのサブシステムを新品に交換することで行われるものとする。 The maintenance history is a record of the year that the subsystem was installed and the year that the subsystem was maintained. That is, the maintenance history data of the subsystem is, for example, a history of maintenance performed in a predetermined period after the introduction of the subsystem. Note that the maintenance of the entire system 1 is performed by replacing all subsystems constituting the entire system 1 with new ones.
[第1の実施の形態]
<二つのサブシステムの保守情報を活用する例>
 図2は、第1の実施の形態に係る故障リスク評価システム10の構成例を示すブロック図である。
[First Embodiment]
<Example of utilizing maintenance information of two subsystems>
FIG. 2 is a block diagram showing a configuration example of the failure risk evaluation system 10 according to the first embodiment.
 故障リスク評価システム10は、履歴取得部11、故障リスク評価モデル算出部12及び評価結果出力部13を備える。この故障リスク評価システム10は、全体システム1の故障履歴データと、少なくとも一つのサブシステムの保守履歴データとに基づいて、他のサブシステムの故障リスクを求めることを可能とする。第1の実施の形態では、全体システム1がサブシステムA(第1のサブシステムの一例)とサブシステムB(第2のサブシステムの一例)の二つのサブシステムで構成されるものとする。そして、サブシステムAの保守履歴データは存在するが、サブシステムBの保守履歴データは存在しないものとする。 The failure risk evaluation system 10 includes a history acquisition unit 11, a failure risk evaluation model calculation unit 12, and an evaluation result output unit 13. The failure risk evaluation system 10 makes it possible to determine the failure risk of another subsystem based on the failure history data of the entire system 1 and the maintenance history data of at least one subsystem. In the first embodiment, it is assumed that the overall system 1 is composed of two subsystems, subsystem A (an example of the first subsystem) and subsystem B (an example of the second subsystem). The maintenance history data of the subsystem A exists, but the maintenance history data of the subsystem B does not exist.
 履歴取得部11は、複数のサブシステムで構成される全体システム1の故障履歴データと、複数のサブシステムから選択された少なくとも一つのサブシステムの保守履歴データとを取得する。ここで、履歴取得部11が、保守履歴データを取得するのは、保守履歴データがある少なくとも一つのサブシステムである。 The history acquisition unit 11 acquires failure history data of the entire system 1 including a plurality of subsystems and maintenance history data of at least one subsystem selected from the plurality of subsystems. Here, the history acquisition unit 11 acquires the maintenance history data from at least one subsystem having the maintenance history data.
 例えば、履歴取得部11は、全体システム故障DB2から全体システム1の故障履歴データを取得し、サブシステムA保守DB3AからサブシステムAの保守履歴データを取得する。第1の実施の形態では、履歴取得部11がサブシステムA保守DB3Aから保守履歴データを取得するが、他の実施の形態では、履歴取得部11がサブシステムA以外の保守DBから保守履歴データを取得することも可能である。 For example, the history acquisition unit 11 acquires the failure history data of the entire system 1 from the entire system failure DB 2 and the maintenance history data of the subsystem A from the subsystem A maintenance DB 3A. In the first embodiment, the history acquisition unit 11 acquires the maintenance history data from the subsystem A maintenance DB 3A, but in another embodiment, the history acquisition unit 11 acquires the maintenance history data from the maintenance DB other than the subsystem A. It is also possible to obtain
 故障リスク評価モデル算出部12は、全体システム1の故障履歴データ、及び少なくとも一つのサブシステムの保守履歴データに基づいて、保守履歴データがない他のサブシステムの故障リスクを評価するための故障リスク評価モデルを算出する。そして、故障リスク評価モデル算出部12は、他のサブシステムの故障リスクを求める。そこで、故障リスク評価モデル算出部12は、導入後経過年を説明変数、故障リスクを目的変数として、全体システム1及びサブシステムの故障リスク評価モデルを算出する。第1の実施の形態では、故障リスク評価モデル算出部12が、全体システム1の故障リスク評価モデルを算出し、さらにサブシステムAの故障リスク評価モデルを算出する。 The failure risk evaluation model calculation unit 12 is a failure risk for evaluating a failure risk of another subsystem having no maintenance history data based on the failure history data of the entire system 1 and the maintenance history data of at least one subsystem. Calculate an evaluation model. Then, the failure risk evaluation model calculation unit 12 obtains the failure risk of other subsystems. Therefore, the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model of the entire system 1 and the subsystems with the years after introduction as an explanatory variable and the failure risk as an objective variable. In the first embodiment, the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model of the overall system 1, and further calculates the failure risk evaluation model of the subsystem A.
 評価結果出力部13は、故障リスク評価モデル算出部12によって算出された故障リスク評価モデルにより評価されたサブシステムの故障リスクの評価結果を、表示装置25(後述する図3を参照)の操作画面80(後述する図12を参照)に表示可能に出力する。 The evaluation result output unit 13 displays the failure risk evaluation result of the subsystem evaluated by the failure risk evaluation model calculated by the failure risk evaluation model calculation unit 12 on the operation screen of the display device 25 (see FIG. 3 described later). 80 (see FIG. 12, which will be described later) so that it can be displayed.
 次に、故障リスク評価システム10を構成する計算機20のハードウェア構成を説明する。
 図3は、計算機20のハードウェア構成例を示すブロック図である。
Next, the hardware configuration of the computer 20 that constitutes the failure risk evaluation system 10 will be described.
FIG. 3 is a block diagram showing a hardware configuration example of the computer 20.
 計算機20は、いわゆるコンピュータとして用いられるハードウェアである。計算機20は、バス24にそれぞれ接続されたCPU(Central Processing Unit:中央処理装置)21、ROM(Read Only Memory)22、RAM(Random Access Memory)23を備える。さらに、計算機20は、表示装置25、入力装置26、不揮発性ストレージ27、ネットワークインターフェイス28を備える。 The computer 20 is hardware used as a so-called computer. The computer 20 includes a CPU (Central Processing Unit) 21, a ROM (Read Only Memory) 22, and a RAM (Random Access Memory) 23 that are respectively connected to a bus 24. Furthermore, the computer 20 includes a display device 25, an input device 26, a non-volatile storage 27, and a network interface 28.
 CPU21は、本実施の形態に係る各機能を実現するソフトウェアのプログラムコードをROM22から読み出してRAM23にロードし、実行する。RAM23には、CPU21の演算処理の途中で発生した変数やパラメーター等が一時的に書き込まれ、CPU21によって適宜読み出される。CPU21,ROM22及びRAM23が協調することで、本実施の形態に係る履歴取得部11、故障リスク評価モデル算出部12及び評価結果出力部13が機能する。 CPU21 reads the program code of the software which implement|achieves each function which concerns on this Embodiment from ROM22, loads it in RAM23, and executes it. Variables, parameters, etc. generated in the middle of the arithmetic processing of the CPU 21 are temporarily written in the RAM 23, and are appropriately read by the CPU 21. The history acquisition unit 11, the failure risk evaluation model calculation unit 12, and the evaluation result output unit 13 according to the present embodiment function as the CPU 21, the ROM 22, and the RAM 23 cooperate with each other.
 表示装置25は、例えば、液晶ディスプレイモニタであり、計算機20で行われる処理の結果等を作業者に表示する。入力装置26には、例えば、キーボード、マウス等が用いられ、作業者が所定の操作入力、指示を行うことが可能である。 The display device 25 is, for example, a liquid crystal display monitor, and displays the result of processing performed by the computer 20 to the worker. A keyboard, a mouse, or the like is used as the input device 26, for example, and an operator can input a predetermined operation and give an instruction.
 不揮発性ストレージ27としては、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フレキシブルディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリ等が用いられる。この不揮発性ストレージ27には、OS(Operating System)、各種のパラメーターの他に、計算機20を機能させるためのプログラムが記録されている。ROM22、不揮発性ストレージ27は、CPU21が動作するために必要なプログラムやデータ等を永続的に記録しており、計算機20によって実行されるプログラムを格納したコンピュータ読取可能な非一過性の記録媒体の一例として用いられる。 As the non-volatile storage 27, for example, HDD (Hard Disk Drive), SSD (Solid State Drive), flexible disk, optical disk, magneto-optical disk, CD-ROM, CD-R, magnetic tape, non-volatile memory, etc. are used. To be In the non-volatile storage 27, an OS (Operating System), various parameters, and a program for operating the computer 20 are recorded. The ROM 22 and the non-volatile storage 27 permanently record programs and data necessary for the CPU 21 to operate, and are computer-readable non-transitory recording media that store programs executed by the computer 20. It is used as an example.
 ネットワークインターフェイス28には、例えば、NIC(Network Interface Card)等が用いられ、NICの端子に接続されたLAN(Local Area Network)、専用線等を介して各種のデータを装置間で送受信することが可能である。 As the network interface 28, for example, a NIC (Network Interface Card) or the like is used, and various data can be transmitted and received between the devices via a LAN (Local Area Network) connected to a terminal of the NIC, a dedicated line, or the like. It is possible.
 第1の実施の形態に係る故障リスク評価システム10は、二つのサブシステムA,Bで構成されている全体システム1を故障リスク評価の対象とする。サブシステムAはサブシステムBに比べて故障までの期間が短く、高頻度で保守が施されていると想定して、以下に故障リスク評価システム10の具体的な処理の詳細を説明する。 The failure risk evaluation system 10 according to the first embodiment targets the entire system 1 composed of two subsystems A and B for failure risk evaluation. Assuming that the subsystem A has a shorter time to failure than the subsystem B and is frequently maintained, the details of specific processing of the failure risk evaluation system 10 will be described below.
 始めに、以下の説明で用いる用語について定義する。
 図4は、複数のサブシステムAの保守履歴を表すタイムチャートである。
 全体システム1が複数ある場合、全体システム1を構成するサブシステムAも複数存在する。そこで、サブシステムAを見分けるため、サブシステムA(1)~A(3)のように符号を付す。説明の都合上、それぞれの全体システム1がサブシステムA~Nによって構成されるものとする。また、異なる全体システム1を表現するため、全体システム(1)~(3)のように符号を付す。
First, terms used in the following description will be defined.
FIG. 4 is a time chart showing the maintenance history of the plurality of subsystems A.
When there are a plurality of overall systems 1, there are also a plurality of subsystems A that make up the overall system 1. Therefore, in order to identify the subsystem A, reference numerals such as subsystems A(1) to A(3) are given. For convenience of explanation, it is assumed that each entire system 1 is composed of subsystems A to N. Further, in order to express different overall systems 1, reference numerals are given as in the overall systems (1) to (3).
 タイムチャートは、全体システム1の稼働開始(すなわちサブシステムA(1)~A(3)の稼働開始)、又はサブシステムA(1)~A(3)が保守されて全体システム1に導入された時から開始する。サブシステムA(1)の稼働開始後、サブシステムA(1)の保守が行われ、図中に斜線部で示すようにサブシステムA(1)が所定期間にわたって停止した後、再稼働したサブシステムA(1)が停止したとする。図中に示す保守が実施された時、又は停止した期間以外では、サブシステムA(1)が稼働している。この場合、サブシステムA(1)の保守が実施され、及び保守以外で停止した年がサブシステムA(1)の保守履歴データとして、サブシステムA(1)のサブシステムA保守DB3Aに記録される。 The time chart shows that the operation of the entire system 1 is started (that is, the operation of the subsystems A(1) to A(3) is started), or the subsystems A(1) to A(3) are maintained and introduced into the entire system 1. Start from when After the subsystem A(1) is started to operate, the subsystem A(1) is maintained, and the subsystem A(1) is restarted after the subsystem A(1) is stopped for a predetermined period as shown by the shaded portion in the figure. It is assumed that system A(1) has stopped. The subsystem A(1) is operating except when the maintenance shown in the drawing is performed or when the maintenance is stopped. In this case, the maintenance of the subsystem A(1) is carried out, and the year stopped other than the maintenance is recorded in the subsystem A maintenance DB 3A of the subsystem A(1) as the maintenance history data of the subsystem A(1). It
 同様に、サブシステムA(2)の稼働開始後、サブシステムA(2)の保守が行われ、停止した年が、サブシステムA(2)のサブシステムA保守DB3Aに記録される。また、サブシステムA(3)の稼働開始後、サブシステムA(3)の保守が行われ、停止した年が、サブシステムA(3)のサブシステムA保守DB3Aに記録される。 Similarly, after the subsystem A (2) starts operating, the subsystem A (2) is maintained, and the stopped year is recorded in the subsystem A maintenance DB 3A of the subsystem A (2). Further, after the subsystem A(3) starts operating, the subsystem A(3) is maintained, and the stopped year is recorded in the subsystem A maintenance DB 3A of the subsystem A(3).
 サブシステムAが用いられる環境によって、サブシステムAの保守が行われる年、サブシステムAが停止する年が変わる。そこで、履歴取得部11は、複数の全体システム1に共通して構成されるサブシステムの保守履歴データを所定期間毎にまとめたデータ群を作成する。 Depending on the environment in which Subsystem A is used, the year in which Subsystem A is maintained and the year in which Subsystem A stops will change. Therefore, the history acquisition unit 11 creates a data group in which maintenance history data of subsystems that are configured in common for the plurality of overall systems 1 are collected for each predetermined period.
 例えば、図4の下側に示すように、履歴取得部11は、サブシステムAの稼働開始後、サブシステムA(1)~A(3)にそれぞれ設けられたサブシステムA保守DB3Aに記録されるサブシステムAが保守され、又は停止した年毎にまとめたサブシステムAの保守A実施データ群5を作成する。履歴取得部11が保守A実施データ群5を作成する所定の期間は任意である。図4に示したように1年毎とする以外にも、半年毎、月毎のように任意の所定期間を定めてよい。 For example, as shown in the lower side of FIG. 4, the history acquisition unit 11 is recorded in the subsystem A maintenance DB 3A provided in each of the subsystems A(1) to A(3) after the subsystem A starts operating. A maintenance A execution data group 5 of the subsystem A is prepared for each year when the subsystem A is maintained or stopped. The predetermined period during which the history acquisition unit 11 creates the maintenance A execution data group 5 is arbitrary. Instead of once a year as shown in FIG. 4, an arbitrary predetermined period may be set, such as every six months or every month.
 図4の上側のタイムチャートに示すように、サブシステムAの稼働開始後、1年目でサブシステムA(1),A(3)で保守Aが実施された場合、履歴取得部11は、サブシステムA(1),A(3)で行われた保守Aの記録を1年目の保守A実施データ群5として作成する。また、サブシステムAの稼働開始後、2年目でサブシステムA(1),A(2)で保守Aが行われ、及び保守A以外で停止すると、履歴取得部11は、サブシステムA(1),A(2)で行われた保守A及び停止の記録を2年目の保守A実施データ群5として作成する。3年目では、サブシステムA(1)~A(3)で保守Aが行われていないため、3年目の保守A実施データ群5には空データが格納される。ただし、3年目の保守A実施データ群5は作成されなくてもよい。 As shown in the upper time chart of FIG. 4, when the maintenance A is performed in the subsystems A(1) and A(3) in the first year after the subsystem A starts operating, the history acquisition unit 11 A record of the maintenance A performed by the subsystems A(1) and A(3) is created as a maintenance A execution data group 5 for the first year. Further, when the maintenance A is performed in the subsystems A(1) and A(2) in the second year after the operation of the subsystem A is started, and when the maintenance A is stopped except the maintenance A, the history acquisition unit 11 causes the subsystem A( Records of maintenance A and stop performed in 1) and A(2) are created as a maintenance A execution data group 5 in the second year. In the third year, maintenance A is not performed in the subsystems A(1) to A(3), so empty data is stored in the maintenance A execution data group 5 in the third year. However, the maintenance A execution data group 5 for the third year may not be created.
<故障リスク評価システムのデータ処理フロー>
 次に、故障リスク評価システム10の処理について説明する。
 図5は、第1の実施の形態に係る故障リスク評価システム10のデータ処理フローを記載した説明図である。本データ処理フローにより、故障リスク評価システム10で行われる故障リスク評価方法が説明される。
 図6は、故障リスク評価システム10におけるデータの流れを示す説明図である。
<Data processing flow of failure risk assessment system>
Next, the processing of the failure risk evaluation system 10 will be described.
FIG. 5 is an explanatory diagram showing a data processing flow of the failure risk evaluation system 10 according to the first exemplary embodiment. This data processing flow explains the failure risk evaluation method performed by the failure risk evaluation system 10.
FIG. 6 is an explanatory diagram showing a data flow in the failure risk evaluation system 10.
 第1の実施の形態に係る故障リスク評価システム10では、全体システム1の故障履歴と、二つのサブシステムの内の一つ、例えば、サブシステムAの保守を実施した保守A実施年が分かれば、サブシステムA,Bの故障リスク評価モデルを算出する。そこで、サブシステムAの保守履歴データが存在する条件を仮定し、図3~図6を参照して、故障リスク評価システム10においてサブシステムの故障リスクを算出する流れを説明する。以下の説明では、サブシステムAが保守された年をサブシステムA保守年とした場合、サブシステムAの導入後にサブシステムAが保守された年を「保守A実施年」と呼ぶ。また、保守A実施年から全体システム1が停止するまでの期間を「保守A後経過年数」と呼ぶ。 In the failure risk evaluation system 10 according to the first exemplary embodiment, if the failure history of the entire system 1 and one of the two subsystems, for example, the maintenance A execution year when the maintenance of the subsystem A is performed are known. , A failure risk evaluation model of subsystems A and B is calculated. Therefore, assuming the condition that the maintenance history data of the subsystem A exists, the flow of calculating the failure risk of the subsystem in the failure risk evaluation system 10 will be described with reference to FIGS. 3 to 6. In the following description, when the year in which the subsystem A is maintained is the maintenance year of the subsystem A, the year in which the subsystem A is maintained after the introduction of the subsystem A is referred to as “maintenance A implementation year”. Further, the period from the year of carrying out maintenance A to the shutdown of the entire system 1 is referred to as "the number of years after maintenance A".
 本実施の形態においてサブシステムA,Bと全体システム1の故障リスクは、以下の近似式(2)として表すことができる。
 Ftotal = FA(t-a)+FB(t-b)…(2)
  Ftotal:全体システム1の故障リスク
  FA、FB:サブシステムA、Bの故障リスク
  t:導入後経過年
  a、b:サブシステムA、Bを最後に保守した際の導入後経過年
In the present embodiment, the failure risk of the subsystems A and B and the overall system 1 can be expressed by the following approximate expression (2).
Ftotal=FA(t−a)+FB(t−b) (2)
Ftotal: Failure risk of the entire system FA, FB: Failure risk of subsystems A and B t: Years since installation a, b: Years after installation when subsystems A and B were last maintained
 式(2)のFA(t-a)は、サブシステムAの導入後経過年が長くなるにつれてサブシステムAの故障リスクが高くなることを示す関数である。また、式(2)のFB(t-b)についても、サブシステムBの導入後経過年が長くなるにつれてサブシステムBの故障リスクが高くなることを示す関数である。全体システム1の故障リスクFtotalは、サブシステムA,Bの故障リスクを加算して表されるため、サブシステムA,Bの導入後経過年に応じて高くなる。 FA(ta) in equation (2) is a function indicating that the risk of failure of subsystem A increases as the years elapsed after the introduction of subsystem A increases. Further, FB(tb) in the equation (2) is also a function indicating that the failure risk of the subsystem B increases as the elapsed years after the introduction of the subsystem B increase. Since the failure risk Ftotal of the entire system 1 is expressed by adding the failure risks of the subsystems A and B, it increases according to the years after the introduction of the subsystems A and B.
 ここで、図5に示すデータ処理フローについて、図6に示すデータの流れを参照して説明を行う。
 始めに、履歴取得部11は、全体システム故障DB2より、全体システム1の故障履歴データを取得する(S1)。履歴取得部11は、全体システム故障DB2より、導入後経過年に対する故障履歴データを、故障リスク評価モデル算出部12に入力する。図6において、履歴取得部11の記載は省略する。
Here, the data processing flow shown in FIG. 5 will be described with reference to the data flow shown in FIG.
First, the history acquisition unit 11 acquires failure history data of the overall system 1 from the overall system failure DB 2 (S1). The history acquisition unit 11 inputs the failure history data for the years after introduction from the overall system failure DB 2 to the failure risk evaluation model calculation unit 12. In FIG. 6, the description of the history acquisition unit 11 is omitted.
 次に、故障リスク評価モデル算出部12は、全体システム1の故障履歴データに基づいて、全体システム1の故障リスク評価モデル31(図6を参照)を算出する(S2)。全体システム1を一つのシステムとすると、全体システム1の故障履歴データより、全体システム1の故障リスク評価モデルが得られる。ここで、図中に示すグラフの横軸を導入後経過年(図中では「t」と表記)、縦軸を全体システム1の故障リスク(図中では「F」と表記)とする。全体システム1の導入後経過年に対する故障リスクFtotalは、故障リスク評価モデル31により求めることができる。 Next, the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model 31 (see FIG. 6) of the overall system 1 based on the failure history data of the overall system 1 (S2). If the whole system 1 is one system, a failure risk evaluation model of the whole system 1 can be obtained from the failure history data of the whole system 1. Here, the horizontal axis of the graph shown in the figure is the years after introduction (denoted as "t" in the figure), and the vertical axis is the failure risk of the overall system 1 (denoted as "F" in the figure). The failure risk Ftotal for the years elapsed after the introduction of the overall system 1 can be obtained by the failure risk evaluation model 31.
 全体システム1の故障履歴データとしては、導入後経過年に対する全体システム1の故障リスクを直接用いる他に、全体システム1の故障数、停止数、劣化度、健全度等に基づいて算出した故障リスクを用いることができる。そこで、故障リスク評価モデル算出部12は、導入後経過年を変数として、故障リスクを定式化する。定式化は、例えば、ワイブル式、指数関数式等を活用してフィッティングを行い、定式化に必要な各種のパラメータを算出することで行われる。 As the failure history data of the overall system 1, the failure risk of the overall system 1 for the years after introduction is directly used, and also the failure risk calculated based on the number of failures, the number of outages, the degree of deterioration, the soundness, etc. of the overall system 1. Can be used. Therefore, the failure risk evaluation model calculation unit 12 formulates the failure risk with the elapsed years after introduction as a variable. The formulation is performed by, for example, performing fitting using a Weibull formula, an exponential formula, or the like, and calculating various parameters necessary for the formulation.
 ステップS1の処理と並行して、履歴取得部11は、サブシステムA保守DB3Aより、サブシステムAの保守履歴データを取得する(S3)。上述したようにサブシステムAはサブシステムBよりも高頻度に保守が行われていると仮定されるため、サブシステムBが1回保守されるまでの間に、サブシステムAが複数回保守される。 In parallel with the process of step S1, the history acquisition unit 11 acquires the maintenance history data of the subsystem A from the subsystem A maintenance DB 3A (S3). As described above, since it is assumed that the subsystem A is maintained more frequently than the subsystem B, the subsystem A is maintained multiple times before the subsystem B is maintained once. It
 そこで、履歴取得部11は、サブシステムA保守DB3Aから収集したサブシステムAに保守Aが実施された後の経過年数が一致する保守履歴データを、同一年の保守A実施データ群5として作成する(S4)。例えば、故障リスク評価モデル算出部12は、履歴取得部11がサブシステムA保守DB3A(1)~3A(3)より取得した同一年で保守Aが実施されたサブシステムAの実施データ群に基づいて、保守A実施データ群5毎の故障リスク評価モデル32を算出する。図4に示したサブシステムA(1)の保守履歴データは、サブシステムA保守DB3A(1)に格納される。同様に、サブシステムA(2)の保守履歴データは、サブシステムA保守DB3A(2)に格納され、サブシステムA(3)の保守履歴データは、サブシステムA保守DB3A(3)に格納される。 Therefore, the history acquisition unit 11 creates, as the maintenance A implementation data group 5 of the same year, maintenance history data in which the number of years elapsed since the maintenance A is performed on the subsystem A collected from the subsystem A maintenance DB 3A is the same. (S4). For example, the failure risk evaluation model calculation unit 12 is based on the implementation data group of the subsystem A in which the maintenance A was performed in the same year acquired by the history acquisition unit 11 from the subsystem A maintenance DBs 3A(1) to 3A(3). Then, the failure risk evaluation model 32 is calculated for each maintenance A execution data group 5. The maintenance history data of the subsystem A(1) shown in FIG. 4 is stored in the subsystem A maintenance DB 3A(1). Similarly, the maintenance history data of subsystem A(2) is stored in subsystem A maintenance DB3A(2), and the maintenance history data of subsystem A(3) is stored in subsystem A maintenance DB3A(3). It
 本実施の形態では、1年目のサブシステムAの保守A実施データ群5、2年目のサブシステムAの保守A実施データ群5のように、1年ごとに保守A実施データ群5が作成される。図6には、保守A実施データ群5毎に作成された故障リスク評価モデル32の例が示される。 In the present embodiment, the maintenance A execution data group 5 for the first year subsystem A, the maintenance A execution data group 5 for the second year subsystem A, and the maintenance A execution data group 5 for the second year Created. FIG. 6 shows an example of the failure risk evaluation model 32 created for each maintenance A execution data group 5.
 その後、故障リスク評価モデル算出部12は、保守履歴データが存在するサブシステムAの保守履歴データと、全体システム1の故障履歴データとを利用し、サブシステムAの故障リスクを算出する評価モデルを作成する。 Then, the failure risk evaluation model calculation unit 12 uses the maintenance history data of the subsystem A in which the maintenance history data exists and the failure history data of the entire system 1 to create an evaluation model for calculating the failure risk of the subsystem A. create.
 故障リスク評価モデル算出部12は、保守A実施データ群5からサブシステムAの複数の故障リスク評価モデル32(サブ故障リスク評価モデルの一例)を算出し、全体システム1の故障履歴データから全体システム1の故障リスク評価モデル31(全体故障リスク評価モデルの一例)を算出する。その後、故障リスク評価モデル算出部12は、サブシステムAの故障リスク評価モデル32と、全体システム1の故障リスク評価モデル31とに基づいて、同一の保守Aが実施されたサブシステムAの故障リスクを評価するための故障リスク評価モデル34を算出する(S7に対応)。 The failure risk evaluation model calculation unit 12 calculates a plurality of failure risk evaluation models 32 of the subsystem A (an example of the sub failure risk evaluation model) from the maintenance A execution data group 5, and calculates the entire system 1 from the failure history data of the entire system 1. The failure risk evaluation model 31 of 1 (one example of the overall failure risk evaluation model) is calculated. Then, the failure risk evaluation model calculation unit 12 determines the failure risk of the subsystem A in which the same maintenance A is performed based on the failure risk evaluation model 32 of the subsystem A and the failure risk evaluation model 31 of the entire system 1. The failure risk evaluation model 34 for evaluating is calculated (corresponding to S7).
 例えば、故障リスク評価モデル算出部12は、同一年毎に作成したそれぞれの保守A実施データ群5(図4を参照)に関して、故障リスクFAを算出し、故障リスク評価モデル32(図6を参照)を作成する(S5)。算出された故障リスク評価モデルのうち、縦に破線で表される導入後経過年t1は、サブシステムAに対して保守Aが実施された年(例えば、導入から1年目)を表す。同様に、導入後経過年t2は、サブシステムAに対して保守Aが実施された別の年(例えば、導入から2年目)を表し、導入後経過年t3は、サブシステムAに対して保守Aが実施された別の年(例えば、導入から3年目)を表す。 For example, the failure risk evaluation model calculation unit 12 calculates the failure risk FA for each maintenance A implementation data group 5 (see FIG. 4) created for each same year, and the failure risk evaluation model 32 (see FIG. 6). ) Is created (S5). In the calculated failure risk evaluation model, a post-installation elapsed year t1 represented by a vertical dashed line represents a year (for example, the first year after installation) in which the maintenance A is performed on the subsystem A. Similarly, the post-installation year t2 represents another year in which the maintenance A was performed on the subsystem A (for example, the second year from the installation), and the post-installation year t3 represents the subsystem A with respect to the subsystem A. Represents another year in which Maintenance A was performed (eg, 3rd year after installation).
 故障リスク評価モデル算出部12は、故障リスクとして、例えば、累積故障率や累積ハザード率、劣化度といった指標が使用可能である。そこで、故障リスク評価モデル算出部12は、各故障リスクの時間推移を算出するため、導入後経過年を変数として故障リスクの値を定式化する。全体システム1における定式化と同様に、サブシステムにおける定式化は、例えば、ワイブル式、指数関数式等を活用してフィッティングを行い、定式化に必要な各種のパラメータを算出することで行われる。 As the failure risk, the failure risk evaluation model calculation unit 12 can use an index such as a cumulative failure rate, a cumulative hazard rate, or a degree of deterioration. Therefore, in order to calculate the time transition of each failure risk, the failure risk evaluation model calculation unit 12 formulates the value of the failure risk with the elapsed years after introduction as a variable. Similar to the formulation in the overall system 1, the formulation in the subsystem is performed by performing fitting using, for example, a Weibull formula, an exponential function formula, etc., and calculating various parameters necessary for the formulation.
 また、故障リスク評価モデル算出部12は、同一年の保守A実施データ群5毎に作成した故障リスク評価モデルにおいて、変数である導入後経過年に保守A実施年を代入した時の故障リスクの値を算出する。導入後経過年が保守A実施年と等しいとは、つまり、保守Aが行われると、サブシステムAが新品に置き換わるため、保守A後経過年数が0年に相当する。このように保守Aが行われると、サブシステムAの故障リスクは「0」になると仮定できるので、保守A後経過年が「0」である時の故障リスクの値はサブシステムBに由来する。 Further, the failure risk evaluation model calculation unit 12 calculates the failure risk when the maintenance A execution year is substituted for the variable year after introduction in the failure risk evaluation model created for each maintenance A execution data group 5 of the same year. Calculate the value. The fact that the elapsed year after introduction is equal to the maintenance A execution year means that, when the maintenance A is performed, the subsystem A is replaced with a new one, and thus the elapsed years after the maintenance A corresponds to 0 years. Since it is possible to assume that the failure risk of the subsystem A becomes "0" when the maintenance A is performed in this manner, the value of the failure risk when the elapsed year after the maintenance A is "0" is derived from the subsystem B. ..
 つまり、導入後経過年t1,t2,t3と変わるにつれて、故障リスク評価モデルで表される故障リスクFA(1),FA(2),FA(3)の故障リスクが徐々に大きくなる。よって、同一の保守Aが実施された保守A実施データ群5より導出した保守A後経過年0における故障リスクは同一の保守Aが実施された保守A実施データ群5の保守A実施年におけるサブシステムBの故障リスクFBと等しいと言える。なお、故障リスクFA(1),FA(2),FA(3)は、同様の傾きを持つ曲線で表されてもよい。 In other words, the failure risks FA(1), FA(2), and FA(3) represented by the failure risk evaluation model gradually increase as the years after introduction, t1, t2, and t3, change. Therefore, the failure risk in the elapsed year 0 after maintenance A derived from the maintenance A execution data group 5 in which the same maintenance A is performed is the subordinate in the maintenance A execution data group 5 in the maintenance A execution data group 5 in which the same maintenance A is performed. It can be said that it is equal to the failure risk FB of the system B. The failure risks FA(1), FA(2), FA(3) may be represented by curves having similar slopes.
 このため、故障リスク評価モデル算出部12は、複数の同一の保守Aが実施された保守A実施データ群55に基づいて、複数の保守A実施年におけるサブシステムBの故障リスクFBを算出することが可能となる。サブシステムBの故障リスクFBは、例えば、サブシステムAの各保守A実施年が「0」になるときの故障リスクを繋いだ曲線で表される。 Therefore, the failure risk evaluation model calculation unit 12 calculates the failure risk FB of the subsystem B in a plurality of maintenance A execution years based on the maintenance A execution data group 55 in which a plurality of the same maintenance A is executed. Is possible. The failure risk FB of the subsystem B is represented by, for example, a curve connecting failure risks when the year A of each maintenance A of the subsystem A becomes “0”.
 そこで、故障リスク評価モデル算出部12は、保守A実施年におけるサブシステムBの故障リスクを定式化する。すなわち、故障リスク評価モデル算出部12は、故障リスクFA(1)~FA(3)に基づいて、図6に示すサブシステムBの故障リスク評価モデル33を算出することができる(S6)。 Therefore, the failure risk evaluation model calculation unit 12 formulates the failure risk of the subsystem B in the year of implementation of maintenance A. That is, the failure risk evaluation model calculation unit 12 can calculate the failure risk evaluation model 33 of the subsystem B shown in FIG. 6 based on the failure risks FA(1) to FA(3) (S6).
 さらに、導入後経過年に対する全体システム1の故障リスク評価モデルと、サブシステムBの故障リスク評価モデルに基づいて、各導入後経過年における差分をサブシステムAの故障リスクFAを求めることができる。図6には、全体システム1の故障リスクFtotalの評価モデルと、サブシステムBの故障リスクFBの評価モデルの差分FAがサブシステムAの故障リスクFAに相当すること、及びサブシステムAの故障リスク評価モデル34の例が示される。 Further, based on the failure risk evaluation model of the whole system 1 for the years after introduction and the failure risk evaluation model of the subsystem B, the failure risk FA of the subsystem A can be calculated as the difference in each years after introduction. In FIG. 6, the difference FA between the evaluation model of the failure risk Ftotal of the overall system 1 and the evaluation model of the failure risk FB of the subsystem B corresponds to the failure risk FA of the subsystem A, and the failure risk of the subsystem A. An example of the evaluation model 34 is shown.
 このため、故障リスク評価モデル算出部12は、導入後経過年を変数としてサブシステムAの故障リスクを定式化してサブシステムAの故障リスク評価モデル34(図6を参照)を得る(S7)。ここで、故障リスク評価モデル算出部12は、全体システム1の故障リスクからサブシステムBの故障リスクを減じて、サブシステムAの故障リスク評価モデル34を算出する。サブシステムAの故障リスクの定式化は、全体システム1及びサブシステムBと同様に、故障リスク評価モデル算出部12が、例えば、ワイブル式、指数関数式等を活用してフィッティングを行い、パラメータを算出することで行われる。 For this reason, the failure risk evaluation model calculation unit 12 formulates the failure risk of the subsystem A with the year elapsed after introduction as a variable, and obtains the failure risk evaluation model 34 of the subsystem A (see FIG. 6) (S7). Here, the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model 34 of the subsystem A by subtracting the failure risk of the subsystem B from the failure risk of the entire system 1. In the formulation of the failure risk of the subsystem A, the failure risk evaluation model calculation unit 12 performs fitting by using, for example, a Weibull equation, an exponential function equation, and the like, as in the case of the overall system 1 and the subsystem B. It is done by calculating.
 以上説明した第1の実施の形態に係る故障リスク評価システム10では、サブシステムA,Bで構成される全体システム1の故障履歴データと、サブシステムAの保守履歴データを用いて算出した故障リスク評価モデルにより、サブシステムAの故障リスクを求めることができる。ここで、故障リスク評価モデル算出部12は、保守履歴データがないサブシステムBがあってもサブシステムAの故障リスクを評価できるため、故障リスクが高いサブシステムだけを保守すればよい。このため、保守計画の立案や、保守人員及び保守部品の配置を適切に行うことができ、保守にかかるコストを低減することができる。 In the failure risk evaluation system 10 according to the first embodiment described above, the failure risk calculated using the failure history data of the entire system 1 including the subsystems A and B and the maintenance history data of the subsystem A. The failure risk of subsystem A can be obtained by the evaluation model. Here, the failure risk evaluation model calculation unit 12 can evaluate the failure risk of the subsystem A even if there is the subsystem B without maintenance history data, and therefore only the subsystem having a high failure risk needs to be maintained. Therefore, a maintenance plan can be drafted, maintenance personnel and maintenance parts can be appropriately arranged, and the cost for maintenance can be reduced.
[第2の実施の形態]
<3つ以上のサブシステムで保守情報を活用する例>
 次に、本発明の第2の実施の形態に係る故障リスク評価システムの構成例及び動作例について、図7を参照して説明する。第2の実施の形態に係る故障リスク評価システムでは、3つ以上のサブシステムA,B,…,Nで構成されている全体システム1を対象として故障リスクの評価が行われる。以下の説明において、各サブシステムは別々に保守され、かつ各サブシステムに対して保守を実施した年が判明していると仮定する。
[Second Embodiment]
<Example of utilizing maintenance information in three or more subsystems>
Next, a configuration example and an operation example of the failure risk evaluation system according to the second embodiment of the present invention will be described with reference to FIG. 7. In the failure risk evaluation system according to the second embodiment, the failure risk is evaluated for the entire system 1 including three or more subsystems A, B,..., N. In the following description, it is assumed that each subsystem is maintained separately and that the year in which maintenance was performed for each subsystem is known.
 図7は、第2の実施の形態に係る故障リスク評価システム10Aにおけるデータの流れを示す説明図である。
 履歴取得部11が全体システム故障DB2から取得した故障履歴データに基づいて、故障リスク評価モデル算出部12が、全体システム1の故障リスクを算出する処理は、第1の実施の形態と同様である。
FIG. 7 is an explanatory diagram showing a data flow in the failure risk evaluation system 10A according to the second embodiment.
The process of the failure risk evaluation model calculation unit 12 calculating the failure risk of the entire system 1 based on the failure history data acquired by the history acquisition unit 11 from the entire system failure DB 2 is the same as that of the first embodiment. ..
 本実施の形態において各サブシステムと全体システム1の故障リスクは、以下の近似式(3)として表すことができる。
 Ftotal = FA(t-a)+FB(t-b)+・・・+FN(t-n) …(3)
  Ftotal:全体システム1の故障リスク
  FA、FB、…、FN:サブシステムA、B、…、Nの故障リスク
  t:導入後経過年
  a、b、…、n:サブシステムA、B、…、Nを最後に保守した際の導入後経過年
In the present embodiment, the failure risk of each subsystem and the overall system 1 can be expressed by the following approximate expression (3).
Ftotal=FA(t−a)+FB(t−b)+...+FN(t−n) (3)
Ftotal: Failure risk of entire system FA, FB,..., FN: Failure risk of subsystems A, B,..., N t: Years after introduction a, b,..., n: Subsystems A, B,..., Years since introduction when N was last maintained
 始めに、履歴取得部11は、サブシステムA保守DB3A、サブシステムB保守DB3B、…、サブシステムN保守DB3Nからそれぞれ保守後経過年が同一である保守履歴データをサブシステム毎に取得する。そして、履歴取得部11は、複数の全体システム1に共通して構成されるサブシステムの保守履歴データを所定期間毎にまとめた保守実施データ群を作成する。ここで、全体システム(1)~(3)に対して、それぞれ存在するサブシステムAの保守履歴データを持つサブシステムA保守DB3A(1)~3A(3)が存在する。同様に、全体システム(1)~(3)に対して、それぞれ存在するサブシステムBの保守履歴データを持つサブシステムB保守DB3B(1)~3B(3)が存在し、サブシステムNの保守履歴データを持つサブシステムN保守DB3N(1)~3N(3)が存在する。 First, the history acquisition unit 11 acquires, for each subsystem, maintenance history data whose maintenance years are the same from the subsystem A maintenance DB 3A, subsystem B maintenance DB 3B,..., Subsystem N maintenance DB 3N. Then, the history acquisition unit 11 creates a maintenance execution data group in which the maintenance history data of subsystems that are configured in common to the plurality of overall systems 1 are collected for each predetermined period. Here, for the entire systems (1) to (3), there are subsystem A maintenance DBs 3A(1) to 3A(3) each having maintenance history data of the existing subsystem A. Similarly, for the entire systems (1) to (3), there are subsystem B maintenance DBs 3B(1) to 3B(3) each having maintenance history data of the existing subsystem B, and maintenance of the subsystem N is performed. Subsystem N maintenance DBs 3N(1) to 3N(3) having history data exist.
 このとき、履歴取得部11は、各サブシステムの保守DB3A~3Nより取得した各サブシステムの保守後経過年((t-a),(t-b),…,(t-n))に基づいて、各保守の保守後経過年の組み合わせ毎に同一年保守実施データ群35を作成する。同一年保守実施データ群35が有する各年の同一年保守実施データ群は、同一年保守実施データ群35A、同一年保守実施データ群35Bのように同一年保守実施データ群35Nまで作成される。同一年保守実施データ群35Aは、サブシステムAに保守Aが実施された保守履歴データを同一年毎にまとめたデータ群であり、同一年保守実施データ群35Bは、サブシステムBに保守Bが行われた保守履歴データを同一年毎にまとめたデータ群である。同様に、同一年保守実施データ群35NについてもサブシステムNに保守Nが行われた保守履歴データを同一年毎にまとめたデータ群である。 At this time, the history acquisition unit 11 determines the elapsed years after maintenance ((ta), (tb),..., (tn)) of each subsystem acquired from the maintenance DBs 3A to 3N of each subsystem. Based on this, the same year maintenance implementation data group 35 is created for each combination of the years after maintenance of each maintenance. The same year maintenance implementation data group of each year included in the same year maintenance implementation data group 35 is created up to the same year maintenance implementation data group 35N, such as the same year maintenance implementation data group 35A and the same year maintenance implementation data group 35B. The same-year maintenance execution data group 35A is a data group in which the maintenance history data in which the maintenance A is performed on the subsystem A is collected for each same year, and the same-year maintenance execution data group 35B includes the maintenance B on the subsystem B. It is a data group in which the maintenance history data that has been performed is collected for each same year. Similarly, the same year maintenance implementation data group 35N is a data group in which maintenance history data of maintenance N performed on the subsystem N is collected for each same year.
 そして、故障リスク評価モデル算出部12は、保守後経過期間が短い順に選択したデータ群に基づいて、故障リスク評価モデルを算出する。そこで、故障リスク評価モデル算出部12は、同一年保守実施データ群35A~35Nについて、保守後経過年((t-a),(t-b),…,(t-n))が最も短いサブシステムを特定する。以下の説明では、保守後経過年が最も短いサブシステムを「サブシステムA’」と呼ぶ。保守後経過年が最も短いとは、例えば、全体システム1の稼働開始後、又はサブシステムの保守後の1年目を表す。すなわち、サブシステムA’は、サブシステムAの同一年保守実施データ群35Aから求められる場合があるし、サブシステムA以外の同一年保守実施データ群35B~35Nのいずれかから求められる場合もある。 Then, the failure risk evaluation model calculation unit 12 calculates a failure risk evaluation model based on the data group selected in ascending order of the post-maintenance elapsed period. Therefore, the failure risk evaluation model calculation unit 12 has the shortest elapsed years after maintenance ((t−a), (t−b),..., (t−n)) for the same year maintenance implementation data groups 35A to 35N. Identify subsystems. In the following description, the subsystem with the shortest elapsed years after maintenance is referred to as “subsystem A′”. The shortest elapsed year after maintenance means, for example, the first year after the start of the operation of the entire system 1 or the maintenance of the subsystem. That is, the subsystem A′ may be obtained from the same year maintenance implementation data group 35A of the subsystem A, or may be obtained from any of the same year maintenance implementation data groups 35B to 35N other than the subsystem A. ..
 そこで、故障リスク評価モデル算出部12は、特定したサブシステムA’について、第1の実施の形態と同様に、保守後経過年が最も短いサブシステムの保守タイミングが一致している保守履歴データを同一年保守A’実施データ群として履歴取得部11が作成した同一年保守実施データ群35から取得する。なお、故障リスク評価モデル算出部12は、サブシステムA’に保守が実施される前に、別のサブシステムに保守が実施されたことを表す保守履歴データは除外しておく。 Therefore, the failure risk evaluation model calculation unit 12 obtains, for the identified subsystem A′, maintenance history data in which the maintenance timings of the subsystems having the shortest post-maintenance years are the same as in the first embodiment. The same year maintenance A′ execution data group is acquired from the same year maintenance execution data group 35 created by the history acquisition unit 11. Note that the failure risk evaluation model calculation unit 12 excludes maintenance history data indicating that maintenance is performed on another subsystem before maintenance is performed on the subsystem A′.
 次に、故障リスク評価モデル算出部12は、導入後経過年を説明変数、故障リスクを目的変数として、同一保守A’実施データ群の故障リスク評価モデル36を作成する。図中には、サブシステムA’の故障リスク評価モデル36の例が示される。そして、故障リスク評価モデル算出部12は、評価モデルの導入後経過年が保守A’実施年と一致する場合の故障リスク値を算出する。 Next, the failure risk evaluation model calculation unit 12 creates a failure risk evaluation model 36 of the same maintenance A'implementation data group with the year elapsed after introduction as an explanatory variable and the failure risk as an objective variable. In the figure, an example of the failure risk evaluation model 36 of the subsystem A'is shown. Then, the failure risk evaluation model calculation unit 12 calculates a failure risk value in the case where the year elapsed since the introduction of the evaluation model matches the maintenance A′ implementation year.
 そして、故障リスク評価モデル算出部12は、第1の実施の形態と同様に、複数の同一保守年A’実施データ群を用いて、故障リスク評価モデルの算出と、保守A’実施年の故障リスクFA’の算出を行う。そこで、故障リスク評価モデル算出部12は、全体システム1の故障リスクFtotalに対する、サブシステムA’以外の故障リスクFA’excの差分をサブシステムA’の故障リスクFA’として定式化する。図中には、サブシステムA’の故障リスク評価モデル37の例が示される。 Then, as in the first embodiment, the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model and uses the same maintenance year A′ execution data group to calculate the failure risk evaluation model. Calculate the risk FA'. Therefore, the failure risk evaluation model calculation unit 12 formulates the difference of the failure risk FA′exc other than the subsystem A′ with respect to the failure risk Ftotal of the entire system 1 as the failure risk FA′ of the subsystem A′. In the figure, an example of the failure risk evaluation model 37 of the subsystem A'is shown.
 さらに、故障リスク評価モデル算出部12は、サブシステムA’の次に保守間隔が短いサブシステムを「サブシステムB’」と呼び、サブシステムA’と同様に、サブシステムB’の故障リスク評価モデル38を導出する。サブシステムA’の次に保守間隔が短いとは、例えば、全体システム1の稼働開始後の2年目を表す。故障リスク評価モデル算出部12は、同一保守B’実施データ群を収集する際に、サブシステムA’以外のサブシステムに保守が実施されたことを表す保守履歴データは除外する。図中には、サブシステムB’の故障リスク評価モデル38の例が示される。 Further, the failure risk evaluation model calculation unit 12 calls the subsystem having the shortest maintenance interval next to the subsystem A′ as “subsystem B′”, and similarly to the subsystem A′, the failure risk assessment of the subsystem B′. The model 38 is derived. That the maintenance interval is shortest after the subsystem A'represents, for example, the second year after the start of operation of the overall system 1. When collecting the same maintenance B′ implementation data group, the failure risk evaluation model calculation unit 12 excludes maintenance history data indicating that maintenance has been performed on subsystems other than the subsystem A′. In the figure, an example of the failure risk evaluation model 38 of the subsystem B'is shown.
 その後、故障リスク評価モデル算出部12は、サブシステムB’の故障リスクFB’を定式化する。故障リスク評価モデル算出部12は、全体システム1の故障リスクFtotalに対する、サブシステムB’以外の故障リスクFB’excと、先に算出しておいた故障リスクFA’を加算した故障リスクの差分をサブシステムB’の故障リスクFB’とする。例えば、故障リスク評価モデル算出部12は、サブシステムA’の保守後経過年に基づいてサブシステムA’の故障リスク(F-A’(t-a’))を算出し、差分からサブシステムA’の故障リスクを引いておく。そして、故障リスク評価モデル算出部12は、全体システム1の故障リスクと、同一保守B’実施データ群の故障リスク評価モデルから算出した保守B’実施年における差分に基づいて、故障リスクFB’を算出する。 After that, the failure risk evaluation model calculation unit 12 formulates the failure risk FB' of the subsystem B'. The failure risk evaluation model calculation unit 12 calculates the difference between the failure risk Ftotal of the entire system 1 and the failure risk FB′exc other than the subsystem B′ and the failure risk FA′ calculated previously. The failure risk FB' of subsystem B'is assumed. For example, the failure risk evaluation model calculation unit 12 calculates the failure risk (FA′(ta′)) of the subsystem A′ based on the years after maintenance of the subsystem A′, and the subsystem is calculated from the difference. Subtract the failure risk of A'. Then, the failure risk evaluation model calculation unit 12 determines the failure risk FB′ based on the failure risk of the entire system 1 and the difference in the maintenance B′ execution year calculated from the failure risk evaluation model of the same maintenance B′ execution data group. calculate.
 そして、故障リスク評価モデル算出部12は、図示しないものの、同様の方法によりサブシステムB’の次に保守間隔が短いサブシステムC’の故障リスク評価モデルを導出する。このように故障リスク評価モデル算出部12は、サブシステム毎に故障リスク評価モデルを導出する処理を繰り返すことで、最終的に全サブシステムの故障リスク評価モデルを導出する。 Then, although not shown, the failure risk evaluation model calculation unit 12 derives a failure risk evaluation model of the subsystem C′ having the shortest maintenance interval next to the subsystem B′ by a similar method. In this way, the failure risk evaluation model calculation unit 12 finally derives the failure risk evaluation models of all subsystems by repeating the process of deriving the failure risk evaluation model for each subsystem.
 以上説明した第2の実施の形態に係る故障リスク評価システム10Aでは、全体システム1の故障リスクと、各サブシステムの保守後経過年が判明していれば各サブシステムの故障リスクを算出することができる。また、故障リスク評価システム10Aは、一部のサブシステムが全体システム1を導入した時に新品相当でなくても、各サブシステムの故障リスクを算出することができる。 In the failure risk evaluation system 10A according to the second embodiment described above, the failure risk of each subsystem is calculated if the failure risk of the entire system 1 and the years after maintenance of each subsystem are known. You can Further, the failure risk evaluation system 10A can calculate the failure risk of each subsystem even if some subsystems are not equivalent to new products when the entire system 1 is introduced.
 なお、故障リスク評価モデル算出部12は、各同一保守実施データ群に対して、各サブシステムの保守後経過年を含む上式(3)を作成し、サブシステム毎に故障リスク評価モデルを作成する。その上で、故障リスク評価モデル算出部12は、最適化等により、故障リスク評価モデルのパラメータを導出することで、各サブシステムの故障リスク評価モデルを算出してもよい。 The failure risk evaluation model calculation unit 12 creates the above equation (3) including the years after maintenance of each subsystem for each identical maintenance implementation data group, and creates the failure risk assessment model for each subsystem. To do. Then, the failure risk evaluation model calculation unit 12 may calculate the failure risk evaluation model of each subsystem by deriving the parameters of the failure risk evaluation model by optimization or the like.
[第3の実施の形態]
<サブシステムの故障リスクが判明している場合の例>
 次に、本発明の第3の実施の形態に係る故障リスク評価システムの構成例及び動作例について、図8を参照して説明する。第3の実施の形態に係る故障リスク評価システムでは、二つのサブシステムA,Bで構成されている全体システム1を対象として故障リスクの評価が行われる。以下の説明において、いずれか一つのサブシステムについて経過年数に対する故障リスクが故障リスク評価モデルとして判明していると仮定する。
[Third Embodiment]
<Example when subsystem failure risk is known>
Next, a configuration example and an operation example of the failure risk evaluation system according to the third exemplary embodiment of the present invention will be described with reference to FIG. In the failure risk evaluation system according to the third embodiment, the failure risk is evaluated for the entire system 1 including the two subsystems A and B. In the following description, it is assumed that the failure risk with respect to the age of any one subsystem is known as a failure risk evaluation model.
 図8は、第3の実施の形態に係る故障リスク評価システム10Bにおけるデータの流れを示す説明図である。ここでは、サブシステムBの故障リスク評価モデルを算出するデータの流れを説明する。 FIG. 8 is an explanatory diagram showing a data flow in the failure risk evaluation system 10B according to the third embodiment. Here, the flow of data for calculating the failure risk evaluation model of subsystem B will be described.
 本実施の形態では、サブシステムA,Bで構成される全体システム1を例として説明する。本実施の形態では、サブシステムA,Bのいずれにも全体システム1を構成するサブシステムとして使用した際の保守履歴や故障履歴は残っていないものとする。一方、サブシステムAの導入後経過年に対する故障リスクFAを評価するための保守A実施データ群5毎の故障リスク評価モデル32が既に導出してあるとする。 In the present embodiment, the entire system 1 including subsystems A and B will be described as an example. In the present embodiment, it is assumed that neither the subsystem A nor the subsystem B has a maintenance history or failure history when it is used as a subsystem configuring the overall system 1. On the other hand, it is assumed that the failure risk evaluation model 32 for each maintenance A execution data group 5 for evaluating the failure risk FA for the years after the introduction of the subsystem A has already been derived.
 このため、故障リスク評価システム10Bは、少なくとも一つのサブシステムの導入後から所定期間における故障リスクを評価するための故障リスク評価モデルを記憶する故障リスク評価モデルDB8(故障リスク評価モデル記憶部の一例)を備える。故障リスク評価モデルDB8には、例えば、サブシステムAの導入後経過年に対する故障リスクFAを表す故障リスク評価モデル32が記憶されている。そして、故障リスク評価モデル算出部12は、故障リスク評価モデルDB8からサブシステムAの故障リスク評価モデル32を取得可能である。 Therefore, the failure risk evaluation system 10B includes a failure risk evaluation model DB 8 (an example of failure risk evaluation model storage unit) that stores a failure risk evaluation model for evaluating a failure risk in a predetermined period after the introduction of at least one subsystem. ) Is provided. The failure risk evaluation model DB 8 stores, for example, a failure risk evaluation model 32 that represents the failure risk FA for the years elapsed since the introduction of the subsystem A. Then, the failure risk evaluation model calculation unit 12 can acquire the failure risk evaluation model 32 of the subsystem A from the failure risk evaluation model DB 8.
 上述したように、故障リスク評価モデル算出部12は、全体システム故障DB2から取得した故障履歴データに基づいて、全体システム1の導入後経過年に対する故障リスクを定式化した故障リスク評価モデル31を算出する。また、故障リスク評価モデル算出部12は、全体システム1の故障履歴データと、履歴取得部11が故障リスク評価モデルDB8から取得した故障リスク評価モデル32とに基づいて、所定期間におけるサブシステムBの故障リスク評価モデル34を算出する As described above, the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model 31 that formulates the failure risk for the years elapsed after the introduction of the overall system 1 based on the failure history data acquired from the overall system failure DB 2. To do. Further, the failure risk evaluation model calculation unit 12 determines whether the subsystem B in the predetermined period has a failure history data of the entire system 1 and the failure risk evaluation model 32 acquired from the failure risk evaluation model DB 8 by the history acquisition unit 11. Calculate the failure risk evaluation model 34
 このため、故障リスク評価モデル算出部12は、全体システム1の故障リスク評価モデル31と、サブシステムAの故障リスク評価モデル32に基づいて、任意の導入後経過年における全体システム1とサブシステムAの故障リスクを算出する。その後、故障リスク評価モデル算出部12は、各導入後経過年における全体システム1とサブシステムAのそれぞれの故障リスクの差分をサブシステムBの故障リスクFBとして算出する。そして、故障リスク評価モデル算出部12は、この処理を複数回繰り返し、各導入後経過年におけるサブシステムBの故障リスクFBを算出し、サブシステムBの故障リスク評価モデル34を作成する。 Therefore, based on the failure risk evaluation model 31 of the overall system 1 and the failure risk evaluation model 32 of the subsystem A, the failure risk evaluation model calculation unit 12 determines the overall system 1 and the subsystem A in an arbitrary year after introduction. Calculate the failure risk of. After that, the failure risk evaluation model calculation unit 12 calculates the difference between the failure risks of the entire system 1 and the subsystem A in the years after introduction as the failure risk FB of the subsystem B. Then, the failure risk evaluation model calculation unit 12 repeats this process a plurality of times to calculate the failure risk FB of the subsystem B in the years elapsed after each introduction, and creates the failure risk evaluation model 34 of the subsystem B.
 以上説明した第3の実施の形態に係る故障リスク評価システム10Bでは、サブシステムの保守履歴の代わりに、一つのサブシステムについて既知の故障リスク評価モデルを用いる点が、第1の実施の形態に係る故障リスク評価システム10と異なる。本実施の形態に係る故障リスク評価システム10Bでは、サブシステムの保守履歴データが存在しなくても既に故障リスク評価モデルが算出されていれば、他方のサブシステムの故障リスク評価モデルを算出できる。ただし、一つのサブシステムについて他の異なる構成を持つ全体システム1に含まれる同一のサブシステムや、サブシステム単体の経過年に対する故障リスクが評価モデルとして明らかになっていることが条件となる。 The failure risk evaluation system 10B according to the third embodiment described above is different from the first embodiment in that a known failure risk evaluation model for one subsystem is used instead of the maintenance history of the subsystem. This is different from the failure risk evaluation system 10. In the failure risk evaluation system 10B according to the present embodiment, even if the maintenance history data of the subsystem does not exist, the failure risk evaluation model of the other subsystem can be calculated if the failure risk evaluation model has already been calculated. However, it is a condition that the failure risk of the same subsystem included in the whole system 1 having another different configuration for one subsystem or the subsystem alone over the years has been clarified as an evaluation model.
 なお、本実施の形態では、二つのサブシステムA,Bで構成される全体システム1について処理の詳細を説明した。また、N個のサブシステムA,B,…,Nで構成される全体システム1について本実施の形態に係る故障リスク評価システム10Bを適用してもよい、この場合、(N-1)個のサブシステムの故障リスク評価モデルが判明していれば、故障リスク評価モデル算出部12は、故障リスクが不明なサブシステムの故障リスク評価モデルを導出することができる。 In addition, in the present embodiment, the details of the processing have been described for the entire system 1 including the two subsystems A and B. Further, the failure risk evaluation system 10B according to the present embodiment may be applied to the entire system 1 including N subsystems A, B,..., N. In this case, (N-1) If the failure risk evaluation model of the subsystem is known, the failure risk evaluation model calculation unit 12 can derive the failure risk evaluation model of the subsystem whose failure risk is unknown.
[第4の実施の形態]
 次に、本発明の第4の実施の形態に係る故障リスク評価システムの構成例及び動作例について、図9を参照して説明する。第4の実施の形態に係る故障リスク評価システムでは、N個のサブシステムで構成される全体システム1を対象とし、各サブシステムの故障リスクの量的関係を推定できると仮定する。
[Fourth Embodiment]
Next, a configuration example and an operation example of the failure risk evaluation system according to the fourth exemplary embodiment of the present invention will be described with reference to FIG. In the failure risk evaluation system according to the fourth embodiment, it is assumed that the entire system 1 composed of N subsystems is targeted, and the quantitative relationship of the failure risk of each subsystem can be estimated.
 図9は、第4の実施の形態に係る故障リスク評価システム10Cにおけるデータの流れを示す説明図である。 FIG. 9 is an explanatory diagram showing a data flow in the failure risk evaluation system 10C according to the fourth embodiment.
 故障リスク評価システム10Cは、量的関係入力部(端末7)と量的関係算出部14を備える。
 量的関係入力部は、複数のサブシステムの相互の故障リスクの量的関係を表す比率を入力する。作業者が操作する端末7は、量的関係算出部14に接続される。作業者は、端末7を用いて各サブシステムの故障リスクの量的関係を入力することが可能である。このため、端末7は、量的関係入力部の一例として用いられる。
The failure risk evaluation system 10C includes a quantitative relationship input unit (terminal 7) and a quantitative relationship calculation unit 14.
The quantitative relationship input unit inputs a ratio representing a quantitative relationship of mutual failure risks of a plurality of subsystems. The terminal 7 operated by the worker is connected to the quantitative relationship calculation unit 14. The operator can use the terminal 7 to input the quantitative relationship of the failure risk of each subsystem. Therefore, the terminal 7 is used as an example of the quantitative relationship input unit.
 量的関係算出部14は、量的関係入力部から入力された比率に基づいて、全体システム1の故障リスクに対するそれぞれのサブシステムの故障リスクの量的関係を算出する。このように故障リスク評価システム10Cは、量的関係入力部と量的関係算出部14を備える点が、他の実施の形態に係る故障リスク評価システムの構成と異なる。 The quantitative relationship calculation unit 14 calculates the quantitative relationship of the failure risk of each subsystem with respect to the failure risk of the overall system 1 based on the ratio input from the quantitative relationship input unit. As described above, the failure risk evaluation system 10C is different from the failure risk evaluation system according to the other embodiments in that the failure risk evaluation system includes the quantitative relationship input unit and the quantitative relationship calculation unit 14.
 サブシステムの故障リスクの量的関係として、例えば、各サブシステムA,B,Cの故障リスクが、それぞれ1:2:3の量的関係を持つとする。この量的関係は、例えば、各サブシステムA,B,Cの製品仕様によって判明する値であるとする。上述したように、各サブシステムの故障リスクの合算値が全体システム1の故障リスクと等しい、又は近似できる。このため、端末7から全体システムの故障リスクに対する各サブシステムの故障リスクの比率が量的関係として入力される。 As a quantitative relationship of the failure risk of subsystems, for example, the failure risk of each subsystem A, B, C has a quantitative relationship of 1:2:3. It is assumed that this quantitative relationship is a value found by the product specifications of each subsystem A, B, C, for example. As described above, the total value of the failure risks of each subsystem can be equal to or approximate to the failure risk of the entire system 1. Therefore, the ratio of the failure risk of each subsystem to the failure risk of the entire system is input from the terminal 7 as a quantitative relationship.
 量的関係算出部14は、全体システム1の故障リスクを、端末7から入力された値に分ける。例えば、端末7から入力されたサブシステムA,B,Cの故障リスクの量的関係が、1:2:3であったとする。量的関係算出部14は、例えば全体システム1の故障リスクを60%とした場合に、量的関係に従って、サブシステムA,B,Cの故障リスクをそれぞれ10%、20%、30%と算出する。その後、故障リスク評価モデル算出部12は、全体システム1の故障リスクFtotalに対する、量的関係算出部14がサブシステム毎に算出した故障リスクの量的関係に基づいて、各サブシステムの故障リスク評価モデル32を算出する。 The quantitative relationship calculation unit 14 divides the failure risk of the entire system 1 into the values input from the terminal 7. For example, it is assumed that the quantitative relationship of the failure risks of the subsystems A, B, and C input from the terminal 7 is 1:2:3. For example, when the failure risk of the entire system 1 is 60%, the quantitative relationship calculation unit 14 calculates the failure risks of the subsystems A, B, and C as 10%, 20%, and 30%, respectively, according to the quantitative relationship. To do. After that, the failure risk evaluation model calculation unit 12 evaluates the failure risk of each subsystem based on the failure risk Ftotal of the overall system 1 and the failure risk quantitative relationship calculated for each subsystem by the quantitative relationship calculation unit 14. The model 32 is calculated.
 以上説明した第4の実施の形態に係る故障リスク評価システム10Cでは、各サブシステムの故障リスクの量的関係を利用して各サブシステムの故障リスク評価モデルを推定できる。このため、各サブシステムの故障リスク、又は全体システム1と紐づくサブシステムの保守履歴が不明な場合においても、各サブシステムの故障リスク評価モデルを確実に推定することが可能となる。 The failure risk evaluation system 10C according to the fourth embodiment described above can estimate the failure risk evaluation model of each subsystem by using the quantitative relationship of the failure risk of each subsystem. Therefore, even when the failure risk of each subsystem or the maintenance history of the subsystem associated with the overall system 1 is unknown, it is possible to reliably estimate the failure risk evaluation model of each subsystem.
 なお、全体システム1を構成するサブシステムの数や量的関係が異なっても、本実施の形態に係る方法により、各サブシステムの故障リスクの量的関係を算出した後、各サブシステムの故障リスク評価モデルを算出することが可能である。 Even if the number of subsystems constituting the entire system 1 and the quantitative relationship are different, after calculating the quantitative relationship of the failure risk of each subsystem by the method according to this embodiment, the failure of each subsystem is calculated. It is possible to calculate a risk assessment model.
[第5の実施の形態]
 次に、本発明の第5の実施の形態に係る故障リスク評価システムの構成例及び動作例について、図10を参照して説明する。第5の実施の形態に係る故障リスク評価システムにおいても、N個のサブシステムで構成される全体システム1を対象とする。ただし、複数のサブシステムの内、故障リスクが経時的に変化しない、又は他のサブシステムに比べて故障リスクが「0」、又は著しく低い(故障リスクが「0」に近似できる)サブシステム(以下、「特殊サブシステム」と呼ぶ)が存在すると仮定する。なお、故障リスクが経時的に変化しないとは、故障リスクが低い値のまま変化しないことを表す。
[Fifth Embodiment]
Next, a configuration example and an operation example of the failure risk evaluation system according to the fifth exemplary embodiment of the present invention will be described with reference to FIG. The failure risk evaluation system according to the fifth embodiment also targets the entire system 1 including N subsystems. However, among a plurality of subsystems, the failure risk does not change over time, or the failure risk is "0" or significantly lower than the other subsystems (the failure risk can be approximated to "0") ( Hereinafter, it is assumed that there is a "special subsystem"). The fact that the failure risk does not change with time means that the failure risk remains at a low value and does not change.
 図10は、第5の実施の形態に係る故障リスク評価システム10Dにおけるデータの流れを示す説明図である。 FIG. 10 is an explanatory diagram showing a data flow in the failure risk evaluation system 10D according to the fifth embodiment.
 故障リスク評価システム10Dは、特殊サブシステムを選択する特殊サブシステム選択部(端末7)と、特殊サブシステムの故障リスクを設定する故障リスク設定部15を備える。このため、故障リスク評価システム10Dは、特殊サブシステム選択部と故障リスク設定部15を備える点が、他の実施の形態に係る故障リスク評価システムの構成と異なる。 The failure risk evaluation system 10D includes a special subsystem selection unit (terminal 7) that selects a special subsystem and a failure risk setting unit 15 that sets the failure risk of the special subsystem. Therefore, the failure risk evaluation system 10D is different from the failure risk evaluation system according to the other embodiments in that the special subsystem selection unit and the failure risk setting unit 15 are provided.
 作業者が操作する端末7は、故障リスク設定部15に接続される。作業者は、端末7を用いて、故障リスクが経時的に変化しない特殊サブシステム、又は他のサブシステムに比べて著しく故障リスクが低い特殊サブシステムを入力することが可能である。このため、端末7は、特殊サブシステム選択部の一例として用いられる。 The terminal 7 operated by the worker is connected to the failure risk setting unit 15. The worker can use the terminal 7 to input a special subsystem whose failure risk does not change over time, or a special subsystem having a significantly lower failure risk than other subsystems. Therefore, the terminal 7 is used as an example of the special subsystem selection unit.
 端末7には、特殊サブシステム選択画面70が表示される。特殊サブシステム選択画面70には、サブシステム名71、経時変化しない特殊サブシステム選択欄72、故障リスクが低い特殊サブシステム選択欄73が表示される。 A special subsystem selection screen 70 is displayed on the terminal 7. On the special subsystem selection screen 70, a subsystem name 71, a special subsystem selection field 72 that does not change over time, and a special subsystem selection field 73 that has a low risk of failure are displayed.
 サブシステム名71には、全体システム1を構成するサブシステムA~Cの名称が表示される。
 特殊サブシステム選択欄72には、作業者が選択可能な特殊サブシステムが表示される。特殊サブシステム選択欄72にチェックマークが表示されるサブシステムA,Cは、特殊サブシステムであることが示される。一方で特殊サブシステム選択欄72にバー「-」が表示されるサブシステムBは、特殊サブシステムではないため、特殊サブシステムとして選択不能である。
In the subsystem name 71, the names of the subsystems A to C that make up the overall system 1 are displayed.
The special subsystem selection field 72 displays special subsystems that can be selected by the operator. The subsystems A and C whose check marks are displayed in the special subsystem selection field 72 are shown to be special subsystems. On the other hand, the subsystem B in which the bar "-" is displayed in the special subsystem selection field 72 is not a special subsystem and cannot be selected as a special subsystem.
 故障リスクが低い特殊サブシステム選択欄73には、故障リスクが著しく低い特殊サブシステムが表示される。故障リスクが低い特殊サブシステム選択欄73にチェックマークが表示されるサブシステムCは、故障リスクが著しく低いため、故障リスクを「0」に近似できるサブシステムであることが示される。一方、故障リスクが低い特殊サブシステム選択欄73にバー「-」が表示されるサブシステムCは、故障リスクを「0」に近似できないことが示される。なお、特殊サブシステムではないサブシステムBは、故障リスクが低い特殊サブシステム選択欄73がグレーアウトされる。 In the special subsystem selection field 73 having a low risk of failure, a special subsystem having a significantly low risk of failure is displayed. The subsystem C having a low failure risk and a check mark displayed in the special subsystem selection field 73 has a significantly low failure risk, and thus is indicated as a subsystem that can approximate the failure risk to “0”. On the other hand, it is indicated that the subsystem C having a bar "-" displayed in the special subsystem selection field 73 having a low failure risk cannot approximate the failure risk to "0". For subsystem B that is not a special subsystem, the special subsystem selection field 73 with a low failure risk is grayed out.
 作業者は、特殊サブシステム選択画面70を見ながら、特殊サブシステム選択欄72、又は故障リスクが低い特殊サブシステム選択欄73から特殊サブシステムを選択することが可能である。
 そして、故障リスク設定部15では、入力されたサブシステムの故障リスクを設定し、サブシステムの故障リスク評価モデル算出部12に出力することが可能である。例えば、特殊サブシステム選択部によって特殊サブシステムが選択されると、故障リスク設定部15は、全体システム1の故障リスク評価モデルに対して導入後経過年=0年とした際の故障リスクの値をサブシステムの故障リスクとして設定する。なお、特殊サブシステム選択部によって複数の特殊サブシステムが選択されると、故障リスク設定部15は、複数のサブシステムの故障リスクの合計値として、導入後経過年=0年とした際の故障リスクの値を設定する。ここで、故障リスク設定部15は、選択された特殊サブシステムの導入後経過年によらず、故障リスクを「0」と設定する。
The operator can select a special subsystem from the special subsystem selection field 72 or the special subsystem selection field 73 with a low failure risk while looking at the special subsystem selection screen 70.
Then, the failure risk setting unit 15 can set the input failure risk of the subsystem and output it to the failure risk evaluation model calculation unit 12 of the subsystem. For example, when the special subsystem is selected by the special subsystem selecting unit, the failure risk setting unit 15 causes the failure risk value when the elapsed year after introduction=0 years in the failure risk evaluation model of the entire system 1. Is set as the subsystem failure risk. When a plurality of special subsystems are selected by the special subsystem selecting unit, the failure risk setting unit 15 determines a failure when the elapsed year after introduction=0 years as a total value of failure risks of the plurality of subsystems. Set the risk value. Here, the failure risk setting unit 15 sets the failure risk to “0” regardless of the years elapsed since the introduction of the selected special subsystem.
 そして、故障リスク評価モデル算出部12は、特殊サブシステムの故障リスクを除いて故障リスク評価を算出する。このとき、故障リスク評価モデル算出部12は、全体システム1の故障履歴データから求めた、全体システム1の故障リスク評価モデル31を算出する。 Then, the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation excluding the failure risk of the special subsystem. At this time, the failure risk evaluation model calculation unit 12 calculates the failure risk evaluation model 31 of the overall system 1 obtained from the failure history data of the overall system 1.
 図10に示すように、サブシステムCは、経時変化しない特殊サブシステムとして選択され、かつ故障リスクが低い特殊サブシステムとして選択されており、サブシステムCの故障リスクが「0」と設定される。また、サブシステムAは、経時変化しない特殊サブシステムとして選択されるため、故障リスクが一定の値で設定される。そして、故障リスク評価モデル算出部12は、全体システム1の故障リスクに対する、サブシステムA,Cの故障リスクの差分により、サブシステムBの故障リスクを算出する故障リスク評価モデル41を算出する。 As shown in FIG. 10, the subsystem C is selected as a special subsystem that does not change over time, and is also selected as a special subsystem having a low failure risk, and the failure risk of the subsystem C is set to “0”. .. Further, since the subsystem A is selected as a special subsystem that does not change with time, the failure risk is set to a constant value. Then, the failure risk evaluation model calculation unit 12 calculates a failure risk evaluation model 41 for calculating the failure risk of the subsystem B from the difference between the failure risks of the subsystems A and C with respect to the failure risk of the overall system 1.
 以上説明した第5の実施の形態に係る故障リスク評価システム10Dでは、特殊サブシステム選択部として用いられる端末7を通じて、特殊サブシステムが選択される。故障リスク設定部15は、選択された特殊サブシステムの故障リスクを一定値又は「0」に設定する。このため、故障リスク評価モデル算出部12が、特殊サブシステム以外のサブシステムの故障リスク評価モデルを算出する際の計算負荷を低減することができる。 In the failure risk evaluation system 10D according to the fifth embodiment described above, the special subsystem is selected through the terminal 7 used as the special subsystem selection unit. The failure risk setting unit 15 sets the failure risk of the selected special subsystem to a constant value or “0”. Therefore, the failure risk evaluation model calculation unit 12 can reduce the calculation load when calculating the failure risk evaluation model of a subsystem other than the special subsystem.
 なお、故障リスク評価システム10Dは、全体システム1に紐づくサブシステムの保守履歴、サブシステムの故障リスク評価モデル、各サブシステムの故障リスクの量的関係のデータがいずれも無いサブシステムが複数存在する場合であっても、各サブシステムの故障リスクを計算できる。 In the failure risk evaluation system 10D, there are a plurality of subsystems that do not have maintenance history of subsystems associated with the overall system 1, failure risk evaluation model of subsystems, and data of quantitative relationship of failure risk of each subsystem. Even if it does, the failure risk of each subsystem can be calculated.
[第6の実施の形態]
<適用可能範囲の明確化>
 次に、本発明の第6の実施の形態に係る故障リスク評価システムの動作例について、図11を参照して説明する。第6の実施の形態に係る故障リスク評価システムは、故障リスクの評価対象とするサブシステムに関して、上述した第1~第5の実施の形態に係る故障リスク評価システムを適用可能か判定することを可能とする。
[Sixth Embodiment]
<Clarification of applicable range>
Next, an operation example of the failure risk evaluation system according to the sixth exemplary embodiment of the present invention will be described with reference to FIG. The failure risk evaluation system according to the sixth embodiment determines whether or not the failure risk evaluation system according to the first to fifth embodiments described above can be applied to a subsystem that is an object of failure risk evaluation. It is possible.
 図11は、第6の実施の形態に係る故障リスク評価システム10Eにおけるデータの流れを示す説明図である。
 故障リスク評価システム10Eは、故障リスクの評価対象とするサブシステムに関して、第1~第5の実施の形態に係る故障リスク評価システム10~10Dのいずれを適用可能か判定する適用可否判定部16を備える。適用可否判定部16は、図3に示したCPU21が、ROM22から読出したプログラムをRAM23にロードして実行することで実現される。
FIG. 11 is an explanatory diagram showing a data flow in the failure risk evaluation system 10E according to the sixth embodiment.
The failure risk evaluation system 10E includes an applicability determination unit 16 that determines which of the failure risk evaluation systems 10 to 10D according to the first to fifth embodiments is applicable to the subsystems subject to failure risk evaluation. Prepare The applicability determination unit 16 is realized by the CPU 21 illustrated in FIG. 3 loading the program read from the ROM 22 into the RAM 23 and executing the program.
 図11では、主に適用可否判定部16の処理について説明する。適用可否判定部16は、故障リスクを評価する処理(第1~第5の実施の形態の処理)の中からサブシステムの故障リスクを評価するために適用可能な処理を判定する。ここで、図中に示す符号の説明を以下に記載する。
 N:サブシステムの全数
 m:第5の実施の形態に係る特殊サブシステム選択部で選択されるサブシステムの数
 x:故障リスク評価モデルが判明しているサブシステムの数
 y:故障リスク評価モデル及び評価モデルが未知であり、かつ特殊サブシステム選択部で選択されていないサブシステム
 なお、yのサブシステムの個数は、N-m-x≧2の関係を満たす。
In FIG. 11, the process of the applicability determination unit 16 will be mainly described. The applicability determination unit 16 determines a process that can be applied to evaluate the failure risk of the subsystem among the processes of evaluating the failure risk (the processes of the first to fifth embodiments). Here, the explanation of the reference numerals shown in the drawing will be given below.
N: Total number of subsystems m: Number of subsystems selected by the special subsystem selection unit according to the fifth embodiment x: Number of subsystems for which failure risk evaluation model is known y: Failure risk evaluation model And the subsystem whose evaluation model is unknown and which is not selected by the special subsystem selection unit. The number of subsystems of y satisfies the relation of N-mx≧2.
 始めに、適用可否判定部16は、全体システムの故障履歴データ、又は故障リスク評価モデルのいずれかをデータとして入手可能であるか否かを判定する(S11)。 First, the applicability determination unit 16 determines whether either the failure history data of the entire system or the failure risk evaluation model is available as data (S11).
 適用可否判定部16は、いずれかのデータを入手可能と判定した場合(S11のYES)、N個のサブシステムの内、(N-1)個以上のサブシステムに関して全体システムの故障履歴データに紐付けられた保守履歴データを入手可能であるか否かを判定する(S12)。 If it is determined that any of the data is available (YES in S11), the applicability determination unit 16 determines failure history data of the entire system for (N-1) or more subsystems among the N subsystems. It is determined whether the associated maintenance history data is available (S12).
 次に、適用可否判定部16は、全体システムの故障履歴データに紐付けられた保守履歴データを入手可能と判定すると(S12のYES)、全体システムの故障履歴データ、及び入手可能な保守履歴データの点数が、故障リスク評価システム10の処理に必要な数を充足しているか否かを判定する(S13)。 Next, when the applicability determination unit 16 determines that the maintenance history data associated with the failure history data of the entire system is available (YES in S12), the failure history data of the entire system and the available maintenance history data. It is determined whether or not the number of points satisfies the number required for the processing of the failure risk evaluation system 10 (S13).
 データ点数が充足している場合には(S13のYES)、第1の実施の形態又は第2の実施の形態で示した故障リスク評価システム10,10Aを適用してサブシステムの故障リスク評価モデルを導出可能である(S14)。そこで、適用可否判定部16は、「適用可」と判定し、評価結果出力部13は、「適用可」を画面に出力する(S21)。「適用可」と判定された場合、評価結果出力部13には、故障リスク評価システム10,10Aが導出したサブシステムの故障リスク評価モデルが画面に出力される。その後、「適用可」と判定された第1の実施の形態又は第2の実施の形態に係る故障リスク評価システム10,10Aによる処理が実施され(S22)、本処理が終了する。 When the number of data points is sufficient (YES in S13), the failure risk evaluation system 10, 10A shown in the first embodiment or the second embodiment is applied to the failure risk evaluation model of the subsystem. Can be derived (S14). Therefore, the applicability determination unit 16 determines “applicable”, and the evaluation result output unit 13 outputs “applicable” on the screen (S21). When it is determined that “applicable”, the evaluation result output unit 13 outputs the failure risk evaluation model of the subsystem derived by the failure risk evaluation system 10 or 10A on the screen. After that, the processing by the failure risk evaluation system 10 or 10A according to the first embodiment or the second embodiment, which is determined to be “applicable”, is executed (S22), and this processing ends.
 一方、適用可否判定部16は、ステップS12にて全体システムの故障履歴データに紐付けられた保守履歴データを入手不可と判定し(S12のNO)、又はステップS13にて保守履歴データの点数が充足していない(S13のNO)と判定した場合、以下の処理を行う。すなわち、適用可否判定部16は、故障リスク評価モデルが判明しているサブシステムの数(x個)と、全体システムを構成するサブシステムの全数(N個)とから(N-1)≦xであるか否かを判定する(S15)。 On the other hand, the applicability determination unit 16 determines that the maintenance history data associated with the failure history data of the entire system is not available in step S12 (NO in S12), or the score of the maintenance history data is determined in step S13. When it is determined that the condition is not satisfied (NO in S13), the following process is performed. That is, the applicability determination unit 16 determines (N−1)≦x from the number of subsystems (x) for which the failure risk evaluation model is known and the total number (N) of subsystems forming the entire system. It is determined whether or not (S15).
 評価モデルが判明しているサブシステムの数(x個)が、(N-1)個以上であれば(S15のYES)、第3の実施の形態と同様に故障リスク評価システム10Bを適用してサブシステムの故障リスク評価モデルを導出可能である(S16)。そこで、適用可否判定部16は、「適用可」であると判定し、評価結果出力部13は、「適用可」を画面に出力する(S21)。「適用可」と判定された場合、評価結果出力部13によって、故障リスク評価システム10Bが導出したサブシステムの故障リスク評価モデルが画面に出力される。その後、「適用可」と判定された第3の実施の形態に係る故障リスク評価システム10Bによる処理が実施され(S22)、本処理が終了する。 If the number (x) of subsystems for which the evaluation model is known is (N-1) or more (YES in S15), the failure risk evaluation system 10B is applied as in the third embodiment. The failure risk evaluation model of the subsystem can be derived (S16). Therefore, the applicability determining unit 16 determines that “Applicable”, and the evaluation result output unit 13 outputs “Applicable” on the screen (S21). When it is determined as “applicable”, the evaluation result output unit 13 outputs the failure risk evaluation model of the subsystem derived by the failure risk evaluation system 10B to the screen. After that, the processing by the failure risk evaluation system 10B according to the third embodiment, which is determined to be “applicable”, is executed (S22), and this processing ends.
 一方、ステップS15にて、故障リスク評価モデルが判明しているサブシステムの数(x個)が、(N-1)個に満たない場合(S15のNO)、適用可否判定部16は、特殊サブシステム選択部で選択されたサブシステムの個数を考慮し、N≦m+x+1を満たすか否かを判定する(S17)。 On the other hand, in step S15, when the number (x) of subsystems whose failure risk evaluation model is known is less than (N−1) (NO in S15), the applicability determination unit 16 determines Considering the number of subsystems selected by the subsystem selecting unit, it is determined whether N≦m+x+1 is satisfied (S17).
 N≦m+x+1を満たす場合には(S17のYES)、故障リスク評価モデルが判明しているサブシステムと、特殊サブシステムとして選択されたサブシステムの合計が、(N-1)個又はN個となる。この結果、故障リスクが判明していないサブシステムは1個以下となり、第5の実施の形態と同様に故障リスク評価システム10Dを適用してサブシステムの故障リスク評価モデルを導出可能である(S18)。そこで、適用可否判定部16は、「適用可」であると判定し、評価結果出力部13は、「適用可」を画面に出力する(S21)。「適用可」と判定された場合、故障リスク評価システム10Dが導出したサブシステムの故障リスク評価モデルが、評価結果出力部13によって画面に出力される。その後、「適用可」と判定された第5の実施の形態に係る故障リスク評価システム10Dによる処理が実施され(S22)、本処理が終了する。 When N≦m+x+1 is satisfied (YES in S17), the total of the subsystems for which the failure risk evaluation model is known and the subsystems selected as the special subsystems is (N−1) or N. Become. As a result, the number of subsystems in which the failure risk is unknown is one or less, and the failure risk evaluation model of the subsystem can be derived by applying the failure risk evaluation system 10D as in the fifth embodiment (S18). ). Therefore, the applicability determining unit 16 determines that “Applicable”, and the evaluation result output unit 13 outputs “Applicable” on the screen (S21). When it is determined as “applicable”, the failure risk evaluation model of the subsystem derived by the failure risk evaluation system 10D is output to the screen by the evaluation result output unit 13. After that, the processing by the failure risk evaluation system 10D according to the fifth embodiment, which is determined to be “applicable”, is performed (S22), and this processing ends.
 一方、N>m+x+1となる場合には(S17のNO)、故障リスクが判明していない複数のサブシステムが存在することとなる。そこで、適用可否判定部16は、特殊サブシステム選択部で選択されておらず、かつ、故障リスクの量的関係が既知の複数のサブシステム(図中に「サブシステムy」と記載)が存在するか否かを判定する(S19)。 On the other hand, when N>m+x+1 (NO in S17), it means that there are multiple subsystems whose failure risk is unknown. Therefore, the applicability determination unit 16 includes a plurality of subsystems (described as “subsystem y” in the figure) that are not selected by the special subsystem selection unit and have a known quantitative relationship of failure risk. It is determined whether or not (S19).
 適用可否判定部16は、特殊サブシステム選択部で選択されていないサブシステムyが存在すると判定した場合(S19のYES)、第4の実施の形態と同様に故障リスク評価システム10Cを適用してサブシステムの故障リスク評価モデルを導出可能である(S20)。そこで、適用可否判定部16は、「適用可」であると判定し、評価結果出力部13は、「適用可」を画面に出力する(S21)。「適用可」と判定された場合、評価結果出力部13によって、故障リスク評価システム10Cが導出したサブシステムの故障リスク評価モデルが画面に出力される。その後、「適用可」と判定された第4の実施の形態に係る故障リスク評価システム10Cによる処理が実施され(S22)、本処理が終了する。 When the applicability determination unit 16 determines that the subsystem y that is not selected by the special subsystem selection unit exists (YES in S19), the applicability determination unit 16 applies the failure risk evaluation system 10C as in the fourth embodiment. A failure risk evaluation model of the subsystem can be derived (S20). Therefore, the applicability determining unit 16 determines that “Applicable”, and the evaluation result output unit 13 outputs “Applicable” on the screen (S21). When it is determined as “applicable”, the evaluation result output unit 13 outputs the subsystem failure risk evaluation model derived by the failure risk evaluation system 10C to the screen. After that, the processing by the failure risk evaluation system 10C according to the fourth embodiment, which is determined to be “applicable”, is executed (S22), and this processing ends.
 一方、特殊サブシステム選択部で選択されていないサブシステムyが存在しない場合(S19のNO)、複数のサブシステムの故障リスクの量的関係を推定できないことから、各実施の形態に係る故障リスク評価システムを適用できない。そこで、適用可否判定部16が「適用不可」と判定する。また、ステップS11において、全体システムの故障履歴及び故障リスク評価モデルのいずれも存在しない場合においても(S11のNO)、各実施の形態に係る故障リスク評価システムを適用できないことから、適用可否判定部16が「適用不可」と判定する。 On the other hand, if there is no subsystem y that is not selected by the special subsystem selecting unit (NO in S19), the failure risk according to each embodiment cannot be estimated because the quantitative relationship of failure risks of a plurality of subsystems cannot be estimated. Rating system not applicable. Therefore, the applicability determination unit 16 determines that the application is not possible. Further, in step S11, even when neither the failure history of the entire system nor the failure risk evaluation model exists (NO in S11), the failure risk evaluation system according to each embodiment cannot be applied. 16 determines that “not applicable”.
 このように、適用可否判定部16が「適用不可」と判定した場合、各実施の形態に係る故障リスク評価システムによる全体システム及びサブシステムの故障リスク評価は適用不可能となる。そこで、適用可否判定部16が「適用不可」と判定した場合には、「適用不可」の表示と共に、いずれかの実施の形態に係る故障リスク評価システムを適用可能とするために必要なデータを合わせて評価結果出力部13が出力する(S23)。この時、「適用可」、「適用不可」、必要なデータの種別は画面等に出力して作業者に提示してもよい。 In this way, when the applicability determination unit 16 determines that the application is not applicable, the failure risk evaluation of the entire system and subsystem by the failure risk evaluation system according to each embodiment is not applicable. Therefore, when the applicability determination unit 16 determines “not applicable”, it displays the data “not applicable” and data necessary for making the failure risk evaluation system according to any of the embodiments applicable. In addition, the evaluation result output unit 13 outputs (S23). At this time, “applicable”, “not applicable”, and types of necessary data may be output to a screen or the like and presented to the operator.
 以上説明した第6の実施の形態に係る故障リスク評価システム10Eでは、各実施の形態に係る故障リスク評価システムによるサブシステムの故障リスク評価モデル及び評価モデルの導出が不可能な条件を排除する。このため、異常な故障リスクが出力されることを防止する。 In the failure risk evaluation system 10E according to the sixth embodiment described above, the failure risk evaluation model of the subsystem and the condition that the evaluation model cannot be derived by the failure risk evaluation system according to each embodiment are excluded. Therefore, it is possible to prevent an abnormal failure risk from being output.
 また、適用可否判定部16は、現在所持しているデータの種別より、適用可能な実施の形態に係る故障リスク評価システムを適切に選択することができる。また、適用可否判定部16は、サブシステムの故障リスク評価モデル及び評価モデルの導出が不可能な場合に、不足しているデータ種別、データの個数を提示することができる。 Further, the applicability determination unit 16 can appropriately select the failure risk evaluation system according to the applicable embodiment based on the type of data currently possessed. In addition, the applicability determination unit 16 can present the missing data type and the number of data when the subsystem failure risk evaluation model and the evaluation model cannot be derived.
<操作画面の表示例>
 図12は、各実施の形態に係る表示装置25に出力される操作画面80の表示例を示す説明図である。操作画面80は、例えば、作業者が、各実施の形態に係る故障リスク評価システムを操作する際に、図2に示す評価結果出力部13により表示可能に出力される画面の一例である。
<Display example of operation screen>
FIG. 12 is an explanatory diagram showing a display example of the operation screen 80 output to the display device 25 according to each embodiment. The operation screen 80 is an example of a screen that can be displayed by the evaluation result output unit 13 shown in FIG. 2 when the operator operates the failure risk evaluation system according to each embodiment, for example.
 操作画面80は、評価対象となる全体システム及びサブシステムに関する情報を表示する評価対象情報表示部81、故障リスク評価モデル選択部82、評価用データ選択部83、及び故障リスク評価結果出力部84を備える。なお、評価結果出力部13により出力される操作画面80は、評価対象情報表示部81、故障リスク評価モデル選択部82、及び評価用データ選択部83のうち、少なくとも一部を備える。 The operation screen 80 includes an evaluation target information display unit 81 that displays information about the entire system and subsystems to be evaluated, a failure risk evaluation model selection unit 82, an evaluation data selection unit 83, and a failure risk evaluation result output unit 84. Prepare The operation screen 80 output by the evaluation result output unit 13 includes at least a part of the evaluation target information display unit 81, the failure risk evaluation model selection unit 82, and the evaluation data selection unit 83.
 評価対象情報表示部81は、故障リスクの評価対象である全体システム及び各サブシステムに関する情報を入力可能に表示する。作業者は、評価対象情報表示部81を通じて、全体システム及び各サブシステムの名称や構成を入力可能である。入力された全体システム及び各サブシステムの名称や構成は、評価対象情報表示部81に表示される。図12では、全体システムの名称が「XX1」、サブシステムAの名称が「YY1」、サブシステムBの名称が「YY2」と表示される。また、サブシステムA,Bにより全体システムが構成されることがシステム構成図により表される。 The evaluation target information display unit 81 displays the information about the entire system and each subsystem, which is the target of failure risk evaluation, in an enterable manner. The operator can input the names and configurations of the entire system and each subsystem through the evaluation target information display unit 81. The input names and configurations of the entire system and each subsystem are displayed on the evaluation target information display section 81. In FIG. 12, the name of the entire system is displayed as “XX1”, the name of the subsystem A is displayed as “YY1”, and the name of the subsystem B is displayed as “YY2”. Further, the system configuration diagram shows that the subsystems A and B constitute the entire system.
 故障リスク評価モデル選択部82は、全体システム及びサブシステムに対して用いられる故障リスク評価モデルを選択可能に表示する。作業者は、故障リスク評価モデル選択部82を通じて、全体システムについて導入後経過年に対する故障リスクを定式化するために用いられる故障リスク評価モデルを選択可能である。作業者は、故障リスク評価モデルとして、指数式やワイブル式等、汎用的な数式を事前登録したものより選択してもよいし、独自のモデル式を入力してもよい。図12では、サブシステムAの故障リスク評価モデルとしてモデル1が選択され、サブシステムBの故障リスク評価モデルとしてモデル2が選択される。 The failure risk evaluation model selection unit 82 displays the failure risk evaluation model used for the entire system and subsystems in a selectable manner. Through the failure risk evaluation model selection unit 82, the operator can select a failure risk evaluation model used for formulating the failure risk for the years elapsed after the introduction of the entire system. The worker may select a general-purpose mathematical expression such as an exponential expression or a Weibull expression from those registered in advance as the failure risk evaluation model, or may input a unique model expression. In FIG. 12, the model 1 is selected as the failure risk evaluation model of the subsystem A, and the model 2 is selected as the failure risk evaluation model of the subsystem B.
 第4の実施の形態に係る故障リスク評価システム10Cに示したように、複数のサブシステムに関し故障リスクの量的関係が明らかとなっている場合には、故障リスク評価モデル選択部82から量的関係が入力される。同様に、第5の実施の形態に係る故障リスク評価システム10Dに示したように、故障リスクが経時的に変化しない、又は他のサブシステムに比べて著しく低いサブシステムが存在する場合においても、故障リスク評価モデル選択部82から故障リスクが低い旨が入力される。図12では、量的関係が入力されていないが、仮に図9に示した端末7により、各サブシステムの量的関係を示す比率が入力された場合には、量的関係算出部14により算出された各サブシステムの量的関係が表示される。いずれの故障リスク評価モデルを使用する場合においても、説明変数は導入後経過年(又は稼働期間)となり、目的変数は故障リスクとなる。 As shown in the failure risk evaluation system 10C according to the fourth embodiment, when the failure risk quantitative relationship is clear for a plurality of subsystems, the failure risk evaluation model selection unit 82 quantitatively determines The relationship is entered. Similarly, as shown in the failure risk evaluation system 10D according to the fifth embodiment, even when there is a subsystem in which the failure risk does not change over time, or there is a significantly lower subsystem than other subsystems, The failure risk evaluation model selection unit 82 inputs that the failure risk is low. Although the quantitative relationship is not input in FIG. 12, if the ratio indicating the quantitative relationship of each subsystem is input from the terminal 7 shown in FIG. 9, the quantitative relationship calculating unit 14 calculates the ratio. The quantitative relationship of each subsystem created is displayed. Regardless of which failure risk evaluation model is used, the explanatory variable is the elapsed year (or operating period) after introduction, and the objective variable is the failure risk.
 評価用データ選択部83は、故障リスクの評価に用いられる評価用データを選択可能に表示する。作業者は、評価用データ選択部83を通じて、各実施の形態に係る故障リスク評価システムが故障リスク評価モデルを導出するために使用されるデータのデータ項目を選択する。データ項目に示されるグループとは、全体システム及びサブシステムがどのような用途で使われるかを表す指標である。例えば、サブシステムがポンプであっても、ポンプに水が流されるか、空気が流されるかによって故障リスクが変わる。そこで、同じポンプであっても、例えば、グループAではポンプに水が流され、グループBではポンプに空気が流されるようにデータ項目の用途を変えてグループを選択可能である。 The evaluation data selection unit 83 selectably displays evaluation data used for failure risk evaluation. The operator selects the data item of the data used by the failure risk evaluation system according to each embodiment to derive the failure risk evaluation model through the evaluation data selection unit 83. The group shown in the data item is an index showing what purpose the entire system and subsystems are used for. For example, even if the subsystem is a pump, the risk of failure varies depending on whether the pump is flushed with water or air. Therefore, even if the pumps are the same, it is possible to select the group by changing the use of the data item such that water is passed through the pump in the group A and air is passed through the pump in the group B.
 なお、データは評価対象のシステムと類似した使用環境にあるグループのもののみを使用してもよいし、全グループのデータを使用してもよい。図12では、故障リスクの評価に使用されるデータ項目として、グループAが選択されたことがチェックマークにより示される。 Note that data may be used only for groups in a usage environment similar to the system under evaluation, or data for all groups may be used. In FIG. 12, the check mark indicates that the group A is selected as the data item used for the failure risk evaluation.
 故障リスク評価結果出力部84では、今後の予測故障リスク表示部85と保守実施時の予測故障リスク表示部86、推奨保守提示部87、備考欄88が表示される。
 今後の予測故障リスク表示部85は、将来の全体システム及び各サブシステムの故障リスクの導入後経過年に対する変化を表示する。
The failure risk evaluation result output unit 84 displays a future predicted failure risk display unit 85, a predicted failure risk display unit 86 during maintenance, a recommended maintenance presentation unit 87, and a remarks column 88.
The future predictive failure risk display unit 85 displays a change in failure risk of the entire system and each subsystem in the future with respect to the elapsed years after introduction.
 保守実施時の予測故障リスク表示部86は、推奨保守提示部87で表示されている保守を実施した場合の全体システム及び各サブシステムの故障リスクの導入後経過年に対する推移を提示する。ここで、保守実施時の予測故障リスク表示部86内における期間86aは過去の故障リスク評価結果を表し、期間86bは、保守Aが実施された後に予測される未来の故障リスク評価結果を表す。作業者は、予測故障リスク表示部86を確認することで、例えば、サブシステムAに対して保守Aを行うことで、全体システム及び各サブシステムの故障リスクがどのように変化するかを把握できる。 The predictive failure risk display unit 86 during maintenance execution presents the transition of the failure risk of the entire system and each subsystem when the maintenance displayed in the recommended maintenance presentation unit 87 is implemented, after the introduction. Here, the period 86a in the predicted failure risk display portion 86 at the time of performing maintenance represents a past failure risk evaluation result, and the period 86b represents a future failure risk evaluation result predicted after the maintenance A is performed. By confirming the predictive failure risk display unit 86, for example, by performing maintenance A on the subsystem A, the operator can grasp how the failure risk of the entire system and each subsystem changes. ..
 推奨保守提示部87は、各サブシステムについて保守を推奨するタイミングを表示する。保守を推奨するタイミングは、例えば、各サブシステム又は全体システムの予測故障リスクが既定の閾値を超える導入後経過年(又は稼働期間)として設定しておく。図12では、例えば、保守を推奨するタイミングが、今後の予測故障リスク表示部85に「!」マーク85aとして表示される。 The recommended maintenance presentation unit 87 displays the timing for recommending maintenance for each subsystem. The timing at which maintenance is recommended is set, for example, as the elapsed year (or operating period) after installation when the predicted failure risk of each subsystem or the entire system exceeds a predetermined threshold. In FIG. 12, for example, the timing for recommending maintenance is displayed as a “!” mark 85a on the future predicted failure risk display portion 85.
 備考欄88は、各サブシステムにおける故障リスクが高まった場合に、事前に作業者に通知するためのコメントを表示する。備考欄88に示される「!」マーク88aは、推奨保守提示部87に示された「!」マーク85aに対する故障リスクの評価結果を表す。このため、作業者は、備考欄88に示される「!」マーク88aに示す故障リスクを確認し、サブシステムAに対する必要な保守を行うことができる。 The remarks column 88 displays a comment for notifying the worker in advance when the failure risk in each subsystem increases. The "!" mark 88a shown in the remarks column 88 represents the failure risk evaluation result for the "!" mark 85a shown in the recommended maintenance presentation unit 87. Therefore, the operator can confirm the failure risk indicated by the "!" mark 88a shown in the remarks column 88 and perform necessary maintenance for the subsystem A.
[変形例]
 なお、上述した各実施の形態に係る故障リスク評価システムと、営業支援システムとを組合せ、故障リスクを評価して得られた評価値を、営業支援システムを通じて保守員に提示する保守サービスを提供してもよい。これにより故障リスクが予測されたサブシステムの交換提案を、保守員を通じて顧客に提供することができる。
[Modification]
In addition, a maintenance service is provided in which the failure risk evaluation system according to each of the above-described embodiments is combined with a sales support system, and the evaluation value obtained by evaluating the failure risk is presented to the maintenance staff through the sales support system. May be. As a result, the replacement proposal of the subsystem whose failure risk is predicted can be provided to the customer through the maintenance staff.
 また、故障リスクの高いサブシステムを設計図等にマッピングすることで、故障リスクの予測結果や故障に対処するための作業者の人数、作業者の配置箇所を決める作業者の最適化システムを提供してもよい。これにより、全体システムの内、故障リスクが高いサブシステムを把握しやすくなり、作業者を適切に配置することが可能となる。 Also, by mapping subsystems with a high failure risk to design drawings, etc., we provide an optimization system for operators that decides the result of failure risk predictions, the number of workers to deal with failures, and the location of workers. You may. As a result, it becomes easy to understand the subsystems having a high failure risk in the entire system, and it becomes possible to appropriately arrange the workers.
 なお、本発明は上述した各実施の形態に限られるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りその他種々の応用例、変形例を取り得ることは勿論である。
 例えば、上述した各実施の形態は本発明を分かりやすく説明するために装置及びシステムの構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、ここで説明した実施の形態の構成の一部を他の実施の形態の構成に置き換えることは可能であり、さらにはある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
It should be noted that the present invention is not limited to the above-described respective embodiments, and it goes without saying that various other application examples and modified examples can be taken without departing from the gist of the present invention described in the claims.
For example, each of the above-described embodiments is a detailed and specific description of the configuration of an apparatus and a system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of the embodiment described here can be replaced with the configuration of another embodiment, and further, the configuration of another embodiment can be added to the configuration of one embodiment. It is possible. Further, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
Further, the control lines and information lines are shown to be necessary for explanation, and not all the control lines and information lines are shown in the product. In reality, it may be considered that almost all the configurations are connected to each other.
 1…全体システム、2…全体システム故障DB、3A…サブシステムA保守DB、3B…サブシステムB保守DB、4…故障・保守管理システム、5…保守A実施データ群、7…端末、10…故障リスク評価システム、11…履歴取得部、12…故障リスク評価モデル算出部、13…評価結果出力部、14…量的関係算出部、15…故障リスク設定部、16…適用可否判定部、25…表示装置、26…入力装置 1... Overall system, 2... Overall system failure DB, 3A... Subsystem A maintenance DB, 3B... Subsystem B maintenance DB, 4... Failure/maintenance management system, 5... Maintenance A execution data group, 7... Terminal, 10... Failure risk evaluation system, 11... History acquisition section, 12... Failure risk evaluation model calculation section, 13... Evaluation result output section, 14... Quantitative relationship calculation section, 15... Failure risk setting section, 16... Applicability determination section, 25 ... Display device, 26... Input device

Claims (11)

  1.  複数のサブシステムで構成される全体システムの故障履歴と、複数の前記サブシステムから選択された少なくとも一つのサブシステムの保守履歴とを取得する履歴取得部と、
     前記全体システムの故障履歴及び前記少なくとも一つのサブシステムの保守履歴に基づいて、前記保守履歴がない他のサブシステムの故障リスクを評価するための故障リスク評価モデルを算出し、前記他のサブシステムの故障リスクを求める故障リスク評価モデル算出部と、を備える
     故障リスク評価システム。
    A history acquisition unit that acquires a failure history of the entire system including a plurality of subsystems and a maintenance history of at least one subsystem selected from the plurality of subsystems,
    Based on the failure history of the entire system and the maintenance history of the at least one subsystem, a failure risk evaluation model for evaluating the failure risk of the other subsystem without the maintenance history is calculated, and the other subsystem is calculated. A failure risk evaluation system comprising: a failure risk evaluation model calculation unit that calculates the failure risk of.
  2.  前記全体システムの故障履歴は、既存の前記全体システムの導入後の所定期間に故障した前記全体システムの数、及び故障回数の履歴であり、
     前記サブシステムの保守履歴は、前記サブシステムの導入後の前記所定期間に実施された保守の履歴である
     請求項1に記載の故障リスク評価システム。
    The failure history of the entire system is a history of the number of the entire system that has failed in a predetermined period after the introduction of the existing entire system, and the number of failures,
    The failure risk evaluation system according to claim 1, wherein the maintenance history of the subsystem is a history of maintenance performed in the predetermined period after the introduction of the subsystem.
  3.  前記履歴取得部は、第1及び第2のサブシステムによって構成される前記全体システムについて、前記保守履歴がある前記第1又は第2のサブシステムのいずれかから前記保守履歴を取得し、
     前記故障リスク評価モデル算出部は、前記全体システムの故障履歴と、前記サブシステムの保守履歴とに基づいて、前記保守履歴がない他のサブシステムの故障リスク評価モデルを算出する
     請求項2に記載の故障リスク評価システム。
    The history acquisition unit acquires the maintenance history from either the first or second subsystem having the maintenance history for the entire system configured by the first and second subsystems,
    The failure risk evaluation model calculation unit calculates a failure risk evaluation model of another subsystem having no maintenance history based on a failure history of the entire system and a maintenance history of the subsystem. Failure risk assessment system.
  4.  前記履歴取得部は、複数の前記全体システムに共通して構成される前記サブシステムの前記保守履歴を所定期間毎にまとめたデータ群を作成し、
     前記故障リスク評価モデル算出部は、前記データ群から算出した前記サブシステムのサブ故障リスク評価モデルと、前記全体システムの前記故障履歴から算出した前記全体システムの全体故障リスク評価モデルとに基づいて、同一の保守が行われた前記サブシステムの前記故障リスクを評価するための前記故障リスク評価モデルを算出する
     請求項3に記載の故障リスク評価システム。
    The history acquisition unit creates a data group in which the maintenance history of the subsystem configured in common for the plurality of overall systems is summarized for each predetermined period,
    The failure risk evaluation model calculation unit, based on the sub failure risk evaluation model of the subsystem calculated from the data group, and the overall failure risk evaluation model of the overall system calculated from the failure history of the overall system, The failure risk evaluation system according to claim 3, wherein the failure risk evaluation model for evaluating the failure risk of the subsystems that have been subjected to the same maintenance is calculated.
  5.  前記履歴取得部は、複数の前記全体システムに共通して構成される前記サブシステムの前記保守履歴を所定期間毎にまとめたデータ群を作成し、
     前記故障リスク評価モデル算出部は、保守後経過期間が短い順に選択した前記データ群に基づいて、前記故障リスク評価モデルを算出する
     請求項2に記載の故障リスク評価システム。
    The history acquisition unit creates a data group in which the maintenance history of the subsystem configured in common for the plurality of overall systems is summarized for each predetermined period,
    The failure risk evaluation system according to claim 2, wherein the failure risk evaluation model calculation unit calculates the failure risk evaluation model based on the data group selected in ascending order of the post-maintenance elapsed period.
  6.  前記少なくとも一つのサブシステムの導入後から前記所定期間における前記故障リスクを評価するための前記故障リスク評価モデルを記憶する故障リスク評価モデル記憶部を備え、
     前記故障リスク評価モデル算出部は、前記全体システムの故障履歴と、前記履歴取得部が前記故障リスク評価モデル記憶部から取得した前記故障リスク評価モデルとに基づいて、前記所定期間における前記他のサブシステムの前記故障リスク評価モデルを算出する
     請求項2に記載の故障リスク評価システム。
    A failure risk evaluation model storage unit for storing the failure risk evaluation model for evaluating the failure risk in the predetermined period after the introduction of the at least one subsystem,
    The failure risk evaluation model calculation unit, based on the failure history of the entire system and the failure risk evaluation model acquired by the history acquisition unit from the failure risk evaluation model storage unit, the other sub in the predetermined period. The failure risk evaluation system according to claim 2, wherein the failure risk evaluation model of the system is calculated.
  7.  さらに、複数の前記サブシステムの相互の前記故障リスクの量的関係を表す比率を入力する量的関係入力部と、
     前記比率に基づいて、前記全体システムの故障リスクに対するそれぞれの前記サブシステムの前記故障リスクの量的関係を算出する量的関係算出部と、を備え、
     前記故障リスク評価モデル算出部は、前記サブシステム毎に算出された前記故障リスクの量的関係に基づいて、前記サブシステム毎に前記故障リスク評価モデルを算出する
     請求項2に記載の故障リスク評価システム。
    Further, a quantitative relationship input unit for inputting a ratio representing a quantitative relationship of the failure risks of a plurality of the subsystems,
    A quantitative relationship calculation unit that calculates a quantitative relationship of the failure risk of each of the subsystems to the failure risk of the entire system, based on the ratio;
    The failure risk evaluation model calculation unit according to claim 2, wherein the failure risk evaluation model calculation unit calculates the failure risk evaluation model for each subsystem based on a quantitative relationship of the failure risk calculated for each subsystem. system.
  8.  さらに、前記複数のサブシステムのうち、前記故障リスクが経時的に変化しない、又は他の前記サブシステムに比べて前記故障リスクが低く、0に近似できる特殊サブシステムを選択する特殊サブシステム選択部を備え、
     前記故障リスク評価モデル算出部は、前記特殊サブシステムの故障リスクを除いて前記故障リスク評価モデルを算出する
     請求項2に記載の故障リスク評価システム。
    Further, a special subsystem selecting unit that selects, from the plurality of subsystems, a special subsystem in which the failure risk does not change with time or has a lower failure risk than other subsystems and can be approximated to 0. Equipped with
    The failure risk evaluation system according to claim 2, wherein the failure risk evaluation model calculation unit calculates the failure risk evaluation model by removing a failure risk of the special subsystem.
  9.  さらに、前記故障リスクを評価する処理の中から前記サブシステムの故障リスクを評価するために適用可能な処理を判定する適用可否判定部を備える
     請求項1に記載の故障リスク評価システム。
    The failure risk evaluation system according to claim 1, further comprising an applicability determination unit that determines an applicable process for evaluating the failure risk of the subsystem from the process of evaluating the failure risk.
  10.  さらに、前記故障リスク評価モデルにより評価された前記サブシステムの故障リスクの評価結果を表示装置の画面に表示可能に出力する評価結果出力部を備え、
     前記評価結果出力部は、
     前記故障リスクの評価対象である前記全体システム及び前記サブシステムに関する情報を表示する評価対象情報表示部と、
     前記全体システム及び前記サブシステムに対して用いられる前記故障リスク評価モデルを選択可能に表示する故障リスク評価モデル選択部と、
     前記故障リスクの評価に用いられる評価用データを選択可能に表示する評価用データ選択部と、のうち少なくとも一部を備える
     請求項3に記載の故障リスク評価システム。
    Furthermore, an evaluation result output unit for outputting the evaluation result of the failure risk of the subsystem evaluated by the failure risk evaluation model in a displayable manner on a screen of a display device,
    The evaluation result output unit,
    An evaluation target information display unit that displays information regarding the entire system and the subsystem that are the evaluation targets of the failure risk,
    A failure risk evaluation model selection unit that selectively displays the failure risk evaluation model used for the overall system and the subsystem;
    The failure risk evaluation system according to claim 3, further comprising at least a part of an evaluation data selection unit that selectively displays evaluation data used for evaluation of the failure risk.
  11.  複数のサブシステムで構成される全体システムの故障履歴と、複数の前記サブシステムから選択された少なくとも一つのサブシステムの保守履歴とを取得する処理と、
     前記全体システムの故障履歴及び前記少なくとも一つのサブシステムの保守履歴に基づいて、前記保守履歴がない他のサブシステムの故障リスクを評価するための故障リスク評価モデルを算出し、前記他のサブシステムの故障リスクを求める処理と、を含む
     故障リスク評価方法。
    A process of acquiring a failure history of the entire system composed of a plurality of subsystems and a maintenance history of at least one subsystem selected from the plurality of subsystems;
    Based on the failure history of the entire system and the maintenance history of the at least one subsystem, a failure risk evaluation model for evaluating the failure risk of the other subsystem without the maintenance history is calculated, and the other subsystem is calculated. A failure risk evaluation method including a process of obtaining a failure risk of.
PCT/JP2019/045076 2019-02-15 2019-11-18 Failure risk assessment system and failure risk assessment method WO2020166156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019025924A JP7278093B2 (en) 2019-02-15 2019-02-15 Failure risk evaluation system and failure risk evaluation method
JP2019-025924 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020166156A1 true WO2020166156A1 (en) 2020-08-20

Family

ID=72044754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045076 WO2020166156A1 (en) 2019-02-15 2019-11-18 Failure risk assessment system and failure risk assessment method

Country Status (2)

Country Link
JP (1) JP7278093B2 (en)
WO (1) WO2020166156A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112233420A (en) * 2020-10-14 2021-01-15 腾讯科技(深圳)有限公司 Fault diagnosis method and device for intelligent traffic control system
CN112862218A (en) * 2021-03-17 2021-05-28 广东电网有限责任公司 Power equipment out-of-service management system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202171A (en) * 2005-01-24 2006-08-03 Chugoku Electric Power Co Inc:The Maintenance cost distribution system and maintenance cost distribution method
JP2007316718A (en) * 2006-05-23 2007-12-06 Hitachi Ltd Predicted loss calculating system, predicted loss calculating method, and program
JP2009251822A (en) * 2008-04-03 2009-10-29 Toshiba Corp Complex diagnosis maintenance plan supporting system and supporting method for same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202171A (en) * 2005-01-24 2006-08-03 Chugoku Electric Power Co Inc:The Maintenance cost distribution system and maintenance cost distribution method
JP2007316718A (en) * 2006-05-23 2007-12-06 Hitachi Ltd Predicted loss calculating system, predicted loss calculating method, and program
JP2009251822A (en) * 2008-04-03 2009-10-29 Toshiba Corp Complex diagnosis maintenance plan supporting system and supporting method for same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112233420A (en) * 2020-10-14 2021-01-15 腾讯科技(深圳)有限公司 Fault diagnosis method and device for intelligent traffic control system
CN112233420B (en) * 2020-10-14 2023-12-15 腾讯科技(深圳)有限公司 Fault diagnosis method and device for intelligent traffic control system
CN112862218A (en) * 2021-03-17 2021-05-28 广东电网有限责任公司 Power equipment out-of-service management system

Also Published As

Publication number Publication date
JP7278093B2 (en) 2023-05-19
JP2020135232A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
WO2018079778A1 (en) Production management device, method, and program
US8959401B2 (en) System operations management apparatus, system operations management method and program storage medium
US11500369B2 (en) Operation/maintenance management method, program, and operation/maintenance management system
US20130041783A1 (en) System and method for dynamic spare part management
JP5386437B2 (en) Periodic inspection planning device, system and method
EP2472457A1 (en) Systems and methods for use in correcting a predicted failure in a production process
WO2020166156A1 (en) Failure risk assessment system and failure risk assessment method
US11042823B2 (en) Business management system
JP2010073121A (en) Repair work schedule preparation method and repair work schedule preparation system for plant equipment
JP2010027044A (en) Electric power distribution facility maintenance support device, electric power distribution facility maintenance support method and electric power distribution facility support program
US10417712B2 (en) Enterprise application high availability scoring and prioritization system
JP2018190424A (en) Inventory management device, inventory management method, and program
AU2024203343A1 (en) Maintenance plan assistance method and maintenance plan assistance device
US10222788B2 (en) Plan generating device and plan generating method
WO2016125248A1 (en) Maintenance assistance system, maintenance assistance method, and maintenance assistance program
JP2019175273A (en) Quality evaluation method and quality evaluation
KR20190043571A (en) A guide information presentation system, a guide information presentation method, a program stored in a recording medium, and a guide information presentation device
JP7339861B2 (en) Failure probability evaluation system
JP2022032684A (en) Facility maintenance support system and facility maintenance support method
JP6488891B2 (en) Maintenance work interval determination device
KR101290533B1 (en) Method and System of Facility Condition Index of Quantity for Building Management Priority calculation
Cuculoski Obsolescence management of electronic and control systems
JP2002117164A (en) Repair cost predicting system for working vehicle
JP2020102097A (en) Deterioration level predicting system and deterioration level predicting method
JP2021033488A (en) Work instruction device and work instruction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915106

Country of ref document: EP

Kind code of ref document: A1