WO2016125248A1 - Maintenance assistance system, maintenance assistance method, and maintenance assistance program - Google Patents

Maintenance assistance system, maintenance assistance method, and maintenance assistance program Download PDF

Info

Publication number
WO2016125248A1
WO2016125248A1 PCT/JP2015/052941 JP2015052941W WO2016125248A1 WO 2016125248 A1 WO2016125248 A1 WO 2016125248A1 JP 2015052941 W JP2015052941 W JP 2015052941W WO 2016125248 A1 WO2016125248 A1 WO 2016125248A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure
disadvantage
maintenance
index
value
Prior art date
Application number
PCT/JP2015/052941
Other languages
French (fr)
Japanese (ja)
Inventor
峻行 羽渕
羽根 慎吾
靖英 森
藤城 孝宏
丈士 白井
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/052941 priority Critical patent/WO2016125248A1/en
Publication of WO2016125248A1 publication Critical patent/WO2016125248A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to a maintenance support system, a maintenance support method, and a maintenance support program.
  • One of the effective technologies for maintaining equipment is to detect signs of failure by diagnosing device abnormalities, and to provide a means of repair from failures to the administrator. Has been.
  • Patent Document 1 a system for making a maintenance plan for equipment has been proposed (see, for example, Patent Document 1).
  • the operation load / simulation state of the construction machine is simulated by the operation simulation means based on the production operation condition, and then the cumulative load for each part according to the operation / work state is calculated.
  • a system for predicting the life of each part based on " is described.
  • the maintenance plan is generated using the life of the equipment assumed as one constant. However, because the life of equipment varies from one piece of equipment to another, the maintenance plan generated by the prior art is not always appropriate for each real piece of equipment. .
  • the object of the present invention is to provide information for making an appropriate maintenance plan based on the actual value related to the lifetime of the equipment.
  • the present invention is a maintenance support system comprising a processor and a memory, and the memory is a first disadvantage among the disadvantages suffered by a user due to maintenance of components mounted on a device.
  • a first disadvantageous index indicating a degree of profit and a second disadvantageous index indicating a second degree of disadvantage are stored, and the first disadvantageous index is generated before failure of the component.
  • the disadvantage is lower than the disadvantage that occurs after the failure of the component, and the second disadvantage index is that the disadvantage that occurs before the failure of the component is less than the disadvantage that occurs after the failure of the component
  • the processor is configured to obtain a plurality of failure probabilities of the component at a plurality of time points during a period in which the component is used, the acquired plurality of failure probabilities, and the first disadvantage index; And using the second disadvantage index A predicted value of a disadvantage that occurs when the part is maintained is calculated at a plurality of candidate timings where maintenance is performed during a period in which the part is used, and the calculated plurality of predicted values are output.
  • a maintenance support system is configured to obtain a plurality of failure probabilities of the component at a plurality of time points during a period in which the component is used, the acquired plurality of failure probabilities, and the first disadvantage index; And using the second disadvantage index A predicted value of a disadvantage that occurs when the part is maintained is calculated at a plurality of candidate timings where maintenance is performed during a period in which the part
  • information for making an appropriate maintenance plan can be provided.
  • FIG. 1 is a block diagram illustrating a maintenance system according to a first embodiment.
  • 2 is a functional block diagram of a maintenance server according to Embodiment 1.
  • FIG. FIG. 6 is an explanatory diagram illustrating a failure history according to the first embodiment. It is explanatory drawing which shows the customer information of Example 1.
  • FIG. It is explanatory drawing which shows the maintenance information of Example 1.
  • FIG. It is explanatory drawing which shows the output information of Example 1.
  • FIG. It is a flowchart which shows the process for calculating the maintenance cost of Example 1, an operation loss, and a lifetime loss.
  • It is explanatory drawing which shows transition of the failure probability according to the abnormality degree of Example 1.
  • FIG. It is explanatory drawing which shows transition of the abnormality degree according to the elapsed time of Example 1.
  • FIG. It is explanatory drawing which shows transition of the failure probability according to the elapsed time of Example 1.
  • FIG. It is explanatory drawing which shows distribution of the result of having multiplied the failure probability of Example 1 and the maintenance cost. It is explanatory drawing which shows distribution of the result of multiplying the failure probability of Example 1 and the operation loss. It is explanatory drawing which shows distribution of the result of having multiplied the failure probability of Example 1, and lifetime loss.
  • It is a flowchart which shows the process which calculates the predicted value of the disadvantage in the maintenance of Example 1. It is explanatory drawing which shows the processing result of the maintenance cost in the maintenance timing of Example 1, an operation loss, and a lifetime loss.
  • FIG. 3 is a sequence diagram illustrating an operation of the first embodiment. It is explanatory drawing which shows the failure log
  • FIG. It is explanatory drawing which shows distribution of the future failure probability of Example 2.
  • FIG. It is explanatory drawing which shows the surplus table contained in the customer information of Example 3.
  • FIG. It is a flowchart which shows the process which calculates the predicted value of the disadvantage in the maintenance of Example 3.
  • FIG. 1 is a block diagram illustrating a maintenance system according to the first embodiment.
  • the maintenance system of the first embodiment includes a maintenance server 100, an excavator 140, a truck 130, an on-vehicle device 150, a network 160, and a user terminal 170.
  • the excavator car 140 and the truck 130 are devices (hereinafter referred to as target devices) that are maintained by the maintenance system of the first embodiment.
  • the target devices shown in FIG. 1 are the excavator 140 and the truck 130, but may be a pipe, a generator, an engine, or the like, or a device such as a computer.
  • At least one vehicle-mounted device 150 is installed in each part of the excavator car 140 and the truck 130.
  • the vehicle-mounted device 150 is connected to each component of the excavator car 140 and the truck 130 and has sensors for measuring vibration, temperature, pressure, and the like.
  • the onboard equipment 150 has a processor and memory.
  • the vehicle-mounted device 150 acquires the degree of abnormality indicating the type of abnormality that has occurred in the component and the strength of the abnormality, using the measurement value measured by the sensor.
  • the vehicle-mounted device 150 may detect an abnormality occurring in the component by any method.
  • the vehicle-mounted device 150 may detect an abnormality when, for example, the difference between the standard value held in advance and the measured value measured by the sensor is larger than a predetermined threshold value.
  • the vehicle-mounted device 150 may acquire the type of abnormality and the degree of abnormality by any method. For example, the vehicle-mounted device 150 may compare a measurement value measured by a sensor with a standard value held in advance, and calculate a greater degree of abnormality as the difference between the measurement value and the standard value increases. Moreover, the onboard equipment 150 may specify the type of abnormality based on the type and measurement value of the measured value determined to be abnormal and information on the abnormality that is held in advance.
  • the vehicle-mounted device 150 acquires the elapsed time that has elapsed since the component was installed in the target device, from the hour meter provided in the component. And the onboard equipment 150 sends the elapsed time which the acquired hour meter shows to the maintenance server 100.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the vehicle-mounted device 150, the user terminal 170, and the maintenance server 100 are connected via the network 160.
  • the network 160 may be any network, for example, the Internet, a LAN, or a WAN.
  • the user terminal 170 is used by a maintenance system administrator or a maintenance person (hereinafter referred to as a maintenance person) to receive an instruction to the maintenance server 100 or output data transmitted from the maintenance server 100.
  • the user terminal 170 includes an output device such as a processor, a memory, a display, or a printer, and an input device such as a keyboard or a mouse.
  • the user terminal 170 may be a device in which an input device and an output device are integrated, such as a tablet terminal.
  • the maintenance server 100 is a device that generates information for the maintenance person to determine the maintenance timing based on the information collected from the vehicle-mounted device 150.
  • the maintenance server 100 includes physical devices such as an I / O (Input / Output) interface 111, a memory 112, a communication device 113, a CPU 114, and an auxiliary storage device 120.
  • the I / O interface 111 is an interface for connecting to an input device and an output device.
  • the maintenance server 100 may be directly connected to the input device and the output device via the I / O interface 111 instead of the network 160.
  • an instruction from the maintenance person may be received using a directly connected input device, or data may be output using a directly connected output device.
  • the following processing of the user terminal 170 may be executed by an input device and an output device that are directly connected to the maintenance server 100.
  • the communication device 113 is an interface for connecting to the network 160.
  • the maintenance server 100 is connected to the vehicle-mounted device 150 and the user terminal 170 via the communication device 113.
  • the memory 112 is a storage device that temporarily holds data and programs.
  • the CPU 114 is an arithmetic device and a control device, and may be at least one processor, for example.
  • the CPU 114 executes a program using the memory 112.
  • the memory 112 includes a ROM that is a nonvolatile storage element and a RAM that is a volatile storage element.
  • the ROM stores an immutable program (for example, BIOS).
  • the RAM is a high-speed and volatile storage element such as a DRAM (Dynamic Random Access Memory), and temporarily stores a program stored in the auxiliary storage device and data used when the program is executed.
  • the auxiliary storage device 120 is a storage device that holds data and programs.
  • the auxiliary storage device is a large-capacity non-volatile storage device such as a magnetic storage device (HDD) or a flash memory (SSD).
  • the CPU 114 reads data and programs held in the auxiliary storage device 120 into the memory 112 as necessary.
  • the auxiliary storage device 120 includes data such as a failure history 121, customer information 123, maintenance information 125, and output information 127, and programs such as an abnormality estimation unit 122, a cost loss calculation unit 124, an information acquisition unit 126, and an output unit 128. .
  • the program executed by the CPU 114 is provided to the maintenance server 100 via a removable medium (CD-ROM, flash memory, etc.) or a network, and stored in the auxiliary storage device 120 which is a non-temporary storage medium. For this reason, the maintenance server 100 may have an interface for reading data from a removable medium.
  • the maintenance server 100 may be physically one computer, or may be a computer system composed of a plurality of computers logically or physically. Further, the above-described program may be processed by a plurality of threads in one computer, or may be processed by a virtual computer constructed on a plurality of physical computer resources.
  • the failure history 121 includes information acquired from the parts by the vehicle-mounted device 150 and information indicating whether or not a failure has occurred.
  • the customer information 123 includes information related to the target device, and particularly includes information acquired from a customer who uses the target device.
  • the maintenance information 125 includes information regarding the target device, and particularly includes information acquired as a result of maintaining the parts.
  • the output information 127 includes a processing result in the maintenance server 100 that is output using the user terminal 170.
  • the information acquisition unit 126 acquires information generated in the target device from the vehicle-mounted device 150 and stores the acquired information in the failure history 121.
  • the information acquisition unit 126 receives information from the input device connected to the user terminal 170 or the maintenance server 100, and stores the received information in the customer information 123, the maintenance information 125, and the like.
  • the information acquisition unit 126 may acquire information via any device, and may acquire information generated in the target device from the information server connected to the vehicle-mounted device 150 or the user terminal 170.
  • the abnormality estimation unit 122 obtains the failure probability according to the elapsed time of the parts based on the information acquired from the vehicle-mounted device 150.
  • the cost loss calculation unit 124 calculates a predicted value of a user's disadvantage that occurs due to maintenance.
  • the output unit 128 outputs the calculated predicted value of the user's disadvantage to the user terminal 170 or the like.
  • the maintenance server 100 includes physical devices having the functions of these programs. May be.
  • these programs may include subprograms divided for each process executed by the program, or a plurality of programs may be integrated into one program.
  • the first embodiment provides information for determining an appropriate maintenance timing by calculating a disadvantage that a user suffers when a part is maintained.
  • FIG. 2 is a functional block diagram of the maintenance server 100 according to the first embodiment.
  • the information acquisition unit 126 collects information on abnormality from the vehicle-mounted device 150 and stores it in the failure history 121. In addition, the information acquisition unit 126 collects information about parts from the vehicle-mounted device 150 and stores the information in the customer information 123.
  • the abnormality estimation unit 122 refers to the failure history 121 and calculates failure probabilities at a plurality of predetermined times. Then, the abnormality estimation unit 122 stores the calculated failure probability in the failure history 121.
  • the predetermined time is an elapsed time after occurrence of an abnormality in Example 1 below, but may be an elapsed time after the use of a part is started.
  • the cost loss calculation unit 124 calculates a predicted value of a disadvantage that occurs when parts are replaced at a plurality of predetermined times. To do. Then, the cost loss calculation unit 124 stores information on the calculated predicted value of disadvantage in the output information 127 as a processing result.
  • FIG. 3 is an explanatory diagram showing the failure history 121 of the first embodiment.
  • the failure history 121 includes an abnormality degree transition table 300 and a failure probability table 310.
  • the failure history 121 may hold a plurality of abnormality degree transition tables 300 for each user or maintenance person of the target device.
  • the information acquisition unit 126 stores information generated in the vehicle-mounted device 150 in a part of the abnormality degree transition table 300 and the failure probability table 310.
  • the abnormality degree transition table 300 includes an abnormality name 301, an abnormality ID 302, a part name 303, a part ID 304, a time 305, and an abnormality degree 306.
  • the abnormality name 301 indicates the type of abnormality that has occurred in the part of the target device.
  • the abnormality ID 302 is an identifier that uniquely indicates a combination of the type of abnormality and the type of component in which the abnormality has occurred.
  • the part name 303 indicates the name of the type of the part in which an abnormality has occurred.
  • the component ID 304 is an identifier that uniquely indicates a component in all target devices of the maintenance system according to the first embodiment.
  • Time 305 is an elapsed time since the occurrence of the abnormality.
  • the time 305 indicates the elapsed time by, for example, seconds or minutes.
  • the degree of abnormality 306 indicates the degree of abnormality calculated by the vehicle-mounted device 150.
  • the failure probability table 310 includes an abnormality name 311, an abnormality degree 312, the number of failures 313, and a failure probability 314.
  • the abnormality name 311, the abnormality degree 312, and the number of failures 313 are information collected from the vehicle-mounted device 150 by the information acquisition unit 126.
  • the abnormality name 311 corresponds to the abnormality name 301 and indicates the type of abnormality.
  • the abnormality degree 312 corresponds to the abnormality degree 306.
  • the number of failures 313 indicates the number of failures detected in the combination of the type of abnormality indicated by the abnormality name 311 and the degree of abnormality 312.
  • the failure number 313 indicates the number of failures detected for the first time.
  • the failure probability 314 indicates the probability that a failure will occur in a component at each abnormality level 312 of one abnormality type.
  • the failure probability 314 indicates an instantaneous failure probability and indicates the probability of the number of cases where a failure is detected for the first time.
  • the information acquisition unit 126 When information collected from the vehicle-mounted device 150 is stored in the failure probability table 310, the information acquisition unit 126 includes the failure name 313 of the entry corresponding to the abnormality name and abnormality included in the collected information, and is included in the collected information. Add the number of failures.
  • the information acquisition unit 126 calculates, as a failure probability, a ratio of the number of failure cases 313 of each entry to the total value of the failure cases 313 in one abnormality name 311.
  • the following information acquisition unit 126 calculates failure probabilities so that the sum of failure probabilities becomes 100 for one abnormality name 301.
  • the abnormality estimation unit 122 stores the calculated failure probability in the failure probability 314.
  • the failure probability 314 may be calculated by a device other than the maintenance server 100, and the information acquisition unit 126 may acquire a failure probability calculated by a device other than the maintenance server 100.
  • FIG. 4 is an explanatory diagram showing the customer information 123 of the first embodiment.
  • Customer information 123 includes a production record table 400 and an operation record table 410.
  • the production result table 400 is information input in advance from the user terminal 170.
  • the production performance table 400 indicates the production amount of the target device on which the part is installed.
  • the production result table 400 includes a customer ID 401, a site ID 402, a machine ID 403, a production amount 404 per unit time, and a product unit price 405.
  • Customer ID 401 uniquely indicates the user or maintenance person of the target device.
  • the site ID 402 uniquely indicates a place where the target device is installed.
  • the machine ID 403 uniquely indicates a target device on which a part is installed.
  • the machine ID 403 of the first embodiment is a unique identifier among all target devices included in the maintenance system.
  • the production amount 404 per unit time is the production amount per unit time of the target device indicated by the machine ID 403.
  • the production amount 404 per unit time may be any value as long as it is a value that quantitatively indicates the effect produced by the operation of the target device.
  • the production amount 404 per unit time may be the weight of an object that is produced or transported by the target device, or may be the amount of packet traffic that passes when the target device is a network device.
  • the product unit price 405 indicates the price of a product produced by the target device indicated by the machine ID 403.
  • the production amount 404 per unit time and the product unit price 405 may be any items as long as they indicate profits generated per unit time when the target device indicated by the machine ID 403 operates.
  • the operation result table 410 includes information acquired from the vehicle-mounted device 150.
  • the operation result table 410 includes a machine ID 411, a component ID 412, and a component hour meter 413.
  • the machine ID 411 corresponds to the machine ID 403 in the production result table 400 and uniquely indicates the target device.
  • the component ID 412 corresponds to the component ID 304 in the abnormality degree transition table 300 and uniquely indicates each component in the maintenance system.
  • the part hour meter 413 indicates the value of the hour meter provided for the part indicated by the part ID 412. That is, the component hour meter 413 indicates the elapsed time that has elapsed since the component was installed in the target device.
  • the component hour meter 413 according to the first embodiment indicates an elapsed time after the component is installed in the target device when the vehicle-mounted device 150 starts to detect the abnormality of the component.
  • the information acquisition unit 126 collects the value of the hour meter and uses the collected value as a component. It may be stored in the hour meter 413.
  • FIG. 5 is an explanatory diagram showing the maintenance information 125 of the first embodiment.
  • the maintenance information 125 includes a parts price table 500, a maintenance countermeasure table 510, and a maintenance result table 520.
  • the part price table 500 indicates the unit price for each type of part.
  • the component price table 500 is information input in advance from the user terminal 170.
  • the part price table 500 includes a part name 501 and a part unit price 502.
  • the part name 501 corresponds to the part name 303 in the abnormality degree transition table 300 and uniquely indicates the type of the part.
  • the component unit price 502 indicates the unit price of the type of component indicated by the component name 501.
  • the maintenance measure table 510 indicates the cost required for maintenance.
  • the maintenance countermeasure table 510 may be input in advance from the user terminal 170, or the cost loss calculation unit 124 may generate the maintenance countermeasure table 510 based on the maintenance result table 520.
  • the maintenance countermeasure table 510 includes an abnormality name 511, a part name 512, a maintenance cost before failure 513, a maintenance cost after failure 514, a maintenance required time 515 before failure, and a maintenance required time 516 after failure.
  • the abnormality name 511 corresponds to the abnormality name 301 of the abnormality degree transition table 300 and uniquely indicates the type of abnormality.
  • the part name 512 corresponds to the part name 303 in the abnormality degree transition table 300 and uniquely indicates the type of the part.
  • the pre-failure maintenance cost 513 indicates a statistical value of the cost required for replacement when the component is replaced before the component fails.
  • the maintenance cost 514 after failure indicates a statistical value of cost required for replacement when the component is replaced after the component has failed.
  • the maintenance cost of the first embodiment is a cost necessary for maintaining a part, and is a disadvantage that a user incurs in maintaining the part. In general, it is less expensive to replace parts before failure occurs than to replace parts after failure occurs.
  • the maintenance cost includes at least the price of the parts that have become abnormal and need to be maintained. Further, the maintenance cost may include the price of a part in which an abnormality has occurred and the price of a part that needs to be replaced together with the part in which the abnormality has occurred. Further, the maintenance cost may include labor cost necessary for maintenance in particular.
  • the maintenance required time 515 before failure indicates a statistical value of time required for maintenance when a part is replaced before failure occurs.
  • the maintenance required time 516 after failure indicates a statistical value of time required for maintenance when a part is replaced after a failure occurs.
  • the post-failure maintenance cost 514 is generally higher than the pre-failure maintenance cost 513.
  • maintenance time before failure 515 generally requires maintenance after failure. Less than time 516.
  • the statistical value in Example 1 is an average value or an intermediate value calculated from past performance values.
  • the pre-failure maintenance cost 513, the post-failure maintenance cost 514, the pre-failure maintenance required time 515, and the post-failure maintenance required time 516 in FIG. 5A are statistical values calculated using the actual maintenance value table 520.
  • the values of the maintenance cost before failure 513, the maintenance cost after failure 514, the maintenance cost before failure 513, and the maintenance cost after failure 514 may be directly input by the maintenance person.
  • the maintenance result table 520 holds the actual values of the maintenance cost and the required time that were required when the parts were replaced.
  • the maintenance result table 520 is information input in advance from the user terminal 170.
  • the maintenance result table 520 includes an abnormality name 521, an abnormality ID 522, before and after a failure 523, a maintenance cost 524, and a required time 525.
  • the abnormality name 521 corresponds to the abnormality name 301 in the abnormality degree transition table 300 and uniquely indicates the type of abnormality.
  • the abnormality ID 522 corresponds to the abnormality ID 302 in the abnormality degree transition table 300 and uniquely indicates an abnormality that has occurred in the maintenance system.
  • Pre-failure 523 indicates whether the part has been replaced before or after the failure.
  • “before and after failure” 523 shown in FIG. 5 is “after failure”, it indicates that the component has been replaced after failure, and when “before failure”, it indicates that the component has been replaced before failure.
  • the maintenance cost 524 indicates a maintenance cost, and indicates a cost necessary for maintaining the part.
  • the required time 525 indicates the time required to maintain the part.
  • the required time 525 may include a work time for exchanging parts, a time for stopping the target device for replacement, and a time for starting the target device and starting use.
  • the information acquisition unit 126 updates the maintenance measure table 510 when updating the maintenance result table 520. Specifically, the information acquisition unit 126 divides the entries in the maintenance result table 520 into entry groups having the same abnormality name 521 and the same before and after failure 523. Then, the information acquisition unit 126 calculates the statistical value of the maintenance cost 524 and the statistical value of the required time 525 using the maintenance cost 524 and the required time 525 of the divided entry group.
  • the information acquisition unit 126 extracts an entry in the maintenance countermeasure table 510 including the abnormality name 511 and the part name 512 corresponding to the abnormality name 521 of the entry group.
  • the maintenance cost 514 after failure of the extracted entry is updated with the calculated statistical value of the maintenance cost 524. Further, the information acquisition unit 126 updates the post-failure maintenance required time 516 of the extracted entry with the calculated statistical value of the required time 525.
  • the information acquisition unit 126 updates the pre-failure maintenance cost 513 of the extracted entry with the calculated statistical value of the maintenance cost 524 and calculates the calculated required time.
  • the maintenance required time 515 before failure of the extracted entry is updated with the statistical value of 525.
  • the above-mentioned before and after the failure 523 includes only two values of “before failure” and “after failure”, but before and after the failure 523 in this embodiment is “1 hour before failure” or “3 hours after failure”.
  • the maintenance countermeasure table 510 may have maintenance costs and required maintenance times in a plurality of time zones after a failure.
  • FIG. 6 is an explanatory diagram showing the output information 127 of the first embodiment.
  • the output information 127 includes at least a maintenance timing 531, a maintenance cost 532, an operation loss 533, a life loss 534, and a total cost loss 535. Further, the output information 127 may hold a processing result by the cost loss calculation unit 124 other than the information shown in FIG.
  • the maintenance timing 531 indicates a maintenance day.
  • the maintenance timing 531 shown in FIG. 6 indicates the number of days that have elapsed since the occurrence of the abnormality, but may indicate the date and time of maintenance using a general date and time.
  • the maintenance cost 532 indicates a cost required to replace a part when the part is replaced at the maintenance timing 531.
  • the operation loss 533 indicates an operation loss that occurs when parts are replaced at the maintenance timing 531.
  • the life loss 534 indicates a life loss that occurs when a part is replaced at the maintenance timing 531.
  • the total cost loss 535 indicates the total value of the maintenance cost 532, the operation loss 533, and the life loss 534.
  • the cost loss calculation unit 124 updates the maintenance countermeasure table 510 using the updated maintenance record table 520 when the maintenance record table 520 is updated.
  • Example 1 The operation loss and life loss of Example 1 are described below. Operation loss and life loss are disadvantages experienced by users in maintaining parts.
  • the operational loss of the first embodiment is a profit lost by not operating the target device when maintaining the part, and a profit generated by the target device if the part is operating.
  • the operation loss is calculated by the time required for maintenance and the profit per unit time generated by the target device.
  • the time required for maintenance before failure is generally shorter than the time required for maintenance after failure. For this reason, the operation loss is generally higher after the failure than before the failure.
  • the life loss in Example 1 is the value remaining in the part that is lost when the part is replaced.
  • the life loss is zero after the part fails. On the other hand, it is a value that decreases according to the elapsed time since the component was installed before the component failed.
  • the maintenance cost and operation loss in Example 1 are values given by an index indicating that the disadvantage before failure is lower than that after failure. Moreover, the life loss in Example 1 is an index indicating that the disadvantage after failure is lower than that before failure. Note that the maintenance server 100 according to the first embodiment uses any index as long as it is an index indicating a disadvantage of different values before and after the failure, such as an index that gives maintenance cost, operation loss, and life loss. Also good.
  • FIG. 7 is a flowchart showing a process for calculating a maintenance cost, an operation loss, and a life loss according to the maintenance timing of the first embodiment.
  • the failure history 121, customer information 123, and maintenance information 125 are updated to the latest state.
  • the processing illustrated in FIG. 7 may be started when the maintenance server 100 detects that an abnormality with a predetermined abnormality degree has occurred in the component of the target device.
  • the information acquisition unit 126 acquires information indicating the degree of abnormality equal to or greater than a predetermined threshold and the component for which the degree of abnormality is measured from the vehicle-mounted device 150, it is necessary to maintain the component of the target device. It may be determined that the error has occurred, and the abnormality estimation unit 122 may be instructed to start the process illustrated in FIG.
  • the information acquisition unit 126 inputs at least information that identifies a part that needs to be maintained and an abnormality that has occurred in the part to be maintained to the abnormality estimation unit 122.
  • the process illustrated in FIG. 7 may be started when the information acquisition unit 126 is instructed from the user terminal 170.
  • the instruction to start the process shown in FIG. 7 includes information for identifying a part that needs to be maintained and an abnormality that has occurred in the part to be maintained.
  • the information for identifying the part that needs to be maintained and the abnormality that has occurred in the part to be maintained may be an abnormality ID (corresponding to the abnormality ID 302), or an abnormality name and a component ID (abnormal name 301). And a component ID 304).
  • the processing shown in FIG. 7 may be started when the maintenance server 100 is activated.
  • the information acquisition unit 126 holds in advance information for identifying a part that needs to be maintained and an abnormality that has occurred in the part to be maintained.
  • the abnormality estimation unit 122 obtains a failure probability according to the time 305 by using the abnormality degree transition table 300 and the failure probability table 310 (S1001).
  • step S1001 the abnormality estimation unit 122 first identifies the abnormality name 301 from the information (information identifying the type of component and the type of abnormality) acquired when starting the processing illustrated in FIG. To do.
  • the abnormality estimation unit 122 uses the information identifying the abnormality acquired at the start of the process illustrated in FIG. 7, the abnormality name 301 and the abnormality ID 302 of the abnormality degree transition table 300, and the value of the abnormality name 301 (hereinafter referred to as abnormality). A) is specified. Further, the abnormality estimation unit 122 uses the information for identifying the component acquired at the start of the process illustrated in FIG. 7, the abnormality ID 302, the component name 303, and the component ID 304 of the abnormality degree transition table 300, and the value of the component name 303. (Hereinafter, component A) and the value of component ID 304 (hereinafter, component IDa) are specified.
  • the abnormality estimation unit 122 extracts an entry in the abnormality degree transition table 300 having the abnormality A in the abnormality name 301. Then, the abnormality estimation unit 122 extracts the degree of abnormality 306 at the same time 305 from the extracted entries. Then, the abnormality estimation unit 122 calculates a statistical value such as an average value or an intermediate value of the extracted degree of abnormality 306.
  • the abnormality estimation unit 122 can obtain the transition of the degree of abnormality 306 according to the time 305 in abnormality A.
  • the abnormality estimation unit 122 obtains the failure probability according to the time 305 according to the transition of the abnormality degree 306 according to the time 305 and the failure probability table 310.
  • FIG. 8A is an explanatory diagram showing a transition 601 of the failure probability according to the degree of abnormality of the first embodiment.
  • FIG. 8A shows the abnormality degree 312 and failure probability 314 of the entry in the failure probability table 310 in which the abnormality name 311 indicates abnormality A. That is, FIG. 8A shows a failure probability transition 601 according to the degree of abnormality.
  • the horizontal axis of FIG. 8A is the degree of abnormality, and corresponds to the degree of abnormality 312.
  • the vertical axis in FIG. 8A represents the failure probability and corresponds to the failure probability 314.
  • FIG. 8B is an explanatory diagram showing the transition 602 of the degree of abnormality according to the elapsed time of the first embodiment.
  • the horizontal axis of FIG. 8B is the elapsed time after the occurrence of abnormality, and corresponds to time 305.
  • the vertical axis in FIG. 8B indicates the degree of abnormality.
  • the vertical axis in FIG. 8B corresponds to the statistical value of the degree of abnormality 306 according to the time 305 calculated by the abnormality estimation unit 122 in step S1001. Therefore, FIG. 8B shows a transition 602 of the degree of abnormality 306 according to time 305 in abnormality A.
  • the abnormality estimation unit 122 After obtaining the transition 602 of the degree of abnormality 306 as shown in FIG. 8B, the abnormality estimation unit 122 associates the horizontal axis of the transition 601 with the vertical axis of the transition 602 to change the failure probability according to the elapsed time. 603 is obtained.
  • FIG. 8C is an explanatory diagram showing a transition 603 of the failure probability according to the elapsed time of the first embodiment.
  • step S ⁇ b> 1001 the abnormality estimation unit 122 inputs the obtained transition 601, transition 602, and transition 603 to the cost loss calculation unit 124.
  • the Kosutorosu calculation unit 124 reads the argument T M is a candidate of the maintenance timing in the memory 112, stores 0 as the initial value in the argument T M (S1002). After step S1002, Kosutorosu calculating unit 124 adds 1 to the parameter T M (S1003).
  • the argument TM is a maintenance timing candidate.
  • the argument T M of Example 1 in maintenance is required parts, the elapsed time from the abnormality occurs.
  • the cost loss calculation unit 124 may store the transition 601, the transition 602, and the transition 603 in the output information 127. Accordingly, the output unit 128 can output any one of the transition 601, the transition 602, and the transition 603 toward the maintenance person or the like.
  • step S1003 the cost loss calculation unit 124 calculates the maintenance cost in step S1004, calculates the operation loss in step S1006, and calculates the life loss in step S1008. Details of the processing are shown below.
  • step S1004 the cost loss calculation unit 124 extracts an entry including the abnormality name 511 indicating the abnormality A and the component name 512 indicating the part A from the maintenance countermeasure table 510. Then, the cost loss calculation unit 124 extracts the pre-failure maintenance cost 513 and the post-failure maintenance cost 514 from the extracted entries.
  • Kosutorosu calculation unit 124 the elapsed time corresponding to the argument T M at least one failure probability calculated in the previous elapsed time (horizontal axis transition 603) (ordinate transition 603), extracted post-fault maintenance costs Multiply each by 514.
  • the argument T M is the elapsed time indicated failure probability calculated in the time elapsed after the (horizontal axis transition 603) (ordinate transition 603), the pre-fault maintenance costs 513 extracted Multiply each.
  • the cost loss calculation unit 124 obtains a distribution 701 described later.
  • the Kosutorosu calculation unit 124 updates the parameter T M in step S1012 (Fig. 10) and step S1003 to be described later, repeat step S1004. Thereby, the cost loss calculation unit 124 calculates the distribution 701 at a plurality of maintenance timings (a plurality of arguments T M ). The distribution 701 can then be used to calculate a disadvantage predicted value.
  • FIG. 9A is an explanatory diagram showing a distribution 701 as a result of multiplying the failure probability and the maintenance cost of the first embodiment.
  • Distribution shown in FIG. 9A 701 is an example of an output result in step S1004 if the argument T M is 33.
  • the results with parts multiplies and maintenance costs and failure probability when the previously failed maintenance timing argument T M is maintenance costs when part has failed just after the maintenance timing of the argument T M Higher than the result of multiplying the failure probability.
  • This failure probability of the previous maintenance timing argument T M is maintenance cost of less than the failure probability of the previous maintenance timing argument T M, while the failure immediately before the maintenance timing of the argument T M generated (post-fault maintenance costs 514) is larger than the maintenance costs when a failure immediately after the maintenance timing of the argument T M occurs (failure before maintenance costs 513).
  • the cost loss calculation unit 124 calculates an operation loss in step S1006. Specifically, the cost loss calculation unit 124 extracts an entry including the abnormality name 511 indicating the abnormality A and including the component name 512 indicating the part A from the maintenance countermeasure table 510. Then, the cost loss calculation unit 124 extracts the pre-failure maintenance required time 515 and the post-failure maintenance required time 516 from the extracted entries.
  • step S1006 the cost loss calculation unit 124 extracts an entry in the operation result table 410 including the component ID 412 indicating the component IDa, and specifies the machine ID 411 of the extracted entry. Then, the cost loss calculation unit 124 extracts an entry of the production performance table 400 including the machine ID 403 corresponding to the specified machine ID 411. Then, the cost loss calculation unit 124 multiplies the extracted output 404 per unit time by the product unit price 405, and calculates the profit per unit time of the target device in which the part indicated by the part IDa is installed.
  • Kosutorosu calculation unit 124 in step S1006, (horizontal axis transition 603) the elapsed time indicated by the argument T M to at least one of the failure probability in the previous elapsed time (vertical axis transition 603), after extracted fault maintenance The required time 516 is multiplied by the calculated profit per unit time.
  • the argument T M is the elapsed time indicated failure probability calculated in the time elapsed after the (horizontal axis transition 603) (ordinate transition 603), extracted failure before maintenance time required 515 And the calculated profit per unit time.
  • the target device stops its operation for the required maintenance time or fails to operate normally if its own parts break down. For this reason, during the time required for maintenance, a profit that the target device should generate is not generated, which causes a disadvantage for the user.
  • the operation loss in the first embodiment is a profit to be generated by the target device, which is damaged by the maintenance.
  • the operation loss in the first embodiment is a result of multiplying the maintenance required time 515 before the failure or the maintenance required time 516 after the failure by the profit per unit time.
  • the cost loss calculation unit 124 calculates a distribution 702, which will be described later, as a distribution related to operation loss.
  • the Kosutorosu calculation unit 124 updates the parameter T M by processing described later, by repeating the steps S1006, it calculates a distribution 702 of the operational losses in the plurality of maintenance timing.
  • FIG. 9B is an explanatory diagram illustrating a distribution 702 obtained by multiplying the failure probability and the operation loss according to the first embodiment.
  • Distribution shown in FIG. 9B 702 is an example of an output result in step S1006 if the argument T M is 33.
  • the cost loss calculation unit 124 can add the profit that should have been obtained by the user according to the maintenance timing to the predicted value of the disadvantage by obtaining the distribution 702.
  • maintenance measures table 510 has a maintenance costs and maintenance time required in a plurality of time zone after a failure
  • Kosutorosu calculation unit 124 a time zone after the failure corresponding to the elapsed time parameter T M Using the maintenance cost, the required maintenance time, and the failure probability, the expected value of the maintenance cost and the operation loss after the failure may be calculated.
  • Cost loss calculation unit 124 calculates a life loss in step S1008.
  • the cost loss calculation unit 124 sets 0 as a life loss that occurs after a failure. Then, the cost loss calculation unit 124 extracts the entry of the part price table 500 including the part name 501 indicating the part A, and extracts the part unit price 502 of the part A.
  • the cost loss calculation unit 124 extracts the operation result table 410 including the component ID 412 indicating the component IDa, and extracts the component hour meter 413 of the component when an abnormality occurs.
  • the Kosutorosu calculation unit 124 calculates the life loss before the failure using the extracted value and the argument T M and the following equation (1).
  • Formula (1) is a formula that divides the component unit price 502 by the time elapsed since the component was installed in the target device. However, the time elapsed since the part was installed in the target device is a positive number that is not zero.
  • the equation for calculating the life loss before failure may be any equation as long as it calculates a value that decreases according to the elapsed time.
  • Kosutorosu calculation unit 124 in step S1008, the argument T M is the elapsed time indicated at least one failure probability calculated in the previous elapsed time (horizontal axis transition 603) (ordinate transition 603), after a failure Multiply by 0, which is the lifetime loss. Further, Kosutorosu calculation unit 124, the argument T M is the elapsed time indicated failure probability calculated in the time elapsed after the (horizontal axis transition 603) (ordinate transition 603), multiplying each life loss before failure .
  • the cost loss calculation unit 124 calculates a distribution 703, which will be described later, as a distribution related to the life loss.
  • the Kosutorosu calculation unit 124 updates the parameter T M by processing described later, by repeating the steps S1008, it calculates a distribution 703 of the lifetime loss in multiple maintenance timing.
  • FIG. 9C is an explanatory diagram illustrating a distribution 703 obtained by multiplying the failure probability and the life loss in the first embodiment.
  • Distribution shown in FIG. 9C 703 is an example of an output result in step S1008 if the argument T M is 33. According to FIG. 9C, if the part has failed life loss immediately before the elapsed time parameter T M 0. By calculating the distribution 703, the cost loss calculation unit 124 can add the value that still remains to the parts during maintenance to the predicted value of disadvantage.
  • step S1004 When the distribution 701, distribution 702, and distribution 703 are obtained in step S1004, step S1006, and step S1008, the cost loss calculation unit 124 may store the distribution 701, distribution 702, and distribution 703 in the output information 127. Then, the output unit 128 may output the distribution 701, the distribution 702, and the distribution 703 to the user terminal 170.
  • Cost loss calculation unit 124 executes step S1005 after step S1004, executes step S1007 after step S1006, and executes step S1009 after step S1008.
  • FIG. 10 is a flowchart illustrating a process for calculating a predicted value of a disadvantage in the maintenance of the first embodiment.
  • Step S1007 the cost loss calculation unit 124 stores the expected value of maintenance cost, the expected value of operation loss, and the expected value of life loss.
  • a new entry A is generated.
  • Kosutorosu calculation unit 124 in step S1005, by determining the total value of the distribution 701 in the argument T M, calculates the expected value of the maintenance costs. In addition, the cost loss calculation unit 124 stores the expected value of the calculated maintenance cost in the maintenance cost 532 of the entry A.
  • Kosutorosu calculation unit 124 in step S1007, by determining the total value of the distribution 702 in the argument T M, calculates the expected value of the operational loss. Then, the cost loss calculation unit 124 stores the calculated expected value of the operation loss in the operation loss 533 of the entry A.
  • Kosutorosu calculation unit 124 in step S1009, by determining the total value of the distribution 702 in the argument T M, calculates the expected value of life loss. Then, the cost loss calculation unit 124 stores the calculated expected value of the life loss in the life loss 534 of the entry A.
  • Step S1005 after the step S1007 and step S1009, Kosutorosu calculation unit 124, maintenance costs 532 entries
  • a maintenance timing 531 is argument T M output information 127, the total value of the operational losses 533 and lifetime loss 534, not Calculated as the predicted value of profit.
  • the cost loss calculating unit 124 stores the calculated predicted value in the cost loss total 535 of the entry A (S1010).
  • the maintenance server 100 reflects the disadvantages that may occur when the maintenance timing is before the failure and the disadvantages that may occur when the maintenance timing is after the failure based on the failure probability. Therefore, a more accurate predicted value can be calculated for each maintenance timing.
  • the cost loss calculation unit 124 may calculate the predicted value of the disadvantage after multiplying the maintenance cost 532, the operation loss 533, and the life loss 534 by weights specified in advance in step S1010. As a result, the cost loss calculation unit 124 can calculate a predicted disadvantage value that can be evaluated with emphasis on the expected value that the user attaches importance to.
  • step S1010 Kosutorosu calculation unit 124, the total value of the failure probability from the past to the argument T M in transition 603 is calculated as the cumulative probability (S1011).
  • step S1011 for example, when the failure probability is expressed as a percentage (percent), the cost loss calculation unit 124 determines whether the cumulative probability is 100 (S1012).
  • step S1012 the cost loss calculation unit 124 executes step S1013 when the expected values of the maintenance cost, the operation loss, and the life loss are calculated based on all failure probabilities other than 0 in the transition 603, and the maintenance cost If the expected values of operation loss and life loss are not calculated, any determination process may be used as long as the process returns to step S1003.
  • step S1012 If the cumulative probability in the above example of step S1012 is not 100, Kosutorosu calculating unit 124 adds 1 to the parameter T M returns to step S1003. When the cumulative probability is 100, the cost loss calculation unit 124 extracts the minimum value from the predicted values calculated in step S1010. The Kosutorosu calculation unit 124, the argument T M of the extracted minimum value, determined recommended maintenance timing (S1013), stores the recommended maintenance timing output information 127.
  • step S1013 the cost loss calculation unit 124 ends the process shown in FIG.
  • FIG. 11A is an explanatory diagram illustrating processing results 801 of the maintenance cost 802, the operation loss 803, and the life loss 804 at the maintenance timing of the first embodiment.
  • the processing result shown in FIG. 11A shows the results of step S1005, step S1007, and step S1009 shown in FIG.
  • Maintenance costs 802 shown in FIG. 11A is an output example of displaying the expected value of the resulting maintenance costs by step S1005 shown in FIG. 10 according to the argument T M.
  • Operation Ross 803 shown in FIG. 11A is an output example of displaying the expected value of the obtained operational loss by step S1007 shown in FIG. 10 according to the argument T M.
  • Life loss 804 shown in FIG. 11A is an output example of displaying the expected value of the obtained lifetime loss in step S1009 shown in FIG. 10 according to the argument T M.
  • the maintenance cost 802 and the operation loss 803 are larger values as the argument T M (the elapsed time from occurrence of an abnormality and the maintenance timing) increases. Moreover, life loss 804 larger argument T M is a small value.
  • the output unit 129 displays the processing result 801 shown in FIG. 11A on the user terminal 170 based on the information stored in the output information 127, so that the maintenance person and the user can maintain the maintenance cost 802, the operation loss 803, and the life loss. After referring to the change 804, the maintenance timing of the part can be determined. In addition, the maintenance person and the user can recognize the breakdown of the disadvantage due to the maintenance timing.
  • FIG. 11B is an explanatory diagram showing a predicted value of disadvantage at the maintenance timing of the first embodiment.
  • the disadvantage 806 of the processing result 805 shown in FIG. 11B is the result of step S1010 shown in FIG. Disadvantage 806, maintenance costs 802 at the same arguments T M, the total value of the operational losses 803 and lifetime loss 804.
  • the disadvantage 806 shown in FIG. 11B includes a minimum value. While this maintenance costs 802 and operational loss 803 increases as the argument T M is increased, because the life loss 804 is reduced. Therefore, the argument T M at the minimum value of the penalty 806, operational loss 803, when considering all operational losses 803 and lifetime loss 804 shows the most disadvantaged less maintenance timing by maintenance.
  • the output unit 129 displays the processing result 801 illustrated in FIG. 11A on the user terminal 170, so that the maintenance person and the user can maintain the expected maintenance cost value, the expected operation loss value, and the expected life loss value for each maintenance timing.
  • the output unit 129 displays the processing result 801 illustrated in FIG. 11A on the user terminal 170, so that the maintenance person and the user can maintain the expected maintenance cost value, the expected operation loss value, and the expected life loss value for each maintenance timing.
  • the output unit 129 displays the processing result 801 illustrated in FIG. 11A on the user terminal 170, so that the maintenance person and the user can maintain the expected maintenance cost value, the expected operation loss value, and the expected life loss value for each maintenance timing.
  • FIG. 12A is an explanatory diagram illustrating a screen 810 that displays a disadvantage due to maintenance after a failure according to the first embodiment.
  • the output unit 128 generates and outputs data on the screen 810 in order to express to the user the disadvantage that occurs when maintenance is performed.
  • a screen 810 is an example of a screen output to the user terminal 170 by the output unit 128.
  • the screen 810 includes a post-maintenance screen 811 and a predictive maintenance screen 812.
  • a maintenance person or the like selects one of the two tabs displayed on the screen 810
  • the post-maintenance screen 811 or the predictive maintenance screen 812 corresponding to the selected tab may be displayed with priority. Further, both the post-maintenance screen 811 and the predictive maintenance screen 812 may be displayed on the screen 810.
  • the post-maintenance screen 811 shows a user's disadvantage that occurs when a part is maintained after the part has failed.
  • the post-maintenance screen 811 includes a failure probability 813 and a disadvantage list 814.
  • the failure probability 813 is a result of step S1001 shown in FIG. 7, and shows a transition 603 shown in FIG. 8C.
  • the disadvantage list 814 includes the post-failure maintenance cost used in step S1004 shown in FIG. 7 (corresponding to the post-failure maintenance cost 514), the post-failure operation loss used in step S1006, and the fault used in step S1008. Indicates post-life loss.
  • the disadvantage list 814 indicates the total value of the maintenance cost after failure, the operation loss after failure, and the life loss after failure.
  • FIG. 12B is an explanatory diagram illustrating a screen 810 that displays expected values of a plurality of indexes according to the maintenance timing of the first embodiment and a predicted value of disadvantage.
  • Prediction maintenance screen 812 shows the expected value of the maintenance costs in accordance with the parameter T M, the expected value of the operational loss, expected value of life loss, and the predicted value of disadvantages.
  • the predictive maintenance screen 812 includes a cost loss screen 821, a disadvantage screen 822, and a details screen 823.
  • the cost loss screen 821 shows the results of step S1005, step S1007, and step S1009 shown in FIG. 10, and is the same as the processing result 801 shown in FIG. 11A.
  • the disadvantage screen 822 shows the result of step S1010 shown in FIG. 10 and is the same as the processing result 805.
  • Detail screen 823 shows the expected value of the maintenance costs of the argument T M, the expected value of the operating loss, the sum of the expected values and their expected values of life loss.
  • the output unit 128, the detail screen 823, the maintenance cost of the argument T M which disadvantages 806 becomes the minimum value may be displayed operational loss and life loss. Thereby, the output unit 128 can provide the user with the maintenance timing with the smallest predicted value of the disadvantage due to maintenance as the recommended maintenance timing.
  • the output unit 128 may display information other than the contents of the screen 810 shown in FIGS. 12A and 12B as long as the information is stored in the maintenance server 100.
  • the output unit 128 may display the distributions 701 to 703 and the like shown in FIGS. 9A to 9C on the user terminal 170.
  • FIG. 13A is an explanatory diagram illustrating an application example of the maintenance system according to the first embodiment.
  • FIG. 13A shows an example of roles of a user and a maintenance person who use the maintenance system of the first embodiment.
  • the maintenance system according to the first embodiment is used by a service provider 901, a user 902, a manufacturer 903, and a maintenance company 904.
  • the user 902 is a user who uses target devices such as the excavator 140 and the truck 130.
  • the user 902 may be a mining company or a construction company, for example. Further, the user 902 may be a production company having a factory as long as the target device is a generator or the like. Further, if the target device is a computer or storage, it may be a company that provides a service by a computer system.
  • User 902 determines the maintenance timing of the target device.
  • the user 902 provides the content of the customer information 123 to the service provider 901.
  • Maker 903 is a person who manufactured the target device.
  • the manufacturer 903 provides the service provider 901 with the content of the failure history 121 (particularly, the abnormality degree transition table 300) and the content of the maintenance information 125 (particularly the parts price table 500).
  • the maintenance company 904 is a maintainer of the target device.
  • the maintenance business operator 904 provides the service provider 901 with the content of the maintenance information 125 (particularly, the maintenance result table 520).
  • the service provider 901 holds the maintenance server 100. Based on the information received from the user 902, the manufacturer 903, and the maintenance company 904, the service provider 901 determines the maintenance cost, the expected value of the operation loss and the life loss, the predicted value of the disadvantage, the recommended maintenance timing, etc. The maintenance server 100 is made to calculate. Then, the service provider 901 provides the calculated result to the user 902.
  • FIG. 13B is a sequence diagram illustrating the operation of the first embodiment.
  • User 902 provides the contents of customer information 123 to service provider 901 (911).
  • the manufacturer 903 provides the content of the failure history 121 and the content of the maintenance information 125 to the service provider 901 (912).
  • the maintenance company 904 provides the content of the maintenance information 125 to the service provider 901 (913).
  • the maintenance server 100 of the service provider 901 calculates the expected value of maintenance cost, operation loss and life loss, and predicted value of disadvantage by the processing shown in FIGS.
  • the recommended maintenance timing is determined (914).
  • the service provider 901 provides the calculated expected value and the determined recommended maintenance timing to the user 902 (915).
  • the service provider 901 may provide the user 902 with the calculated expected value and predicted value, the determined recommended maintenance timing, and the user 902 by causing the output device such as the user terminal 170 to output the processing result. Further, the maintenance server 100 may output the processing result to a portable storage medium, and the service provider 901 may send the storage medium to the user 902.
  • the user 902 determines the maintenance timing of the parts based on the provided expected value and the recommended maintenance timing (916).
  • the maintenance server 100 acquires the failure probability in the elapsed time after the occurrence of the abnormality as the actual value related to the lifetime, and performs maintenance according to the maintenance timing using the acquired failure probability. Calculate the predicted value of the disadvantage that will occur. By using the failure probability in this way, it is possible to calculate a more accurate predicted value of the disadvantage in accordance with the actual operation status of the parts. Then, by providing the predicted value calculated by the maintenance server 100 to the user, information for making an appropriate maintenance plan can be provided to the user.
  • the maintenance server 100 determines a recommended maintenance timing based on the calculated predicted value and provides it to the user. This allows the user to develop an appropriate maintenance plan that can minimize the disadvantages they suffer.
  • the maintenance server 100 calculates a failure probability based on the elapsed time and the degree of abnormality since the abnormality occurred. Thereby, the maintenance server 100 can calculate a failure probability using the result measured by the sensor of the vehicle-mounted device 150, and can calculate a more accurate failure probability.
  • Example 1 the failure probability was calculated according to the elapsed time after the occurrence of the abnormality.
  • the failure probability is calculated according to the elapsed time after the component is installed in the target device.
  • the maintenance system of the second embodiment has the same configuration as the maintenance system shown in FIG.
  • the maintenance server 100 according to the second embodiment includes the same physical devices and functional units as the maintenance server 100 according to the first embodiment.
  • the failure history 121 of the second embodiment is different from the failure history 121 of the first embodiment.
  • the process of the abnormality estimation part 122 of Example 2 and the process of the abnormality estimation part 122 of Example 1 are different.
  • FIG. 14 is an explanatory diagram showing a failure history 121 according to the second embodiment.
  • the failure history 121 of the second embodiment includes an hour meter failure probability table 540 instead of the abnormality degree transition table 300 and the failure probability table 310.
  • the hour meter failure probability table 540 includes a component name 541, a component hour meter 542, the number of failures 543, and a failure probability 544.
  • the part name 541 indicates the type of part.
  • the component hour meter 542 indicates an elapsed time since the component was installed in the target device.
  • the number of failures 543 indicates the number of failures of the type of component indicated by the component name 541 in the elapsed time indicated by the component hour meter 542.
  • the failure probability 544 is a probability that a component of the type indicated by the component name 541 will fail in the elapsed time indicated by the component hour meter 542.
  • the information acquisition unit 126 displays the component name, the component hour meter, and the number of failures held by the vehicle-mounted device 150 from the vehicle-mounted device 150 or the user terminal 170 in a predetermined cycle or when a user instruction is given. To get to. Then, the information acquisition unit 126 extracts an entry in the hour name failure probability table 540 of the component name 541 and the component hour meter 542 corresponding to the acquired information, and the number of failures included in the collected information is included in the failure number 543 of the extracted entry. Is added.
  • FIG. 15 is a flowchart illustrating a process for calculating a predicted value of a disadvantage in the maintenance of the second embodiment.
  • the process shown in FIG. 15 is started under the same conditions as the process shown in FIG. That is, the process shown in FIG. 15 is started when the maintenance server 100 detects that an abnormality with a predetermined abnormality level has occurred in the component of the target device or when instructed by the user terminal 170.
  • the information acquisition unit 126 includes information for identifying a component that needs to be maintained at the start of the process illustrated in FIG. 15 and the component hour meter at the time when the process illustrated in FIG. 15 is started. Get the value. Specifically, the information acquisition unit 126 may acquire the value of the hour meter from the vehicle-mounted device 150 connected to the component that needs to be maintained at the start of the process illustrated in FIG.
  • the information for identifying the part that needs to be maintained is information that can identify the type of the part that needs to be maintained (hereinafter, part A) and the part that needs to be maintained (hereinafter, part IDa). including.
  • the information acquisition part 126 of Example 2 inputs the information acquired at the time of the start of the process shown in FIG.
  • the abnormality estimation unit 122 calculates the failure probability 544 of the part A in the hour meter failure probability table 540. Then, the abnormality estimation unit 122 extracts the failure probability distribution of the part A in the period indicating the future from the input hourmeter value from the calculated failure probability 544.
  • the abnormality estimation unit 122 calculates the total value of the failure number 543 of the entry whose part name 541 indicates the part A, and calculates the ratio of the number of the failure number 543 to the calculated total value for each entry. To do. Thereby, the abnormality estimation unit 122 calculates the failure probability of each entry, and updates the failure probability 544 with the calculated failure probability.
  • FIG. 16A is an explanatory diagram showing a failure probability distribution 613a according to the component hour meter 542 of the second embodiment.
  • the horizontal axis corresponds to the component hour meter 542 of the hour meter failure probability table 540.
  • the vertical axis corresponds to the failure probability 544 of the hour meter failure probability table 540.
  • Distribution 613a indicates that the component hour meter is low and the failure probability is high immediately after the component is installed. This indicates that initial failure is likely to occur in the part.
  • the distribution 613a indicates that the probability of failure is high when the component hour meter is high and a long time has elapsed since the component was installed.
  • the abnormality estimation unit 122 After generating the hour meter failure probability table 540, the abnormality estimation unit 122 extracts a component hour meter 542 that is equal to or greater than the value of the hour meter acquired at the start of the processing shown in FIG. 15 and the failure probability 544 in step S1101. Accordingly, the abnormality estimation unit 122 extracts the distribution 613b illustrated in FIG. 16B.
  • FIG. 16B is an explanatory diagram illustrating a future failure probability distribution 613b according to the second embodiment.
  • the horizontal axis corresponds to the component hour meter 542 and the vertical axis corresponds to the failure probability 544, as in the distribution 613a.
  • the horizontal axis shown in FIG. 16B may indicate a relative time based on the hour meter value acquired at the start of the process shown in FIG.
  • the distribution 613b shows a distribution obtained by extracting the failure probability 544 of the component hour meter 542 higher than the value of the hour meter acquired at the start of the process shown in FIG. 15 from the distribution 613a.
  • the abnormality estimation unit 122 inputs the distribution 613b to the cost loss calculation unit 124.
  • the cost loss calculation unit 124 executes Steps S1002 to S1013 shown in FIGS. 7 and 10 using the distribution 613b (Step S1102). After step S1102, the cost loss calculation unit 124 ends the process illustrated in FIG.
  • the failure probability is calculated from the value of the part hour meter, and the expected value is calculated. Therefore, it is not necessary to obtain the relationship between the elapsed time and the number of failures based on the combination of the elapsed time and the degree of abnormality and the combination of the degree of abnormality and the number of failures, and the processing can be reduced.
  • the operational loss calculated in Example 1 occurred when the target device stopped when the component was replaced because the target device on which the component was installed was not made redundant. However, if the target device is made redundant and the target device does not stop when the parts are maintained, the operation loss is reduced.
  • the maintenance server 100 according to the third embodiment accurately calculates an operation loss by acquiring information related to other target devices that make the target device redundant.
  • the maintenance system of the third embodiment has the same configuration as the maintenance system shown in FIG.
  • the maintenance server 100 according to the third embodiment includes the same physical devices and functional units as the maintenance server 100 according to the first embodiment.
  • the contents of the customer information 123 of the third embodiment and the customer information 123 of the first and second embodiments are different. Further, the processing of the cost loss calculation unit 124 of the third embodiment is different from the processing of the cost loss calculation unit 124 of the first and second embodiments.
  • FIG. 17 is an explanatory diagram illustrating a surplus table 420 included in the customer information 123 according to the third embodiment.
  • Customer information 123 of the third embodiment includes a surplus table 420 in addition to the production performance table 400 and the operation performance table 410 of the first embodiment.
  • the surplus table 420 indicates the number of other target devices that make the target device redundant.
  • the surplus table 420 may be transmitted from the in-vehicle device 150 in a predetermined cycle, or may be input via the user terminal 170 by the maintenance person.
  • the surplus table 420 includes a machine ID 421, a date and time 422, and a surplus number 423.
  • the maintenance server 100 of the third embodiment may have the customer information 123 of the first embodiment or the customer information 123 of the second embodiment.
  • the machine ID 421 corresponds to the machine ID 403 of the production result table 400 and uniquely indicates the target device.
  • the date and time 422 may indicate a day, or may indicate a date and time.
  • the date and time 422 may indicate a day every day, a day every week, or a time every hour.
  • the surplus number 423 indicates the number of other target devices that make the target device indicated by the machine ID 421 redundant. When the surplus number 423 is 0, the target device indicated by the machine ID 421 is not made redundant.
  • FIG. 18 is a flowchart showing a process for calculating a predicted value of disadvantage in the maintenance of the third embodiment.
  • the information acquired by the information acquisition unit 126 of the third embodiment is also acquired at the start of the process illustrated in FIG. 7 of the first embodiment or at the start of the process illustrated in FIG. 15 of the second embodiment. Same as information.
  • the abnormality estimation unit 122 acquires at least a component ID (component IDa) of a component that needs to be maintained.
  • step S1001 shown in FIG. 7 of the first embodiment or step S1101 shown in FIG. 15 of the second embodiment is executed (S1401).
  • step S1401 the cost loss calculation unit 124 executes step S1002 shown in FIG. 7 (S1402), and executes step S1003 shown in FIG. 7 (S1403). Further, after step S1403, the cost loss calculation unit 124 executes steps S1004 and S1005 (S1404), while executing steps S1008 and S1009 (S1409).
  • the cost loss calculation unit 124 executes step S1006 after step S1403 (S1405). After step S1405, the cost loss calculation unit 124 extracts an entry of the component ID 412 indicating the component IDa acquired at the start of the process illustrated in FIG. 18 from the operation result table 410, and identifies the machine ID 411 of the extracted entry.
  • the cost loss calculation unit 124 extracts at least one entry of the machine ID 421 indicating the specified machine ID 411 from the surplus table 420.
  • the cost loss calculation unit 124 specifies the surplus number 423 of the entry with the newest date and time 422 from the entries extracted from the surplus table 420. This is because the number of target devices that make the target devices redundant may change from day to day.
  • the cost loss calculation unit 124 determines whether or not the specified surplus number 423 is other than 0 (S1405). When the specified surplus number 423 is 0, the cost loss calculation unit 124 executes Step S1007 because the target device is not made redundant and there is no need to reduce the operation loss (S1408).
  • the cost loss calculation unit 124 determines that the target device is made redundant, and multiplies the operation loss calculated in step S1006 by 0, thereby setting 0 as the operation loss. Calculate (step S1407).
  • the target device a redundant target device is given a possible operation time, Kosutorosu calculation unit 124, the time argument T M Only target device redundancy corresponding with operable period, operational You may calculate 0 as a loss.
  • step S1007 the cost loss calculation unit 124 executes step S1007 (S1408).
  • step S1408, and step S1409 the cost loss calculation unit 124 executes step S1010 and step S1011 (S1410), executes step S1012 (S1411), and executes step S1013 (S1412).
  • step S1412 the cost loss calculation unit 124 ends the process illustrated in FIG.
  • the surplus table 420 may have a component ID instead of the machine ID 421.
  • the cost loss calculation unit 124 may determine whether or not the component IDa is made redundant using the surplus table 420. If the component IDa is made redundant, step S1407 may be executed.
  • the above-described cost loss calculation unit 124 calculates the operation loss as 0 when the target device (main device) is made redundant. However, if the alternative target device (sub device) that operates during maintenance has a smaller production amount per unit time than the main device, the cost loss calculation unit 124 decreases by operating the sub device in step S1407. The obtained profit may be calculated as an operational loss.
  • the cost loss calculation unit 124 calculates the difference in profit per unit time between the main device and the sub device, and divides the calculated difference by the profit per unit time of the main device.
  • the cost loss calculation unit 124 multiplies the result distribution 702 in step S1006 by the divided result.
  • the cost loss calculation unit 124 adds the total value of the distribution 702 after the multiplication as an expected value of operation loss in step S1007.
  • the operation loss and customer information 123 may hold the profit per unit time of the secondary device.
  • the cost loss calculating unit 124 can accurately calculate the predicted value of disadvantage.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
  • each of the above-described configurations, functions, processing units, processing procedures, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as a program, a table, or a file that realizes each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines or information lines indicate what is considered necessary for the explanation, and not all control lines or information lines on the product are necessarily shown. In practice, almost all the components are connected to each other.

Landscapes

  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Debugging And Monitoring (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A memory stores, among losses which a user incurs through maintenance of components which are installed in a device, a first loss index which represents an extent of a first loss, and a second loss index which represents an extent of a second loss. The first loss index is an index that a loss arising prior to faults with the components is lower than the loss arising after the faults with the components, and the second loss index is an index that the loss arising prior to the faults with the components is greater than the loss arising after the faults with the components. A processor acquires a plurality of fault probabilities of the components at a plurality of times during a period in which the components are used. Using the acquired plurality of fault probabilities, the first loss index, and the second loss index, the processor computes predicted values of the loss arising when maintaining the components for a plurality of candidate timings at which the maintenance is carried out during the period in which the components are used, and outputs the computed plurality of predicted values.

Description

保守支援システム、保守支援方法、及び、保守支援プログラムMaintenance support system, maintenance support method, and maintenance support program
 本発明は、保守支援システム、保守支援方法、及び、保守支援プログラムに関する。 The present invention relates to a maintenance support system, a maintenance support method, and a maintenance support program.
 ガスエンジン、エレベータ、採掘機械、建築機械、又は、計算機などの機器を用いる場合、それらの機器を稼動させ続けるため、機器を保守することは必要である。機器を保守するための有効な技術の一つには、機器の異常を診断することによって故障の予兆を検知したり、また、故障からの修復手段を管理者等に提供したりする技術が提案されている。 When using equipment such as a gas engine, elevator, mining machine, construction machine, or computer, it is necessary to maintain the equipment in order to keep these equipment operating. One of the effective technologies for maintaining equipment is to detect signs of failure by diagnosing device abnormalities, and to provide a means of repair from failures to the administrator. Has been.
 また、従来技術において、機器の保守計画を立てるためのシステムが提案されている(例えば、特許文献1参照)。特許文献1の要約には、「生産稼動条件に基づいて建設機械の運転・作業状況を運行シミュレーション手段でシミュレーションした後に、運転・作業状況に応じた部品毎の累積負荷を算出し、累積負荷に基づいて各部品の寿命を予測する」システムが記載される。 Also, in the prior art, a system for making a maintenance plan for equipment has been proposed (see, for example, Patent Document 1). According to the summary of Patent Document 1, “the operation load / simulation state of the construction machine is simulated by the operation simulation means based on the production operation condition, and then the cumulative load for each part according to the operation / work state is calculated. A system for predicting the life of each part based on "is described.
国際公開第2005/106139号International Publication No. 2005/106139
 従来技術を用いて保守計画を生成する場合、一つの定数として仮定された機器の寿命を用いて保守計画が生成される。しかし、機器の寿命は、一つの種類の機器であっても個々の機器によって異なるものであるため、従来技術によって生成された保守計画は、実際の機器の各々にとって適切なものとは限らなかった。 When generating a maintenance plan using conventional technology, the maintenance plan is generated using the life of the equipment assumed as one constant. However, because the life of equipment varies from one piece of equipment to another, the maintenance plan generated by the prior art is not always appropriate for each real piece of equipment. .
 本発明は、機器の寿命に関する実績値に基づいて、適切な保守計画を立てるための情報を提供することを目的とする。 The object of the present invention is to provide information for making an appropriate maintenance plan based on the actual value related to the lifetime of the equipment.
 上記課題を解決するために、本発明は、保守支援システムであって、プロセッサ及びメモリを備え、前記メモリは、機器に実装される部品の保守によってユーザが被る不利益のうち、第1の不利益の程度を示す第1の不利益指標と、第2の不利益の程度を示す第2の不利益指標とを格納し、前記第1の不利益指標は、前記部品の故障前に発生する不利益が、前記部品の故障後に発生する不利益より低いものであり、前記第2の不利益指標は、前記部品の故障前に発生する不利益が、前記部品の故障後に発生する不利益より高いものであり、前記プロセッサは、前記部品が使用される期間中の複数の時点における前記部品の複数の故障確率を取得し、前記取得した複数の故障確率と、前記第1の不利益指標と、前記第2の不利益指標とを用いて、前記部品を保守した場合に発生する不利益の予測値を、前記部品が使用される期間において保守が行われる複数の候補タイミングにおいて算出し、前記算出した複数の予測値を出力することを特徴とする保守支援システムを有する。 In order to solve the above-mentioned problems, the present invention is a maintenance support system comprising a processor and a memory, and the memory is a first disadvantage among the disadvantages suffered by a user due to maintenance of components mounted on a device. A first disadvantageous index indicating a degree of profit and a second disadvantageous index indicating a second degree of disadvantage are stored, and the first disadvantageous index is generated before failure of the component. The disadvantage is lower than the disadvantage that occurs after the failure of the component, and the second disadvantage index is that the disadvantage that occurs before the failure of the component is less than the disadvantage that occurs after the failure of the component The processor is configured to obtain a plurality of failure probabilities of the component at a plurality of time points during a period in which the component is used, the acquired plurality of failure probabilities, and the first disadvantage index; And using the second disadvantage index A predicted value of a disadvantage that occurs when the part is maintained is calculated at a plurality of candidate timings where maintenance is performed during a period in which the part is used, and the calculated plurality of predicted values are output. A maintenance support system.
 本発明によれば、適切な保守計画を立てるための情報を提供できる。 According to the present invention, information for making an appropriate maintenance plan can be provided.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
実施例1の保守システムを示すブロック図である。1 is a block diagram illustrating a maintenance system according to a first embodiment. 実施例1の保守サーバの機能ブロック図である。2 is a functional block diagram of a maintenance server according to Embodiment 1. FIG. 実施例1の故障履歴を示す説明図である。FIG. 6 is an explanatory diagram illustrating a failure history according to the first embodiment. 実施例1の顧客情報を示す説明図である。It is explanatory drawing which shows the customer information of Example 1. FIG. 実施例1の保守情報を示す説明図である。It is explanatory drawing which shows the maintenance information of Example 1. FIG. 実施例1の出力情報を示す説明図である。It is explanatory drawing which shows the output information of Example 1. FIG. 実施例1の保守コスト、運用ロス及び寿命ロスを算出するための処理を示すフローチャートである。It is a flowchart which shows the process for calculating the maintenance cost of Example 1, an operation loss, and a lifetime loss. 実施例1の異常度に従った故障確率の推移を示す説明図である。It is explanatory drawing which shows transition of the failure probability according to the abnormality degree of Example 1. FIG. 実施例1の経過時間に従った異常度の推移を示す説明図である。It is explanatory drawing which shows transition of the abnormality degree according to the elapsed time of Example 1. FIG. 実施例1の経過時間に従った故障確率の推移を示す説明図である。It is explanatory drawing which shows transition of the failure probability according to the elapsed time of Example 1. FIG. 実施例1の故障確率と保守コストとを乗算した結果の分布を示す説明図である。It is explanatory drawing which shows distribution of the result of having multiplied the failure probability of Example 1 and the maintenance cost. 実施例1の故障確率と運用ロスとを乗算した結果の分布を示す説明図である。It is explanatory drawing which shows distribution of the result of multiplying the failure probability of Example 1 and the operation loss. 実施例1の故障確率と寿命ロスとを乗算した結果の分布を示す説明図である。It is explanatory drawing which shows distribution of the result of having multiplied the failure probability of Example 1, and lifetime loss. 実施例1の保守における不利益の予測値を算出する処理を示すフローチャートである。It is a flowchart which shows the process which calculates the predicted value of the disadvantage in the maintenance of Example 1. 実施例1の保守タイミングにおける保守コスト、運用ロス及び寿命ロスの処理結果を示す説明図である。It is explanatory drawing which shows the processing result of the maintenance cost in the maintenance timing of Example 1, an operation loss, and a lifetime loss. 実施例1の保守タイミングにおける保守コスト、運用ロス及び寿命ロスの合計値を求めた処理結果を示す説明図である。It is explanatory drawing which shows the processing result which calculated | required the total value of the maintenance cost in the maintenance timing of Example 1, operation loss, and lifetime loss. 実施例1の故障後の保守による不利益を表示する画面を示す説明図である。It is explanatory drawing which shows the screen which displays the disadvantage by the maintenance after a failure of Example 1. FIG. 実施例1の保守タイミングに従った不利益を表示する画面を示す説明図である。It is explanatory drawing which shows the screen which displays the disadvantage according to the maintenance timing of Example 1. FIG. 実施例1の保守システムの適用例を示す説明図である。It is explanatory drawing which shows the example of application of the maintenance system of Example 1. FIG. 実施例1の運用を示すシーケンス図である。FIG. 3 is a sequence diagram illustrating an operation of the first embodiment. 実施例2の故障履歴を示す説明図である。It is explanatory drawing which shows the failure log | history of Example 2. FIG. 実施例2の保守における不利益の予測値を算出する処理を示すフローチャートである。It is a flowchart which shows the process which calculates the predicted value of the disadvantage in the maintenance of Example 2. 実施例2の部品アワメータに従った故障確率の分布を示す説明図である。It is explanatory drawing which shows distribution of the failure probability according to the component hour meter of Example 2. FIG. 実施例2の未来の故障確率の分布を示す説明図である。It is explanatory drawing which shows distribution of the future failure probability of Example 2. FIG. 実施例3の顧客情報に含まれる余剰テーブルを示す説明図である。It is explanatory drawing which shows the surplus table contained in the customer information of Example 3. FIG. 実施例3の保守における不利益の予測値を算出する処理を示すフローチャートである。It is a flowchart which shows the process which calculates the predicted value of the disadvantage in the maintenance of Example 3.
 以下に、図面を用いて実施例を説明する。 Hereinafter, examples will be described with reference to the drawings.
 図1は、実施例1の保守システムを示すブロック図である。 FIG. 1 is a block diagram illustrating a maintenance system according to the first embodiment.
 実施例1の保守システムは、保守サーバ100、ショベルカー140、トラック130、車載器150、ネットワーク160及びユーザ端末170を含む。ショベルカー140及びトラック130は、実施例1の保守システムにより保守をする機器(以下、対象機器)である。図1に示す対象機器は、ショベルカー140及びトラック130であるが、パイプ、発電機又はエンジン等でもよく、また、計算機等の装置であってもよい。 The maintenance system of the first embodiment includes a maintenance server 100, an excavator 140, a truck 130, an on-vehicle device 150, a network 160, and a user terminal 170. The excavator car 140 and the truck 130 are devices (hereinafter referred to as target devices) that are maintained by the maintenance system of the first embodiment. The target devices shown in FIG. 1 are the excavator 140 and the truck 130, but may be a pipe, a generator, an engine, or the like, or a device such as a computer.
 ショベルカー140及びトラック130に備わる部品には、各々少なくとも一つの車載器150が設置される。車載器150は、ショベルカー140及びトラック130の各々の部品と接続し、振動、温度、及び圧力等を測定するためのセンサを有する。また、車載器150は、プロセッサ及びメモリを有する。 At least one vehicle-mounted device 150 is installed in each part of the excavator car 140 and the truck 130. The vehicle-mounted device 150 is connected to each component of the excavator car 140 and the truck 130 and has sensors for measuring vibration, temperature, pressure, and the like. Moreover, the onboard equipment 150 has a processor and memory.
 車載器150は、センサによって測定された測定値を用いて、部品に発生した異常の種類及び異常の強さを示す異常度を取得する。ここで、車載器150は、いかなる方法によって部品に発生する異常を検知してもよい。車載器150は、例えば、あらかじめ保持する標準値と、センサによって測定された測定値との差が所定の閾値よりも大きい場合、異常を検知してもよい。 The vehicle-mounted device 150 acquires the degree of abnormality indicating the type of abnormality that has occurred in the component and the strength of the abnormality, using the measurement value measured by the sensor. Here, the vehicle-mounted device 150 may detect an abnormality occurring in the component by any method. The vehicle-mounted device 150 may detect an abnormality when, for example, the difference between the standard value held in advance and the measured value measured by the sensor is larger than a predetermined threshold value.
 また、車載器150は、いかなる方法によって異常の種類及び異常度を取得してもよい。例えば、車載器150は、センサによって測定された測定値と、あらかじめ保持する標準値とを比較し、測定値と標準値との差が大きいほど、大きい異常度を算出してもよい。また、車載器150は、異常であると判定された測定値の種類及び測定値と、あらかじめ保持する異常に関する情報とに基づいて、異常の種類を特定してもよい。 Further, the vehicle-mounted device 150 may acquire the type of abnormality and the degree of abnormality by any method. For example, the vehicle-mounted device 150 may compare a measurement value measured by a sensor with a standard value held in advance, and calculate a greater degree of abnormality as the difference between the measurement value and the standard value increases. Moreover, the onboard equipment 150 may specify the type of abnormality based on the type and measurement value of the measured value determined to be abnormal and information on the abnormality that is held in advance.
 また、車載器150は、部品に備わるアワメータから、部品が対象機器に設置されてから経過した経過時間を取得する。そして、車載器150は、取得したアワメータが示す経過時間を、保守サーバ100に送る。 In addition, the vehicle-mounted device 150 acquires the elapsed time that has elapsed since the component was installed in the target device, from the hour meter provided in the component. And the onboard equipment 150 sends the elapsed time which the acquired hour meter shows to the maintenance server 100. FIG.
 車載器150、ユーザ端末170及び保守サーバ100は、ネットワーク160を介して接続される。ネットワーク160は、いずれのネットワークでもよく、例えば、インターネット、LAN、又は、WAN等でもよい。 The vehicle-mounted device 150, the user terminal 170, and the maintenance server 100 are connected via the network 160. The network 160 may be any network, for example, the Internet, a LAN, or a WAN.
 ユーザ端末170は、保守システムの管理者又は保守者等(以下、保守者)が使用し、保守サーバ100への指示を受け付けたり、保守サーバ100から送信されるデータを出力したりする。ユーザ端末170は、プロセッサ、メモリ、ディスプレイ又はプリンタ等の出力装置、及び、キーボード又はマウス等の入力装置を有する。また、ユーザ端末170は、タブレット端末のように、入力装置と出力装置とが一体となった装置であってもよい。 The user terminal 170 is used by a maintenance system administrator or a maintenance person (hereinafter referred to as a maintenance person) to receive an instruction to the maintenance server 100 or output data transmitted from the maintenance server 100. The user terminal 170 includes an output device such as a processor, a memory, a display, or a printer, and an input device such as a keyboard or a mouse. The user terminal 170 may be a device in which an input device and an output device are integrated, such as a tablet terminal.
 保守サーバ100は、車載器150から収集した情報に基づいて、保守者が保守タイミングを決定するための情報を生成する装置である。保守サーバ100は、I/O(Input/Output)インタフェース111、メモリ112、通信装置113、CPU114、及び補助記憶装置120等の物理装置を有する。 The maintenance server 100 is a device that generates information for the maintenance person to determine the maintenance timing based on the information collected from the vehicle-mounted device 150. The maintenance server 100 includes physical devices such as an I / O (Input / Output) interface 111, a memory 112, a communication device 113, a CPU 114, and an auxiliary storage device 120.
 I/Oインタフェース111は、入力装置及び出力装置と接続するためのインタフェースである。保守サーバ100は、ネットワーク160を介さずにI/Oインタフェース111を介して、入力装置及び出力装置と直接接続してもよい。 The I / O interface 111 is an interface for connecting to an input device and an output device. The maintenance server 100 may be directly connected to the input device and the output device via the I / O interface 111 instead of the network 160.
 そして、保守者からの指示を直接接続される入力装置を用いて受け付けたり、直接接続される出力装置を用いてデータを出力したりしてもよい。以下に示すユーザ端末170の処理は、保守サーバ100に直接接続される入力装置及び出力装置が実行してもよい。 Then, an instruction from the maintenance person may be received using a directly connected input device, or data may be output using a directly connected output device. The following processing of the user terminal 170 may be executed by an input device and an output device that are directly connected to the maintenance server 100.
 通信装置113は、ネットワーク160と接続するためのインタフェースである。通信装置113を介して、保守サーバ100は、車載器150及びユーザ端末170と接続する。 The communication device 113 is an interface for connecting to the network 160. The maintenance server 100 is connected to the vehicle-mounted device 150 and the user terminal 170 via the communication device 113.
 メモリ112は、データ及びプログラムを一時的に保持する記憶装置である。CPU114は、演算装置及び制御装置であり、例えば、少なくとも一つのプロセッサであってもよい。CPU114は、メモリ112を用いてプログラムを実行する。 The memory 112 is a storage device that temporarily holds data and programs. The CPU 114 is an arithmetic device and a control device, and may be at least one processor, for example. The CPU 114 executes a program using the memory 112.
 メモリ112は、不揮発性の記憶素子であるROM及び揮発性の記憶素子であるRAMを含む。ROMは、不変のプログラム(例えば、BIOS)などを格納する。RAMは、DRAM(Dynamic Random Access Memory)のような高速かつ揮発性の記憶素子であり、補助記憶装置に格納されたプログラム及びプログラムの実行時に使用されるデータを一時的に格納する。 The memory 112 includes a ROM that is a nonvolatile storage element and a RAM that is a volatile storage element. The ROM stores an immutable program (for example, BIOS). The RAM is a high-speed and volatile storage element such as a DRAM (Dynamic Random Access Memory), and temporarily stores a program stored in the auxiliary storage device and data used when the program is executed.
 補助記憶装置120は、データ及びプログラムを保持する記憶装置である。補助記憶装置は、例えば、磁気記憶装置(HDD)、フラッシュメモリ(SSD)等の大容量かつ不揮発性の記憶装置である。CPU114は、補助記憶装置120が保持するデータ及びプログラムを、必要に応じてメモリ112に読み出す。補助記憶装置120は、故障履歴121、顧客情報123、保守情報125及び出力情報127等のデータ、並びに、異常推定部122、コストロス算出部124、情報取得部126及び出力部128等のプログラムを有する。 The auxiliary storage device 120 is a storage device that holds data and programs. The auxiliary storage device is a large-capacity non-volatile storage device such as a magnetic storage device (HDD) or a flash memory (SSD). The CPU 114 reads data and programs held in the auxiliary storage device 120 into the memory 112 as necessary. The auxiliary storage device 120 includes data such as a failure history 121, customer information 123, maintenance information 125, and output information 127, and programs such as an abnormality estimation unit 122, a cost loss calculation unit 124, an information acquisition unit 126, and an output unit 128. .
 CPU114が実行するプログラムは、リムーバブルメディア(CD-ROM、フラッシュメモリなど)又はネットワークを介して保守サーバ100に提供され、非一時的記憶媒体である補助記憶装置120に格納される。このため、保守サーバ100は、リムーバブルメディアからデータを読み込むインタフェースを有してもよい。 The program executed by the CPU 114 is provided to the maintenance server 100 via a removable medium (CD-ROM, flash memory, etc.) or a network, and stored in the auxiliary storage device 120 which is a non-temporary storage medium. For this reason, the maintenance server 100 may have an interface for reading data from a removable medium.
 保守サーバ100は、物理的に一つの計算機であってもよく、また、論理的又は物理的に複数の計算機によって構成される計算機システムであってもよい。また、前述したプログラムが、一つの計算機において複数のスレッドによって処理されてもよく、複数の物理的計算機資源上に構築された仮想計算機によって処理されてもよい。 The maintenance server 100 may be physically one computer, or may be a computer system composed of a plurality of computers logically or physically. Further, the above-described program may be processed by a plurality of threads in one computer, or may be processed by a virtual computer constructed on a plurality of physical computer resources.
 故障履歴121は、車載器150によって部品から取得された情報、及び、故障が発生したか否かを示す情報を含む。顧客情報123は、対象機器に関する情報を含み、特に、対象機器を使用する顧客から取得した情報を含む。 The failure history 121 includes information acquired from the parts by the vehicle-mounted device 150 and information indicating whether or not a failure has occurred. The customer information 123 includes information related to the target device, and particularly includes information acquired from a customer who uses the target device.
 保守情報125は、対象機器に関する情報を含み、特に、部品を保守した結果取得された情報を含む。出力情報127は、ユーザ端末170を用いて出力する、保守サーバ100における処理結果を含む。 The maintenance information 125 includes information regarding the target device, and particularly includes information acquired as a result of maintaining the parts. The output information 127 includes a processing result in the maintenance server 100 that is output using the user terminal 170.
 情報取得部126は、対象機器において発生する情報を車載器150から取得し、取得した情報を故障履歴121に格納する。また、情報取得部126は、ユーザ端末170又は保守サーバ100に接続される入力装置から、情報を受け付け、受け付けた情報を顧客情報123及び保守情報125等に格納する。 The information acquisition unit 126 acquires information generated in the target device from the vehicle-mounted device 150 and stores the acquired information in the failure history 121. The information acquisition unit 126 receives information from the input device connected to the user terminal 170 or the maintenance server 100, and stores the received information in the customer information 123, the maintenance information 125, and the like.
 なお、情報取得部126は、いずれの装置を経由して情報を取得してもよく、車載器150に接続する情報サーバ又はユーザ端末170から、対象機器において発生する情報を取得してもよい。 The information acquisition unit 126 may acquire information via any device, and may acquire information generated in the target device from the information server connected to the vehicle-mounted device 150 or the user terminal 170.
 異常推定部122は、車載器150から取得した情報に基づいて、部品の経過時間に従った故障確率を求める。コストロス算出部124は、保守に伴い発生するユーザの不利益の予測値を算出する。出力部128は、算出されたユーザの不利益の予測値をユーザ端末170等に出力する。 The abnormality estimation unit 122 obtains the failure probability according to the elapsed time of the parts based on the information acquired from the vehicle-mounted device 150. The cost loss calculation unit 124 calculates a predicted value of a user's disadvantage that occurs due to maintenance. The output unit 128 outputs the calculated predicted value of the user's disadvantage to the user terminal 170 or the like.
 図1に示す異常推定部122、コストロス算出部124、情報取得部126及び出力部128は、プログラムであるが、実施例1の保守サーバ100は、これらのプログラムの機能を有する物理装置を有してもよい。また、これらのプログラムは、プログラムが実行する処理ごとに分割されたサブプログラムを含んでもよく、また、複数のプログラムを一つのプログラムに集約されてもよい。 Although the abnormality estimation unit 122, the cost loss calculation unit 124, the information acquisition unit 126, and the output unit 128 illustrated in FIG. 1 are programs, the maintenance server 100 according to the first embodiment includes physical devices having the functions of these programs. May be. In addition, these programs may include subprograms divided for each process executed by the program, or a plurality of programs may be integrated into one program.
 なお、部品の所有者及び部品の使用者等の、対象機器に携わる者を、以下において単にユーザと記載する。実施例1は、部品を保守した際にユーザが被る不利益を算出することにより、適切な保守タイミングを決定するための情報を提供する。 In addition, a person who is involved in the target device, such as a component owner and a component user, is simply referred to as a user in the following. The first embodiment provides information for determining an appropriate maintenance timing by calculating a disadvantage that a user suffers when a part is maintained.
 図2は、実施例1の保守サーバ100の機能ブロック図である。 FIG. 2 is a functional block diagram of the maintenance server 100 according to the first embodiment.
 情報取得部126は、車載器150から異常に関する情報を収集し、故障履歴121に格納する。また、情報取得部126は、車載器150から部品に関する情報を収集し、顧客情報123に格納する。異常推定部122は、故障履歴121を参照し、所定の複数の時刻における故障確率を算出する。そして、異常推定部122は、算出した故障確率を故障履歴121に格納する。 The information acquisition unit 126 collects information on abnormality from the vehicle-mounted device 150 and stores it in the failure history 121. In addition, the information acquisition unit 126 collects information about parts from the vehicle-mounted device 150 and stores the information in the customer information 123. The abnormality estimation unit 122 refers to the failure history 121 and calculates failure probabilities at a plurality of predetermined times. Then, the abnormality estimation unit 122 stores the calculated failure probability in the failure history 121.
 ここで、所定の時刻とは、以下の実施例1において異常が発生してからの経過時間であるが、部品の使用が開始されてからの経過時間でもよい。 Here, the predetermined time is an elapsed time after occurrence of an abnormality in Example 1 below, but may be an elapsed time after the use of a part is started.
 コストロス算出部124は、異常推定部122により算出された故障確率と、顧客情報123及び保守情報125に基づいて、所定の複数の時刻において部品を交換した場合に発生する不利益の予測値を算出する。そして、コストロス算出部124は、算出した不利益の予測値の情報を、処理結果として出力情報127に格納する。 Based on the failure probability calculated by the abnormality estimation unit 122, the customer information 123, and the maintenance information 125, the cost loss calculation unit 124 calculates a predicted value of a disadvantage that occurs when parts are replaced at a plurality of predetermined times. To do. Then, the cost loss calculation unit 124 stores information on the calculated predicted value of disadvantage in the output information 127 as a processing result.
 なお、以下において保守と記載した場合、交換の意を示す。 In addition, in the case of “maintenance” in the following, it indicates a replacement.
 図3は、実施例1の故障履歴121を示す説明図である。 FIG. 3 is an explanatory diagram showing the failure history 121 of the first embodiment.
 故障履歴121は、異常度推移テーブル300及び故障確率テーブル310を含む。故障履歴121は、対象機器のユーザ又は保守者ごとに異常度推移テーブル300を複数保持してもよい。 The failure history 121 includes an abnormality degree transition table 300 and a failure probability table 310. The failure history 121 may hold a plurality of abnormality degree transition tables 300 for each user or maintenance person of the target device.
 情報取得部126は、車載器150において発生した情報を、異常度推移テーブル300、及び、故障確率テーブル310の一部に格納する。異常度推移テーブル300は、異常名301、異常ID302、部品名303、部品ID304、時間305及び異常度306を含む。 The information acquisition unit 126 stores information generated in the vehicle-mounted device 150 in a part of the abnormality degree transition table 300 and the failure probability table 310. The abnormality degree transition table 300 includes an abnormality name 301, an abnormality ID 302, a part name 303, a part ID 304, a time 305, and an abnormality degree 306.
 異常名301は、対象機器の部品において発生した異常の種類を示す。異常ID302は、異常の種類と異常が発生した部品の種類との組み合わせを一意に示す識別子である。 The abnormality name 301 indicates the type of abnormality that has occurred in the part of the target device. The abnormality ID 302 is an identifier that uniquely indicates a combination of the type of abnormality and the type of component in which the abnormality has occurred.
 部品名303は、異常が発生した部品の種類の名称を示す。部品ID304は、実施例1の保守システムのすべての対象機器において、部品を一意に示す識別子である。時間305は、異常が発生してからの経過時間である。時間305は、例えば、秒又は分等により経過時間を示す。異常度306は、車載器150により算出された異常度を示す。 The part name 303 indicates the name of the type of the part in which an abnormality has occurred. The component ID 304 is an identifier that uniquely indicates a component in all target devices of the maintenance system according to the first embodiment. Time 305 is an elapsed time since the occurrence of the abnormality. The time 305 indicates the elapsed time by, for example, seconds or minutes. The degree of abnormality 306 indicates the degree of abnormality calculated by the vehicle-mounted device 150.
 故障確率テーブル310は、異常名311、異常度312、故障件数313及び故障確率314を含む。異常名311、異常度312及び故障件数313は、情報取得部126により車載器150から収集された情報である。 The failure probability table 310 includes an abnormality name 311, an abnormality degree 312, the number of failures 313, and a failure probability 314. The abnormality name 311, the abnormality degree 312, and the number of failures 313 are information collected from the vehicle-mounted device 150 by the information acquisition unit 126.
 異常名311は、異常名301と対応し、異常の種類を示す。異常度312は、異常度306に対応する。故障件数313は、異常名311が示す異常の種類と、異常度312との組み合わせにおいて、故障が検知された件数を示す。なお、故障件数313は、初めて検知された故障の件数を示す。 The abnormality name 311 corresponds to the abnormality name 301 and indicates the type of abnormality. The abnormality degree 312 corresponds to the abnormality degree 306. The number of failures 313 indicates the number of failures detected in the combination of the type of abnormality indicated by the abnormality name 311 and the degree of abnormality 312. The failure number 313 indicates the number of failures detected for the first time.
 故障確率314は、一つの異常の種類の各々の異常度312において、部品に故障が発生する確率を示す。なお、故障確率314は、瞬間故障確率を示し、故障が初めて検知された件数の確率を示す。 The failure probability 314 indicates the probability that a failure will occur in a component at each abnormality level 312 of one abnormality type. The failure probability 314 indicates an instantaneous failure probability and indicates the probability of the number of cases where a failure is detected for the first time.
 情報取得部126は、車載器150から収集した情報を故障確率テーブル310に格納する場合、収集した情報に含まれる異常名及び異常度に対応するエントリの故障件数313に、収集した情報に含まれる故障の件数を加算する。 When information collected from the vehicle-mounted device 150 is stored in the failure probability table 310, the information acquisition unit 126 includes the failure name 313 of the entry corresponding to the abnormality name and abnormality included in the collected information, and is included in the collected information. Add the number of failures.
 また、情報取得部126は、故障確率テーブル310を更新する場合、一つの異常名311における故障件数313の合計値に対する、各エントリの故障件数313の数の割合いを、故障確率として算出する。ここで、以下の情報取得部126は、一つの異常名301において、故障確率の合計が100になるように故障確率を算出する。そして、異常推定部122は、算出した故障確率を、故障確率314に格納する。 In addition, when updating the failure probability table 310, the information acquisition unit 126 calculates, as a failure probability, a ratio of the number of failure cases 313 of each entry to the total value of the failure cases 313 in one abnormality name 311. Here, the following information acquisition unit 126 calculates failure probabilities so that the sum of failure probabilities becomes 100 for one abnormality name 301. Then, the abnormality estimation unit 122 stores the calculated failure probability in the failure probability 314.
 なお、故障確率314は、保守サーバ100以外の装置によって算出されてもよく、情報取得部126は、保守サーバ100以外の装置によって算出された故障確率を取得してもよい。 The failure probability 314 may be calculated by a device other than the maintenance server 100, and the information acquisition unit 126 may acquire a failure probability calculated by a device other than the maintenance server 100.
 図4は、実施例1の顧客情報123を示す説明図である。 FIG. 4 is an explanatory diagram showing the customer information 123 of the first embodiment.
 顧客情報123は、生産実績テーブル400及び稼働実績テーブル410を含む。生産実績テーブル400は、ユーザ端末170からあらかじめ入力された情報である。 Customer information 123 includes a production record table 400 and an operation record table 410. The production result table 400 is information input in advance from the user terminal 170.
 生産実績テーブル400は、部品が設置される対象機器の生産量を示す。生産実績テーブル400は、顧客ID401、現場ID402、機械ID403、単位時間当たり生産量404及び生産物単価405を含む。 The production performance table 400 indicates the production amount of the target device on which the part is installed. The production result table 400 includes a customer ID 401, a site ID 402, a machine ID 403, a production amount 404 per unit time, and a product unit price 405.
 顧客ID401は、対象機器のユーザ又は保守者を一意に示す。現場ID402は、対象機器が設置される場所を一意に示す。機械ID403は、部品が設置される対象機器を一意に示す。実施例1の機械ID403は、保守システムに含まれるすべての対象機器の中で一意な識別子である。 Customer ID 401 uniquely indicates the user or maintenance person of the target device. The site ID 402 uniquely indicates a place where the target device is installed. The machine ID 403 uniquely indicates a target device on which a part is installed. The machine ID 403 of the first embodiment is a unique identifier among all target devices included in the maintenance system.
 単位時間当たり生産量404は、機械ID403が示す対象機器の単位時間当たりの生産量である。単位時間当たり生産量404は、対象機器が稼働することによって生み出される効果を定量的に示す値であればいかなる値でもよい。例えば、単位時間当たり生産量404は、対象機器が生産又は運搬する物の重量であってもよいし、対象機器がネットワーク機器である場合通過させるパケットのトラフィック量等であってもよい。 The production amount 404 per unit time is the production amount per unit time of the target device indicated by the machine ID 403. The production amount 404 per unit time may be any value as long as it is a value that quantitatively indicates the effect produced by the operation of the target device. For example, the production amount 404 per unit time may be the weight of an object that is produced or transported by the target device, or may be the amount of packet traffic that passes when the target device is a network device.
 生産物単価405は、機械ID403が示す対象機器によって生み出される物の価格を示す。なお、単位時間当たり生産量404及び生産物単価405は、機械ID403が示す対象機器が稼働することによって単位時間当たりに生み出される利益を、示す項目であればいかなる項目であってもよい。 The product unit price 405 indicates the price of a product produced by the target device indicated by the machine ID 403. The production amount 404 per unit time and the product unit price 405 may be any items as long as they indicate profits generated per unit time when the target device indicated by the machine ID 403 operates.
 稼働実績テーブル410は、車載器150から取得された情報を含む。稼働実績テーブル410は、機械ID411、部品ID412、及び部品アワメータ413を含む。 The operation result table 410 includes information acquired from the vehicle-mounted device 150. The operation result table 410 includes a machine ID 411, a component ID 412, and a component hour meter 413.
 機械ID411は、生産実績テーブル400の機械ID403に対応し、対象機器を一意に示す。部品ID412は、異常度推移テーブル300の部品ID304に対応し、保守システムにおける部品の各々を一意に示す。 The machine ID 411 corresponds to the machine ID 403 in the production result table 400 and uniquely indicates the target device. The component ID 412 corresponds to the component ID 304 in the abnormality degree transition table 300 and uniquely indicates each component in the maintenance system.
 部品アワメータ413は、部品ID412が示す部品に備わるアワメータの値を示す。すなわち、部品アワメータ413は、部品が対象機器に設置されてから経過した経過時間を示す。特に実施例1の部品アワメータ413は、車載器150が部品の異常を検知し始めた際の、部品が対象機器に設置されてからの経過時間を示す。 The part hour meter 413 indicates the value of the hour meter provided for the part indicated by the part ID 412. That is, the component hour meter 413 indicates the elapsed time that has elapsed since the component was installed in the target device. In particular, the component hour meter 413 according to the first embodiment indicates an elapsed time after the component is installed in the target device when the vehicle-mounted device 150 starts to detect the abnormality of the component.
 情報取得部126は、例えば、車載器150から収集した情報に含まれる異常度306に対応する情報が、正常から異常を示す値に変化した際、アワメータの値を収集し、収集した値を部品アワメータ413に格納してもよい。 For example, when the information corresponding to the degree of abnormality 306 included in the information collected from the vehicle-mounted device 150 changes from normal to a value indicating abnormality, the information acquisition unit 126 collects the value of the hour meter and uses the collected value as a component. It may be stored in the hour meter 413.
 図5は、実施例1の保守情報125を示す説明図である。 FIG. 5 is an explanatory diagram showing the maintenance information 125 of the first embodiment.
 保守情報125は、部品価格テーブル500、保守対策テーブル510及び保守実績テーブル520を含む。 The maintenance information 125 includes a parts price table 500, a maintenance countermeasure table 510, and a maintenance result table 520.
 部品価格テーブル500は、部品の種類ごとの単価を示す。部品価格テーブル500は、ユーザ端末170からあらかじめ入力された情報である。 The part price table 500 indicates the unit price for each type of part. The component price table 500 is information input in advance from the user terminal 170.
 部品価格テーブル500は、部品名501及び部品単価502を含む。部品名501は、異常度推移テーブル300の部品名303に対応し、部品の種類を一意に示す。部品単価502は、部品名501が示す種類の部品の単価を示す。 The part price table 500 includes a part name 501 and a part unit price 502. The part name 501 corresponds to the part name 303 in the abnormality degree transition table 300 and uniquely indicates the type of the part. The component unit price 502 indicates the unit price of the type of component indicated by the component name 501.
 保守対策テーブル510は、保守に必要なコストを示す。保守対策テーブル510は、ユーザ端末170からあらかじめ入力されてもよいし、コストロス算出部124が、保守実績テーブル520に基づいて、保守対策テーブル510を生成してもよい。保守対策テーブル510は、異常名511、部品名512、故障前保守コスト513、故障後保守コスト514、故障前保守所要時間515及び故障後保守所要時間516を含む。 The maintenance measure table 510 indicates the cost required for maintenance. The maintenance countermeasure table 510 may be input in advance from the user terminal 170, or the cost loss calculation unit 124 may generate the maintenance countermeasure table 510 based on the maintenance result table 520. The maintenance countermeasure table 510 includes an abnormality name 511, a part name 512, a maintenance cost before failure 513, a maintenance cost after failure 514, a maintenance required time 515 before failure, and a maintenance required time 516 after failure.
 異常名511は、異常度推移テーブル300の異常名301に対応し、異常の種類を一意に示す。部品名512は、異常度推移テーブル300の部品名303に対応し、部品の種類を一意に示す。 The abnormality name 511 corresponds to the abnormality name 301 of the abnormality degree transition table 300 and uniquely indicates the type of abnormality. The part name 512 corresponds to the part name 303 in the abnormality degree transition table 300 and uniquely indicates the type of the part.
 故障前保守コスト513は、部品が故障する前に部品を交換した場合の、交換のために必要なコストの統計値を示す。故障後保守コスト514は、部品が故障した後に部品を交換した場合の、交換のために必要なコストの統計値を示す。 The pre-failure maintenance cost 513 indicates a statistical value of the cost required for replacement when the component is replaced before the component fails. The maintenance cost 514 after failure indicates a statistical value of cost required for replacement when the component is replaced after the component has failed.
 実施例1の保守コストとは、部品を保守するために必要な費用であり、部品を保守するにあたりユーザが被る不利益である。一般的に、故障が発生する前に部品を交換したほうが、故障が発生した後に部品を交換するよりも、保守コストは少ない。 The maintenance cost of the first embodiment is a cost necessary for maintaining a part, and is a disadvantage that a user incurs in maintaining the part. In general, it is less expensive to replace parts before failure occurs than to replace parts after failure occurs.
 ここで、保守コストは、異常が発生し、保守する必要が生じた部品の価格を少なくとも含む。また、保守コストには、異常が発生した部品の価格のほか、異常が発生した部品とともに交換が必要な部品の価格等が含まれてもよい。また、保守コストには、特に、保守のために必要な人件費等が含まれてもよい。 Here, the maintenance cost includes at least the price of the parts that have become abnormal and need to be maintained. Further, the maintenance cost may include the price of a part in which an abnormality has occurred and the price of a part that needs to be replaced together with the part in which the abnormality has occurred. Further, the maintenance cost may include labor cost necessary for maintenance in particular.
 故障前保守所要時間515は、故障が発生する前に部品を交換した場合の保守に必要な時間の統計値を示す。故障後保守所要時間516は、故障が発生した後に部品を交換した場合の保守に必要な時間の統計値を示す。 The maintenance required time 515 before failure indicates a statistical value of time required for maintenance when a part is replaced before failure occurs. The maintenance required time 516 after failure indicates a statistical value of time required for maintenance when a part is replaced after a failure occurs.
 部品が故障した後に部品を保守する場合、他の部品も故障している可能性が高いため、故障後保守コスト514は、一般的に、故障前保守コスト513よりも高い。また、故障が発生する前に部品を交換したほうが、故障が発生した後に部品を交換するよりも、保守に必要な時間は少ないため、故障前保守所要時間515は、一般的に故障後保守所要時間516よりも少ない。 When a part is maintained after the part has failed, there is a high possibility that other parts have also failed, so the post-failure maintenance cost 514 is generally higher than the pre-failure maintenance cost 513. In addition, since it takes less time for maintenance to replace parts before failure occurs than to replace parts after failure occurs, maintenance time before failure 515 generally requires maintenance after failure. Less than time 516.
 実施例1における統計値とは、過去の実績値から算出される平均値又は中間値等である。図5Aの故障前保守コスト513、故障後保守コスト514、故障前保守所要時間515及び故障後保守所要時間516は、実績値である保守実績テーブル520を用いて算出された統計値である。しかし、故障前保守コスト513、故障後保守コスト514、故障前保守コスト513及び故障後保守コスト514の値は、保守者によって直接入力されてもよい。 The statistical value in Example 1 is an average value or an intermediate value calculated from past performance values. The pre-failure maintenance cost 513, the post-failure maintenance cost 514, the pre-failure maintenance required time 515, and the post-failure maintenance required time 516 in FIG. 5A are statistical values calculated using the actual maintenance value table 520. However, the values of the maintenance cost before failure 513, the maintenance cost after failure 514, the maintenance cost before failure 513, and the maintenance cost after failure 514 may be directly input by the maintenance person.
 保守実績テーブル520は、部品を交換した後に、交換した際に必要だった保守コスト及び所要時間の実績値を保持する。保守実績テーブル520は、ユーザ端末170から、あらかじめ入力された情報である。保守実績テーブル520は、異常名521、異常ID522、故障前後523、保守コスト524、及び所要時間525を含む。 The maintenance result table 520 holds the actual values of the maintenance cost and the required time that were required when the parts were replaced. The maintenance result table 520 is information input in advance from the user terminal 170. The maintenance result table 520 includes an abnormality name 521, an abnormality ID 522, before and after a failure 523, a maintenance cost 524, and a required time 525.
 異常名521は、異常度推移テーブル300の異常名301に対応し、異常の種類を一意に示す。異常ID522は、異常度推移テーブル300の異常ID302に対応し、保守システムにおいて発生した異常を一意に示す。 The abnormality name 521 corresponds to the abnormality name 301 in the abnormality degree transition table 300 and uniquely indicates the type of abnormality. The abnormality ID 522 corresponds to the abnormality ID 302 in the abnormality degree transition table 300 and uniquely indicates an abnormality that has occurred in the maintenance system.
 故障前後523は、部品が故障前に交換されたか、故障後に交換されたかを示す。図5に示す故障前後523が「故障後」である場合、部品が故障後に交換されたことを示し、「故障前」である場合、部品が故障前に交換されたことを示す。 Pre-failure 523 indicates whether the part has been replaced before or after the failure. When “before and after failure” 523 shown in FIG. 5 is “after failure”, it indicates that the component has been replaced after failure, and when “before failure”, it indicates that the component has been replaced before failure.
 保守コスト524は、保守コストを示し、部品を保守するために必要だった費用を示す。所要時間525は、部品を保守するために必要だった時間を示す。所要時間525には、部品を交換するための作業時間、交換するために対象機器を停止する時間、及び、対象機器を起動し使用を開始するまでの時間が含まれてもよい。 The maintenance cost 524 indicates a maintenance cost, and indicates a cost necessary for maintaining the part. The required time 525 indicates the time required to maintain the part. The required time 525 may include a work time for exchanging parts, a time for stopping the target device for replacement, and a time for starting the target device and starting use.
 情報取得部126は、保守実績テーブル520を更新する場合、保守対策テーブル510を更新する。具体的には、情報取得部126は、保守実績テーブル520のエントリを、同じ異常名521、かつ、同じ故障前後523を有するエントリグループに分割する。そして、情報取得部126は、分割されたエントリグループの保守コスト524及び所要時間525を用いて、保守コスト524の統計値及び所要時間525の統計値を算出する。 The information acquisition unit 126 updates the maintenance measure table 510 when updating the maintenance result table 520. Specifically, the information acquisition unit 126 divides the entries in the maintenance result table 520 into entry groups having the same abnormality name 521 and the same before and after failure 523. Then, the information acquisition unit 126 calculates the statistical value of the maintenance cost 524 and the statistical value of the required time 525 using the maintenance cost 524 and the required time 525 of the divided entry group.
 そして、エントリグループの故障前後523が「故障後」を示す場合、情報取得部126は、エントリグループの異常名521に対応する異常名511及び部品名512を含む保守対策テーブル510のエントリを抽出し、抽出したエントリの故障後保守コスト514を、算出した保守コスト524の統計値によって更新する。また、情報取得部126は、算出した所要時間525の統計値によって、抽出したエントリの故障後保守所要時間516を更新する。 When the entry group before and after failure 523 indicates “after failure”, the information acquisition unit 126 extracts an entry in the maintenance countermeasure table 510 including the abnormality name 511 and the part name 512 corresponding to the abnormality name 521 of the entry group. The maintenance cost 514 after failure of the extracted entry is updated with the calculated statistical value of the maintenance cost 524. Further, the information acquisition unit 126 updates the post-failure maintenance required time 516 of the extracted entry with the calculated statistical value of the required time 525.
 また、エントリグループの故障前後523が「故障前」を示す場合、情報取得部126は、算出した保守コスト524の統計値によって、抽出したエントリの故障前保守コスト513を更新し、算出した所要時間525の統計値によって、抽出したエントリの故障前保守所要時間515を更新する。 If the entry group before and after failure 523 indicates “before failure”, the information acquisition unit 126 updates the pre-failure maintenance cost 513 of the extracted entry with the calculated statistical value of the maintenance cost 524 and calculates the calculated required time. The maintenance required time 515 before failure of the extracted entry is updated with the statistical value of 525.
 なお、前述の故障前後523は、「故障前」と「故障後」との2値のみを含むが、本実施例の故障前後523は、「故障から1時間経過前」又は「故障から3時間経過後から6時間経過前まで」など、故障後の複数の時間帯における保守コスト及び保守所要時間を有してもよい。そして、保守対策テーブル510は、故障後の複数の時間帯における保守コスト及び保守所要時間を有してもよい。 Note that the above-mentioned before and after the failure 523 includes only two values of “before failure” and “after failure”, but before and after the failure 523 in this embodiment is “1 hour before failure” or “3 hours after failure”. You may have the maintenance cost and the time required for maintenance in a plurality of time zones after the failure, such as “after 6 hours and before 6 hours”. The maintenance countermeasure table 510 may have maintenance costs and required maintenance times in a plurality of time zones after a failure.
 図6は、実施例1の出力情報127を示す説明図である。 FIG. 6 is an explanatory diagram showing the output information 127 of the first embodiment.
 出力情報127は、少なくとも、保守タイミング531、保守コスト532、運用ロス533、寿命ロス534及びコストロス合計535を含む。また、出力情報127は、図6に示す情報以外のコストロス算出部124による処理結果を保持してもよい。 The output information 127 includes at least a maintenance timing 531, a maintenance cost 532, an operation loss 533, a life loss 534, and a total cost loss 535. Further, the output information 127 may hold a processing result by the cost loss calculation unit 124 other than the information shown in FIG.
 保守タイミング531は、保守する日を示す。図6に示す保守タイミング531は、異常が発生してからの経過日数を示すが、一般的な日時によって保守する日時を示してもよい。 The maintenance timing 531 indicates a maintenance day. The maintenance timing 531 shown in FIG. 6 indicates the number of days that have elapsed since the occurrence of the abnormality, but may indicate the date and time of maintenance using a general date and time.
 保守コスト532は、保守タイミング531において部品を交換した場合に、部品を交換するために必要なコストを示す。運用ロス533は、保守タイミング531において部品を交換した場合に発生する運用ロスを示す。寿命ロス534は、保守タイミング531において部品を交換した場合に発生する寿命ロスを示す。コストロス合計535は、保守コスト532、運用ロス533及び寿命ロス534の合計値を示す。 The maintenance cost 532 indicates a cost required to replace a part when the part is replaced at the maintenance timing 531. The operation loss 533 indicates an operation loss that occurs when parts are replaced at the maintenance timing 531. The life loss 534 indicates a life loss that occurs when a part is replaced at the maintenance timing 531. The total cost loss 535 indicates the total value of the maintenance cost 532, the operation loss 533, and the life loss 534.
 コストロス算出部124は、保守実績テーブル520が更新された場合、更新された保守実績テーブル520を用いて保守対策テーブル510を更新する。 The cost loss calculation unit 124 updates the maintenance countermeasure table 510 using the updated maintenance record table 520 when the maintenance record table 520 is updated.
 以下に、実施例1の運用ロス及び寿命ロスを説明する。運用ロス及び寿命ロスは、部品を保守するにあたりユーザが被る不利益である。 The operation loss and life loss of Example 1 are described below. Operation loss and life loss are disadvantages experienced by users in maintaining parts.
 実施例1の運用ロスとは、部品を保守する際に対象機器を稼働させないことによって失われる利益であり、部品が稼働していれば対象機器が生み出していた利益である。運用ロスは、保守に必要な時間と、対象機器が生み出す単位時間あたりの利益によって算出される。 The operational loss of the first embodiment is a profit lost by not operating the target device when maintaining the part, and a profit generated by the target device if the part is operating. The operation loss is calculated by the time required for maintenance and the profit per unit time generated by the target device.
 故障前における保守に必要な時間は、一般的に、故障後における保守に必要な時間よりも短い。このため、運用ロスは、故障前よりも故障後が一般的に高い。 The time required for maintenance before failure is generally shorter than the time required for maintenance after failure. For this reason, the operation loss is generally higher after the failure than before the failure.
 実施例1の寿命ロスとは、部品を交換した場合に失われる、部品に残っていた価値である。部品が故障した後、寿命ロスは0である。一方で、部品が故障する前において部品が設置されてからの経過時間に従って低減する値である。 The life loss in Example 1 is the value remaining in the part that is lost when the part is replaced. The life loss is zero after the part fails. On the other hand, it is a value that decreases according to the elapsed time since the component was installed before the component failed.
 実施例1における保守コスト及び運用ロスは、故障前の不利益が故障後の不利益よりも低いことを示す指標によって与えられる値である。また、実施例1における寿命ロスは、故障後の不利益が故障前の不利益よりも低いことを示す指標である。なお、保守コスト、運用ロス及び寿命ロスが与えられる指標のように、故障前と故障後で異なる値の不利益を示す指標であれば、実施例1の保守サーバ100は、いかなる指標を用いてもよい。 The maintenance cost and operation loss in Example 1 are values given by an index indicating that the disadvantage before failure is lower than that after failure. Moreover, the life loss in Example 1 is an index indicating that the disadvantage after failure is lower than that before failure. Note that the maintenance server 100 according to the first embodiment uses any index as long as it is an index indicating a disadvantage of different values before and after the failure, such as an index that gives maintenance cost, operation loss, and life loss. Also good.
 図7は、実施例1の保守タイミングに従った保守コスト、運用ロス及び寿命ロスを算出するための処理を示すフローチャートである。 FIG. 7 is a flowchart showing a process for calculating a maintenance cost, an operation loss, and a life loss according to the maintenance timing of the first embodiment.
 図7に示す処理の開始時において、故障履歴121、顧客情報123及び保守情報125は、最新の状態に更新されている。図7に示す処理は、保守サーバ100が、所定の異常度の異常が対象機器の部品に発生したことを検知した場合に開始されてもよい。 At the start of the process shown in FIG. 7, the failure history 121, customer information 123, and maintenance information 125 are updated to the latest state. The processing illustrated in FIG. 7 may be started when the maintenance server 100 detects that an abnormality with a predetermined abnormality degree has occurred in the component of the target device.
 具体的には、情報取得部126は、所定の閾値以上の異常度と、異常度が測定された部品とを示す情報を、車載器150から取得した場合、対象機器の部品を保守する必要が生じたと判定し、図7に示す処理の開始を異常推定部122に指示してもよい。ここで、情報取得部126は、保守する必要が生じた部品と、保守する部品において発生した異常とを識別する情報を、少なくとも異常推定部122に入力する。 Specifically, when the information acquisition unit 126 acquires information indicating the degree of abnormality equal to or greater than a predetermined threshold and the component for which the degree of abnormality is measured from the vehicle-mounted device 150, it is necessary to maintain the component of the target device. It may be determined that the error has occurred, and the abnormality estimation unit 122 may be instructed to start the process illustrated in FIG. Here, the information acquisition unit 126 inputs at least information that identifies a part that needs to be maintained and an abnormality that has occurred in the part to be maintained to the abnormality estimation unit 122.
 また、図7に示す処理は、情報取得部126が、ユーザ端末170から指示された場合に開始してもよい。ここで、図7に示す処理を開始する指示には、保守する必要が生じた部品と、保守する部品において発生した異常とを識別する情報が含まれる。 Further, the process illustrated in FIG. 7 may be started when the information acquisition unit 126 is instructed from the user terminal 170. Here, the instruction to start the process shown in FIG. 7 includes information for identifying a part that needs to be maintained and an abnormality that has occurred in the part to be maintained.
 ここで、保守する必要が生じた部品と保守する部品に発生した異常とを識別する情報とは、異常ID(異常ID302に相当)であってもよいし、異常名と部品ID(異常名301と部品ID304)との組み合わせであってもよい。 Here, the information for identifying the part that needs to be maintained and the abnormality that has occurred in the part to be maintained may be an abnormality ID (corresponding to the abnormality ID 302), or an abnormality name and a component ID (abnormal name 301). And a component ID 304).
 さらに、図7に示す処理は、保守サーバ100が起動した際に開始してもよい。この場合、情報取得部126は、保守する必要が生じた部品と、保守する部品において発生した異常とを識別する情報をあらかじめ保持する。 Furthermore, the processing shown in FIG. 7 may be started when the maintenance server 100 is activated. In this case, the information acquisition unit 126 holds in advance information for identifying a part that needs to be maintained and an abnormality that has occurred in the part to be maintained.
 図7に示す処理が開始した場合、異常推定部122は、異常度推移テーブル300及び故障確率テーブル310を用いて、時間305に従った故障確率を求める(S1001)。 7 starts, the abnormality estimation unit 122 obtains a failure probability according to the time 305 by using the abnormality degree transition table 300 and the failure probability table 310 (S1001).
 具体的には、ステップS1001において異常推定部122は、まず、図7に示す処理を開始する際に取得した情報(部品の種類と異常の種類とを識別する情報)から、異常名301を特定する。 Specifically, in step S1001, the abnormality estimation unit 122 first identifies the abnormality name 301 from the information (information identifying the type of component and the type of abnormality) acquired when starting the processing illustrated in FIG. To do.
 異常推定部122は、図7に示す処理の開始時に取得した異常を識別する情報と、異常度推移テーブル300の異常名301及び異常ID302等とを用いて、異常名301の値(以下、異常A)を特定する。また、異常推定部122は、図7に示す処理の開始時に取得した部品を識別する情報と、異常度推移テーブル300の異常ID302、部品名303及び部品ID304とを用いて、部品名303の値(以下、部品A)及び部品ID304の値(以下、部品IDa)を特定する。 The abnormality estimation unit 122 uses the information identifying the abnormality acquired at the start of the process illustrated in FIG. 7, the abnormality name 301 and the abnormality ID 302 of the abnormality degree transition table 300, and the value of the abnormality name 301 (hereinafter referred to as abnormality). A) is specified. Further, the abnormality estimation unit 122 uses the information for identifying the component acquired at the start of the process illustrated in FIG. 7, the abnormality ID 302, the component name 303, and the component ID 304 of the abnormality degree transition table 300, and the value of the component name 303. (Hereinafter, component A) and the value of component ID 304 (hereinafter, component IDa) are specified.
 そして、異常推定部122は、異常Aを異常名301に有する異常度推移テーブル300のエントリを抽出する。そして、異常推定部122は、抽出したエントリの中で同じ時間305の異常度306を抽出する。そして、異常推定部122は、抽出した異常度306の平均値又は中間値等の統計値を算出する。 Then, the abnormality estimation unit 122 extracts an entry in the abnormality degree transition table 300 having the abnormality A in the abnormality name 301. Then, the abnormality estimation unit 122 extracts the degree of abnormality 306 at the same time 305 from the extracted entries. Then, the abnormality estimation unit 122 calculates a statistical value such as an average value or an intermediate value of the extracted degree of abnormality 306.
 このように時間305ごとに抽出した異常度306の統計値を算出することによって、異常推定部122は、異常Aにおける時間305に従った異常度306の推移を求めることができる。そして以下において、異常推定部122は、時間305に従った異常度306の推移と、故障確率テーブル310とに従って、時間305に従った故障確率を求める。 Thus, by calculating the statistical value of the degree of abnormality 306 extracted every time 305, the abnormality estimation unit 122 can obtain the transition of the degree of abnormality 306 according to the time 305 in abnormality A. In the following, the abnormality estimation unit 122 obtains the failure probability according to the time 305 according to the transition of the abnormality degree 306 according to the time 305 and the failure probability table 310.
 図8Aは、実施例1の異常度に従った故障確率の推移601を示す説明図である。 FIG. 8A is an explanatory diagram showing a transition 601 of the failure probability according to the degree of abnormality of the first embodiment.
 図8Aは、異常名311が異常Aを示す故障確率テーブル310のエントリの異常度312及び故障確率314を示す。すなわち、図8Aは、異常度に従った故障確率の推移601を示す。 FIG. 8A shows the abnormality degree 312 and failure probability 314 of the entry in the failure probability table 310 in which the abnormality name 311 indicates abnormality A. That is, FIG. 8A shows a failure probability transition 601 according to the degree of abnormality.
 図8Aの横軸は、異常度であり、異常度312に対応する。図8Aの縦軸は、故障確率であり、故障確率314に対応する。 The horizontal axis of FIG. 8A is the degree of abnormality, and corresponds to the degree of abnormality 312. The vertical axis in FIG. 8A represents the failure probability and corresponds to the failure probability 314.
 図8Bは、実施例1の経過時間に従った異常度の推移602を示す説明図である。 FIG. 8B is an explanatory diagram showing the transition 602 of the degree of abnormality according to the elapsed time of the first embodiment.
 図8Bの横軸は、異常が発生してからの経過時間であり、時間305に対応する。図8Bの縦軸は、異常度を示す。図8Bの縦軸は、ステップS1001において異常推定部122によって算出された、時間305に従った異常度306の統計値に対応する。このため、図8Bは、異常Aにおける時間305に従った異常度306の推移602を示す。 The horizontal axis of FIG. 8B is the elapsed time after the occurrence of abnormality, and corresponds to time 305. The vertical axis in FIG. 8B indicates the degree of abnormality. The vertical axis in FIG. 8B corresponds to the statistical value of the degree of abnormality 306 according to the time 305 calculated by the abnormality estimation unit 122 in step S1001. Therefore, FIG. 8B shows a transition 602 of the degree of abnormality 306 according to time 305 in abnormality A.
 図8Bのような異常度306の推移602を求めた後、異常推定部122は、推移601の横軸と、推移602の縦軸とを対応させることによって、経過時間に従った故障確率の推移603を求める。 After obtaining the transition 602 of the degree of abnormality 306 as shown in FIG. 8B, the abnormality estimation unit 122 associates the horizontal axis of the transition 601 with the vertical axis of the transition 602 to change the failure probability according to the elapsed time. 603 is obtained.
 図8Cは、実施例1の経過時間に従った故障確率の推移603を示す説明図である。 FIG. 8C is an explanatory diagram showing a transition 603 of the failure probability according to the elapsed time of the first embodiment.
 図8Cに示す推移603の横軸は、時間305に対応する。また、図8Cに示す推移603の縦軸は、故障確率314に対応する。異常推定部122は、ステップS1001において、求めた推移601、推移602及び推移603を、コストロス算出部124に入力する。 The horizontal axis of the transition 603 shown in FIG. 8C corresponds to the time 305. Further, the vertical axis of the transition 603 illustrated in FIG. 8C corresponds to the failure probability 314. In step S <b> 1001, the abnormality estimation unit 122 inputs the obtained transition 601, transition 602, and transition 603 to the cost loss calculation unit 124.
 ステップS1001の後、コストロス算出部124は、保守タイミングの候補である引数Tをメモリ112に読み出し、引数Tに初期値として0を格納する(S1002)。ステップS1002の後、コストロス算出部124は、引数Tに1を加算する(S1003)。 After step S1001, the Kosutorosu calculation unit 124 reads the argument T M is a candidate of the maintenance timing in the memory 112, stores 0 as the initial value in the argument T M (S1002). After step S1002, Kosutorosu calculating unit 124 adds 1 to the parameter T M (S1003).
 ここで、引数Tは、保守タイミングの候補である。特に、実施例1の引数Tは、保守が必要な部品において、異常が発生してからの経過時間である。なお、ステップS1002において、コストロス算出部124は、推移601、推移602及び推移603を、出力情報127に格納してもよい。これによって、出力部128が、推移601、推移602及び推移603のいずれかを、保守者等に向けて出力することができる。 Here, the argument TM is a maintenance timing candidate. In particular, the argument T M of Example 1, in maintenance is required parts, the elapsed time from the abnormality occurs. In step S1002, the cost loss calculation unit 124 may store the transition 601, the transition 602, and the transition 603 in the output information 127. Accordingly, the output unit 128 can output any one of the transition 601, the transition 602, and the transition 603 toward the maintenance person or the like.
 ステップS1003の後、コストロス算出部124は、保守コストをステップS1004において算出し、運用ロスをステップS1006において算出し、寿命ロスをステップS1008において算出する。以下に処理の詳細を示す。 After step S1003, the cost loss calculation unit 124 calculates the maintenance cost in step S1004, calculates the operation loss in step S1006, and calculates the life loss in step S1008. Details of the processing are shown below.
 コストロス算出部124は、ステップS1004において、異常Aを示す異常名511を含み、かつ、部品Aを示す部品名512を含むエントリを、保守対策テーブル510から抽出する。そして、コストロス算出部124は、抽出したエントリから故障前保守コスト513及び故障後保守コスト514を抽出する。 In step S1004, the cost loss calculation unit 124 extracts an entry including the abnormality name 511 indicating the abnormality A and the component name 512 indicating the part A from the maintenance countermeasure table 510. Then, the cost loss calculation unit 124 extracts the pre-failure maintenance cost 513 and the post-failure maintenance cost 514 from the extracted entries.
 さらにコストロス算出部124は、引数Tに対応する経過時間(推移603の横軸)以前の経過時間において算出された少なくとも一つの故障確率(推移603の縦軸)に、抽出した故障後保守コスト514を各々乗じる。また、コストロス算出部124は、引数Tが示す経過時間(推移603の横軸)より後の経過時間において算出された故障確率(推移603の縦軸)に、抽出した故障前保守コスト513を各々乗じる。 Further Kosutorosu calculation unit 124, the elapsed time corresponding to the argument T M at least one failure probability calculated in the previous elapsed time (horizontal axis transition 603) (ordinate transition 603), extracted post-fault maintenance costs Multiply each by 514. Further, Kosutorosu calculation unit 124, the argument T M is the elapsed time indicated failure probability calculated in the time elapsed after the (horizontal axis transition 603) (ordinate transition 603), the pre-fault maintenance costs 513 extracted Multiply each.
 これは、引数Tの保守タイミングに部品を交換し、引数Tの保守タイミングが故障した以後である場合、交換に必要な保守コストは故障後保守コスト514であるためである。また、引数Tの保守タイミングに部品を交換し、引数Tの保守タイミングが故障する前であれば、交換に必要な保守コストは故障前保守コスト513であるためである。 This will replace parts maintenance timing argument T M, if maintenance timing argument T M is thereafter failed, maintenance costs required for replacement is for a post-fault maintenance costs 514. Further, to replace parts maintenance timing argument T M, if before the failure the maintenance timing of the argument T M, maintenance costs required for replacement is for a pre-fault maintenance costs 513.
 故障確率と故障前保守コスト513又は故障後保守コスト514とを乗算した結果、コストロス算出部124は、後述する分布701を求める。そして、コストロス算出部124は、後述するステップS1012(図10)及びステップS1003によって引数Tを更新し、ステップS1004を繰り返す。これによって、コストロス算出部124は、複数の保守タイミング(複数の引数T)における分布701を算出する。そして、分布701を、不利益の予測値を算出するために用いることができる。 As a result of multiplying the failure probability by the maintenance cost before failure 513 or the maintenance cost after failure 514, the cost loss calculation unit 124 obtains a distribution 701 described later. The Kosutorosu calculation unit 124 updates the parameter T M in step S1012 (Fig. 10) and step S1003 to be described later, repeat step S1004. Thereby, the cost loss calculation unit 124 calculates the distribution 701 at a plurality of maintenance timings (a plurality of arguments T M ). The distribution 701 can then be used to calculate a disadvantage predicted value.
 図9Aは、実施例1の故障確率と保守コストとを乗算した結果の分布701を示す説明図である。 FIG. 9A is an explanatory diagram showing a distribution 701 as a result of multiplying the failure probability and the maintenance cost of the first embodiment.
 図9Aに示す分布701は、引数Tが33である場合のステップS1004における出力結果の例である。図9Aによれば、引数Tの保守タイミングの直前に部品が故障した場合に保守コストと故障確率とを乗算した結果は、引数Tの保守タイミングの直後に部品が故障した場合に保守コストと故障確率とを乗算した結果よりも高い。 Distribution shown in FIG. 9A 701 is an example of an output result in step S1004 if the argument T M is 33. According to Figure 9A, the results with parts multiplies and maintenance costs and failure probability when the previously failed maintenance timing argument T M is maintenance costs when part has failed just after the maintenance timing of the argument T M Higher than the result of multiplying the failure probability.
 これは、引数Tの保守タイミングの直前の故障確率は、引数Tの保守タイミングの直前の故障確率より低く、一方で、引数Tの保守タイミングの直前に故障が発生した場合の保守コスト(故障後保守コスト514)は、引数Tの保守タイミングの直後に故障が発生した場合の保守コスト(故障前保守コスト513)よりも大きいためである。 This failure probability of the previous maintenance timing argument T M is maintenance cost of less than the failure probability of the previous maintenance timing argument T M, while the the failure immediately before the maintenance timing of the argument T M generated (post-fault maintenance costs 514) is larger than the maintenance costs when a failure immediately after the maintenance timing of the argument T M occurs (failure before maintenance costs 513).
 さらに、コストロス算出部124は、ステップS1006において運用ロスを算出する。具体的には、コストロス算出部124は、異常Aを示す異常名511を含み、かつ、部品Aを示す部品名512を含むエントリを保守対策テーブル510から抽出する。そして、コストロス算出部124は、抽出したエントリから故障前保守所要時間515及び故障後保守所要時間516を抽出する。 Furthermore, the cost loss calculation unit 124 calculates an operation loss in step S1006. Specifically, the cost loss calculation unit 124 extracts an entry including the abnormality name 511 indicating the abnormality A and including the component name 512 indicating the part A from the maintenance countermeasure table 510. Then, the cost loss calculation unit 124 extracts the pre-failure maintenance required time 515 and the post-failure maintenance required time 516 from the extracted entries.
 また、コストロス算出部124は、ステップS1006において、部品IDaを示す部品ID412を含む稼働実績テーブル410のエントリを抽出し、抽出したエントリの機械ID411を特定する。そして、コストロス算出部124は、特定した機械ID411に対応する機械ID403を含む生産実績テーブル400のエントリを抽出する。そして、コストロス算出部124は、抽出したエントリの単位時間当たり生産量404と生産物単価405とを乗算し、部品IDaが示す部品が設置された対象機器の単位時間当たりの利益を算出する。 In step S1006, the cost loss calculation unit 124 extracts an entry in the operation result table 410 including the component ID 412 indicating the component IDa, and specifies the machine ID 411 of the extracted entry. Then, the cost loss calculation unit 124 extracts an entry of the production performance table 400 including the machine ID 403 corresponding to the specified machine ID 411. Then, the cost loss calculation unit 124 multiplies the extracted output 404 per unit time by the product unit price 405, and calculates the profit per unit time of the target device in which the part indicated by the part IDa is installed.
 さらに、コストロス算出部124は、ステップS1006において、引数Tが示す経過時間(推移603の横軸)以前の経過時間における少なくとも一つの故障確率(推移603の縦軸)に、抽出した故障後保守所要時間516と、算出した単位時間当たりの利益とを各々乗じる。また、コストロス算出部124は、引数Tが示す経過時間(推移603の横軸)より後の経過時間において算出された故障確率(推移603の縦軸)と、抽出した故障前保守所要時間515と、算出した単位時間当たりの利益とを乗じる。 Furthermore, Kosutorosu calculation unit 124, in step S1006, (horizontal axis transition 603) the elapsed time indicated by the argument T M to at least one of the failure probability in the previous elapsed time (vertical axis transition 603), after extracted fault maintenance The required time 516 is multiplied by the calculated profit per unit time. Further, Kosutorosu calculation unit 124, the argument T M is the elapsed time indicated failure probability calculated in the time elapsed after the (horizontal axis transition 603) (ordinate transition 603), extracted failure before maintenance time required 515 And the calculated profit per unit time.
 対象機器は、自らが有する部品が故障した場合、保守所要時間の間稼働を停止する、又は、正常な稼働ができない。このため、保守所要時間の間、対象機器が生み出すべき利益は生み出されず、ユーザにとって不利益が発生する。 The target device stops its operation for the required maintenance time or fails to operate normally if its own parts break down. For this reason, during the time required for maintenance, a profit that the target device should generate is not generated, which causes a disadvantage for the user.
 このため、実施例1における運用ロスは、保守により損なわれた、対象機器により生み出されるべき利益である。そして、実施例1における運用ロスは、故障前保守所要時間515又は故障後保守所要時間516と、単位時間当たりの利益との乗算結果である。 For this reason, the operation loss in the first embodiment is a profit to be generated by the target device, which is damaged by the maintenance. The operation loss in the first embodiment is a result of multiplying the maintenance required time 515 before the failure or the maintenance required time 516 after the failure by the profit per unit time.
 ステップS1006の結果、コストロス算出部124は、後述する分布702を運用ロスに関する分布として算出する。そして、コストロス算出部124は、後述する処理によって引数Tを更新し、ステップS1006を繰り返すことによって、複数の保守タイミングにおける運用ロスの分布702を算出する。 As a result of step S1006, the cost loss calculation unit 124 calculates a distribution 702, which will be described later, as a distribution related to operation loss. The Kosutorosu calculation unit 124 updates the parameter T M by processing described later, by repeating the steps S1006, it calculates a distribution 702 of the operational losses in the plurality of maintenance timing.
 図9Bは、実施例1の故障確率と運用ロスとを乗算した結果の分布702を示す説明図である。 FIG. 9B is an explanatory diagram illustrating a distribution 702 obtained by multiplying the failure probability and the operation loss according to the first embodiment.
 図9Bに示す分布702は、引数Tが33である場合のステップS1006における出力結果の例である。図9Bによれば、引数Tの経過時間の直前に部品が故障した場合に運用ロスと故障確率とを乗算した結果は、分布701と同様に、引数Tの経過時間の直後に部品が故障した場合に運用ロスと故障確率とを乗算した結果よりも高い。 Distribution shown in FIG. 9B 702 is an example of an output result in step S1006 if the argument T M is 33. According to Figure 9B, the result obtained by multiplying the operational loss and failure probability when a part immediately before the elapsed time argument T M fails, similarly to the distribution 701, the parts immediately after the elapsed time parameter T M It is higher than the result of multiplying the operation loss and the failure probability when a failure occurs.
 コストロス算出部124は、分布702を求めることによって、保守タイミングに従ってユーザが本来得られたはずの利益を、不利益の予測値に加えることができる。 The cost loss calculation unit 124 can add the profit that should have been obtained by the user according to the maintenance timing to the predicted value of the disadvantage by obtaining the distribution 702.
 なお、保守対策テーブル510が故障後の複数の時間帯における保守コスト及び保守所要時間を有する場合、S1004及びS1006において、コストロス算出部124は、引数Tの経過時間に対応する故障後の時間帯の保守コスト及び保守所要時間と故障確率とを用いて、故障後における保守コスト及び運用ロスの期待値を算出してもよい。 In the case where maintenance measures table 510 has a maintenance costs and maintenance time required in a plurality of time zone after a failure, in S1004 and S1006, Kosutorosu calculation unit 124, a time zone after the failure corresponding to the elapsed time parameter T M Using the maintenance cost, the required maintenance time, and the failure probability, the expected value of the maintenance cost and the operation loss after the failure may be calculated.
 コストロス算出部124は、ステップS1008において寿命ロスを算出する。ここで、コストロス算出部124は、故障後に発生する寿命ロスとして0を設定する。そして、コストロス算出部124は、部品Aを示す部品名501を含む部品価格テーブル500のエントリを抽出し、部品Aの部品単価502を抽出する。 Cost loss calculation unit 124 calculates a life loss in step S1008. Here, the cost loss calculation unit 124 sets 0 as a life loss that occurs after a failure. Then, the cost loss calculation unit 124 extracts the entry of the part price table 500 including the part name 501 indicating the part A, and extracts the part unit price 502 of the part A.
 また、コストロス算出部124は、部品IDaを示す部品ID412を含む稼働実績テーブル410を抽出し、異常が発生した時の部品の部品アワメータ413を抽出する。そして、コストロス算出部124は、抽出した値と引数Tと以下の式(1)とを用いて故障前の寿命ロスを算出する。 Further, the cost loss calculation unit 124 extracts the operation result table 410 including the component ID 412 indicating the component IDa, and extracts the component hour meter 413 of the component when an abnormality occurs. The Kosutorosu calculation unit 124 calculates the life loss before the failure using the extracted value and the argument T M and the following equation (1).
 故障前の寿命ロス=部品単価502/(異常発生時の部品アワメータ413+異常が発生してから経過した時間(:引数T))       (1) Life Loss Before Failure = Parts Unit Price 502 / (Part Hour Meter 413 at Time of Abnormality + Time Elapsed After Abnormality (: Argument T M )) (1)
 式(1)は、部品が対象機器に設置されてから経過した時間によって、部品単価502を除算する式である。ただし、部品が対象機器に設置されてから経過した時間は、0ではない正数である。なお、故障前の寿命ロスを算出する式は、経過時間に従って低減していくような値を算出する式であれば、いかなる式でもよい。 Formula (1) is a formula that divides the component unit price 502 by the time elapsed since the component was installed in the target device. However, the time elapsed since the part was installed in the target device is a positive number that is not zero. The equation for calculating the life loss before failure may be any equation as long as it calculates a value that decreases according to the elapsed time.
 さらに、コストロス算出部124は、ステップS1008において、引数Tが示す経過時間(推移603の横軸)以前の経過時間において算出された少なくとも一つの故障確率(推移603の縦軸)に、故障後の寿命ロスである0を乗じる。また、コストロス算出部124は、引数Tが示す経過時間(推移603の横軸)より後の経過時間において算出された故障確率(推移603の縦軸)に、故障前の寿命ロスを各々乗じる。 Furthermore, Kosutorosu calculation unit 124, in step S1008, the argument T M is the elapsed time indicated at least one failure probability calculated in the previous elapsed time (horizontal axis transition 603) (ordinate transition 603), after a failure Multiply by 0, which is the lifetime loss. Further, Kosutorosu calculation unit 124, the argument T M is the elapsed time indicated failure probability calculated in the time elapsed after the (horizontal axis transition 603) (ordinate transition 603), multiplying each life loss before failure .
 ステップS1008の結果、コストロス算出部124は、後述する分布703を寿命ロスに関する分布として算出する。そして、コストロス算出部124は、後述する処理によって引数Tを更新し、ステップS1008を繰り返すことによって、複数の保守タイミングにおける寿命ロスの分布703を算出する。 As a result of step S1008, the cost loss calculation unit 124 calculates a distribution 703, which will be described later, as a distribution related to the life loss. The Kosutorosu calculation unit 124 updates the parameter T M by processing described later, by repeating the steps S1008, it calculates a distribution 703 of the lifetime loss in multiple maintenance timing.
 図9Cは、実施例1の故障確率と寿命ロスとを乗算した結果の分布703を示す説明図である。 FIG. 9C is an explanatory diagram illustrating a distribution 703 obtained by multiplying the failure probability and the life loss in the first embodiment.
 図9Cに示す分布703は、引数Tが33である場合のステップS1008における出力結果の例である。図9Cによれば、引数Tの経過時間の直前に部品が故障した場合寿命ロスは0である。コストロス算出部124は、分布703を求めることによって、保守時にまだ部品に残る価値を不利益の予測値に加えることができる。 Distribution shown in FIG. 9C 703 is an example of an output result in step S1008 if the argument T M is 33. According to FIG. 9C, if the part has failed life loss immediately before the elapsed time parameter T M 0. By calculating the distribution 703, the cost loss calculation unit 124 can add the value that still remains to the parts during maintenance to the predicted value of disadvantage.
 ステップS1004、ステップS1006及びステップS1008において、分布701、分布702及び分布703が求められた場合、コストロス算出部124は、分布701、分布702及び分布703を出力情報127に格納してもよい。そして、出力部128は、ユーザ端末170に分布701、分布702及び分布703を出力してもよい。 When the distribution 701, distribution 702, and distribution 703 are obtained in step S1004, step S1006, and step S1008, the cost loss calculation unit 124 may store the distribution 701, distribution 702, and distribution 703 in the output information 127. Then, the output unit 128 may output the distribution 701, the distribution 702, and the distribution 703 to the user terminal 170.
 コストロス算出部124は、ステップS1004の後ステップS1005を実行し、ステップS1006の後ステップS1007を実行し、ステップS1008の後ステップS1009を実行する。 Cost loss calculation unit 124 executes step S1005 after step S1004, executes step S1007 after step S1006, and executes step S1009 after step S1008.
 図10は、実施例1の保守における不利益の予測値を算出する処理を示すフローチャートである。 FIG. 10 is a flowchart illustrating a process for calculating a predicted value of a disadvantage in the maintenance of the first embodiment.
 コストロス算出部124は、ステップS1005、ステップS1007及びステップS1008のいずれかを開始する前に、保守コストの期待値、運用ロスの期待値及び寿命ロスの期待値を格納するため、出力情報127に新たなエントリAを生成する。そして、コストロス算出部124は、新たなエントリの保守タイミング531に、引数Tの値を格納する。 Before starting any of Step S1005, Step S1007, and Step S1008, the cost loss calculation unit 124 stores the expected value of maintenance cost, the expected value of operation loss, and the expected value of life loss. A new entry A is generated. The Kosutorosu calculation unit 124, the maintenance timing 531 of the new entry, and stores the value of the argument T M.
 コストロス算出部124は、ステップS1005において、引数Tにおける分布701の合計値を求めることによって、保守コストの期待値を算出する。そして、また、コストロス算出部124は、エントリAの保守コスト532に、算出した保守コストの期待値を格納する。 Kosutorosu calculation unit 124, in step S1005, by determining the total value of the distribution 701 in the argument T M, calculates the expected value of the maintenance costs. In addition, the cost loss calculation unit 124 stores the expected value of the calculated maintenance cost in the maintenance cost 532 of the entry A.
 また、コストロス算出部124は、ステップS1007において、引数Tにおける分布702の合計値を求めることによって、運用ロスの期待値を算出する。そして、コストロス算出部124は、エントリAの運用ロス533に、算出した運用ロスの期待値を格納する。 Further, Kosutorosu calculation unit 124, in step S1007, by determining the total value of the distribution 702 in the argument T M, calculates the expected value of the operational loss. Then, the cost loss calculation unit 124 stores the calculated expected value of the operation loss in the operation loss 533 of the entry A.
 また、コストロス算出部124は、ステップS1009において、引数Tにおける分布702の合計値を求めることによって、寿命ロスの期待値を算出する。そして、コストロス算出部124は、エントリAの寿命ロス534に、算出した寿命ロスの期待値を格納する。 Further, Kosutorosu calculation unit 124, in step S1009, by determining the total value of the distribution 702 in the argument T M, calculates the expected value of life loss. Then, the cost loss calculation unit 124 stores the calculated expected value of the life loss in the life loss 534 of the entry A.
 ステップS1005、ステップS1007及びステップS1009の後、コストロス算出部124は、保守タイミング531が引数Tである出力情報127のエントリAの保守コスト532、運用ロス533及び寿命ロス534の合計値を、不利益の予測値として算出する。そして、コストロス算出部124は、エントリAのコストロス合計535に、算出した予測値を格納する(S1010)。 Step S1005, after the step S1007 and step S1009, Kosutorosu calculation unit 124, maintenance costs 532 entries A maintenance timing 531 is argument T M output information 127, the total value of the operational losses 533 and lifetime loss 534, not Calculated as the predicted value of profit. Then, the cost loss calculating unit 124 stores the calculated predicted value in the cost loss total 535 of the entry A (S1010).
 ステップS1010までの処理により、保守サーバ100は、保守タイミングが故障前である場合に発生しうる不利益と保守タイミングが故障後である場合に発生しうる不利益とを、故障確率に基づいて反映した不利益の予測値を算出することができるため、より正確な予測値を保守タイミングごとに算出できる。 Through the processing up to step S1010, the maintenance server 100 reflects the disadvantages that may occur when the maintenance timing is before the failure and the disadvantages that may occur when the maintenance timing is after the failure based on the failure probability. Therefore, a more accurate predicted value can be calculated for each maintenance timing.
 なお、コストロス算出部124は、ステップS1010において、保守コスト532、運用ロス533及び寿命ロス534にあらかじめ指定された重みを乗じた後に、不利益の予測値を算出してもよい。これによって、コストロス算出部124は、ユーザが重要視する期待値を強調して評価できるような、不利益の予測値を算出することができる。 Note that the cost loss calculation unit 124 may calculate the predicted value of the disadvantage after multiplying the maintenance cost 532, the operation loss 533, and the life loss 534 by weights specified in advance in step S1010. As a result, the cost loss calculation unit 124 can calculate a predicted disadvantage value that can be evaluated with emphasis on the expected value that the user attaches importance to.
 ステップS1010の後、コストロス算出部124は、推移603における過去から引数Tまでの故障確率の合計値を、累積確率として算出する(S1011)。ステップS1011の後、コストロス算出部124は、例えば、故障確率が百分率(パーセント)で表現される場合、累積確率が100であるか否かを判定する(S1012)。 After step S1010, Kosutorosu calculation unit 124, the total value of the failure probability from the past to the argument T M in transition 603 is calculated as the cumulative probability (S1011). After step S1011, for example, when the failure probability is expressed as a percentage (percent), the cost loss calculation unit 124 determines whether the cumulative probability is 100 (S1012).
 ステップS1012における判定処理は、推移603における0以外のすべての故障確率に基づいて保守コスト、運用ロス及び寿命ロスの期待値を算出した場合に、コストロス算出部124がステップS1013を実行し、保守コスト、運用ロス及び寿命ロスの期待値が算出されていない場合、ステップS1003に戻る処理であれば、いずれの判定処理であってもよい。 In the determination processing in step S1012, the cost loss calculation unit 124 executes step S1013 when the expected values of the maintenance cost, the operation loss, and the life loss are calculated based on all failure probabilities other than 0 in the transition 603, and the maintenance cost If the expected values of operation loss and life loss are not calculated, any determination process may be used as long as the process returns to step S1003.
 前述のステップS1012の例において累積確率が100でない場合、コストロス算出部124は、ステップS1003へ戻り引数Tに1を加算する。累積確率が100である場合、コストロス算出部124は、ステップS1010において算出した予測値の中から最小値を抽出する。そして、コストロス算出部124は、抽出した最小値の引数Tを、推奨保守タイミングに決定し(S1013)、推奨保守タイミングを出力情報127に格納する。 If the cumulative probability in the above example of step S1012 is not 100, Kosutorosu calculating unit 124 adds 1 to the parameter T M returns to step S1003. When the cumulative probability is 100, the cost loss calculation unit 124 extracts the minimum value from the predicted values calculated in step S1010. The Kosutorosu calculation unit 124, the argument T M of the extracted minimum value, determined recommended maintenance timing (S1013), stores the recommended maintenance timing output information 127.
 ステップS1013の後、コストロス算出部124は、図10に示す処理を終了する。 After step S1013, the cost loss calculation unit 124 ends the process shown in FIG.
 図11Aは、実施例1の保守タイミングにおける保守コスト802、運用ロス803及び寿命ロス804の処理結果801を示す説明図である。 FIG. 11A is an explanatory diagram illustrating processing results 801 of the maintenance cost 802, the operation loss 803, and the life loss 804 at the maintenance timing of the first embodiment.
 図11Aに示す処理結果は、図10に示すステップS1005、ステップS1007及びステップS1009の結果を示す。図11Aに示す保守コスト802は、図10に示すステップS1005により得られた保守コストの期待値を引数Tに従って表示した出力例である。図11Aに示す運用ロス803は、図10に示すステップS1007により得られた運用ロスの期待値を引数Tに従って表示した出力例である。図11Aに示す寿命ロス804は、図10に示すステップS1009により得られた寿命ロスの期待値を引数Tに従って表示した出力例である。 The processing result shown in FIG. 11A shows the results of step S1005, step S1007, and step S1009 shown in FIG. Maintenance costs 802 shown in FIG. 11A is an output example of displaying the expected value of the resulting maintenance costs by step S1005 shown in FIG. 10 according to the argument T M. Operation Ross 803 shown in FIG. 11A is an output example of displaying the expected value of the obtained operational loss by step S1007 shown in FIG. 10 according to the argument T M. Life loss 804 shown in FIG. 11A is an output example of displaying the expected value of the obtained lifetime loss in step S1009 shown in FIG. 10 according to the argument T M.
 保守コスト802及び運用ロス803は、引数T(異常発生からの経過時間であり、かつ、保守タイミング)が大きくなるほど、大きい値である。また、寿命ロス804は、引数Tが大きくなるほど、小さい値である。 The maintenance cost 802 and the operation loss 803 are larger values as the argument T M (the elapsed time from occurrence of an abnormality and the maintenance timing) increases. Moreover, life loss 804 larger argument T M is a small value.
 出力部129が、出力情報127に格納された情報に基づいて、図11Aに示す処理結果801をユーザ端末170に表示することによって、保守者及びユーザは、保守コスト802、運用ロス803及び寿命ロス804の変化を参照したうえで、部品の保守タイミングを決定することができる。また、保守者及びユーザは、保守タイミングによる不利益の内訳を認識することができる。 The output unit 129 displays the processing result 801 shown in FIG. 11A on the user terminal 170 based on the information stored in the output information 127, so that the maintenance person and the user can maintain the maintenance cost 802, the operation loss 803, and the life loss. After referring to the change 804, the maintenance timing of the part can be determined. In addition, the maintenance person and the user can recognize the breakdown of the disadvantage due to the maintenance timing.
 図11Bは、実施例1の保守タイミングにおける不利益の予測値を示す説明図である。 FIG. 11B is an explanatory diagram showing a predicted value of disadvantage at the maintenance timing of the first embodiment.
 図11Bに示す処理結果805の不利益806は、図10に示すステップS1010の結果である。不利益806は、同じ引数Tにおける保守コスト802、運用ロス803及び寿命ロス804の合計値である。 The disadvantage 806 of the processing result 805 shown in FIG. 11B is the result of step S1010 shown in FIG. Disadvantage 806, maintenance costs 802 at the same arguments T M, the total value of the operational losses 803 and lifetime loss 804.
 図11Bに示す不利益806は、最小値を含む。これは、保守コスト802及び運用ロス803が引数Tが大きくなるに従って大きくなる一方で、寿命ロス804が小さくなるためである。このため、不利益806の最小値における引数Tは、運用ロス803、運用ロス803及び寿命ロス804のすべてを考慮した場合、保守によって最も不利益が少ない保守タイミングを示す。 The disadvantage 806 shown in FIG. 11B includes a minimum value. While this maintenance costs 802 and operational loss 803 increases as the argument T M is increased, because the life loss 804 is reduced. Therefore, the argument T M at the minimum value of the penalty 806, operational loss 803, when considering all operational losses 803 and lifetime loss 804 shows the most disadvantaged less maintenance timing by maintenance.
 出力部129が、図11Aに示す処理結果801をユーザ端末170に表示することによって、保守者及びユーザは、保守コストの期待値、運用ロスの期待値及び寿命ロスの期待値の、保守タイミングごとの合計を認識することによって、保守タイミングによって発生しうる不利益の予測値を認識することができる。そして、保守者及びユーザは、認識した不利益の程度に基づいて、適切な保守タイミングを決定することができる。 The output unit 129 displays the processing result 801 illustrated in FIG. 11A on the user terminal 170, so that the maintenance person and the user can maintain the expected maintenance cost value, the expected operation loss value, and the expected life loss value for each maintenance timing. By recognizing the total, it is possible to recognize a predicted value of a disadvantage that may occur due to the maintenance timing. The maintenance person and the user can determine an appropriate maintenance timing based on the recognized degree of disadvantage.
 図12Aは、実施例1の故障後の保守による不利益を表示する画面810を示す説明図である。 FIG. 12A is an explanatory diagram illustrating a screen 810 that displays a disadvantage due to maintenance after a failure according to the first embodiment.
 出力部128は、保守をする場合に発生する不利益をユーザに表現するため、画面810のデータを生成し、出力する。画面810は、出力部128によってユーザ端末170に出力される画面例である。 The output unit 128 generates and outputs data on the screen 810 in order to express to the user the disadvantage that occurs when maintenance is performed. A screen 810 is an example of a screen output to the user terminal 170 by the output unit 128.
 画面810は、事後保守画面811及び予知保守画面812を含む。保守者等が画面810に表示された二つのタブのいずれかを選択することにより、選択されたタブに対応する事後保守画面811又は予知保守画面812が優先して表示されてもよい。また、事後保守画面811及び予知保守画面812の両方が、画面810に表示されてもよい。 The screen 810 includes a post-maintenance screen 811 and a predictive maintenance screen 812. When a maintenance person or the like selects one of the two tabs displayed on the screen 810, the post-maintenance screen 811 or the predictive maintenance screen 812 corresponding to the selected tab may be displayed with priority. Further, both the post-maintenance screen 811 and the predictive maintenance screen 812 may be displayed on the screen 810.
 事後保守画面811は、部品が故障した後に部品を保守した場合に発生するユーザの不利益を示す。事後保守画面811は、故障確率813及び不利益リスト814を含む。 The post-maintenance screen 811 shows a user's disadvantage that occurs when a part is maintained after the part has failed. The post-maintenance screen 811 includes a failure probability 813 and a disadvantage list 814.
 故障確率813は、図7に示すステップS1001の結果であり、図8Cに示す推移603を示す。不利益リスト814は、図7に示すステップS1004において用いられた故障後保守コスト(故障後保守コスト514に対応)、ステップS1006において用いられた故障後運用ロス、及び、ステップS1008において用いられた故障後寿命ロスを示す。また、不利益リスト814は、故障後保守コスト、故障後運用ロス及び故障後寿命ロスの合計値を示す。 The failure probability 813 is a result of step S1001 shown in FIG. 7, and shows a transition 603 shown in FIG. 8C. The disadvantage list 814 includes the post-failure maintenance cost used in step S1004 shown in FIG. 7 (corresponding to the post-failure maintenance cost 514), the post-failure operation loss used in step S1006, and the fault used in step S1008. Indicates post-life loss. The disadvantage list 814 indicates the total value of the maintenance cost after failure, the operation loss after failure, and the life loss after failure.
 図12Bは、実施例1の保守タイミングに従った複数の指標の期待値と、不利益の予測値とを表示する画面810を示す説明図である。 FIG. 12B is an explanatory diagram illustrating a screen 810 that displays expected values of a plurality of indexes according to the maintenance timing of the first embodiment and a predicted value of disadvantage.
 予知保守画面812は、引数Tに従った保守コストの期待値、運用ロスの期待値、寿命ロスの期待値、及び、不利益の予測値を示す。予知保守画面812は、コストロス画面821、不利益画面822及び詳細画面823を含む。 Prediction maintenance screen 812 shows the expected value of the maintenance costs in accordance with the parameter T M, the expected value of the operational loss, expected value of life loss, and the predicted value of disadvantages. The predictive maintenance screen 812 includes a cost loss screen 821, a disadvantage screen 822, and a details screen 823.
 コストロス画面821は、図10に示すステップS1005、ステップS1007及びステップS1009の結果を示し、図11Aに示す処理結果801と同じである。不利益画面822は、図10に示すステップS1010の結果を示し、処理結果805と同じである。詳細画面823は、引数Tにおける保守コストの期待値、運用ロスの期待値、寿命ロスの期待値及びそれらの期待値の合計値を示す。 The cost loss screen 821 shows the results of step S1005, step S1007, and step S1009 shown in FIG. 10, and is the same as the processing result 801 shown in FIG. 11A. The disadvantage screen 822 shows the result of step S1010 shown in FIG. 10 and is the same as the processing result 805. Detail screen 823 shows the expected value of the maintenance costs of the argument T M, the expected value of the operating loss, the sum of the expected values and their expected values of life loss.
 出力部128は、詳細画面823に、不利益806が最小値となる引数Tにおける保守コスト、運用ロス及び寿命ロスを表示してもよい。これにより、出力部128は、ユーザに、保守による不利益の予測値が最も小さい保守タイミングを、推奨保守タイミングとして提供できる。 The output unit 128, the detail screen 823, the maintenance cost of the argument T M which disadvantages 806 becomes the minimum value may be displayed operational loss and life loss. Thereby, the output unit 128 can provide the user with the maintenance timing with the smallest predicted value of the disadvantage due to maintenance as the recommended maintenance timing.
 出力部128は、保守サーバ100が保持する情報であれば、図12A及び図12Bに示す画面810の内容以外を表示してもよい。特に、出力部128は、図9A~図9Cに示す分布701~703等を、ユーザ端末170に表示してもよい。 The output unit 128 may display information other than the contents of the screen 810 shown in FIGS. 12A and 12B as long as the information is stored in the maintenance server 100. In particular, the output unit 128 may display the distributions 701 to 703 and the like shown in FIGS. 9A to 9C on the user terminal 170.
 図13Aは、実施例1の保守システムの適用例を示す説明図である。 FIG. 13A is an explanatory diagram illustrating an application example of the maintenance system according to the first embodiment.
 図13Aは、実施例1の保守システムを利用するユーザ及び保守者の役割の例を示す。実施例1の保守システムは、サービスプロバイダ901、使用者902、メーカー903及び保守事業者904によって利用される。 FIG. 13A shows an example of roles of a user and a maintenance person who use the maintenance system of the first embodiment. The maintenance system according to the first embodiment is used by a service provider 901, a user 902, a manufacturer 903, and a maintenance company 904.
 使用者902は、ショベルカー140及びトラック130等の対象機器を使用するユーザである。使用者902は、例えば、鉱山会社又は建設会社であってもよい。また、使用者902は、対象機器が発電機等であれば、工場を有する生産会社であってもよい。また、対象機器がコンピュータ又はストレージ等であれば、計算機システムによりサービスを提供する会社であってもよい。 The user 902 is a user who uses target devices such as the excavator 140 and the truck 130. The user 902 may be a mining company or a construction company, for example. Further, the user 902 may be a production company having a factory as long as the target device is a generator or the like. Further, if the target device is a computer or storage, it may be a company that provides a service by a computer system.
 使用者902は、対象機器の保守タイミングを決定する。使用者902は、顧客情報123の内容をサービスプロバイダ901に提供する。 User 902 determines the maintenance timing of the target device. The user 902 provides the content of the customer information 123 to the service provider 901.
 メーカー903は、対象機器を製造した者である。メーカー903は、故障履歴121の内容(特に、異常度推移テーブル300)、及び、保守情報125の内容(特に、部品価格テーブル500)を、サービスプロバイダ901に提供する。 Maker 903 is a person who manufactured the target device. The manufacturer 903 provides the service provider 901 with the content of the failure history 121 (particularly, the abnormality degree transition table 300) and the content of the maintenance information 125 (particularly the parts price table 500).
 保守事業者904は、対象機器の保守者である。保守事業者904は、保守情報125の内容(特に、保守実績テーブル520)を、サービスプロバイダ901に提供する。 The maintenance company 904 is a maintainer of the target device. The maintenance business operator 904 provides the service provider 901 with the content of the maintenance information 125 (particularly, the maintenance result table 520).
 サービスプロバイダ901は、保守サーバ100を保持する。サービスプロバイダ901は、使用者902、メーカー903及び保守事業者904から受信した情報に基づいて、保守コスト、運用ロス及び寿命ロスの期待値、不利益の予測値、並びに、推奨保守タイミング等を、保守サーバ100に算出させる。そして、サービスプロバイダ901は、算出された結果を、使用者902に提供する。 The service provider 901 holds the maintenance server 100. Based on the information received from the user 902, the manufacturer 903, and the maintenance company 904, the service provider 901 determines the maintenance cost, the expected value of the operation loss and the life loss, the predicted value of the disadvantage, the recommended maintenance timing, etc. The maintenance server 100 is made to calculate. Then, the service provider 901 provides the calculated result to the user 902.
 図13Bは、実施例1の運用を示すシーケンス図である。 FIG. 13B is a sequence diagram illustrating the operation of the first embodiment.
 使用者902は、顧客情報123の内容をサービスプロバイダ901に提供する(911)。メーカー903は、故障履歴121の内容及び保守情報125の内容をサービスプロバイダ901に提供する(912)。保守事業者904は、保守情報125の内容をサービスプロバイダ901に提供する(913)。 User 902 provides the contents of customer information 123 to service provider 901 (911). The manufacturer 903 provides the content of the failure history 121 and the content of the maintenance information 125 to the service provider 901 (912). The maintenance company 904 provides the content of the maintenance information 125 to the service provider 901 (913).
 シーケンス911、912及び913の後、サービスプロバイダ901の保守サーバ100は、図7及び図10に示す処理によって、保守コスト、運用ロス及び寿命ロスの期待値、並びに、不利益の予測値を算出し、推奨保守タイミングを決定する(914)。シーケンス914の後、サービスプロバイダ901は、算出した期待値及び決定した推奨保守タイミングを使用者902に提供する(915)。 After the sequences 911, 912, and 913, the maintenance server 100 of the service provider 901 calculates the expected value of maintenance cost, operation loss and life loss, and predicted value of disadvantage by the processing shown in FIGS. The recommended maintenance timing is determined (914). After the sequence 914, the service provider 901 provides the calculated expected value and the determined recommended maintenance timing to the user 902 (915).
 サービスプロバイダ901は、ユーザ端末170等の出力装置に処理結果を出力させることによって、算出した期待値及び予測値、並びに決定した推奨保守タイミング、使用者902に提供してもよい。また、保守サーバ100が、携帯可能な記憶媒体に処理結果を出力し、サービスプロバイダ901が記憶媒体を使用者902に送ってもよい。 The service provider 901 may provide the user 902 with the calculated expected value and predicted value, the determined recommended maintenance timing, and the user 902 by causing the output device such as the user terminal 170 to output the processing result. Further, the maintenance server 100 may output the processing result to a portable storage medium, and the service provider 901 may send the storage medium to the user 902.
 使用者902は、提供された期待値及び推奨保守タイミングに基づいて、部品の保守タイミングを決定する(916)。 The user 902 determines the maintenance timing of the parts based on the provided expected value and the recommended maintenance timing (916).
 実施例1によれば、保守サーバ100は、異常が発生してからの経過時間における故障確率を、寿命に関する実績値として取得し、取得した故障確率を用いて保守タイミングに従った保守する際に発生する不利益の予測値を算出する。このように故障確率を用いることによって、より実際の部品の稼働状況にあわせた正確な不利益の予測値を算出することができる。そして、保守サーバ100が算出した予測値をユーザに提供することによって、適切な保守計画を立てるための情報をユーザに提供することができる。 According to the first embodiment, the maintenance server 100 acquires the failure probability in the elapsed time after the occurrence of the abnormality as the actual value related to the lifetime, and performs maintenance according to the maintenance timing using the acquired failure probability. Calculate the predicted value of the disadvantage that will occur. By using the failure probability in this way, it is possible to calculate a more accurate predicted value of the disadvantage in accordance with the actual operation status of the parts. Then, by providing the predicted value calculated by the maintenance server 100 to the user, information for making an appropriate maintenance plan can be provided to the user.
 また、保守サーバ100は、算出した予測値に基づき、推奨保守タイミングを決定し、ユーザに提供する。これによって、ユーザは、自らが被る不利益を最小限に留めることができるような適切な保守計画を立てることができる。 Also, the maintenance server 100 determines a recommended maintenance timing based on the calculated predicted value and provides it to the user. This allows the user to develop an appropriate maintenance plan that can minimize the disadvantages they suffer.
 さらに、保守サーバ100は、異常が発生してからの経過時間と異常度とに基づいて故障確率を算出する。これにより、保守サーバ100は、車載器150のセンサが測定した結果を用いて故障確率を算出することができ、より正確な故障確率を算出することができる。 Furthermore, the maintenance server 100 calculates a failure probability based on the elapsed time and the degree of abnormality since the abnormality occurred. Thereby, the maintenance server 100 can calculate a failure probability using the result measured by the sensor of the vehicle-mounted device 150, and can calculate a more accurate failure probability.
 実施例1は、異常が発生してからの経過時間に従って、故障確率を算出した。実施例2は、実施例1と異なり、部品が対象機器に設置されてからの経過時間に従って、故障確率を算出する。 In Example 1, the failure probability was calculated according to the elapsed time after the occurrence of the abnormality. In the second embodiment, unlike the first embodiment, the failure probability is calculated according to the elapsed time after the component is installed in the target device.
 実施例2の保守システムは、実施例1の図1に示す保守システムと同じ構成を有する。実施例2の保守サーバ100は、実施例1の保守サーバ100と同じ物理装置、及び機能部を有する。しかし、実施例2の故障履歴121と実施例1の故障履歴121とは、相違する。また、実施例2の異常推定部122の処理と実施例1の異常推定部122の処理とが相違する。 The maintenance system of the second embodiment has the same configuration as the maintenance system shown in FIG. The maintenance server 100 according to the second embodiment includes the same physical devices and functional units as the maintenance server 100 according to the first embodiment. However, the failure history 121 of the second embodiment is different from the failure history 121 of the first embodiment. Moreover, the process of the abnormality estimation part 122 of Example 2 and the process of the abnormality estimation part 122 of Example 1 are different.
 図14は、実施例2の故障履歴121を示す説明図である。 FIG. 14 is an explanatory diagram showing a failure history 121 according to the second embodiment.
 実施例2の故障履歴121は、異常度推移テーブル300及び故障確率テーブル310の代わりに、アワメータ故障確率テーブル540を有する。アワメータ故障確率テーブル540は、部品名541、部品アワメータ542、故障件数543及び故障確率544を含む。 The failure history 121 of the second embodiment includes an hour meter failure probability table 540 instead of the abnormality degree transition table 300 and the failure probability table 310. The hour meter failure probability table 540 includes a component name 541, a component hour meter 542, the number of failures 543, and a failure probability 544.
 部品名541は、部品の種類を示す。部品アワメータ542は、部品が対象機器に設置されてからの経過時間を示す。 The part name 541 indicates the type of part. The component hour meter 542 indicates an elapsed time since the component was installed in the target device.
 故障件数543は、部品名541が示す種類の部品が、部品アワメータ542が示す経過時間において故障した件数を示す。故障確率544は、部品名541が示す種類の部品が、部品アワメータ542が示す経過時間において故障する確率である。 The number of failures 543 indicates the number of failures of the type of component indicated by the component name 541 in the elapsed time indicated by the component hour meter 542. The failure probability 544 is a probability that a component of the type indicated by the component name 541 will fail in the elapsed time indicated by the component hour meter 542.
 実施例2の情報取得部126は、車載器150が保持する部品名、部品アワメータ及び故障件数を、車載器150又はユーザ端末170等から、所定の周期において、又は、ユーザの指示があった場合に取得する。そして、情報取得部126は、取得した情報に対応する部品名541及び部品アワメータ542のアワメータ故障確率テーブル540のエントリを抽出し、抽出したエントリの故障件数543に、収集した情報に含まれる故障件数を加算する。 The information acquisition unit 126 according to the second embodiment displays the component name, the component hour meter, and the number of failures held by the vehicle-mounted device 150 from the vehicle-mounted device 150 or the user terminal 170 in a predetermined cycle or when a user instruction is given. To get to. Then, the information acquisition unit 126 extracts an entry in the hour name failure probability table 540 of the component name 541 and the component hour meter 542 corresponding to the acquired information, and the number of failures included in the collected information is included in the failure number 543 of the extracted entry. Is added.
 図15は、実施例2の保守における不利益の予測値を算出する処理を示すフローチャートである。 FIG. 15 is a flowchart illustrating a process for calculating a predicted value of a disadvantage in the maintenance of the second embodiment.
 図15に示す処理は、実施例1の図7に示す処理と同じ条件によって開始される。すなわち、保守サーバ100が、所定の異常度の異常が対象機器の部品に発生したことを検知した場合、又は、ユーザ端末170から指示された場合等に図15に示す処理が開始する。 The process shown in FIG. 15 is started under the same conditions as the process shown in FIG. That is, the process shown in FIG. 15 is started when the maintenance server 100 detects that an abnormality with a predetermined abnormality level has occurred in the component of the target device or when instructed by the user terminal 170.
 ただし、実施例2の情報取得部126は、図15に示す処理の開始時に、保守する必要が生じた部品を識別する情報と、さらに、図15に示す処理を開始した時点における部品のアワメータの値とを取得する。具体的には、情報取得部126は、図15に示す処理の開始時に、保守する必要が生じた部品に接続される車載器150から、アワメータの値を取得してもよい。 However, the information acquisition unit 126 according to the second embodiment includes information for identifying a component that needs to be maintained at the start of the process illustrated in FIG. 15 and the component hour meter at the time when the process illustrated in FIG. 15 is started. Get the value. Specifically, the information acquisition unit 126 may acquire the value of the hour meter from the vehicle-mounted device 150 connected to the component that needs to be maintained at the start of the process illustrated in FIG.
 なお、保守する必要が生じた部品を識別する情報は、保守する必要が生じた部品の種類(以下、部品A)と、保守する必要が生じた部品(以下、部品IDa)とを特定できる情報を含む。 The information for identifying the part that needs to be maintained is information that can identify the type of the part that needs to be maintained (hereinafter, part A) and the part that needs to be maintained (hereinafter, part IDa). including.
 そして、実施例2の情報取得部126は、図15に示す処理の開始時に取得した情報を異常推定部122に入力する。図15に示す処理が開始し、情報取得部126から情報を入力された場合、異常推定部122は、アワメータ故障確率テーブル540の部品Aの故障確率544を算出する。そして、異常推定部122は、入力されたアワメータの値から未来を示す期間における部品Aの故障確率の分布を、算出された故障確率544の中から抽出する。 And the information acquisition part 126 of Example 2 inputs the information acquired at the time of the start of the process shown in FIG. When the process illustrated in FIG. 15 is started and information is input from the information acquisition unit 126, the abnormality estimation unit 122 calculates the failure probability 544 of the part A in the hour meter failure probability table 540. Then, the abnormality estimation unit 122 extracts the failure probability distribution of the part A in the period indicating the future from the input hourmeter value from the calculated failure probability 544.
 具体的には、異常推定部122は、部品名541が部品Aを示すエントリの故障件数543の合計値を算出し、算出した合計値に対する故障件数543の数の割合いを、エントリごとに算出する。これによって、異常推定部122は、各エントリの故障確率を算出し、算出した故障確率によって故障確率544を更新する。 Specifically, the abnormality estimation unit 122 calculates the total value of the failure number 543 of the entry whose part name 541 indicates the part A, and calculates the ratio of the number of the failure number 543 to the calculated total value for each entry. To do. Thereby, the abnormality estimation unit 122 calculates the failure probability of each entry, and updates the failure probability 544 with the calculated failure probability.
 図16Aは、実施例2の部品アワメータ542に従った故障確率の分布613aを示す説明図である。 FIG. 16A is an explanatory diagram showing a failure probability distribution 613a according to the component hour meter 542 of the second embodiment.
 図16Aに示す分布613aは、横軸が、アワメータ故障確率テーブル540の部品アワメータ542に対応する。また、縦軸が、アワメータ故障確率テーブル540の故障確率544に対応する。 In the distribution 613a shown in FIG. 16A, the horizontal axis corresponds to the component hour meter 542 of the hour meter failure probability table 540. The vertical axis corresponds to the failure probability 544 of the hour meter failure probability table 540.
 分布613aは、部品アワメータが低く、部品が設置された直後において、故障確率が高いことを示す。これは、部品において初期不良が発生しやすいことを示す。そして、分布613aは、部品アワメータが高く、部品が設置されてから長い時間が経過した場合、故障確率が高いことを示す。 Distribution 613a indicates that the component hour meter is low and the failure probability is high immediately after the component is installed. This indicates that initial failure is likely to occur in the part. The distribution 613a indicates that the probability of failure is high when the component hour meter is high and a long time has elapsed since the component was installed.
 異常推定部122は、アワメータ故障確率テーブル540を生成した後、ステップS1101において、図15に示す処理の開始時に取得したアワメータの値以上の部品アワメータ542と、その故障確率544とを抽出する。これによって、異常推定部122は、図16Bに示す分布613bを抽出する。 After generating the hour meter failure probability table 540, the abnormality estimation unit 122 extracts a component hour meter 542 that is equal to or greater than the value of the hour meter acquired at the start of the processing shown in FIG. 15 and the failure probability 544 in step S1101. Accordingly, the abnormality estimation unit 122 extracts the distribution 613b illustrated in FIG. 16B.
 図16Bは、実施例2の未来の故障確率の分布613bを示す説明図である。 FIG. 16B is an explanatory diagram illustrating a future failure probability distribution 613b according to the second embodiment.
 分布613bは、分布613aと同じく、横軸が部品アワメータ542に対応し、縦軸が故障確率544に対応する。図16Bに示す横軸は、図15に示す処理の開始時に取得したアワメータの値を基準とした相対時間を示してもよい。分布613bは、図15に示す処理の開始時に取得したアワメータの値よりも高い部品アワメータ542の故障確率544を、分布613aから抽出した分布を示す。 In the distribution 613b, the horizontal axis corresponds to the component hour meter 542 and the vertical axis corresponds to the failure probability 544, as in the distribution 613a. The horizontal axis shown in FIG. 16B may indicate a relative time based on the hour meter value acquired at the start of the process shown in FIG. The distribution 613b shows a distribution obtained by extracting the failure probability 544 of the component hour meter 542 higher than the value of the hour meter acquired at the start of the process shown in FIG. 15 from the distribution 613a.
 異常推定部122は、分布613bをコストロス算出部124に入力する。コストロス算出部124は、分布613bを用いて、図7及び図10に示すステップS1002からステップS1013を実行する(ステップS1102)。ステップS1102の後、コストロス算出部124は、図15に示す処理を終了する。 The abnormality estimation unit 122 inputs the distribution 613b to the cost loss calculation unit 124. The cost loss calculation unit 124 executes Steps S1002 to S1013 shown in FIGS. 7 and 10 using the distribution 613b (Step S1102). After step S1102, the cost loss calculation unit 124 ends the process illustrated in FIG.
 実施例2によれば、部品のアワメータの値から故障確率を算出し、期待値を算出する。これによって、経過時間及び異常度の組み合わせと、異常度及び故障件数の組み合わせとに基づいて経過時間及び故障件数の関係を求める必要がなく、処理を低減できる。 According to the second embodiment, the failure probability is calculated from the value of the part hour meter, and the expected value is calculated. Thereby, it is not necessary to obtain the relationship between the elapsed time and the number of failures based on the combination of the elapsed time and the degree of abnormality and the combination of the degree of abnormality and the number of failures, and the processing can be reduced.
 実施例1において算出された運用ロスは、部品が設置される対象機器が冗長化されていないため、部品を交換する際に対象機器が停止することにより発生した。しかし、対象機器が冗長化され、部品を保守する際に対象機器が停止しない場合、運用ロスは低減する。実施例3における保守サーバ100は、対象機器を冗長する他の対象機器に関する情報を取得することによって、運用ロスを正確に算出する。実施例3の保守システムは、実施例1の図1に示す保守システムと同じ構成を有する。実施例3の保守サーバ100は、実施例1の保守サーバ100と同じ物理装置、及び機能部を有する。 The operational loss calculated in Example 1 occurred when the target device stopped when the component was replaced because the target device on which the component was installed was not made redundant. However, if the target device is made redundant and the target device does not stop when the parts are maintained, the operation loss is reduced. The maintenance server 100 according to the third embodiment accurately calculates an operation loss by acquiring information related to other target devices that make the target device redundant. The maintenance system of the third embodiment has the same configuration as the maintenance system shown in FIG. The maintenance server 100 according to the third embodiment includes the same physical devices and functional units as the maintenance server 100 according to the first embodiment.
 しかし、実施例3の顧客情報123と実施例1及び実施例2の顧客情報123とは、内容が相違する。また、実施例3のコストロス算出部124の処理と実施例1及び実施例2のコストロス算出部124の処理とが相違する。 However, the contents of the customer information 123 of the third embodiment and the customer information 123 of the first and second embodiments are different. Further, the processing of the cost loss calculation unit 124 of the third embodiment is different from the processing of the cost loss calculation unit 124 of the first and second embodiments.
 図17は、実施例3の顧客情報123に含まれる余剰テーブル420を示す説明図である。 FIG. 17 is an explanatory diagram illustrating a surplus table 420 included in the customer information 123 according to the third embodiment.
 実施例3の顧客情報123は、実施例1の生産実績テーブル400及び稼働実績テーブル410に加えて、余剰テーブル420を含む。余剰テーブル420は、対象機器を冗長する他の対象機器の個数を示す。 Customer information 123 of the third embodiment includes a surplus table 420 in addition to the production performance table 400 and the operation performance table 410 of the first embodiment. The surplus table 420 indicates the number of other target devices that make the target device redundant.
 余剰テーブル420は、車載器150から所定の周期において送信されてもよいし、保守者がユーザ端末170を介して入力してもよい。余剰テーブル420は、機械ID421、日時422及び余剰台数423を含む。 The surplus table 420 may be transmitted from the in-vehicle device 150 in a predetermined cycle, or may be input via the user terminal 170 by the maintenance person. The surplus table 420 includes a machine ID 421, a date and time 422, and a surplus number 423.
 実施例3の保守サーバ100は、実施例1の顧客情報123を有しても、実施例2の顧客情報123を有してもよい。 The maintenance server 100 of the third embodiment may have the customer information 123 of the first embodiment or the customer information 123 of the second embodiment.
 機械ID421は、生産実績テーブル400の機械ID403に対応し、対象機器を一意に示す。日時422は、日を示してもよいし、日及び時刻を示してもよい。また、日時422は、1日ごとの日を示してもよいし、1週間ごとの日を示してもよいし、1時間ごとの時刻を示してもよい。 The machine ID 421 corresponds to the machine ID 403 of the production result table 400 and uniquely indicates the target device. The date and time 422 may indicate a day, or may indicate a date and time. The date and time 422 may indicate a day every day, a day every week, or a time every hour.
 余剰台数423は、機械ID421が示す対象機器を冗長化する他の対象機器の台数を示す。余剰台数423が0である場合、機械ID421が示す対象機器は冗長化されていない。 The surplus number 423 indicates the number of other target devices that make the target device indicated by the machine ID 421 redundant. When the surplus number 423 is 0, the target device indicated by the machine ID 421 is not made redundant.
 図18は、実施例3の保守における不利益の予測値を算出する処理を示すフローチャートである。 FIG. 18 is a flowchart showing a process for calculating a predicted value of disadvantage in the maintenance of the third embodiment.
 図18に示す処理は、実施例1の図7に示す処理、及び、実施例2の図15に示す処理を開始する条件と同じ条件によって開始する。また、実施例3の情報取得部126が取得する情報も、実施例1の図7に示す処理の開始時において取得した情報、又は、実施例2の図15に示す処理の開始時において取得した情報と同じである。 18 is started under the same conditions as the conditions for starting the process shown in FIG. 7 of the first embodiment and the process shown in FIG. 15 of the second embodiment. The information acquired by the information acquisition unit 126 of the third embodiment is also acquired at the start of the process illustrated in FIG. 7 of the first embodiment or at the start of the process illustrated in FIG. 15 of the second embodiment. Same as information.
 なお、図18に示す処理の開始時において、異常推定部122は、保守する必要が生じた部品の部品ID(部品IDa)を、少なくとも取得する。 Note that, at the start of the processing shown in FIG. 18, the abnormality estimation unit 122 acquires at least a component ID (component IDa) of a component that needs to be maintained.
 図18に示す処理が開始した場合、実施例1の図7に示すステップS1001、又は、実施例2の図15に示すステップS1101を実行する(S1401)。 When the process shown in FIG. 18 starts, step S1001 shown in FIG. 7 of the first embodiment or step S1101 shown in FIG. 15 of the second embodiment is executed (S1401).
 ステップS1401の後、コストロス算出部124は、図7に示すステップS1002を実行し(S1402)、図7に示すステップS1003を実行する(S1403)。また、ステップS1403の後、コストロス算出部124は、ステップS1004及びステップS1005を実行し(S1404)、一方で、ステップS1008及びステップS1009を実行する(S1409)。 After step S1401, the cost loss calculation unit 124 executes step S1002 shown in FIG. 7 (S1402), and executes step S1003 shown in FIG. 7 (S1403). Further, after step S1403, the cost loss calculation unit 124 executes steps S1004 and S1005 (S1404), while executing steps S1008 and S1009 (S1409).
 さらに、コストロス算出部124は、ステップS1403の後、ステップS1006を実行する(S1405)。ステップS1405の後、コストロス算出部124は、図18に示す処理の開始時に取得した部品IDaを示す部品ID412のエントリを、稼働実績テーブル410から抽出し、抽出したエントリの機械ID411を特定する。 Further, the cost loss calculation unit 124 executes step S1006 after step S1403 (S1405). After step S1405, the cost loss calculation unit 124 extracts an entry of the component ID 412 indicating the component IDa acquired at the start of the process illustrated in FIG. 18 from the operation result table 410, and identifies the machine ID 411 of the extracted entry.
 そして、コストロス算出部124は、特定した機械ID411を示す機械ID421の少なくとも一つのエントリを、余剰テーブル420から抽出する。コストロス算出部124は、余剰テーブル420から抽出したエントリの中から、日時422が最も新しいエントリの余剰台数423を特定する。これは、対象機器を冗長する対象機器の数は、日によって変化する可能性があるためである。 Then, the cost loss calculation unit 124 extracts at least one entry of the machine ID 421 indicating the specified machine ID 411 from the surplus table 420. The cost loss calculation unit 124 specifies the surplus number 423 of the entry with the newest date and time 422 from the entries extracted from the surplus table 420. This is because the number of target devices that make the target devices redundant may change from day to day.
 そして、コストロス算出部124は、特定した余剰台数423が0以外であるか否かを判定する(S1405)。特定した余剰台数423が0である場合、コストロス算出部124は、対象機器が冗長化されておらず、運用ロスを低減する必要はないため、ステップS1007を実行する(S1408)。 Then, the cost loss calculation unit 124 determines whether or not the specified surplus number 423 is other than 0 (S1405). When the specified surplus number 423 is 0, the cost loss calculation unit 124 executes Step S1007 because the target device is not made redundant and there is no need to reduce the operation loss (S1408).
 特定した余剰台数423が0以外である場合、コストロス算出部124は、対象機器が冗長化されていると判定し、ステップS1006において算出された運用ロスに0を乗じることによって、運用ロスとして0を算出する(ステップS1407)。ここで、対象機器を冗長化する対象機器が稼働可能な期間を与えられている場合、コストロス算出部124は、冗長化する対象機器が稼働可能な期間と対応する引数Tの時間のみ、運用ロスとして0を算出してもよい。 If the specified surplus number 423 is other than 0, the cost loss calculation unit 124 determines that the target device is made redundant, and multiplies the operation loss calculated in step S1006 by 0, thereby setting 0 as the operation loss. Calculate (step S1407). Here, if the target device a redundant target device is given a possible operation time, Kosutorosu calculation unit 124, the time argument T M Only target device redundancy corresponding with operable period, operational You may calculate 0 as a loss.
 ステップS1407の後、コストロス算出部124は、ステップS1007を実行する(S1408)。ステップS1404、ステップS1408及びステップS1409の後、コストロス算出部124は、ステップS1010及びステップS1011を実行し(S1410)、ステップS1012を実行し(S1411)、ステップS1013を実行する(S1412)。ステップS1412の後、コストロス算出部124は、図18に示す処理を終了する。 After step S1407, the cost loss calculation unit 124 executes step S1007 (S1408). After step S1404, step S1408, and step S1409, the cost loss calculation unit 124 executes step S1010 and step S1011 (S1410), executes step S1012 (S1411), and executes step S1013 (S1412). After step S1412, the cost loss calculation unit 124 ends the process illustrated in FIG.
 なお、前述において対象機器が冗長化される場合を示したが、部品が対象機器内で冗長化される場合、余剰テーブル420は機械ID421の代わりに部品IDを有してもよい。そして、ステップS1406においてコストロス算出部124は、部品IDaが冗長化されているか否かを余剰テーブル420を用いて判定し、部品IDaが冗長化されている場合、ステップS1407を実行してもよい。 In addition, although the case where the target device is made redundant is described above, when the component is made redundant in the target device, the surplus table 420 may have a component ID instead of the machine ID 421. In step S1406, the cost loss calculation unit 124 may determine whether or not the component IDa is made redundant using the surplus table 420. If the component IDa is made redundant, step S1407 may be executed.
 また、前述のコストロス算出部124は、対象機器(主機器)が冗長化される場合、運用ロスを0として算出した。しかし、保守中に稼働する代替の対象機器(副機器)が、主機器よりも、単位時間当たりの生産量が少ない場合、コストロス算出部124は、ステップS1407において、副機器を稼働させることによって減少した利益を、運用ロスとして算出してもよい。 Further, the above-described cost loss calculation unit 124 calculates the operation loss as 0 when the target device (main device) is made redundant. However, if the alternative target device (sub device) that operates during maintenance has a smaller production amount per unit time than the main device, the cost loss calculation unit 124 decreases by operating the sub device in step S1407. The obtained profit may be calculated as an operational loss.
 具体的には、コストロス算出部124は、ステップS1407において、主機器と副機器との単位時間あたりの利益の差を算出し、算出した差を主機器の単位時間あたりの利益によって除算する。そして、コストロス算出部124は、ステップS1006における結果の分布702に、除算した結果を乗じる。そして、コストロス算出部124は、乗じた後の分布702の合計値を、運用ロスの期待値としてステップS1007において加算する。この場合、運用ロスと顧客情報123は、副機器の単位時間当たりの利益を保持してもよい。 Specifically, in step S1407, the cost loss calculation unit 124 calculates the difference in profit per unit time between the main device and the sub device, and divides the calculated difference by the profit per unit time of the main device. The cost loss calculation unit 124 multiplies the result distribution 702 in step S1006 by the divided result. Then, the cost loss calculation unit 124 adds the total value of the distribution 702 after the multiplication as an expected value of operation loss in step S1007. In this case, the operation loss and customer information 123 may hold the profit per unit time of the secondary device.
 実施例3によれば、対象機器が冗長化されているか否かに従って運用ロスを算出することによって、対象機器又は部品の状態に対応した正確な運用ロスの期待値を算出できる。そして、コストロス算出部124は、正確に不利益の予測値を算出できる。 According to the third embodiment, by calculating the operation loss according to whether or not the target device is made redundant, it is possible to calculate an accurate expected value of the operation loss corresponding to the state of the target device or part. Then, the cost loss calculating unit 124 can accurately calculate the predicted value of disadvantage.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手順等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、又はファイル等の情報は、メモリ、ハードディスク若しくはSSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード若しくはDVD等の記録媒体に置くことができる。 Also, each of the above-described configurations, functions, processing units, processing procedures, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as a program, a table, or a file that realizes each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線又は情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線又は情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されている。 Also, the control lines or information lines indicate what is considered necessary for the explanation, and not all control lines or information lines on the product are necessarily shown. In practice, almost all the components are connected to each other.

Claims (15)

  1.  保守支援システムであって、
     プロセッサ及びメモリを備え、
     前記メモリは、機器に実装される部品の保守によってユーザが被る不利益のうち、第1の不利益の程度を示す第1の不利益指標と、第2の不利益の程度を示す第2の不利益指標とを格納し、
     前記第1の不利益指標は、前記部品の故障前に発生する不利益が、前記部品の故障後に発生する不利益より低いものであり、
     前記第2の不利益指標は、前記部品の故障前に発生する不利益が、前記部品の故障後に発生する不利益より高いものであり、
     前記プロセッサは、
     前記部品が使用される期間中の複数の時点における前記部品の複数の故障確率を取得し、
     前記取得した複数の故障確率と、前記第1の不利益指標と、前記第2の不利益指標とを用いて、前記部品を保守した場合に発生する不利益の予測値を、前記部品が使用される期間において保守が行われる複数の候補タイミングにおいて算出し、
     前記算出した複数の予測値を出力することを特徴とする保守支援システム。
    A maintenance support system,
    A processor and memory;
    The memory includes a first disadvantage index indicating a first disadvantage degree and a second disadvantage degree indicating a second disadvantage degree among disadvantages experienced by a user due to maintenance of components mounted on the device. Stores disadvantageous indicators and
    The first disadvantage index is such that a disadvantage that occurs before a failure of the component is lower than a disadvantage that occurs after the failure of the component;
    The second disadvantage index is such that a disadvantage that occurs before a failure of the component is higher than a disadvantage that occurs after the failure of the component;
    The processor is
    Obtaining a plurality of failure probabilities of the part at a plurality of points in time during which the part is used;
    The component uses a predicted value of a disadvantage that occurs when the part is maintained using the plurality of acquired failure probabilities, the first disadvantage index, and the second disadvantage index. Calculated at a plurality of candidate timings during which maintenance is performed,
    A maintenance support system, wherein the calculated plurality of predicted values are output.
  2.  請求項1に記載の保守支援システムであって、
     前記プロセッサは、
     前記複数の候補タイミングから一つの候補タイミングを選択し、
     前記選択された候補タイミングより前の各時点においては、前記故障確率に故障後の前記第1の不利益指標を乗じた値を取得し、前記選択された候補タイミングより後の各時点においては、前記故障確率に故障前の前記第1の不利益指標を乗じた値を取得し、前記乗じた値の合計を前記候補タイミングにおける第1の期待値として算出し、
     前記選択された候補タイミングより前の各時点においては、前記故障確率に故障後の前記第2の不利益指標を乗じた値を取得し、前記選択された候補タイミングより後の各時点においては、前記故障確率に故障前の前記第2の不利益指標を乗じた値を取得し、前記乗じた値の合計を前記候補タイミングにおける第2の期待値として算出し、
     前記算出した第1の期待値に基づく値と前記算出した第2の期待値に基づく値との合計を、前記選択された候補タイミングにおいて前記部品を保守した場合に発生する不利益の予測値として算出することを特徴とする保守支援システム。
    The maintenance support system according to claim 1,
    The processor is
    Selecting one candidate timing from the plurality of candidate timings;
    At each time point before the selected candidate timing, obtain a value obtained by multiplying the failure probability by the first disadvantage index after failure, and at each time point after the selected candidate timing, Obtaining a value obtained by multiplying the failure probability by the first disadvantage index before failure, and calculating a sum of the multiplied values as a first expected value at the candidate timing;
    At each time point before the selected candidate timing, obtain a value obtained by multiplying the failure probability by the second disadvantage index after the failure, and at each time point after the selected candidate timing, Obtaining a value obtained by multiplying the failure probability by the second disadvantage index before failure, and calculating a sum of the multiplied values as a second expected value at the candidate timing;
    The sum of the value based on the calculated first expected value and the value based on the calculated second expected value is used as a predicted value of a disadvantage that occurs when the part is maintained at the selected candidate timing. A maintenance support system characterized by calculating.
  3.  請求項1に記載の保守支援システムであって、
     前記第2の不利益指標は、
     前記故障発生前の期間においては、前記部品の単価及び前記候補タイミングを用いて、時間により漸減する値を与えるものであり、
     前記故障発生後の期間においては、0を与えるものであることを特徴とする保守支援システム。
    The maintenance support system according to claim 1,
    The second disadvantage index is
    In the period before the occurrence of the failure, the unit price of the component and the candidate timing are used to give a value that gradually decreases with time,
    A maintenance support system characterized in that 0 is given in a period after the occurrence of the failure.
  4.  請求項1に記載の保守支援システムであって、
     前記第1の不利益指標は、故障が発生した前記部品を保守するために必要な保守時間と、前記部品が実装される機器が生み出す単位時間あたりの利益とを乗じた値を与えるものであり、
     前記保守時間は、前記故障発生前の期間においては短く、前記故障発生後の期間においては長いことを特徴とする保守支援システム。
    The maintenance support system according to claim 1,
    The first disadvantageous index gives a value obtained by multiplying a maintenance time necessary for maintaining the part where the failure has occurred and a profit per unit time generated by a device on which the part is mounted. ,
    The maintenance support system is characterized in that the maintenance time is short in a period before the occurrence of the failure and long in a period after the occurrence of the failure.
  5.  請求項4に記載の保守支援システムであって、
     前記プロセッサは、
     前記複数の候補タイミングから一つの候補タイミングを選択し、
     前記部品が冗長化されているかを示す情報を取得し、
     前記選択された候補タイミングより前の各時点においては、前記故障確率に故障後の前記第1の不利益指標を乗じた値を取得し、前記選択された候補タイミングより後の各時点においては、前記故障確率に故障前の前記第1の不利益指標を乗じた値を取得し、前記乗じた値の合計を算出し、
     前記部品が冗長化されている場合、前記算出した合計よりも低い値を第1の期待値に設定し、
     前記選択された候補タイミングより前の各時点においては、前記故障確率に故障後の前記第2の不利益指標を乗じた値を取得し、前記選択された候補タイミングより後の各時点においては、前記故障確率に前記故障前の前記第2の不利益指標を乗じた値を取得し、前記乗じた値の合計を前記候補タイミングにおける第2の期待値として算出し、
     前記設定した第1の期待値と前記算出した第2の期待値との合計を、前記選択された候補タイミングにおいて前記部品を保守した場合に発生する不利益の予測値として算出することを特徴とする保守支援システム。
    The maintenance support system according to claim 4,
    The processor is
    Selecting one candidate timing from the plurality of candidate timings;
    Obtaining information indicating whether the component is redundant;
    At each time point before the selected candidate timing, obtain a value obtained by multiplying the failure probability by the first disadvantage index after failure, and at each time point after the selected candidate timing, Obtaining a value obtained by multiplying the failure probability by the first disadvantage index before failure, and calculating a sum of the multiplied values;
    When the component is made redundant, a value lower than the calculated total is set as the first expected value,
    At each time point before the selected candidate timing, obtain a value obtained by multiplying the failure probability by the second disadvantage index after the failure, and at each time point after the selected candidate timing, Obtaining a value obtained by multiplying the failure probability by the second disadvantage index before the failure, and calculating a sum of the multiplied values as a second expected value at the candidate timing;
    The sum of the set first expected value and the calculated second expected value is calculated as a predicted value of a disadvantage that occurs when the part is maintained at the selected candidate timing. Maintenance support system.
  6.  請求項1に記載の保守支援システムであって、
     前記プロセッサは、
     前記部品の故障前に保守することによって過去に発生した費用の実績値を、前記第1の不利益指標が示す故障前の不利益に設定し、
     前記部品の故障後に保守することによって過去に発生した費用の実績値を、前記第1の不利益指標が示す故障後の不利益に設定することを特徴とする保守支援システム。
    The maintenance support system according to claim 1,
    The processor is
    The actual value of the cost incurred in the past by performing maintenance before the failure of the part is set to the disadvantage before the failure indicated by the first disadvantage index,
    A maintenance support system, wherein an actual value of expenses generated in the past by performing maintenance after failure of the part is set to a disadvantage after failure indicated by the first disadvantage index.
  7.  請求項1に記載の保守支援システムであって、
     前記プロセッサは、
     前記複数の時点における前記部品の過去の故障の発生を示す故障実績を取得し、
     前記取得した故障実績を用いて、前記複数の時点における故障確率を算出することによって、前記複数の故障確率を取得することを特徴とする保守支援システム。
    The maintenance support system according to claim 1,
    The processor is
    Obtaining a failure record indicating the occurrence of a past failure of the component at the plurality of time points;
    A maintenance support system, wherein the plurality of failure probabilities are acquired by calculating failure probabilities at the plurality of points in time using the acquired failure records.
  8.  請求項1に記載の保守支援システムであって、
     前記プロセッサは、
     前記部品を測定したセンサ値を取得し、
     前記部品に異常が発生した後のセンサ値と、当該センサ値における前記部品の故障の発生状況とを含む異常度情報に基づいて、前記複数の時点における故障確率を算出することによって、前記複数の故障確率を取得することを特徴とする保守支援システム。
    The maintenance support system according to claim 1,
    The processor is
    Get the sensor value that measured the part,
    By calculating failure probabilities at the plurality of time points based on abnormality degree information including a sensor value after the abnormality has occurred in the component and a failure occurrence state of the component at the sensor value. A maintenance support system characterized by acquiring a failure probability.
  9.  請求項1に記載の保守支援システムであって、
     前記プロセッサは、
     前記不利益の予測値が最小となる時点を選択し、
     推奨する保守タイミングとして、前記選択した時点を出力することを特徴とする保守支援システム。
    The maintenance support system according to claim 1,
    The processor is
    Select the point in time when the predicted value of the disadvantage is minimum,
    A maintenance support system that outputs the selected time point as a recommended maintenance timing.
  10.  保守支援システムによる保守支援方法であって、
     前記保守支援システムは、プロセッサ及びメモリを備え、
     前記メモリは、機器に実装される部品の保守によってユーザが被る不利益のうち、第1の不利益の程度を示す第1の不利益指標と、第2の不利益の程度を示す第2の不利益指標とを格納し、
     前記第1の不利益指標は、前記部品の故障前に発生する不利益が、前記部品の故障後に発生する不利益より低いものであり、
     前記第2の不利益指標は、前記部品の故障前に発生する不利益が、前記部品の故障後に発生する不利益より高いものであり、
     前記保守支援方法は、
     前記プロセッサが、前記部品が使用される期間中の複数の時点における前記部品の複数の故障確率を取得し、
     前記プロセッサが、前記取得した複数の故障確率と、前記第1の不利益指標と、前記第2の不利益指標とを用いて、前記部品を保守した場合に発生する不利益の予測値を、前記部品が使用される期間において保守が行われる複数の候補タイミングにおいて算出し、
     前記プロセッサが、前記算出した複数の予測値を出力することを特徴とする保守支援方法。
    A maintenance support method by a maintenance support system,
    The maintenance support system includes a processor and a memory,
    The memory includes a first disadvantage index indicating a first disadvantage degree and a second disadvantage degree indicating a second disadvantage degree among disadvantages experienced by a user due to maintenance of components mounted on the device. Stores disadvantageous indicators and
    The first disadvantage index is such that a disadvantage that occurs before a failure of the component is lower than a disadvantage that occurs after the failure of the component;
    The second disadvantage index is such that a disadvantage that occurs before a failure of the component is higher than a disadvantage that occurs after the failure of the component;
    The maintenance support method includes:
    The processor obtains a plurality of failure probabilities of the part at a plurality of points in time during which the part is used;
    The processor uses the acquired plurality of failure probabilities, the first disadvantage index, and the second disadvantage index to predict predicted values of disadvantages that occur when the component is maintained, Calculate at a plurality of candidate timings during which maintenance is performed during the period in which the part is used,
    A maintenance support method, wherein the processor outputs the calculated predicted values.
  11.  請求項10に記載の保守支援方法であって、
     前記プロセッサが、前記複数の候補タイミングから一つの候補タイミングを選択し、
     前記プロセッサが、前記選択された候補タイミングより前の各時点においては、前記故障確率に故障後の前記第1の不利益指標を乗じた値を取得し、前記選択された候補タイミングより後の各時点においては、前記故障確率に前記故障前の前記第1の不利益指標を乗じた値を取得し、前記乗じた値の合計を前記候補タイミングにおける第1の期待値として算出し、
     前記プロセッサが、前記選択された候補タイミングより前の各時点においては、前記故障確率に故障後の前記第2の不利益指標を乗じた値を取得し、前記選択された候補タイミングより後の各時点においては、前記故障確率に前記故障前の前記第2の不利益指標を乗じた値を取得し、前記乗じた値の合計を前記候補タイミングにおける第2の期待値として算出し、
     前記プロセッサが、前記算出した第1の期待値に基づく値と前記算出した第2の期待値に基づく値との合計を、前記選択された候補タイミングにおいて前記部品を保守した場合に発生する不利益の予測値として算出することを特徴とする保守支援方法。
    The maintenance support method according to claim 10,
    The processor selects one candidate timing from the plurality of candidate timings;
    The processor obtains a value obtained by multiplying the failure probability by the first disadvantage index after a failure at each time point before the selected candidate timing, and each processor after the selected candidate timing. At the time point, a value obtained by multiplying the failure probability by the first disadvantage index before the failure is obtained, and a sum of the multiplied values is calculated as a first expected value at the candidate timing,
    The processor obtains a value obtained by multiplying the failure probability by the second disadvantage index after failure at each time point before the selected candidate timing, and each after the selected candidate timing. At the time point, a value obtained by multiplying the failure probability by the second disadvantage index before the failure is obtained, and a sum of the multiplied values is calculated as a second expected value at the candidate timing,
    Disadvantages that occur when the processor maintains the part at the selected candidate timing, with the processor summing the value based on the calculated first expected value and the value based on the calculated second expected value A maintenance support method characterized in that it is calculated as a predicted value.
  12.  請求項10に記載の保守支援方法であって、
     前記第2の不利益指標は、
     前記故障発生前の期間においては、前記部品の単価及び前記候補タイミングを用いて、時間により漸減する値を与えるものであり、
     前記故障発生後の期間においては、0を与えるものであることを特徴とする保守支援方法。
    The maintenance support method according to claim 10,
    The second disadvantage index is
    In the period before the occurrence of the failure, the unit price of the component and the candidate timing are used to give a value that gradually decreases with time,
    A maintenance support method, wherein 0 is given in a period after the occurrence of the failure.
  13.  メモリを有するコンピュータを実行させるための保守支援プログラムであって、
     前記メモリは、機器に実装される部品の保守によってユーザが被る不利益のうち、第1の不利益の程度を示す第1の不利益指標と、第2の不利益の程度を示す第2の不利益指標とを格納し、
     前記第1の不利益指標は、前記部品の故障前に発生する不利益が、前記部品の故障後に発生する不利益より低いものであり、
     前記第2の不利益指標は、前記部品の故障前に発生する不利益が、前記部品の故障後に発生する不利益より高いものであり、
     前記保守支援プログラムは、前記コンピュータに、
     前記部品が使用される期間中の複数の時点における前記部品の複数の故障確率を取得する手順と、
     前記取得した複数の故障確率と、前記第1の不利益指標と、前記第2の不利益指標とを用いて、前記部品を保守した場合に発生する不利益の予測値を、前記部品が使用される期間において保守が行われる複数の候補タイミングにおいて算出する手順と、
     前記算出した複数の予測値を出力する手順と、を実行させるための保守支援プログラム。
    A maintenance support program for executing a computer having a memory,
    The memory includes a first disadvantage index indicating a first disadvantage degree and a second disadvantage degree indicating a second disadvantage degree among disadvantages experienced by a user due to maintenance of components mounted on the device. Stores disadvantageous indicators and
    The first disadvantage index is such that a disadvantage that occurs before a failure of the component is lower than a disadvantage that occurs after the failure of the component;
    The second disadvantage index is such that a disadvantage that occurs before a failure of the component is higher than a disadvantage that occurs after the failure of the component;
    The maintenance support program is stored in the computer.
    Obtaining a plurality of failure probabilities of the part at a plurality of points in time during which the part is used;
    The component uses a predicted value of a disadvantage that occurs when the part is maintained using the plurality of acquired failure probabilities, the first disadvantage index, and the second disadvantage index. A procedure for calculating at a plurality of candidate timings during which maintenance is performed;
    A maintenance support program for executing the procedure of outputting the calculated plurality of predicted values.
  14.  請求項13に記載の保守支援プログラムであって、
     前記コンピュータに、
     前記複数の候補タイミングから一つの候補タイミングを選択する手順と、
     前記選択された候補タイミングより前の各時点においては、前記故障確率に故障後の前記第1の不利益指標を乗じた値を取得し、前記選択された候補タイミングより後の各時点においては、前記故障確率に故障前の前記第1の不利益指標を乗じた値を取得し、前記乗じた値の合計を前記候補タイミングにおける第1の期待値として算出する手順と、
     前記選択された候補タイミングより前の各時点においては、前記故障確率に故障後の前記第2の不利益指標を乗じた値を取得し、前記選択された候補タイミングより後の各時点においては、前記故障確率に故障前の前記第2の不利益指標を乗じた値を取得し、前記乗じた値の合計を前記候補タイミングにおける第2の期待値として算出する手順と、
     前記算出した第1の期待値に基づく値と前記算出した第2の期待値に基づく値との合計を、前記選択された候補タイミングにおいて前記部品を保守した場合に発生する不利益の予測値として算出する手順と、を実行させるための保守支援プログラム。
    The maintenance support program according to claim 13,
    In the computer,
    A procedure for selecting one candidate timing from the plurality of candidate timings;
    At each time point before the selected candidate timing, obtain a value obtained by multiplying the failure probability by the first disadvantage index after failure, and at each time point after the selected candidate timing, Obtaining a value obtained by multiplying the failure probability by the first disadvantage index before failure, and calculating a sum of the multiplied values as a first expected value at the candidate timing;
    At each time point before the selected candidate timing, obtain a value obtained by multiplying the failure probability by the second disadvantage index after the failure, and at each time point after the selected candidate timing, Obtaining a value obtained by multiplying the failure probability by the second disadvantage index before failure, and calculating a sum of the multiplied values as a second expected value at the candidate timing;
    The sum of the value based on the calculated first expected value and the value based on the calculated second expected value is used as a predicted value of a disadvantage that occurs when the part is maintained at the selected candidate timing. And a maintenance support program for executing the calculation procedure.
  15.  請求項13に記載の保守支援プログラムであって、
     前記第2の不利益指標は、
     前記故障発生前の期間においては、前記部品の単価及び前記候補タイミングを用いて、時間により漸減する値を与えるものであり、
     前記故障発生後の期間においては、0を与えるものであることを特徴とする保守支援プログラム。
    The maintenance support program according to claim 13,
    The second disadvantage index is
    In the period before the occurrence of the failure, the unit price of the component and the candidate timing are used to give a value that gradually decreases with time,
    A maintenance support program characterized in that 0 is given in a period after the occurrence of the failure.
PCT/JP2015/052941 2015-02-03 2015-02-03 Maintenance assistance system, maintenance assistance method, and maintenance assistance program WO2016125248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052941 WO2016125248A1 (en) 2015-02-03 2015-02-03 Maintenance assistance system, maintenance assistance method, and maintenance assistance program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052941 WO2016125248A1 (en) 2015-02-03 2015-02-03 Maintenance assistance system, maintenance assistance method, and maintenance assistance program

Publications (1)

Publication Number Publication Date
WO2016125248A1 true WO2016125248A1 (en) 2016-08-11

Family

ID=56563613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052941 WO2016125248A1 (en) 2015-02-03 2015-02-03 Maintenance assistance system, maintenance assistance method, and maintenance assistance program

Country Status (1)

Country Link
WO (1) WO2016125248A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032206A (en) * 2016-08-24 2018-03-01 株式会社東芝 Maintenance support device, maintenance support method, and computer program
WO2018042982A1 (en) * 2016-08-31 2018-03-08 日立工機株式会社 Failure diagnosis system and management system
WO2018147362A1 (en) * 2017-02-08 2018-08-16 株式会社日立産機システム Industrial machinery monitoring device and industrial machinery monitoring method
JP2021174437A (en) * 2020-04-30 2021-11-01 株式会社デンソー Information processing system and vehicle entrance planning method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004334457A (en) * 2003-05-07 2004-11-25 Mitsubishi Electric Corp Check plan preparing device and check plan preparing method
JP2004362115A (en) * 2003-06-03 2004-12-24 Fujitsu Ltd Manufacture scheduling method and program
US20080228314A1 (en) * 2007-03-02 2008-09-18 Abb Research Ltd. Dynamic maintenance plan for an industrial robot
JP2009199596A (en) * 2008-02-19 2009-09-03 Toshiba Corp Maintenance scheduling system, maintenance scheduling method, and image forming apparatus
JP2010102461A (en) * 2008-10-23 2010-05-06 Kddi Corp Failure risk evaluation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004334457A (en) * 2003-05-07 2004-11-25 Mitsubishi Electric Corp Check plan preparing device and check plan preparing method
JP2004362115A (en) * 2003-06-03 2004-12-24 Fujitsu Ltd Manufacture scheduling method and program
US20080228314A1 (en) * 2007-03-02 2008-09-18 Abb Research Ltd. Dynamic maintenance plan for an industrial robot
JP2009199596A (en) * 2008-02-19 2009-09-03 Toshiba Corp Maintenance scheduling system, maintenance scheduling method, and image forming apparatus
JP2010102461A (en) * 2008-10-23 2010-05-06 Kddi Corp Failure risk evaluation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASUNARI AKIKUNI: "Maintenance Planning Applying Risk-Based Maintenance", TOSHIBA REVIEW, vol. 58, 1 January 2003 (2003-01-01), pages 49 - 51 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032206A (en) * 2016-08-24 2018-03-01 株式会社東芝 Maintenance support device, maintenance support method, and computer program
WO2018042982A1 (en) * 2016-08-31 2018-03-08 日立工機株式会社 Failure diagnosis system and management system
WO2018147362A1 (en) * 2017-02-08 2018-08-16 株式会社日立産機システム Industrial machinery monitoring device and industrial machinery monitoring method
JPWO2018147362A1 (en) * 2017-02-08 2019-11-07 株式会社日立産機システム Industrial equipment monitoring apparatus and industrial equipment monitoring method
JP2021174437A (en) * 2020-04-30 2021-11-01 株式会社デンソー Information processing system and vehicle entrance planning method

Similar Documents

Publication Publication Date Title
JP4237610B2 (en) Maintenance support method and program
CA2746385C (en) Turbine lifespan modeling
US8271961B1 (en) Method and system for predictive software system quality measurement
US9530256B2 (en) Generating cumulative wear-based indicators for vehicular components
CN104966141A (en) Industrial asset health model update
EP1859365B1 (en) Computer qc module testing monitor
US20090265118A1 (en) Methods and systems for providing unanticipated demand predictions for maintenance
US20130041783A1 (en) System and method for dynamic spare part management
WO2016125248A1 (en) Maintenance assistance system, maintenance assistance method, and maintenance assistance program
US11032627B2 (en) Maintenance device, presentation system, and program
CN101308387A (en) Apparatus and method for monitoring device condition and computer readable medium
JP2016038657A (en) Diagnosis support system and diagnosis support method
CN107121943B (en) Method and device for obtaining health prediction information of intelligent instrument
US10775521B2 (en) Sensor apparatus, planning processing system, and planning method
JP6975086B2 (en) Quality evaluation method and quality evaluation equipment
US11165665B2 (en) Apparatus and method to improve precision of identifying a range of effects of a failure in a system providing a multilayer structure of services
JP5941789B2 (en) Parts demand forecasting system, parts demand forecasting method, and program
US20220300470A1 (en) Failure probability evaluation system
EP2535853A1 (en) Methods systems and apparatus for ranking tests used to identify faults in a system
WO2008050323A2 (en) Method for measuring health status of complex systems
CN105137776B (en) Metering automation terminal control accessory system
Das Development of a comprehensive structures management methodology for the Highways Agency
WO2020166156A1 (en) Failure risk assessment system and failure risk assessment method
KR101262289B1 (en) Method for analyzing failure rate and computer readable record-midium on which program for excuting method thereof
JP2002117164A (en) Repair cost predicting system for working vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP