WO2020166000A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2020166000A1
WO2020166000A1 PCT/JP2019/005323 JP2019005323W WO2020166000A1 WO 2020166000 A1 WO2020166000 A1 WO 2020166000A1 JP 2019005323 W JP2019005323 W JP 2019005323W WO 2020166000 A1 WO2020166000 A1 WO 2020166000A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
solder
power module
printed circuit
board
Prior art date
Application number
PCT/JP2019/005323
Other languages
French (fr)
Japanese (ja)
Inventor
清隆 冨山
宏義 宮崎
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201980091127.XA priority Critical patent/CN113396479B/en
Priority to PCT/JP2019/005323 priority patent/WO2020166000A1/en
Priority to JP2020571985A priority patent/JP7184933B2/en
Publication of WO2020166000A1 publication Critical patent/WO2020166000A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components

Definitions

  • the present invention relates to a power conversion device including a power module mounting board connected to a power module.
  • Patent Document 1 is known as a technique of inserting an external connection terminal into a through hole of a wiring board and joining the external connection terminal with molten solder.
  • Patent Document 1 discloses a technique of suppressing a solder bridge by defining an interval between lands when an external connection terminal such as a connector is inserted into a through hole and soldered.
  • Patent Document 1 discloses a land structure that suppresses solder bridges and has high solder connection reliability.
  • the soldering method is to jet a solder into a molten solder bath, and to jet the molten solder into a wiring board.
  • the flow soldering method of immersing is used.
  • a connection technology such as screwing a terminal to a metal bar is used for a path through which a large current flows, and in a large current component such as a power module, the terminal and the printed circuit board are soldered to each other. ..
  • the power module has a large heat capacity, it is difficult to mount it on a multilayer substrate such as a printed circuit board, and it is mounted separately from the printed circuit board. In order to solder the terminals of the power module in the through holes of the printed circuit board as separate components, it is difficult to work with the above flow soldering method.
  • soldering When soldering is used to connect the terminals of large current components such as power modules to the through holes of the printed circuit board, at least the surface plating of the through holes and the terminals should be at least to prevent an increase in electrical resistance in the through holes. It is necessary to fill the solder with 75% or more of the depth of the through hole. On the other hand, in order to supply a large current without loss, it is necessary to connect the multi-layered wiring with a plurality of via holes while performing the multi-layered wiring in the board with the solid copper foil of the multi-layered board.
  • this product has an excellent heat dissipation structure.
  • the heat dissipation rate of the solid copper foil (multilayer wiring) from the through hole is too fast, so the molten solder is cooled before it is sufficiently filled between the through hole and the terminal. It will be hardened in the middle of the through hole. As a result, a sufficient connection for passing a large current cannot be secured, and the problem of heat generation or heat dissipation of the terminal joint portion may occur during circuit operation.
  • the object of the present invention is to suppress the temperature rise of the power conversion device having the power module mounting board having the through holes into which the terminals of the power module are inserted.
  • a preferred example of the present invention is a power conversion device having a power module having a terminal and a power module mounting board having a through hole into which the terminal is inserted,
  • the power module mounting board It is a power converter having a wiring pattern arranged inside and outside, an insulating layer for insulating between the wiring patterns, and a solder pool in which solder is stored.
  • the present invention it is possible to suppress the temperature rise of the power conversion device having the power module mounting board having the through hole into which the terminal of the power module is inserted.
  • FIG. 3 is a diagram showing a circuit configuration of a power conversion device according to the first embodiment. It is a block diagram before assembling the power converter device of Example 1. It is a block diagram after assembling the power converter device of Example 1.
  • FIG. 1 is a diagram for explaining a power conversion device according to a first embodiment, specifically, a state in which a component pad 8, a through hole 7, and a power module terminal 12 on a printed circuit board 1 are soldered. ..
  • the printed circuit board 1 on which the components are mounted has a configuration in which circuits such as a control circuit and a drive circuit of the power conversion device are mounted on a bare board and connected to the power module 11.
  • the printed circuit board 1 includes copper foils 2a and 2b, vias 6 whose inner surfaces are formed by copper plating 4, through holes 7, solder pools 31, component pads 8 formed by etching copper foil, and wiring not shown.
  • the insulating layer 3 for insulating between the copper foils 2a and 2b forming the pattern, the solder resist 5, and the silk 9 are included.
  • the through hole 7 is a through hole having an inner surface made of copper plating 4 and penetrating the power module terminal 12 connected to an element in the power module 11.
  • the solder pool 31 is formed by inserting a counterbore into an area including the through hole 7 and stores the solder 21.
  • the through holes 7 are provided for the purpose of electrically connecting the component pads 8 formed on the front and back of the printed circuit board 1, external wiring patterns, and internal wiring patterns.
  • the solder pool 31 has a depth reaching the inner layer copper foil 2b of the first layer from the upper surface of the printed board 1 to increase the connection area between the solder 21 and the inner layer copper foil 2b.
  • the power module terminal 12 provided in the power module 11 is passed through the solder pool 31, and the bottom of the solder pool 31 and the through hole 7 are connected. Further, by filling the solder between the copper plating 4 on the inner surface of the through hole 7 and the power module terminal 12, the power module terminal 12 and the wiring such as the copper foils 2a and 2b are electrically connected and fixed. ..
  • the depth of the solder pool 31 is set to reach the core layer, so that the depth of the through hole can be sufficiently deeper than the depth of the through hole. Therefore, the electric resistance between the power module terminal 12 and the wiring can be reduced, and heat generation during operation can be easily suppressed. Further, since the solder pool reaches the core layer, the electric resistance can be reduced even in the case of a multilayer printed circuit board, and heat generation during operation can be easily suppressed.
  • FIG. 4 is a flow showing the flow of the manufacturing process (S40 to S45) of the printed circuit board 1 (bare board) on the power module mounting circuit board 81 and the component mounting process (S46) on the printed circuit board 1.
  • a base material charging step (S40) of preparing a base material for the printed circuit board 1 and components to be mounted is executed.
  • a drilling process such as through holes 7 and vias 6 is performed on the printed circuit board.
  • a spot facing step (S42) of forming the solder pool 31 is executed.
  • an etching step (S44) of etching the wiring pattern on the surface of the printed board and the component pad 8 is executed.
  • a resist applying step of applying the solder resist 5 and a resist/silk printing step of printing silk (S45) are executed.
  • the solder trowel locally heats and melts the solder in the solder pool in which the solder has been accumulated, and the through hole 7 is filled with the solder. Then, the soldering step (S46) of joining the power module terminal 12 and the inner surface of the through hole is performed. Then, the power module mounting substrate 81 is completed (S47).
  • the printed circuit board 1 is initially in the state of a copper clad board with copper foil stretched over the entire front and back surfaces, and in the case of a double-sided two-layer board, it is also called a base material.
  • a base material in the case of a multilayer printed circuit board, an inner layer having a wiring pattern is combined inside the printed circuit board 1.
  • the counterboring process as shown in FIG. 5B is performed so that the solder pool 31 for storing the solder filling the through holes 7 reaches the inner copper foil 2b.
  • copper plating 4 which is a conductor, is applied to the inner walls of the holes such as the through holes 7 and the vias 6 as shown in FIG. 5C in order to establish circuit continuity with the front and back of the printed circuit board or the inner layer of the multilayer board. ..
  • the wiring pattern on the surface of the printed circuit board and the component pad 8 for soldering the component terminal such as the power module terminal to the wiring pattern are unnecessary by etching the copper foil stretched on the front and back of the printed circuit board 1.
  • the copper foil is removed to form a film as shown in FIG.
  • the solder resist 5 is applied.
  • the printed circuit board 1 manufactured without applying this embodiment will be described.
  • the printed circuit board 1 of FIG. 6 is different from that of FIG. 5E in that there is no solder pool 31 in which the solder 21 is stored.
  • the power module 11 is soldered to form a power module mounting board 81 as a comparative example shown in FIG. 7.
  • the solder filling depth is b when the through hole length is a.
  • b In order to prevent the problem of heat generation and heat radiation of the terminal portion during circuit operation, b must be 75% or more with respect to a.
  • the solder iron 51 and the initial molten solder 21 melted by the solder iron 51 are used to connect the power module terminal 12 and the through hole.
  • the holes 7 must be warmed above the solder melting point temperature required for solder penetration.
  • the power module terminal 12 transfers the heat of the soldering iron 51 and the initial molten solder 21 melted by the soldering iron 51 to the power module 11 having a lower temperature.
  • the heat of the soldering iron 51 and the initial molten solder 21 melted by the soldering iron 51 is transferred to the outer layer copper foil 2a and the inner layer copper foil 2b having a lower temperature via the through holes 7.
  • the power module 11 is a component having a large heat capacity, or when the through hole 7 is connected to a solid copper foil, the component having a large heat capacity or the solid copper foil has high heat retention, so that the soldering iron 51 or the soldering iron is used.
  • the heat of the initial molten solder 21 melted at 51 is difficult to be transmitted to the distant position of the through hole 7 to be soldered.
  • the solder 21 for solidifying the solder 21 for connecting the power module terminal 12 and the through hole 7 does not reach a temperature higher than the melting point of the solder required for sufficiently penetrating the solder 21, and the solder 21 solidifies in the middle of the through hole 7.
  • a sufficient connection for flowing a large current (the solder filling depth b when the length of the through hole is a is 75% or more) cannot be secured, and the problem of heat generation and heat dissipation of the terminal portion occurs. It can happen. In addition, it also causes manufacturing defects.
  • a counterbore having a depth reaching the inner layer copper foil 2b is inserted around the through hole 7 to be soldered, and the solder filled in the through hole 7 is filled.
  • the printed circuit board 1 provided with the stored solder pool 31 is configured.
  • FIG. 8 is a circuit configuration diagram of the power conversion device 60 according to the first embodiment.
  • the power converter 60 of FIG. 8 includes a forward converter 61, an inverse converter 62, a smoothing capacitor 63, a cooling fan 65, a radiation fin 83, a control circuit 66, a drive circuit 67, and a digital converter for supplying electric power to an AC motor 64.
  • An operation panel 68 and a shunt resistor 69 are provided.
  • FIG. 8 shows a case where an AC power supply is used as the input power supply.
  • the forward converter 61 converts AC power into DC power.
  • the smoothing capacitor 63 is provided in the DC intermediate circuit and smoothes the DC power converted by the forward converter 61.
  • the inverse converter 62 converts DC power into AC power having an arbitrary frequency.
  • a temperature protection detection circuit is mounted inside the inverse converter 62.
  • the temperature protection detection circuit may be equipped with a thermistor 70 as shown in FIG. 8 to detect the temperature, or a semiconductor element in the inverse converter 62 may have a built-in sensing function for temperature sensing.
  • the forward converter 61 and the inverse converter 62 are generally packaged as a forward converter module 61A and an inverse converter module 62A, respectively, in one package. Further, it is common to integrate the forward converter module 61A and the inverse converter module 62A into the power module 11. However, one of the forward converter 61 and the inverse converter 62 is mounted on the power module 11. May be.
  • the power conversion device 60 is configured by electrically connecting the components of the circuit shown in FIG. 8 using an electric connection component such as an electric wire or a metal bar, or a printed board.
  • the power converter 60 in this embodiment can be applied to a general-purpose inverter, a servo amplifier, a DCBL controller, etc. as a power converter.
  • FIG. 9 is a configuration diagram before assembling the power conversion device including the printed circuit board and the power module of the first embodiment.
  • the cooling fan 65, the AC motor 64, and the digital operation panel 68 of FIG. 8 are omitted.
  • the power module 11 is fixed to the heat radiation fins 83 by the mounting screws 84.
  • the power module mounting board 81 is assembled so that the built-in board 82 is fixed to the radiation fins 83 and then fixed to the radiation fins.
  • the embedded board 82 is a board on which the smoothing capacitor 63 is mounted, and the power module mounting board 81 is a board on which the control circuit 66 and the drive circuit 67 of FIG. 8 are mounted on a bare board (printed circuit board 1).
  • FIG. 10 is a configuration diagram after assembling the power module mounting substrate 81, the built-in substrate 82, the power module 11 and the radiation fins 83 of the first embodiment.
  • FIG. 10 is a configuration diagram of the power conversion device after the step described in FIG. 9.
  • the power module terminal 12 of the power module 11 is inserted through the component pad 8 of the power module mounting board 81.
  • the power module terminal 12 and the component pad 8 are electrically connected by soldering, but it is difficult to manufacture by flow and reflow soldering, and soldering by hand soldering is required.
  • soldering by hand soldering is required.
  • an electric power converter such as that shown in FIG. 10 is to be mounted in a normal flow device, there is a manufacturing problem that the remaining heat time is long and the soldering is not stable unless the remaining heat temperature is high. Further, the power conversion device is a heavy object and is difficult to flow with a flow device.
  • the power conversion measure is performed.
  • the area of can be reduced.
  • the heat capacity obtained in the solder pool suppresses a drop in heat transfer from the soldering surface of the printed circuit board 1 and facilitates maintaining a temperature equal to or higher than the solder melting point temperature required for solder penetration. Then, the molten solder can be maintained in a molten state only for the time required to fill the through holes, and it is possible to avoid the occurrence of insufficient flow-up (insufficiency of solder rise).
  • the first embodiment workability is improved because it is not necessary to use a large-sized and large heat capacity soldering iron and heating for a long time.
  • the height of filling the solder in the height direction of the through hole 7 by the depth of the solder pool 31 is shorter than that in the comparative example, and the solder is sufficiently filled in the gap in the through hole 7. Can be easily filled.
  • the solder 21 in the solder pool 31 has a heat capacity corresponding to its volume, the heat capacity obtained in the solder pool absorbs and dissipates the heat of the circuit during the circuit operation, and the heat of the printed circuit board 1 is absorbed. Controls temperature rise.
  • a power conversion device will be described with reference to FIGS. 2 and 7.
  • the present embodiment describes another example of the configuration of the printed circuit board 1 in the first embodiment. Therefore, the description of the portions common to the first embodiment will be omitted.
  • FIG. 2 is a cross-sectional view of the printed circuit board 1 on which the components are mounted and the power module 11.
  • the solder pool 31 is formed by arranging the step structure 41 on the soldering side surface of the printed circuit board 1 which is locally soldered with the soldering iron 51 or the like.
  • the step structure 41 is provided on the soldering side surface of the printed circuit board 1 around the component pads 8 to be soldered and the power module terminals 12.
  • the step structure 41 has a sufficient thickness to form the solder pool 31, and serves to prevent the molten solder 21 from spreading in the lateral direction of the printed circuit board 1.
  • the step structure 41 may have the above-mentioned function.
  • a printed circuit board 1 manufactured without applying this embodiment is shown in FIG.
  • the printed board 1 having the solder pool 31 can be provided by adding the step structure 41 to the printed board 1 of FIG.
  • the printed board 1 having the solder pool 31 can also be provided by providing the solder resist 5 and the silk 9 described in FIG. 7 with a sufficient thickness to form the solder pool 31.
  • a power conversion device will be described with reference to FIG.
  • the third embodiment describes an example in which the via 6 is provided in the solder pool 31 of the printed circuit board 1 in the first embodiment. Descriptions of parts common to the first embodiment will be omitted.
  • FIG. 3 is a cross-sectional view of the printed circuit board 1 on which the components are mounted and the power module 11.
  • the via 6 is provided in contact with the solder pool 31.
  • the via 6 transfers the heat of the molten solder 21 filled in the solder pool 31 to the inner layer copper foil 2b connected to the via 6 and the outer layer copper foil 2a on the soldering side rear surface of the printed circuit board 1.
  • FIG. 2, FIG. 3, and FIG. 5 a multi-layer substrate is described, but the same can be applied to a two-layer (double-sided) substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Structure Of Printed Boards (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

This power conversion device includes a power module that has a terminal and a power module mounting substrate that has a through hole into which the terminal is inserted, wherein the power module mounting substrate includes wiring patterns that are disposed on the inside and the outside, an insulating layer that provides insulation between the wiring patterns, and a solder reservoir in which solder is stored.

Description

電力変換装置Power converter
 本発明は、パワーモジュールと接続したパワーモジュール実装基板を備えた電力変換装置に関する。 The present invention relates to a power conversion device including a power module mounting board connected to a power module.
 従来、外部接続端子を、配線基板のスルーホールに挿入し、溶融したはんだで外部接続端子を接合する技術として、特許文献1が知られている。特許文献1は、コネクタなどの外部接続端子をスルーホールに挿入し、はんだ付けする際に、ランド間の距離を規定することで、はんだブリッジを抑制する技術を開示している。 Conventionally, Patent Document 1 is known as a technique of inserting an external connection terminal into a through hole of a wiring board and joining the external connection terminal with molten solder. Patent Document 1 discloses a technique of suppressing a solder bridge by defining an interval between lands when an external connection terminal such as a connector is inserted into a through hole and soldered.
特開2018-101756Japanese Patent Laid-Open No. 2018-101756
 特許文献1は、はんだブリッジを抑制し、はんだ接続信頼性の高いランド構造を開示しているが、はんだ付け方法は、溶融したはんだ槽内にはんだを噴流させ、噴流させた溶融はんだに配線基板を浸漬させるフローはんだ付け方法を利用している。 Patent Document 1 discloses a land structure that suppresses solder bridges and has high solder connection reliability. However, the soldering method is to jet a solder into a molten solder bath, and to jet the molten solder into a wiring board. The flow soldering method of immersing is used.
 電力変換装置においては、大電流を流す経路には、端子と金属バーのネジ留などの接続技術が用いられ、パワーモジュールなど大電流部品では端子とプリント基板とをはんだ接合する構成となっている。また、パワーモジュールは、熱容量が大きいので、プリント基板などの多層基板には、実装しにくく、プリント基板とは別に実装することになる。パワーモジュールの端子を別部品のプリント基板のスルーホール内で、はんだ付けするには、上記のフローはんだ付け方法では作業は困難である。 In a power converter, a connection technology such as screwing a terminal to a metal bar is used for a path through which a large current flows, and in a large current component such as a power module, the terminal and the printed circuit board are soldered to each other. .. Further, since the power module has a large heat capacity, it is difficult to mount it on a multilayer substrate such as a printed circuit board, and it is mounted separately from the printed circuit board. In order to solder the terminals of the power module in the through holes of the printed circuit board as separate components, it is difficult to work with the above flow soldering method.
 パワーモジュールなど大電流部品の端子とプリント基板スルーホールの接続に、はんだ接合を採用する場合、スルーホール内での電気抵抗の上昇を防ぐために、スルーホール表面メッキと端子との間には最低でもスルーホール深さの75%以上はんだを充填する必要がある。その一方で、大電流の供給をロスなく行うためには、多層基板のベタ銅箔で基板内多層配線を行いつつ、複数のビアホールでそれらの多層配線を接続する必要がある。 When soldering is used to connect the terminals of large current components such as power modules to the through holes of the printed circuit board, at least the surface plating of the through holes and the terminals should be at least to prevent an increase in electrical resistance in the through holes. It is necessary to fill the solder with 75% or more of the depth of the through hole. On the other hand, in order to supply a large current without loss, it is necessary to connect the multi-layered wiring with a plurality of via holes while performing the multi-layered wiring in the board with the solid copper foil of the multi-layered board.
 これは製品としては放熱の面で優れた構造といえる。しかし、はんだ接合という製造プロセスから見ると、スルーホールからベタ銅箔(多層配線)の放熱速度があまりにも速すぎるため、溶融はんだがスルーホールと端子との間に十分に充填される前に冷却され、スルーホールの途中で固まってしまう。その結果、大電流を流すための十分な接続が確保できず、回路動作の際に端子接合部の発熱や放熱の問題が生じかねない。 It can be said that this product has an excellent heat dissipation structure. However, from the viewpoint of the soldering manufacturing process, the heat dissipation rate of the solid copper foil (multilayer wiring) from the through hole is too fast, so the molten solder is cooled before it is sufficiently filled between the through hole and the terminal. It will be hardened in the middle of the through hole. As a result, a sufficient connection for passing a large current cannot be secured, and the problem of heat generation or heat dissipation of the terminal joint portion may occur during circuit operation.
 また、十分なはんだ充填をする方法として、大型大熱容量のはんだ鏝の適用や長時間の加熱があるが、いずれも部品実装における作業性が悪く、プリント基板へ与える熱ダメージも大きい。 Also, as a method for sufficient solder filling, there is application of a large and large heat capacity soldering iron and heating for a long time, but in both cases workability in mounting components is poor and heat damage to the printed circuit board is large.
 本発明の目的は、パワーモジュールの端子が挿入されるスルーホールを有するパワーモジュール実装基板を有する電力変換装置の温度上昇を抑えることにある。 The object of the present invention is to suppress the temperature rise of the power conversion device having the power module mounting board having the through holes into which the terminals of the power module are inserted.
 本発明の好ましい一例は、端子を有するパワーモジュールと、前記端子が挿入されるスルーホールを有するパワーモジュール実装基板とを有する電力変換装置であって、
前記パワーモジュール実装基板は、
内部と外部に配置された配線パターンと、前記配線パターンの間を絶縁する絶縁層と、はんだを蓄えたはんだ溜まりとを有する電力変換装置である。
A preferred example of the present invention is a power conversion device having a power module having a terminal and a power module mounting board having a through hole into which the terminal is inserted,
The power module mounting board,
It is a power converter having a wiring pattern arranged inside and outside, an insulating layer for insulating between the wiring patterns, and a solder pool in which solder is stored.
 本発明によれば、パワーモジュールの端子が挿入されるスルーホールを有するパワーモジュール実装基板を有した電力変換装置の温度上昇を抑えることができる。 According to the present invention, it is possible to suppress the temperature rise of the power conversion device having the power module mounting board having the through hole into which the terminal of the power module is inserted.
実施例1の電力変換装置を説明する図。The figure explaining the power converter device of Example 1. 実施例2の電力変換装置を説明する図。The figure explaining the power converter device of Example 2. 実施例3の電力変換装置を説明する図。The figure explaining the power converter device of Example 3. プリント基板の製作から実装基板完成までのフロー。Flow from printed circuit board production to mounting board completion. プリント基板の製作工程を説明する図。6A to 6C are diagrams illustrating a manufacturing process of a printed circuit board. 比較例のプリント基板の説明図。Explanatory drawing of the printed circuit board of a comparative example. 比較例のプリント基板を用いた場合を説明する図。The figure explaining the case where the printed circuit board of a comparative example is used. 実施例1における電力変換装置の回路構成を示す図。FIG. 3 is a diagram showing a circuit configuration of a power conversion device according to the first embodiment. 実施例1の電力変換装置を組立てる前の構成図である。It is a block diagram before assembling the power converter device of Example 1. 実施例1の電力変換装置を組立て後の構成図である。It is a block diagram after assembling the power converter device of Example 1.
 以下、本発明の実施例について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 電力変換装置の構成例について、図1から図10を用いて説明する。 A configuration example of the power conversion device will be described with reference to FIGS. 1 to 10.
 図1は、実施例1の電力変換装置を説明するための図であり、具体的には、プリント基板1における部品パッド8とスルーホール7とパワーモジュール端子12とを、はんだ付けした状態である。部品を実装したプリント基板1は、ベアボードに電力変換装置の制御回路、ドライブ回路などの回路を実装し、パワーモジュール11と接続した構成である。 FIG. 1 is a diagram for explaining a power conversion device according to a first embodiment, specifically, a state in which a component pad 8, a through hole 7, and a power module terminal 12 on a printed circuit board 1 are soldered. .. The printed circuit board 1 on which the components are mounted has a configuration in which circuits such as a control circuit and a drive circuit of the power conversion device are mounted on a bare board and connected to the power module 11.
 プリント基板1は、銅箔2a、2bと、内面を銅めっき4で構成されたビア6と、スルーホール7と、はんだ溜り31と、銅箔をエッチングして形成した部品パッド8、図示しない配線パターンを構成する銅箔2a、2b間を絶縁する絶縁層3と、ソルダレジスト5と、シルク9とを有する。ここで、スルーホール7は、内面を銅めっき4で構成され、パワーモジュール11内の素子と接続したパワーモジュール端子12を貫通させる貫通孔である。はんだ溜り31は、スルーホール7を含めたエリアにザグリを入れて形成され、はんだ21を蓄える。 The printed circuit board 1 includes copper foils 2a and 2b, vias 6 whose inner surfaces are formed by copper plating 4, through holes 7, solder pools 31, component pads 8 formed by etching copper foil, and wiring not shown. The insulating layer 3 for insulating between the copper foils 2a and 2b forming the pattern, the solder resist 5, and the silk 9 are included. Here, the through hole 7 is a through hole having an inner surface made of copper plating 4 and penetrating the power module terminal 12 connected to an element in the power module 11. The solder pool 31 is formed by inserting a counterbore into an area including the through hole 7 and stores the solder 21.
 スルーホール7は、プリント基板1の表裏に形成された部品パッド8や外部の配線パターン、及び内部の配線パターンを電気的に導通させる目的で設けている。 The through holes 7 are provided for the purpose of electrically connecting the component pads 8 formed on the front and back of the printed circuit board 1, external wiring patterns, and internal wiring patterns.
 はんだ溜り31は、プリント基板1の上部表面から第1層目の内層銅箔2bに到達する深さにすることで、はんだ21と内層銅箔2bの接続面積を増加させている。 The solder pool 31 has a depth reaching the inner layer copper foil 2b of the first layer from the upper surface of the printed board 1 to increase the connection area between the solder 21 and the inner layer copper foil 2b.
 はんだ溜まり31には、パワーモジュール11に備えられたパワーモジュール端子12を貫通させており、はんだ溜まり31の底部と、スルーホール7とが繋がった構成である。また、スルーホール7内面の銅めっき4とパワーモジュール端子12の間にはんだが充填されることで、パワーモジュール端子12と銅箔2a、2bなどの配線とが電気的に導通させるとともに固定される。 The power module terminal 12 provided in the power module 11 is passed through the solder pool 31, and the bottom of the solder pool 31 and the through hole 7 are connected. Further, by filling the solder between the copper plating 4 on the inner surface of the through hole 7 and the power module terminal 12, the power module terminal 12 and the wiring such as the copper foils 2a and 2b are electrically connected and fixed. ..
 また、プリント基板がコア層を有する場合には、はんだ溜まり31の深さをコア層まで達する深さとすることで、スルーホールの長さがに対してはんだ充填深さを十分深くできる。そのためパワーモジュール端子12と配線との間の電気抵抗を低くでき、動作中の発熱を抑制しやすくなる。また、はんだ溜まりがコア層まで達することにより、多層の厚いプリント基板に対しても、上記と同様に、電気抵抗を低くでき、動作中の発熱を抑制しやすくなる。 In addition, when the printed circuit board has a core layer, the depth of the solder pool 31 is set to reach the core layer, so that the depth of the through hole can be sufficiently deeper than the depth of the through hole. Therefore, the electric resistance between the power module terminal 12 and the wiring can be reduced, and heat generation during operation can be easily suppressed. Further, since the solder pool reaches the core layer, the electric resistance can be reduced even in the case of a multilayer printed circuit board, and heat generation during operation can be easily suppressed.
 図4は、パワーモジュール実装基板81におけるプリント基板1(ベアボード)の製作工程(S40~S45)、及びプリント基板1への部品実装工程(S46)の流れを表したフローである。 FIG. 4 is a flow showing the flow of the manufacturing process (S40 to S45) of the printed circuit board 1 (bare board) on the power module mounting circuit board 81 and the component mounting process (S46) on the printed circuit board 1.
 プリント基板1や、実装する部品などの基材を用意する基材投入工程(S40)が実行される。 A base material charging step (S40) of preparing a base material for the printed circuit board 1 and components to be mounted is executed.
 そして、図5(a)に示すように、プリント基板に、スルーホール7や、ビア6といった穴あけ工程(S41)が実行される。 Then, as shown in FIG. 5A, a drilling process (S41) such as through holes 7 and vias 6 is performed on the printed circuit board.
 そして、図5(b)に示すように、はんだ溜り31を形成するザグリ工程(S42)が実行される。 Then, as shown in FIG. 5B, a spot facing step (S42) of forming the solder pool 31 is executed.
 そして、図5(c)に示すように、プリント基板1の表裏や、スルーホール7やビア6といった穴の内壁に銅めっき4を施す銅めっき工程(S43)が実行される。 Then, as shown in FIG. 5C, a copper plating step (S43) of performing copper plating 4 on the front and back surfaces of the printed circuit board 1 and the inner walls of holes such as the through holes 7 and the vias 6 is executed.
 そして、図5(d)に示すように、プリント基板表面の配線パターンや、部品パッド8をエッチングするエッチング工程(S44)が実行される。 Then, as shown in FIG. 5D, an etching step (S44) of etching the wiring pattern on the surface of the printed board and the component pad 8 is executed.
 そして、図5(e)に示すように、ソルダレジスト5を塗布するレジスト塗布工程およびシルクを印刷するレジスト・シルク印刷工程(S45)が実行される。 Then, as shown in FIG. 5E, a resist applying step of applying the solder resist 5 and a resist/silk printing step of printing silk (S45) are executed.
 そして、図1、図2、図3の実施例に示されたように、はんだ鏝により、はんだを蓄えたはんだ溜まりにおいて局所的にはんだを加熱し溶融させて、スルーホール7内にはんだを充填させ、パワーモジュール端子12とスルーホール内面とを接合するはんだ付け工程(S46)が実行される。そして、パワーモジュール実装基板81が完成する(S47)。 Then, as shown in the embodiments of FIGS. 1, 2 and 3, the solder trowel locally heats and melts the solder in the solder pool in which the solder has been accumulated, and the through hole 7 is filled with the solder. Then, the soldering step (S46) of joining the power module terminal 12 and the inner surface of the through hole is performed. Then, the power module mounting substrate 81 is completed (S47).
 図5(a)~(e)を用いて、配線パターンである、銅箔2a、2bや部品パッド8を備えたプリント基板1の製作工程を説明する。 The manufacturing process of the printed circuit board 1 including the copper foils 2a and 2b and the component pad 8 which are wiring patterns will be described with reference to FIGS. 5(a) to 5(e).
 基板投入工程では、プリント基板1は最初、表裏面全体に銅箔が張られた銅張板の状態であり、両面2層基板の場合は基材とも呼称される。多層プリント基板の場合はプリント基板1の内部に配線パターンが形成された内層が組み合わされている。 In the board loading process, the printed circuit board 1 is initially in the state of a copper clad board with copper foil stretched over the entire front and back surfaces, and in the case of a double-sided two-layer board, it is also called a base material. In the case of a multilayer printed circuit board, an inner layer having a wiring pattern is combined inside the printed circuit board 1.
 穴あけ工程では、プリント基板1に層間接続を行うためのビア6、或いはパワーモジュール端子などの部品端子を取り付け用のスルーホール7を形成するために、図5(a)に示したような穴あけ加工を行う。 In the drilling step, in order to form a via hole 6 for connecting layers on the printed circuit board 1 or a through hole 7 for mounting a component terminal such as a power module terminal, a drilling process as shown in FIG. I do.
 さらに、スルーホール7に充填するはんだを蓄えるはんだ溜り31が、内層銅箔2bに到達する深さになるように、図5(b)に示したようなザグリ加工の工程を行う。 Further, the counterboring process as shown in FIG. 5B is performed so that the solder pool 31 for storing the solder filling the through holes 7 reaches the inner copper foil 2b.
 銅めっき工程では、プリント基板表裏、或いは多層基板における内層との回路導通するために図5(c)の様にスルーホール7やビア6といった穴の内壁に、導電体である銅めっき4を施す。 In the copper plating step, copper plating 4, which is a conductor, is applied to the inner walls of the holes such as the through holes 7 and the vias 6 as shown in FIG. 5C in order to establish circuit continuity with the front and back of the printed circuit board or the inner layer of the multilayer board. ..
 エッチング工程では、プリント基板表面の配線パターンや、パワーモジュール端子などの部品端子と配線パターンとをはんだ接合するための部品パッド8は、プリント基板1の表裏に張られた銅箔をエッチングなどにより不要な銅箔を除去することで図5(d)の様に形成する。 In the etching process, the wiring pattern on the surface of the printed circuit board and the component pad 8 for soldering the component terminal such as the power module terminal to the wiring pattern are unnecessary by etching the copper foil stretched on the front and back of the printed circuit board 1. The copper foil is removed to form a film as shown in FIG.
 レジスト塗布工程では、部品パッド8とパワーモジュール端子12とをはんだ付けで接合させる際に、部品パッド8以外の配線パターンに、はんだが付着することを阻止するために、図5(e)の様に、ソルダレジスト5を塗布する。 In the resist coating step, when the component pad 8 and the power module terminal 12 are joined by soldering, in order to prevent the solder from adhering to the wiring pattern other than the component pad 8, as shown in FIG. Then, the solder resist 5 is applied.
 シルク印刷工程では、プリント基板の表面又は裏面に部品外形や部品記号等の部品に関する情報を、シルク9のようにプリント基板表面に印刷して表記する。このプリント基板1を用いて、はんだ21を用いて、スルーホール7の内面の導電体とパワーモジュール端子12の接合を行い、図1に示した電力変換装置を製作する。 In the silk printing process, information about the parts such as the outer shape of the part and the part symbol is printed on the front surface or the back surface of the printed circuit board and printed on the surface of the printed circuit board like silk 9. Using this printed board 1, the conductor on the inner surface of the through hole 7 and the power module terminal 12 are joined using the solder 21 to manufacture the power conversion device shown in FIG.
 ここで、本実施例を適用せずに製作したプリント基板1について説明する。図6のプリント基板1は、図5(e)とは、はんだ21を蓄えたはんだ溜り31が無い点で異なっている。このプリント基板1を用いて、パワーモジュール11とはんだ付けを行い、図7に示す比較例であるパワーモジュール実装基板81が構成される。 Here, the printed circuit board 1 manufactured without applying this embodiment will be described. The printed circuit board 1 of FIG. 6 is different from that of FIG. 5E in that there is no solder pool 31 in which the solder 21 is stored. Using this printed circuit board 1, the power module 11 is soldered to form a power module mounting board 81 as a comparative example shown in FIG. 7.
 図7に示すように、スルーホールの長さがaのときのはんだ充填深さはbである。回路動作の際に端子部の発熱や放熱の問題を生じさせないためには、aに対してbが75%以上であることが必要である。プリント基板1のスルーホール7内面の銅めっき層と、パワーモジュール端子12をはんだ21で接合するには、はんだ鏝51やはんだ鏝51で溶融した初期の溶融はんだ21で、パワーモジュール端子12とスルーホール7を、はんだ浸透に必要なはんだ融点温度以上に温めなくてはならない。パワーモジュール端子12は、はんだ鏝51やはんだ鏝51で溶融した初期の溶融はんだ21の熱を温度のより低いパワーモジュール11に伝達する。 As shown in FIG. 7, the solder filling depth is b when the through hole length is a. In order to prevent the problem of heat generation and heat radiation of the terminal portion during circuit operation, b must be 75% or more with respect to a. In order to join the copper plating layer on the inner surface of the through hole 7 of the printed circuit board 1 and the power module terminal 12 with the solder 21, the solder iron 51 and the initial molten solder 21 melted by the solder iron 51 are used to connect the power module terminal 12 and the through hole. The holes 7 must be warmed above the solder melting point temperature required for solder penetration. The power module terminal 12 transfers the heat of the soldering iron 51 and the initial molten solder 21 melted by the soldering iron 51 to the power module 11 having a lower temperature.
 また、はんだ鏝51やはんだ鏝51で溶融した初期の溶融はんだ21の熱は、スルーホール7を経由して、温度のより低い外層銅箔2aや内層銅箔2bに伝達する。このときパワーモジュール11が熱容量の大きな部品の場合や、スルーホール7がベタ銅箔に接続している場合、熱容量の大きな部品やベタ銅箔は、保温性が高いため、はんだ鏝51やはんだ鏝51で溶融した初期の溶融はんだ21の熱が、はんだ付け対象であるスルーホール7の遠方には伝達し難くなる。 Further, the heat of the soldering iron 51 and the initial molten solder 21 melted by the soldering iron 51 is transferred to the outer layer copper foil 2a and the inner layer copper foil 2b having a lower temperature via the through holes 7. At this time, when the power module 11 is a component having a large heat capacity, or when the through hole 7 is connected to a solid copper foil, the component having a large heat capacity or the solid copper foil has high heat retention, so that the soldering iron 51 or the soldering iron is used. The heat of the initial molten solder 21 melted at 51 is difficult to be transmitted to the distant position of the through hole 7 to be soldered.
 このため、パワーモジュール端子12とスルーホール7を接続するためのはんだ21が十分に浸透するのに必要なはんだ融点温度以上に温まらずスルーホール7内の途中ではんだ21が凝固する。その結果、大電流を流すための十分な接続(スルーホールの長さaのときのはんだ充填深さbが75%以上であること)が確保できず、端子部の発熱や放熱の問題が生じかねない。また、製造不良にもなる。 For this reason, the solder 21 for solidifying the solder 21 for connecting the power module terminal 12 and the through hole 7 does not reach a temperature higher than the melting point of the solder required for sufficiently penetrating the solder 21, and the solder 21 solidifies in the middle of the through hole 7. As a result, a sufficient connection for flowing a large current (the solder filling depth b when the length of the through hole is a is 75% or more) cannot be secured, and the problem of heat generation and heat dissipation of the terminal portion occurs. It can happen. In addition, it also causes manufacturing defects.
 そこで、本実施例ではベアボードの製作工程の図5(b)において、はんだ付け対象のスルーホール7の周囲に内層銅箔2bに到達する深さのザグリを入れ、スルーホール7に充填したはんだを蓄えた、はんだ溜り31を設けるプリント基板1を構成する。 Therefore, in this embodiment, in the bare board manufacturing process in FIG. 5B, a counterbore having a depth reaching the inner layer copper foil 2b is inserted around the through hole 7 to be soldered, and the solder filled in the through hole 7 is filled. The printed circuit board 1 provided with the stored solder pool 31 is configured.
 次に、上記で説明したはんだ溜りを有するプリント基板について、各実施例にて説明する。 Next, the printed circuit board having the solder pool described above will be described in each example.
 図8は、実施例1における電力変換装置60の回路構成図である。図8の電力変換装置60は、交流電動機64に電力を供給するための順変換器61、逆変換器62、平滑コンデンサ63、冷却ファン65、放熱フィン83、制御回路66、ドライブ回路67、デジタル操作パネル68、シャント抵抗69を備える。図8では、入力電源として交流電源を用いた場合を示す。 FIG. 8 is a circuit configuration diagram of the power conversion device 60 according to the first embodiment. The power converter 60 of FIG. 8 includes a forward converter 61, an inverse converter 62, a smoothing capacitor 63, a cooling fan 65, a radiation fin 83, a control circuit 66, a drive circuit 67, and a digital converter for supplying electric power to an AC motor 64. An operation panel 68 and a shunt resistor 69 are provided. FIG. 8 shows a case where an AC power supply is used as the input power supply.
 順変換器61は、交流電力を直流電力に変換する。平滑コンデンサ63は、直流中間回路に備えられ、順変換器61によって変換された直流電力を平滑にする。 The forward converter 61 converts AC power into DC power. The smoothing capacitor 63 is provided in the DC intermediate circuit and smoothes the DC power converted by the forward converter 61.
 逆変換器62は、直流電力を任意の周波数の交流電力に変換する。逆変換器62の内部には温度保護検出回路が搭載されている。温度保護検出回路は、図8の様なサーミスタ70を搭載して温度を検出するか、或いは逆変換器62内の半導体素子に温度感知用のセンシング機能を内蔵させるようにしてもよい。 The inverse converter 62 converts DC power into AC power having an arbitrary frequency. A temperature protection detection circuit is mounted inside the inverse converter 62. The temperature protection detection circuit may be equipped with a thermistor 70 as shown in FIG. 8 to detect the temperature, or a semiconductor element in the inverse converter 62 may have a built-in sensing function for temperature sensing.
 順変換器61と逆変換器62は、それぞれ順変換器モジュール61A、逆変換器モジュール62Aとして1パッケージ化することが一般的である。さらに順変換器モジュール61Aと逆変換器モジュール62Aを一体化しパワーモジュール11とすることも一般的であるが、パワーモジュール11に順変換器61と逆変換器62のいずれか一方を搭載するようにしてもよい。ここで、電力変換装置60は、電線や金属バー等の電気接合部品、或いはプリント基板を用いて図8に示した回路の構成部品を電気的に接続して構成される。 The forward converter 61 and the inverse converter 62 are generally packaged as a forward converter module 61A and an inverse converter module 62A, respectively, in one package. Further, it is common to integrate the forward converter module 61A and the inverse converter module 62A into the power module 11. However, one of the forward converter 61 and the inverse converter 62 is mounted on the power module 11. May be. Here, the power conversion device 60 is configured by electrically connecting the components of the circuit shown in FIG. 8 using an electric connection component such as an electric wire or a metal bar, or a printed board.
 本実施例における電力変換装置60は、汎用インバータ、サーボアンプ、DCBLコントローラなどに電力変換装置として適用できる。 The power converter 60 in this embodiment can be applied to a general-purpose inverter, a servo amplifier, a DCBL controller, etc. as a power converter.
 図9は、実施例1のプリント基板やパワーモジュールなどを有した電力変換装置を組立てる前の構成図である。図9では、図8の冷却ファン65、交流電動機64、デジタル操作パネル68は省略している。 FIG. 9 is a configuration diagram before assembling the power conversion device including the printed circuit board and the power module of the first embodiment. In FIG. 9, the cooling fan 65, the AC motor 64, and the digital operation panel 68 of FIG. 8 are omitted.
 パワーモジュール11は、取付け用ネジ84により放熱フィン83に固定される。パワーモジュール実装基板81は、組込み基板82を放熱フィン83に固定した後に、放熱フィンに固定するように組立てる。 The power module 11 is fixed to the heat radiation fins 83 by the mounting screws 84. The power module mounting board 81 is assembled so that the built-in board 82 is fixed to the radiation fins 83 and then fixed to the radiation fins.
 組込み基板82は、平滑コンデンサ63を実装した基板であり、パワーモジュール実装基板81は、ベアボード(プリント基板1)に、図8の制御回路66、ドライブ回路67を実装した基板である。 The embedded board 82 is a board on which the smoothing capacitor 63 is mounted, and the power module mounting board 81 is a board on which the control circuit 66 and the drive circuit 67 of FIG. 8 are mounted on a bare board (printed circuit board 1).
 図10は、実施例1のパワーモジュール実装基板81、組込み基板82、パワーモジュール11と放熱フィン83を組立て後の構成図である。図10は、図9で説明した工程後の電力変換装置の構成図である。 FIG. 10 is a configuration diagram after assembling the power module mounting substrate 81, the built-in substrate 82, the power module 11 and the radiation fins 83 of the first embodiment. FIG. 10 is a configuration diagram of the power conversion device after the step described in FIG. 9.
 パワーモジュール11のパワーモジュール端子12は、パワーモジュール実装基板81の部品パッド8を貫通して挿入される。パワーモジュール端子12と部品パッド8は、はんだ付けにより電気的接続を行うが、フロー及びリフローはんだ付けでは製造することは困難であり、手はんだによるはんだ付けが必要となる。通常のフロー装置で、図10のような電力変換装置を実装しようとすると、余熱時間は長く、余熱温度は高い条件でないとはんだ付けが安定しないといった製造上の課題が生じる。さらに、電力変換装置は、かなりの重量物でありフロー装置で流すことが困難である。 The power module terminal 12 of the power module 11 is inserted through the component pad 8 of the power module mounting board 81. The power module terminal 12 and the component pad 8 are electrically connected by soldering, but it is difficult to manufacture by flow and reflow soldering, and soldering by hand soldering is required. When an electric power converter such as that shown in FIG. 10 is to be mounted in a normal flow device, there is a manufacturing problem that the remaining heat time is long and the soldering is not stable unless the remaining heat temperature is high. Further, the power conversion device is a heavy object and is difficult to flow with a flow device.
 また、図9、図10に示すように、パワーモジュール11の上にパワーモジュール実装基板81や組込み基板82を実装することで、それらの部品を平面に別々に配置する場合に比べて電力変換措置の面積を小さくすることができる。 Further, as shown in FIGS. 9 and 10, by mounting the power module mounting board 81 and the built-in board 82 on the power module 11, compared to the case where those components are separately arranged on a plane, the power conversion measure is performed. The area of can be reduced.
 実施例1のプリント基板1のはんだ溜り31は、溶融はんだ21を充填し、溶融はんだ21と外層銅箔2a、内層銅箔2b、及びパワーモジュール端子12への接触面積と熱伝達性を増加させる。 The solder pool 31 of the printed circuit board 1 of Example 1 is filled with the molten solder 21 to increase the contact area and the heat transfer property to the molten solder 21, the outer layer copper foil 2a, the inner layer copper foil 2b, and the power module terminal 12. ..
 実施例1によれば、はんだ溜まりで得られる熱容量により、プリント基板1のはんだ付け面からの熱伝達の降下を抑制し、はんだ浸透に必要なはんだ融点温度以上を保持することを容易にする。そして、溶融はんだがスルーホールの充填に必要な時間だけ溶融状態を維持できるようになり、フローアップ不足(はんだ上がり不足)発生を回避することができる。 According to the first embodiment, the heat capacity obtained in the solder pool suppresses a drop in heat transfer from the soldering surface of the printed circuit board 1 and facilitates maintaining a temperature equal to or higher than the solder melting point temperature required for solder penetration. Then, the molten solder can be maintained in a molten state only for the time required to fill the through holes, and it is possible to avoid the occurrence of insufficient flow-up (insufficiency of solder rise).
 また、実施例1によれば、大型で大熱容量のはんだ鏝を用いることや、長時間の加熱も不要であり作業性が向上する。また、実施例1では、はんだ溜り31の深さ分、スルーホール7の高さ方向にはんだを充填する高さが、比較例に比べて短くなり、はんだをスルーホール7内の隙間に十分に充填しやすくできる。 Further, according to the first embodiment, workability is improved because it is not necessary to use a large-sized and large heat capacity soldering iron and heating for a long time. Further, in Example 1, the height of filling the solder in the height direction of the through hole 7 by the depth of the solder pool 31 is shorter than that in the comparative example, and the solder is sufficiently filled in the gap in the through hole 7. Can be easily filled.
 また、はんだ溜り31内のはんだ21は、その体積に相応する熱容量を保有するため、回路動作の際には、はんだ溜まりで得られる熱容量は、回路の発熱を吸収・放熱し、プリント基板1の温度上昇を抑制する。 Further, since the solder 21 in the solder pool 31 has a heat capacity corresponding to its volume, the heat capacity obtained in the solder pool absorbs and dissipates the heat of the circuit during the circuit operation, and the heat of the printed circuit board 1 is absorbed. Controls temperature rise.
 実施例2における電力変換装置について、図2、図7を用いて説明する。本実施例は、実施例1におけるプリント基板1の別構成例について説明するものである。従って実施例1と共通する部分についての説明は省略する。 A power conversion device according to the second embodiment will be described with reference to FIGS. 2 and 7. The present embodiment describes another example of the configuration of the printed circuit board 1 in the first embodiment. Therefore, the description of the portions common to the first embodiment will be omitted.
 図2は、部品を実装したプリント基板1とパワーモジュール11の断面図である。本実施例では、はんだ鏝51などで局所的にはんだ付けをするプリント基板1のはんだ付け側表面に、段差構成物41を配置することで、はんだ溜り31を形成する。 FIG. 2 is a cross-sectional view of the printed circuit board 1 on which the components are mounted and the power module 11. In this embodiment, the solder pool 31 is formed by arranging the step structure 41 on the soldering side surface of the printed circuit board 1 which is locally soldered with the soldering iron 51 or the like.
 実施例2では、はんだ溜り31を形成するために、はんだ付け対象の部品パッド8、パワーモジュール端子12の周囲であって、プリント基板1のはんだ付け側表面に、段差構成物41を設ける。段差構成物41は、はんだ溜り31を形成するだけの十分な厚みをもち、溶融はんだ21がプリント基板1の横方向への広がりを防止する機能を果たす。 In the second embodiment, in order to form the solder pool 31, the step structure 41 is provided on the soldering side surface of the printed circuit board 1 around the component pads 8 to be soldered and the power module terminals 12. The step structure 41 has a sufficient thickness to form the solder pool 31, and serves to prevent the molten solder 21 from spreading in the lateral direction of the printed circuit board 1.
 段差構成物41は、前述の機能を果たせればよい。本実施例を適用せずに製作したプリント基板1を、図7に示す。図7のプリント基板1に対して段差構成物41を追加することではんだ溜り31を有するプリント基板1を提供できる。また、図7の説明にあるソルダレジスト5とシルク9に、はんだ溜り31を構成できる十分な厚みを与えることでも、はんだ溜り31を有するプリント基板1を提供できる。 The step structure 41 may have the above-mentioned function. A printed circuit board 1 manufactured without applying this embodiment is shown in FIG. The printed board 1 having the solder pool 31 can be provided by adding the step structure 41 to the printed board 1 of FIG. The printed board 1 having the solder pool 31 can also be provided by providing the solder resist 5 and the silk 9 described in FIG. 7 with a sufficient thickness to form the solder pool 31.
 実施例3における電力変換装置について、図3を用いて説明する。実施例3は、実施例1におけるプリント基板1のはんだ溜り31に、ビア6を内在させる例について説明するものである。実施例1と共通する部分についての説明は省略する。 A power conversion device according to the third embodiment will be described with reference to FIG. The third embodiment describes an example in which the via 6 is provided in the solder pool 31 of the printed circuit board 1 in the first embodiment. Descriptions of parts common to the first embodiment will be omitted.
 図3は、部品を実装したプリント基板1とパワーモジュール11の断面図である。
本実施例では、はんだ溜り31と接してビア6を設ける。このビア6は、ビア6と接続された内層銅箔2b、及びプリント基板1のはんだ付け側裏面の外層銅箔2aへ、はんだ溜り31に充填された溶融はんだ21の熱を伝達する。
FIG. 3 is a cross-sectional view of the printed circuit board 1 on which the components are mounted and the power module 11.
In this embodiment, the via 6 is provided in contact with the solder pool 31. The via 6 transfers the heat of the molten solder 21 filled in the solder pool 31 to the inner layer copper foil 2b connected to the via 6 and the outer layer copper foil 2a on the soldering side rear surface of the printed circuit board 1.
 これにより、スルーホール7のプリント基板1のはんだ付け面からの熱伝達を側面から温める機能をもつ。また、回路動作の際には、はんだ溜まりで得られる熱容量による熱吸収、及び放熱経路を分散させる機能をもち、プリント基板1の温度上昇抑制を、さらに高めることが出来る。 With this, it has a function to heat the heat transfer from the soldering surface of the printed circuit board 1 of the through hole 7 from the side surface. Further, during the circuit operation, it has a function of absorbing heat due to the heat capacity obtained in the solder pool and a function of dispersing the heat radiation path, and it is possible to further suppress the temperature rise of the printed circuit board 1.
 図1、図2、図3、図5では、多層基板で説明しているが、2層(両面)基板においても同様に適用できる。
1, FIG. 2, FIG. 3, and FIG. 5, a multi-layer substrate is described, but the same can be applied to a two-layer (double-sided) substrate.
1…プリント基板、
6…ビア、
7…スルーホール、
11…パワーモジュール、
12…パワーモジュール端子、
31…はんだ溜まり、
41…段差構成物、
81…パワーモジュール実装基板、
82…組込み基板
1... Printed circuit board,
6...via
7... through hole,
11... Power module,
12... Power module terminal,
31... Solder pool,
41... Step structure,
81... Power module mounting board,
82... Embedded board

Claims (13)

  1. 端子を有するパワーモジュールと、
    前記端子が挿入されるスルーホールを有するパワーモジュール実装基板とを有する電力変換装置であって、
    前記パワーモジュール実装基板は、
    内部と外部に配置された配線パターンと、
    前記配線パターンの間を絶縁する絶縁層と、
    はんだを蓄えたはんだ溜まりとを有することを特徴とする電力変換装置。
    A power module having terminals,
    A power conversion device having a power module mounting board having a through hole into which the terminal is inserted,
    The power module mounting board,
    Wiring patterns arranged inside and outside,
    An insulating layer for insulating between the wiring patterns,
    A power converter having a solder pool in which solder is stored.
  2. 請求項1に記載の電力変換装置において、
    前記パワーモジュールは、順変換器もしくは逆変換器を有するか、順変換器と逆変換器の両方を有することを特徴とする電力変換装置。
    The power converter according to claim 1,
    The power module has a forward converter or an inverse converter, or has both a forward converter and an inverse converter.
  3. 請求項1に記載の電力変換装置において、
    前記パワーモジュール実装基板は、
    前記はんだ溜まりには、前記端子が貫通しており、
    前記はんだにより、前記端子と前記スルーホールの内面における導電体とが接合されていることを特徴とする電力変換装置。
    The power converter according to claim 1,
    The power module mounting board,
    The terminal passes through the solder pool,
    The electric power conversion device, wherein the terminal is joined to the conductor on the inner surface of the through hole by the solder.
  4. 請求項1に記載の電力変換装置において、
    前記パワーモジュール実装基板は、プリント基板であって、
    前記はんだ溜まりは、前記プリント基板の内層配線まで達していることを特徴とする電力変換装置。
    The power converter according to claim 1,
    The power module mounting board is a printed circuit board,
    The power conversion device, wherein the solder pool reaches the inner layer wiring of the printed circuit board.
  5. 請求項1に記載の電力変換装置において、
    前記パワーモジュール実装基板は、プリント基板であって、
    前記はんだ溜まりは、前記プリント基板のコア層まで達していることを特徴とする電力変換装置。
    The power converter according to claim 1,
    The power module mounting board is a printed circuit board,
    The power conversion device, wherein the solder pool reaches the core layer of the printed circuit board.
  6. 請求項1に記載の電力変換装置において、
    前記パワーモジュール実装基板は、プリント基板であって、
    前記プリント基板のはんだ付けをする側の表面に、
    前記はんだ溜まりを支持する段差構成物を有することを特徴とする電力変換装置。
    The power converter according to claim 1,
    The power module mounting board is a printed circuit board,
    On the surface of the printed board to be soldered,
    A power conversion device comprising a step structure that supports the solder pool.
  7. 請求項1に記載の電力変換装置において、
    前記パワーモジュール実装基板は、
    ビアを有するプリント基板であって、
    前記ビアは、前記はんだ溜まりと接しており、
    前記ビア内は、前記はんだが充填されていることを特徴とする電力変換装置。
    The power converter according to claim 1,
    The power module mounting board,
    A printed circuit board having a via,
    The via is in contact with the solder pool,
    The inside of the via is filled with the solder.
  8. 請求項1に記載の電力変換装置において、
    前記前記パワーモジュール実装基板は、
    制御回路とドライブ回路とデジタル操作パネルを実装したことを特徴とする電力変換装置。
    The power converter according to claim 1,
    The power module mounting board,
    A power conversion device comprising a control circuit, a drive circuit, and a digital operation panel.
  9. 請求項1に記載の電力変換装置において、
    前記パワーモジュールは、放熱フィンに固定されていることを特徴とする電力変換装置。
    The power converter according to claim 1,
    The power conversion device, wherein the power module is fixed to a radiation fin.
  10. 請求項1に記載の電力変換装置において、
    前記パワーモジュール実装基板の一方の表面に前記はんだ溜まりが配置されており、
    前記パワーモジュール実装基板の他方の表面に対向して、前記パワーモジュールが配置されていることを特徴とする電力変換装置。
    The power converter according to claim 1,
    The solder pool is arranged on one surface of the power module mounting substrate,
    The power conversion device, wherein the power module is arranged so as to face the other surface of the power module mounting substrate.
  11. 請求項1に記載の電力変換装置において、
    前記スルーホール内のはんだの充填高さは、
    前記スルーホールの長さの75パーセント以上であることを特徴とする電力変換装置。
    The power converter according to claim 1,
    The filling height of the solder in the through hole is
    75% or more of the length of the through hole, The power converter device characterized by the above-mentioned.
  12. 請求項3に記載の電力変換装置において、
    前記パワーモジュール実装基板は、部品パッドを有するプリント基板であって、
    前記はんだにより、前記部品パッドと前記端子とが接合されていることを特徴とする電力変換装置。
    The power converter according to claim 3,
    The power module mounting board is a printed board having component pads,
    The power converter, wherein the component pad and the terminal are joined by the solder.
  13. 請求項1に記載の電力変換装置において、
    前記パワーモジュール実装基板は、
    ソルダレジストとシルクを有することを特徴とする電力変換装置。
    The power converter according to claim 1,
    The power module mounting board,
    An electric power converter having a solder resist and silk.
PCT/JP2019/005323 2019-02-14 2019-02-14 Power conversion device WO2020166000A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980091127.XA CN113396479B (en) 2019-02-14 2019-02-14 Power conversion device
PCT/JP2019/005323 WO2020166000A1 (en) 2019-02-14 2019-02-14 Power conversion device
JP2020571985A JP7184933B2 (en) 2019-02-14 2019-02-14 power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005323 WO2020166000A1 (en) 2019-02-14 2019-02-14 Power conversion device

Publications (1)

Publication Number Publication Date
WO2020166000A1 true WO2020166000A1 (en) 2020-08-20

Family

ID=72045191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005323 WO2020166000A1 (en) 2019-02-14 2019-02-14 Power conversion device

Country Status (3)

Country Link
JP (1) JP7184933B2 (en)
CN (1) CN113396479B (en)
WO (1) WO2020166000A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323548U (en) * 1976-08-06 1978-02-28
JPS6120080U (en) * 1984-07-10 1986-02-05 株式会社東芝 multilayer printed wiring board
JPH1168281A (en) * 1997-08-20 1999-03-09 Matsushita Electric Ind Co Ltd Circuit board
JP2007317806A (en) * 2006-05-24 2007-12-06 Fujitsu Ltd Printed board unit
JP2011100912A (en) * 2009-11-09 2011-05-19 Mitsubishi Electric Corp Mounting structure of power semiconductor module on printed wiring board
JP2015006015A (en) * 2013-06-19 2015-01-08 株式会社日立産機システム Power conversion device
JP2017157606A (en) * 2016-02-29 2017-09-07 富士通株式会社 Print circuit board, electronic device, and method of manufacturing electronic device
WO2017216411A1 (en) * 2016-06-13 2017-12-21 Coriant Oy A circuit board system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018985A (en) * 1983-07-13 1985-01-31 Hitachi Ltd Light-emitting device
JP4557804B2 (en) * 2005-05-31 2010-10-06 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP2007129138A (en) * 2005-11-07 2007-05-24 Murata Mach Ltd Printed circuit substrate and mounting substrate
US7410090B2 (en) * 2006-04-21 2008-08-12 International Business Machines Corporation Conductive bonding material fill techniques
JP2007305653A (en) * 2006-05-09 2007-11-22 Toppan Printing Co Ltd Multilayer circuit wiring board and semiconductor device
US7757932B2 (en) * 2006-08-22 2010-07-20 International Business Machines Corporation Method for step-down transition of a solder head in the injection molding soldering process
JP2009206324A (en) * 2008-02-28 2009-09-10 Fuji Electric Systems Co Ltd Multilayer printed wiring board
JP5561279B2 (en) * 2009-09-02 2014-07-30 パナソニック株式会社 Printed wiring board, build-up multilayer substrate and manufacturing method thereof
JP2011254050A (en) * 2010-06-04 2011-12-15 Mitsubishi Electric Corp Manufacturing method of printed circuit board
KR101216896B1 (en) * 2011-02-11 2012-12-28 서울특별시도시철도공사 Power module
AT512779B1 (en) * 2012-06-01 2013-11-15 Fronius Int Gmbh Power supply for an inverter
JP6332439B2 (en) * 2014-03-31 2018-05-30 富士電機株式会社 Power converter
JP2016127134A (en) * 2014-12-26 2016-07-11 京セラ株式会社 Wiring board
CN109148421B (en) * 2018-08-31 2020-04-28 成都天箭科技股份有限公司 Microwave monolithic integrated circuit grounding structure and mounting process thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323548U (en) * 1976-08-06 1978-02-28
JPS6120080U (en) * 1984-07-10 1986-02-05 株式会社東芝 multilayer printed wiring board
JPH1168281A (en) * 1997-08-20 1999-03-09 Matsushita Electric Ind Co Ltd Circuit board
JP2007317806A (en) * 2006-05-24 2007-12-06 Fujitsu Ltd Printed board unit
JP2011100912A (en) * 2009-11-09 2011-05-19 Mitsubishi Electric Corp Mounting structure of power semiconductor module on printed wiring board
JP2015006015A (en) * 2013-06-19 2015-01-08 株式会社日立産機システム Power conversion device
JP2017157606A (en) * 2016-02-29 2017-09-07 富士通株式会社 Print circuit board, electronic device, and method of manufacturing electronic device
WO2017216411A1 (en) * 2016-06-13 2017-12-21 Coriant Oy A circuit board system

Also Published As

Publication number Publication date
CN113396479A (en) 2021-09-14
JPWO2020166000A1 (en) 2021-12-23
CN113396479B (en) 2023-09-22
JP7184933B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
JP5142119B2 (en) Method of manufacturing printed circuit board having heat dissipation structure and heat dissipation structure of printed circuit board manufactured by the method
CN110402061B (en) Cooling of power electronic circuits
JP6021504B2 (en) Printed wiring board, printed circuit board, and printed circuit board manufacturing method
JP5456843B2 (en) Power supply
JP2011254050A (en) Manufacturing method of printed circuit board
WO2020166000A1 (en) Power conversion device
JP6412978B2 (en) Thick copper wiring board
US20080099539A1 (en) Solder printing process to reduce void formation in a microvia
JP2010098021A (en) Component built-in circuit substrate and method of producing the same
KR20120050834A (en) Method of manufacturing the package board
US9148962B2 (en) Heat transfer device for wave soldering
JP4639353B2 (en) Electronic component mounting substrate, mounting method and apparatus
JP2016181575A (en) Heat radiation substrate and semiconductor device
JP7455078B2 (en) printed wiring board
JP2006120940A (en) Electronic component mounting board, heating device, and shield case mounting method
WO2017221419A1 (en) Circuit board, method for manufacturing same, and electronic device
JP2008112778A (en) Printed-wiring board, and motor control unit having the same
JP2007258654A (en) Circuit board land connection method and the circuit board
JP6487315B2 (en) Electronic control unit
JP2009123757A (en) Wiring board and manufacturing method thereof
JP2017183504A (en) Multilayer circuit board
JP2016018800A (en) Printed board
CN103039130B (en) Surface mounting method for electronic components and printed circuit boards manufactured using said method
CN117939780A (en) Circuit board, circuit board assembly and manufacturing method thereof
JP2008251869A (en) Wiring board, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914834

Country of ref document: EP

Kind code of ref document: A1