WO2020165979A1 - Radio base station and user equipment - Google Patents

Radio base station and user equipment Download PDF

Info

Publication number
WO2020165979A1
WO2020165979A1 PCT/JP2019/005166 JP2019005166W WO2020165979A1 WO 2020165979 A1 WO2020165979 A1 WO 2020165979A1 JP 2019005166 W JP2019005166 W JP 2019005166W WO 2020165979 A1 WO2020165979 A1 WO 2020165979A1
Authority
WO
WIPO (PCT)
Prior art keywords
system information
time
base station
transmission
tsn
Prior art date
Application number
PCT/JP2019/005166
Other languages
French (fr)
Japanese (ja)
Inventor
徹 内野
天楊 閔
健次 甲斐
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/005166 priority Critical patent/WO2020165979A1/en
Priority to JP2020571970A priority patent/JPWO2020165979A1/en
Publication of WO2020165979A1 publication Critical patent/WO2020165979A1/en
Priority to JP2023017759A priority patent/JP2023058607A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to a wireless base station and user equipment used for remote control.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • 5G New Radio (NR) or Next Generation (NG) 5G New Radio
  • TSN Time-Sensitive Networking
  • a synchronization shift of about 500 ns occurs in the backhaul, which is a relay line that connects the core network and the radio base station (gNB).
  • stratum 4 clock was used for time synchronization between the TSN grand master clock (TSN GMC), which is the TSN operation timing, and the NR grand master clock (NR,GMC), which is the gNB operation timing.
  • TSN GMC TSN grand master clock
  • NR,GMC NR grand master clock
  • the maximum deviation is 32 ⁇ s per second.
  • the minimum transmission cycle of the conventional system information for notifying the time is 80 ms.
  • the present invention has been made in view of such a situation, the control source of the TSN, via the NR system, a radio base that can execute remote control of the end station of the TSN with higher synchronization accuracy. It is an object to provide a station and a user equipment.
  • a radio base station (200) includes a receiving unit (203) that receives time information serving as a time reference in a predetermined network, and a control unit that shortens a transmission cycle of system information including the time information. (205), and a transmitter (201) for notifying the system information at the shortened transmission cycle.
  • a radio base station (200) includes a receiving unit (203) that receives time information serving as a time reference in a predetermined network, and a main transmission that periodically transmits system information including the time information.
  • a control unit (205) that sets at least one sub-transmission timing whose timing is shifted in the time axis direction, and a transmission unit (201) that notifies the system information at the main transmission timing and the at least one sub-transmission timing.
  • a radio base station (200) includes a receiving unit (203) that receives time information that serves as a time reference within a predetermined network, and a transmission cycle of system information including the time information, and , A control unit (205) for setting at least one sub-transmission timing in which the main transmission timing for periodically transmitting the system information including the time information is shifted in the time axis direction, and shortened by using the first frequency resource
  • a radio base station (200) includes a receiving unit (203) that receives time information serving as a time reference within a predetermined network, a clock that determines the time information, and an operation of the radio base station.
  • a control unit (205) for determining a frequency deviation ratio with respect to a reference clock and a transmission unit (201) for notifying system information including the time information and the frequency deviation ratio.
  • a radio base station (200) according to one aspect of the present invention, a receiving unit (203) that receives time information that is a time reference within a predetermined network, a control unit (205) that includes the time information in an RRC message, A transmission unit (201) for transmitting the RRC message to a predetermined user device (100).
  • a user apparatus (100) includes a control unit (105) that includes a notification frequency of system information including time information serving as a time reference in a predetermined network in a message, and a radio base station (200).
  • a control unit (105) that includes a notification frequency of system information including time information serving as a time reference in a predetermined network in a message
  • a radio base station (200) On the other hand, a transmitter (101) for transmitting the message, and a receiver (103) for receiving the system information from the radio base station (200) at a transmission cycle associated with the notification frequency.
  • a user apparatus (100) includes a receiving unit (103) that periodically receives system information including time information serving as a time reference within a predetermined network from a wireless base station (200), A receiving unit (103) determines whether or not the system information is received in a predetermined cycle, and the control unit (105) has not received the system information in the predetermined cycle.
  • a transmission unit (101) for notifying an error message to the predetermined network is provided.
  • FIG. 1 is an overall schematic configuration diagram of the network 10.
  • FIG. 2 is a functional block configuration diagram of the UE 100.
  • FIG. 3 is a functional block configuration diagram of gNB200.
  • FIG. 4 is a diagram showing a flowchart of a transmission cycle setting process by the gNB 200.
  • FIG. 5 is a diagram illustrating a setting example 1 of the transmission cycle.
  • FIG. 6 is a diagram illustrating a second setting example of the transmission cycle.
  • FIG. 7 is a diagram illustrating a setting example 3 of the transmission cycle.
  • FIG. 8 is a diagram showing a flowchart of the notification process of the clock frequency deviation ratio by the gNB 200.
  • FIG. 9 is a diagram showing a flowchart of unicast notification by the gNB 200.
  • FIG. 10 is a diagram showing a sequence of notification processing of the notification frequency by the UE 100.
  • FIG. 11 is a diagram showing a flowchart of error notification by the UE 100.
  • FIG. 12 is a diagram illustrating an example of the hardware configuration of the UE 100 and the gNB 200.
  • FIG. 1 is an overall schematic configuration diagram of a network 10 according to the embodiment.
  • the network (predetermined network) 10 is a TSN network, and includes a TSN grand master (TSNGM) 20, an NR system 30, and an end station 40.
  • TSN control source (not shown) remotely controls the end station 40 in the production factory in real time via the NR system 30.
  • TSNGM20 oscillates a clock for generating TSN time with high accuracy.
  • TSNGM20 the clock oscillated by TSNGM20 is called TSN grandmaster clock (TSNGMC).
  • the TSN time is the time reference within the network 10.
  • the network 10 in order to realize remote control in real time, it is necessary to match the time of the TSN control source and the time of the end station 40 with the TSN time.
  • the TSNGM20 sends the generated TSN time to the control source of the TSN and also to the end station 40 via the NR system 30.
  • NR system 30 includes NR grand master (NRGM) 31, UE 100, gNB 200, and core network 300.
  • the NR31 GM31 oscillates a clock that is the operation timing of the NR system 30.
  • the clock that NRGM31 oscillates is called the NR grand master clock (NRGMC).
  • the UE100 executes wireless communication according to NR between UE100 and gNB200 and core network 300.
  • the UE 100 periodically receives the system information broadcast from the gNB 200.
  • the UE 100 transmits the TSN time included in the system information to the end station 40.
  • the gNB200 executes wireless communication according to NR between the gNB200 and the core network 300.
  • the gNB 200 receives the TSN time from the core network 300.
  • the gNB200 includes the received TSN time in the system information.
  • the TSN time is included in the System Information Block (SIB) 9 that notifies the time.
  • SIB System Information Block
  • the gNB200 periodically notifies the UE100 of system information including TSN time at a predetermined transmission timing based on NRGMC.
  • Core network 300 communicates with UE 100 via gNB200.
  • the core network 300 has a User Plane Function (UPF) 310.
  • UPF310 provides functions specialized for U-plane processing.
  • UPF310 receives TSN time from TSNGM20.
  • UPF310 transmits the received TSN time to gNB200.
  • the end station 40 is a machine (for example, a robot arm) installed in a production factory.
  • the end station 40 receives the TSN time from the UE 100.
  • the end station 40 updates the TSN time held by the end station 40 as needed based on the received TSN time.
  • the end station 40 receives a command from the TSN control source via the NR system 30. For example, the end station 40 determines whether the TSN time held by the end station 40 reaches the predetermined TSN time based on the predetermined TSN time included in the received command and the TSN time held by the end station 40. To judge.
  • the end station 40 When the end station 40 determines that the predetermined TSN time is reached, it operates based on the received command. In this way, the TSN control source performs time scheduling for operating the end station 40 based on the TSN time, so that real-time remote control is executed in the network 10.
  • FIG. 2 is a functional block configuration diagram of the UE100.
  • the hardware configuration of UE 100 will be described later.
  • the UE 100 includes a transmitter 101, a receiver 103, and a controller 105.
  • the transmitting unit 101 transmits an uplink signal according to NR to the gNB 200.
  • the transmission unit 101 transmits a command from the TSN control source and the TSN time to the end station 40.
  • the receiving unit 103 receives a downlink signal according to NR from the gNB 200.
  • the receiving unit 103 receives a command and system information from the control source of the TSN from the gNB 200.
  • the receiving unit 103 receives a response signal or the like from the end station 40.
  • the control unit 105 instructs the transmitting unit 101 to transmit the TSN time to the end station 40.
  • the control unit 105 instructs the transmission unit 101 to transmit the command to the end station 40.
  • the control unit 105 performs notification frequency calculation, error notification, etc., which will be described later.
  • FIG. 3 is a functional block configuration diagram of gNB200.
  • the hardware configuration of gNB200 will be described later.
  • the gNB 200 includes a transmission unit 201, a reception unit 203, and a control unit 205.
  • the transmitting unit 201 transmits a command and system information from the TSN control source to the UE100.
  • the receiving unit 203 receives the command and the TSN time from the control source of the TSN from the core network 300.
  • the control unit 205 When the receiving unit 203 receives the TSN time, the control unit 205 includes the received TSN time in the system information (for example, SIB9). The control unit 205 instructs the transmission unit 201 to periodically notify the system information at the transmission timing based on NRGMC.
  • SIB9 system information
  • the control unit 205 performs setting of a transmission cycle of system information described later, calculation of a clock frequency deviation ratio, unicast notification, notification of a plurality of TSN times, and the like.
  • the backhaul which is a relay line connecting the gNB 200 and the core network 300, causes a synchronization shift of about 500 ns. Therefore, in order to meet the above request, it is necessary to suppress the synchronization accuracy between the UE 100 and the gNB 200 to a synchronization deviation of about 500 ns.
  • Transmission cycle of system information gNB200 broadcasts TSN time using system information. However, in the gNB200, the time synchronization between the TSN GMC and the NR GMC is shifted by about 32 ⁇ s per second at the maximum when the stratum 4 clock is used.
  • the minimum transmission cycle of system information is 80 ms, so the time synchronization between TSN GMC and NR GMC is shifted by a maximum of about 2.56 ⁇ s.
  • the gNB 200 in order to suppress the synchronization accuracy between the UE 100 and the gNB 200 to a synchronization deviation of about 500 ns, it is necessary for the gNB 200 to make the system information transmission cycle shorter than the conventional minimum transmission cycle of 80 ms.
  • a method of setting the transmission cycle of system information to 10 ms in the gNB 200 will be described.
  • the transmission cycle of the system information is set to 10 ms
  • the time synchronization between the TSN GMC and the NR GMC in the gNB 200 can be suppressed to a maximum deviation of about 0.32 ⁇ S.
  • the transmission cycle of the system information depends on the synchronization accuracy between the control source of the TSN and the end station 40, the synchronization deviation in the backhaul in the NR system 30, and the synchronization accuracy between the TSNGMC and the NR GMC in the gNB200. It is determined. Therefore, the transmission cycle of system information is not limited to 10 ms.
  • the system information transmission cycle can be set to a value larger than 10 ms. Is.
  • FIG. 4 is a diagram showing a flowchart of a transmission cycle setting process. As shown in FIG. 4, the gNB 200 receives the TSN time from the core network 300 (S11 in FIG. 4).
  • the gNB 200 sets the transmission cycle of the system information based on any one of the setting examples 1 to 3 described later (S13 in FIG. 4).
  • the gNB 200 includes the TSN time in the system information and broadcasts the system information at the set transmission cycle (S15 in FIG. 4).
  • FIG. 5 is a diagram illustrating a setting example 1 of the transmission cycle.
  • the gNB 200 multiplies the minimum transmission period of 80 ms of the conventional system information by 1/8 and sets the transmission period to 10 ms.
  • the gNB200 can notify the system information at the transmission timing of 10 ms intervals, that is, at the transmission cycle of 10 ms.
  • the gNB 200 receives a plurality of coefficient SFs from the core network 300 as a group of coefficient SFs.
  • the gNB 200 selects an appropriate coefficient SF from the group of coefficient SFs.
  • the gNB200 may add the si-PeriodicitySF information element that specifies the group of coefficient SFs to the SI-SchedulingInfo information element of the SIB1 message. Thereby, gNB200 can share the group of coefficient SF between UE100 and gNB200 using a SIB1 message.
  • gNB200 may broadcast system information in the conventional transmission cycle in addition to the set transmission cycle. Further, the gNB 200 may directly allocate 10 ms as the minimum system information transmission cycle.
  • the gNB 200 sets at least one transmission timing (sub-transmission timing) obtained by shifting the transmission timing (main transmission timing) of the conventional system information transmission cycle by the offset in the time axis direction.
  • the gNB 200 broadcasts system information at at least one set transmission timing in addition to the conventional transmission timing.
  • FIG. 6 is a diagram illustrating a setting example 2 of the transmission cycle.
  • the gNB 200 sets the seven transmission timings by shifting the transmission timing of the conventional system information with the minimum transmission cycle of 80 ms by 10 ms.
  • the gNB200 can notify the system information at the transmission timing of 10 ms intervals, that is, at the transmission cycle of 10 ms.
  • the gNB 200 receives a plurality of offset values OF from the core network 300 as a group of offset values OF.
  • the offset value OF is a value that offsets the conventional transmission cycle in the time axis direction. In the example of FIG. 6, the offset value OF is 10 ms, 20 ms, 30 ms, 40 ms, 50 ms, 60 ms, and 70 ms.
  • the gNB 200 selects at least one appropriate offset value OF from the group of offset values OF.
  • the gNB200 may add the si-PeriodicityOffset information element that defines the group of offset value OF to the SI-SchedulingInfo information element of the SIB1 message. Thereby, gNB200 can share the group of offset value OF between UE100 and gNB200 using a SIB1 message.
  • the gNB 200 broadcasts system information at the transmission cycle set by the method of the setting example 1 in the first frequency resource, and at the transmission timing set by the method of the setting example 2 in the second frequency resource. , Inform system information.
  • FIG. 7 is a diagram illustrating setting example 3 of the transmission cycle.
  • the gNB 200 multiplies the conventional system information transmission cycle of 80 ms by 1/4 to set the transmission cycle to 20 ms.
  • the gNB200 uses the frequency resource BWP2 to broadcast the system information at 20 ms interval transmission timing, that is, at a transmission cycle of 20 ms.
  • the gNB200 sets three transmission timings by shifting the transmission timing of the conventional system information with a minimum transmission cycle of 80 ms by 20 ms.
  • the gNB200 can broadcast the system information using the frequency resource BWP3 at the transmission timing of 20 ms intervals, that is, at the transmission cycle of 20 ms.
  • the transmission timing of frequency resource BWP2 is 10 ms off the transmission timing of frequency resource BWP3 on the time axis.
  • the gNB200 can notify the system information at the transmission timing of 10 ms intervals on the time axis, that is, at the transmission cycle of 10 ms.
  • the frequency resource is not limited to BWP and may be a component carrier (CC).
  • the gNB 200 may broadcast system information at a transmission cycle set by the method of setting example 1 and broadcast system information at the transmission timing set by the method of setting example 2 in one frequency resource.
  • the gNB200 calculates the clock frequency deviation ratio between the TSN GMC and the NR GMC in the gNB200, and uses the TSN time and the clock frequency deviation ratio as system information. Including this, a method of notifying system information in a conventional transmission cycle will be described.
  • the UE 100 side can correct the time synchronization deviation between the TSN GMC and NR GMC based on the clock frequency deviation ratio. For this reason, the gNB 200 does not have to deal with the time synchronization shift between the TSN GMC and the NR GMC in the gNB 200.
  • FIG. 8 is a diagram showing a flowchart of the notification processing of the deviation ratio of the clock frequency by the gNB 200. As shown in FIG. 8, the gNB 200 receives the TSN time from the core network 300 (S21 in FIG. 8).
  • the gNB200 calculates the clock frequency shift ratio between the TSN GMC and the NR GMC in the gNB200 (S23 in FIG. 8).
  • gNB200 calculates the value of cumulative scaled rate offset (CSRO), which is the protocol parameter of Generalized Precision Time Protocol (gPTP), as the deviation ratio of the clock frequency.
  • CSRO cumulative scaled rate offset
  • NRR neighbor ratio
  • gPTP Generalized Precision Time Protocol
  • the gNB200 includes the received TSN time and the calculated deviation ratio of the clock frequency in the system information, and notifies the system information in the conventional transmission cycle (S25 in FIG. 8).
  • the gNB 200 may notify the UE 100 of the deviation ratio of the TSN time and the clock frequency by unicast, instead of notifying the system information. In this case, for example, the gNB 200 notifies the UE 100 of the deviation ratio of the TSN time and the clock frequency by using RRC dedicated signaling.
  • the gNB 200 when the gNB 200 receives the TSN time from the core network 300, the gNB 200 can directly notify the UE 100 of the TSN time without waiting for a predetermined time (for example, a system information transmission cycle). For this reason, the gNB 200 does not have to deal with the time synchronization shift between the TSN GMC and the NR GMC in the gNB 200.
  • a predetermined time for example, a system information transmission cycle
  • FIG. 9 is a diagram showing a flowchart of unicast notification. As shown in FIG. 9, the gNB 200 receives the TSN time from the core network 300 (S31 in FIG. 9).
  • the gNB200 includes the system information including the TSN time in the RRC message (S33 in Fig. 9). gNB200 transmits an RRC message to UE100 (S35 of FIG. 9).
  • the gNB 200 includes the system information as a container in the RRC reconfiguration message.
  • the gNB 200 selects, for example, an appropriate coefficient SF from the group of coefficient SFs (setting example 1), or at least one appropriate value from the group of offset values OF. Select an appropriate offset value OF (Setting example 2).
  • the gNB 200 can select the coefficient SF or the offset value OF according to the notification frequency of the system information notified from the UE 100.
  • FIG. 10 is a diagram showing a sequence of notification processing of the notification frequency.
  • UE100 calculates the notification frequency of the system information required by UE100 (S41 of FIG. 10).
  • UE100 notifies the notification frequency of system information to gNB200 (S43 of FIG. 10).
  • the UE 100 in communication between the UE 100 and the end station 40, in order to notify how much high synchronization accuracy is required, the UE 100 is a Quality of Service (QoS) between the UE 100 and the end station 40. ), the system information request (SI request) may be notified to the gNB 200.
  • QoS Quality of Service
  • SI request system information request
  • the UE100 In communication between the UE100 and the gNB200, the UE100 notifies the system information request to the gNB200 according to the UE type in order to notify how much the system information transmission cycle can be shortened. May be.
  • the UE100 may notify the gNB3200 of a UE capability message including the capability of the notification frequency in order to notify the capability of the notification frequency that the UE100 can receive.
  • UE100 may notify the gNB200 by including the synchronization accuracy or notification frequency requested by UE100 in the UEAssistanceInformation message.
  • the gNB 200 sets the transmission cycle of system information based on the notified notification frequency (S45 of FIG. 10). For example, the gNB 200 selects at least one of the coefficient SF and the offset value OF according to the notified notification frequency, and sets the transmission cycle of the system information.
  • the gNB200 broadcasts system information at the set transmission cycle (S47 in Fig. 10).
  • FIG. 11 is a diagram showing a flowchart of error notification.
  • the UE 100 periodically receives system information including TSN time (S51 in FIG. 11).
  • the UE 100 determines whether or not to receive the system information at a required predetermined period (S53 of FIG. 11).
  • the UE 100 ends the process.
  • the UE100 when the system information is not received in the predetermined cycle (S53: NO in FIG. 11), the UE100 notifies the core network 300 or the control source of the TSN of the error message via the gNB200 (S55 in FIG. 11). ).
  • the UE 100 may notify the core network 300 or the control source of the TSN via the gNB 200 when detecting a radio link failure (Radio Link Failure: RLF).
  • RLF Radio Link Failure
  • GNB200 notifies UE100 by including multiple TSN times in one system information.
  • a time identifier is associated with each TSN time.
  • the UE 100 selects only the TSN time associated with the time identifier previously notified from the higher layer, from the plurality of TSN times.
  • the gNB 200 may notify each UE 100 of the corresponding TSN time by using RRC dedicated signaling.
  • the gNB 200 may include different TSN times in each of the plurality of system information and notify the plurality of UEs 100.
  • the gNB 200 includes the receiving unit 203 that receives the TSN time serving as the time reference within the network 10, and the control unit 205 that shortens the transmission cycle of system information including the TSN time. And a transmission unit 201 that notifies system information in a shortened transmission cycle.
  • the TSN control source can execute remote control of the TSN end station with higher synchronization accuracy via the NR system.
  • control unit 205 shortens the transmission cycle by multiplying the transmission cycle of the system information by a coefficient smaller than 1.
  • the gNB 200, the receiving unit 203 that receives the TSN time that is the time reference within the network 10, and the main transmission timing that periodically transmits the system information including the TSN time are shifted in the time axis direction.
  • the TSN control source can execute remote control of the TSN end station with higher synchronization accuracy via the NR system.
  • the gNB 200 the receiving unit 203 that receives the TSN time that is the time reference in the network 10, shortens the transmission cycle of the system information that includes the TSN time, and the system information that includes the TSN time.
  • a control unit 205 that sets at least one sub-transmission timing in which the main transmission timing that is periodically transmitted is shifted in the time axis direction, and uses the first frequency resource to notify the system information in a shortened transmission cycle.
  • a transmitting unit 201 that broadcasts system information at the main transmission timing and at least one sub-transmission timing using the second frequency resource.
  • the gNB 200 is a receiving unit 203 that receives the TSN time that is the time reference in the network 10, a TSN GMC that determines the TSN time, and a clock between the NR GMC that is the operation reference of the gNB 200.
  • a control unit 205 for determining a frequency shift ratio and a transmission unit 201 for notifying system information including the TSN time and clock frequency shift ratio are provided.
  • the UE 100 side can correct the time synchronization deviation between the TSN GMC and the NR GMC based on the clock frequency deviation ratio. For this reason, the gNB 200 does not have to deal with the time synchronization shift between the TSN GMC and the NR GMC in the gNB 200.
  • the gNB 200 the receiving unit 203 that receives the TSN time that is the time reference within the network 10, the control unit 205 that includes the TSN time in the RRC message, and the predetermined UE 100, the RRC message. And a transmitting unit 201 for transmitting.
  • the gNB 200 when receiving the TSN time from the core network 300, directly notifies the predetermined UE 100 of the TSN time without waiting for a predetermined time (for example, a transmission cycle of system information). You can For this reason, the gNB 200 does not have to deal with the time synchronization shift between the TSN GMC and the NR GMC in the gNB 200.
  • a predetermined time for example, a transmission cycle of system information
  • the UE 100 the notification frequency of the system information including the TSN time that is the time reference in the network 10, the control unit 105 included in the message, to the gNB200, the transmission unit 101 for transmitting the message. , GNB200, and a receiving unit 103 that receives system information in a transmission cycle associated with the notification frequency.
  • the gNB 200 can set the transmission cycle of the system information including the TSN time according to the notification frequency of the system information notified from the UE 100. Therefore, the gNB 200 can notify the system information including the TSN time based on the capability of the UE 100.
  • the UE 100 receives the system information including the TSN time serving as the time reference in the network 10, the receiving unit 103 that periodically receives from the gNB 200, and the receiving unit 103 receives the system information at a predetermined period.
  • the control unit 105 includes a transmission unit 101 that determines whether the system information has been received, and a transmission unit 101 that notifies the network of an error message when the control unit 105 determines that the system information has not been received in a predetermined cycle.
  • the UE 100 can notify the network that the system information including the TSN time has not been received in a predetermined cycle.
  • each functional block may be implemented by using one device that is physically or logically coupled, or directly or indirectly (for example, two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices.
  • the functional block may be realized by combining the one device or the plurality of devices with software.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deemed, and notification ( Broadcasting, notifying, communicating, forwarding, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but are not limited to these. ..
  • a functional block (component) that causes transmission to function is called a transmitter (transmitting unit) or a transmitter (transmitter).
  • the implementation method is not particularly limited as described above.
  • FIG. 12 is a diagram illustrating an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • Each functional block of the device is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the device is such that the processor 1001 performs an arithmetic operation by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and controls communication by the communication device 1004 and a memory. It is realized by controlling at least one of reading and writing of data in the storage 1002 and the storage 1003.
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, a calculation device, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is configured by at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), and Random Access Memory (RAM). May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 may store a program (program code) capable of executing the method according to an embodiment of the present disclosure, a software module, and the like.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disc drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disc). At least one of a (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, or the like may be used.
  • the storage 1003 may be called an auxiliary storage device.
  • the above-described recording medium may be, for example, a database including at least one of the memory 1002 and the storage 1003, a server, or another appropriate medium.
  • the communication device 1004 is hardware (transmission/reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD). May be composed of
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the device is configured to include hardware such as a microprocessor, digital signal processor (DSP), Application Specific Integrated Circuit (ASIC), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA).
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • processor 1001 may be implemented with at least one of these hardware.
  • the notification of information is not limited to the mode/embodiment described in the present disclosure, and may be performed using another method.
  • information is notified by physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (for example, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block). (MIB), System Information Block (SIB)), other signals, or a combination thereof
  • RRC signaling may be referred to as RRC message, for example, RRC Connection Setup (RRC Connection Setup). ) Message, RRC connection reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5th generation mobile communication system 4th generation mobile communication system
  • 5G Future Radio Access
  • FAA New Radio
  • NR New Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX (registered trademark)
  • IEEE802.20 Ultra-WideBand
  • Bluetooth registered trademark
  • a plurality of systems may be combined and applied (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation that is performed by the base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal include a base station and other network nodes other than the base station (eg, MME or S-GW and the like are conceivable, but not limited to these).
  • MME or S-GW and the like are conceivable, but not limited to these.
  • a combination of a plurality of other network nodes for example, MME and S-GW may be used.
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input/output may be performed via a plurality of network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input/output information may be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (whether 0 or 1), may be performed by a Boolean value (Boolean: true or false), and may be performed by comparing numerical values (for example, a predetermined value). Value comparison).
  • the notification of the predetermined information (for example, the notification of “being X”) is not limited to the explicit notification, and is performed implicitly (for example, the notification of the predetermined information is not performed). Good.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses a wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) websites, When sent from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
  • At least one of the channel and the symbol may be a signal (signaling).
  • the signal may also be a message.
  • a component carrier (Component Carrier: CC) may be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented.
  • the radio resources may be those indicated by the index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may be referred to by terms such as macro cell, small cell, femto cell, and pico cell.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (e.g., a small indoor base station (Remote Radio Radio). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio Radio). Head: RRH) can also provide communication services.
  • cell refers to a part or the entire coverage area of at least one of the base station and the base station subsystem that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • Mobile stations are defined by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmission device, a reception device, a communication device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned type or unmanned type).
  • At least one of the base station and the mobile station also includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • the communication between base stations and mobile stations has been replaced with communication between multiple mobile stations (eg, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the function of the base station.
  • the wording such as “up” and “down” may be replaced with the wording corresponding to the terminal-to-terminal communication (for example, “side”).
  • the uplink channel and the downlink channel may be replaced with the side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the function of the mobile station.
  • connection means any direct or indirect connection or coupling between two or more elements, and It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the connections or connections between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • two elements are in the radio frequency domain, with at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , Can be considered to be “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as Reference Signal (RS), or may be referred to as Pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” means both "based only on” and “based at least on.”
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements may be employed there, or that the first element must precede the second element in any way.
  • the term “A and B are different” may mean “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • the terms “remove”, “coupled” and the like may be construed similarly as “different”.
  • the user device described above is useful because it can transmit an uplink signal at a transmission timing that can be supported by a plurality of wireless base stations in simultaneous communication with a plurality of wireless base stations.

Abstract

A gNB (200) according to the invention is provided with: a reception unit (203) that receives a TSN time serving as a time reference in a predetermined network (10); a control unit (205) that shortens a transmission period of system information including the TSN time; and a transmission unit (201) that broadcasts the system information in the transmission period as shortened.

Description

無線基地局及びユーザ装置Radio base station and user equipment
 本発明は、遠隔制御に用いられる無線基地局及びユーザ装置に関する。 The present invention relates to a wireless base station and user equipment used for remote control.
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)を仕様化している。また、3GPPでは、さらに、5G New Radio(NR)、或いはNext Generation(NG)などと呼ばれるLTEの後継システムの仕様が検討されている。 The 3rd Generation Partnership Project (3GPP) has specified Long Term Evolution (LTE) and has specified LTE-Advanced (hereinafter, LTE including LTE-Advanced) for the purpose of further speeding up LTE. Further, in 3GPP, specifications of a successor system to LTE called 5G New Radio (NR) or Next Generation (NG) are being considered.
 産業用のInternet of things(IoT)において、Time-Sensitive Networking(TSN)を利用して、生産工場内の機械(例えば、ロボットアーム)を、NRシステムを経由して遠隔制御することが議論されている(非特許文献1参照)。 In the industrial Internet of things (IoT), it has been discussed to use Time-Sensitive Networking (TSN) to remotely control machines (for example, robot arms) in production plants via an NR system. (See Non-Patent Document 1).
 非特許文献1では、遠隔制御に対応するために、TSNの制御元と、TSNのエンドステーションである生産工場内の機械との間における同期精度を、1μs(=1000ns)程度の同期ずれに抑えることを要求している。 In Non-Patent Document 1, in order to support remote control, the synchronization accuracy between the TSN control source and the machine in the production plant, which is the TSN end station, is suppressed to a synchronization deviation of about 1 μs (=1000 ns). Requesting that.
 しかしながら、NRシステムにおいて、コアネットワークと無線基地局(gNB)とを繋ぐ中継回線であるバックホールでは、500ns程度の同期ずれが発生する。 However, in the NR system, a synchronization shift of about 500 ns occurs in the backhaul, which is a relay line that connects the core network and the radio base station (gNB).
 このため、上述した要求に応えるためには、gNBとユーザ装置(User Equipment, UE)との間における同期精度を、500ns程度の同期ずれに抑える必要がある。 Therefore, in order to meet the above requirements, it is necessary to suppress the synchronization accuracy between the gNB and the user equipment (User Equipment, UE) to a synchronization deviation of about 500 ns.
 しかしながら、gNBにおいて、TSNの動作タイミングとなるTSNグランドマスタークロック(TSN GMC)と、gNBの動作タイミングとなるNRグランドマスタークロック(NR GMC )との間における時間同期は、stratum 4のクロックを使用した場合、最大で1秒あたり32μs程度ずれる。 However, in the gNB, stratum 4 clock was used for time synchronization between the TSN grand master clock (TSN GMC), which is the TSN operation timing, and the NR grand master clock (NR,GMC), which is the gNB operation timing. In this case, the maximum deviation is 32 μs per second.
 これに対して、gNBにおいて、時刻を報知する従来のシステム情報の最小送信周期は80msである。 On the other hand, in gNB, the minimum transmission cycle of the conventional system information for notifying the time is 80 ms.
 このため、従来のシステム情報の送信周期では、gNBとUEとの間における同期精度を、500ns程度の同期ずれに抑えることができない可能性がある。 Therefore, in the conventional system information transmission cycle, there is a possibility that the synchronization accuracy between gNB and UE cannot be suppressed to a synchronization deviation of about 500 ns.
 そこで、本発明は、このような状況に鑑みてなされたものであり、TSNの制御元が、NRシステムを経由して、TSNのエンドステーションをより高い同期精度で遠隔制御を実行し得る無線基地局及びユーザ装置を提供することを目的とする。 Therefore, the present invention has been made in view of such a situation, the control source of the TSN, via the NR system, a radio base that can execute remote control of the end station of the TSN with higher synchronization accuracy. It is an object to provide a station and a user equipment.
 本発明の一態様に係る無線基地局(200)は、所定ネットワーク内の時刻基準となる時刻情報を受信する受信部(203)と、前記時刻情報を含むシステム情報の送信周期を短縮する制御部(205)と、短縮された前記送信周期で、前記システム情報を報知する送信部(201)と、を備える。 A radio base station (200) according to one aspect of the present invention includes a receiving unit (203) that receives time information serving as a time reference in a predetermined network, and a control unit that shortens a transmission cycle of system information including the time information. (205), and a transmitter (201) for notifying the system information at the shortened transmission cycle.
 本発明の一態様に係る無線基地局(200)は、所定ネットワーク内の時刻基準となる時刻情報を受信する受信部(203)と、前記時刻情報を含むシステム情報を周期的に送信する主送信タイミングを時間軸方向にずらした、少なくとも1つの副送信タイミングを設定する制御部(205)と、前記主送信タイミング及び前記少なくとも1つの副送信タイミングで、前記システム情報を報知する送信部(201)と、を備える。 A radio base station (200) according to one aspect of the present invention includes a receiving unit (203) that receives time information serving as a time reference in a predetermined network, and a main transmission that periodically transmits system information including the time information. A control unit (205) that sets at least one sub-transmission timing whose timing is shifted in the time axis direction, and a transmission unit (201) that notifies the system information at the main transmission timing and the at least one sub-transmission timing. And
 本発明の一態様に係る無線基地局(200)は、所定ネットワーク内の時刻基準となる時刻情報を受信する受信部(203)と、前記時刻情報を含むシステム情報の送信周期を短縮し、かつ、前記時刻情報を含むシステム情報を周期的に送信する主送信タイミングを時間軸方向にずらした、少なくとも1つの副送信タイミングを設定する制御部(205)と、第1周波数リソースを用いて、短縮された前記送信周期で、前記システム情報を報知し、かつ、第2周波数リソースを用いて、前記主送信タイミング及び前記少なくとも1つの副送信タイミングで、前記システム情報を報知する送信部(201)と、を備える。 A radio base station (200) according to one aspect of the present invention includes a receiving unit (203) that receives time information that serves as a time reference within a predetermined network, and a transmission cycle of system information including the time information, and , A control unit (205) for setting at least one sub-transmission timing in which the main transmission timing for periodically transmitting the system information including the time information is shifted in the time axis direction, and shortened by using the first frequency resource A transmission unit (201) for notifying the system information at the determined transmission cycle and notifying the system information at the main transmission timing and the at least one sub-transmission timing using a second frequency resource; , Is provided.
 本発明の一態様に係る無線基地局(200)は、所定ネットワーク内の時刻基準となる時刻情報を受信する受信部(203)と、前記時刻情報を決定するクロックと、前記無線基地局の動作基準となるクロックとの周波数ずれ比率を決定する制御部(205)と、前記時刻情報及び前記周波数ずれ比率を含むシステム情報を報知する送信部(201)と、を備える。 A radio base station (200) according to one aspect of the present invention includes a receiving unit (203) that receives time information serving as a time reference within a predetermined network, a clock that determines the time information, and an operation of the radio base station. A control unit (205) for determining a frequency deviation ratio with respect to a reference clock and a transmission unit (201) for notifying system information including the time information and the frequency deviation ratio.
 本発明の一態様に係る無線基地局(200)は、所定ネットワーク内の時刻基準となる時刻情報を受信する受信部(203)と、前記時刻情報をRRCメッセージに含める制御部(205)と、所定のユーザ装置(100)に対して、前記RRCメッセージを送信する送信部(201)と、を備える。 A radio base station (200) according to one aspect of the present invention, a receiving unit (203) that receives time information that is a time reference within a predetermined network, a control unit (205) that includes the time information in an RRC message, A transmission unit (201) for transmitting the RRC message to a predetermined user device (100).
 本発明の一態様に係るユーザ装置(100)は、所定ネットワーク内の時刻基準となる時刻情報を含むシステム情報の報知頻度を、メッセージに含める制御部(105)と、無線基地局(200)に対して、前記メッセージを送信する送信部(101)と、前記無線基地局(200)から、前記報知頻度に対応付けられた送信周期で、前記システム情報を受信する受信部(103)と、を備える。 A user apparatus (100) according to an aspect of the present invention includes a control unit (105) that includes a notification frequency of system information including time information serving as a time reference in a predetermined network in a message, and a radio base station (200). On the other hand, a transmitter (101) for transmitting the message, and a receiver (103) for receiving the system information from the radio base station (200) at a transmission cycle associated with the notification frequency. Prepare
 本発明の一態様に係るユーザ装置(100)は、所定ネットワーク内の時刻基準となる時刻情報を含むシステム情報を、無線基地局(200)から周期的に受信する受信部(103)と、前記受信部(103)が、所定周期で前記システム情報を受信したか否かを判断する制御部(105)と、前記制御部(105)が、前記所定周期で前記システム情報を受信していないと判断する場合、前記所定ネットワークに対して、エラーメッセージを通知する送信部(101)と、を備える。 A user apparatus (100) according to an aspect of the present invention includes a receiving unit (103) that periodically receives system information including time information serving as a time reference within a predetermined network from a wireless base station (200), A receiving unit (103) determines whether or not the system information is received in a predetermined cycle, and the control unit (105) has not received the system information in the predetermined cycle. When making a determination, a transmission unit (101) for notifying an error message to the predetermined network is provided.
図1は、ネットワーク10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the network 10. 図2は、UE100の機能ブロック構成図である。FIG. 2 is a functional block configuration diagram of the UE 100. 図3は、gNB200の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of gNB200. 図4は、gNB200による送信周期の設定処理のフローチャートを示す図である。FIG. 4 is a diagram showing a flowchart of a transmission cycle setting process by the gNB 200. 図5は、送信周期の設定例1を説明する図である。FIG. 5 is a diagram illustrating a setting example 1 of the transmission cycle. 図6は、送信周期の設定例2を説明する図である。FIG. 6 is a diagram illustrating a second setting example of the transmission cycle. 図7は、送信周期の設定例3を説明する図である。FIG. 7 is a diagram illustrating a setting example 3 of the transmission cycle. 図8は、gNB200によるクロック周波数のずれ比率の通知処理のフローチャートを示す図である。FIG. 8 is a diagram showing a flowchart of the notification process of the clock frequency deviation ratio by the gNB 200. 図9は、gNB200によるユニキャスト通知のフローチャートを示す図である。FIG. 9 is a diagram showing a flowchart of unicast notification by the gNB 200. 図10は、UE100による報知頻度の通知処理のシーケンスを示す図である。FIG. 10 is a diagram showing a sequence of notification processing of the notification frequency by the UE 100. 図11は、UE100によるエラー通知のフローチャートを示す図である。FIG. 11 is a diagram showing a flowchart of error notification by the UE 100. 図12は、UE100及びgNB200のハードウェア構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of the hardware configuration of the UE 100 and the gNB 200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。 Embodiments will be described below with reference to the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)ネットワークの全体概略構成
 図1は、実施形態に係るネットワーク10の全体概略構成図である。
(1) Overall Schematic Configuration of Network FIG. 1 is an overall schematic configuration diagram of a network 10 according to the embodiment.
 ネットワーク(所定ネットワーク)10は、TSNネットワークであり、TSNグランドマスター(TSN GM)20と、NRシステム30と、エンドステーション40とを含む。ネットワーク10では、TSNの制御元(図示略)が、NRシステム30を経由して、生産工場内のエンドステーション40をリアルタイムで遠隔制御する。 The network (predetermined network) 10 is a TSN network, and includes a TSN grand master (TSNGM) 20, an NR system 30, and an end station 40. In the network 10, a TSN control source (not shown) remotely controls the end station 40 in the production factory in real time via the NR system 30.
 TSN GM20は、TSN時刻を生成するためのクロックを高精度に発振する。以後、TSN GM20が発振するクロックをTSNグランドマスタークロック(TSN GMC)と呼ぶ。 ▽ TSNGM20 oscillates a clock for generating TSN time with high accuracy. Hereinafter, the clock oscillated by TSNGM20 is called TSN grandmaster clock (TSNGMC).
 TSN時刻は、ネットワーク10内の時刻基準となる。ネットワーク10では、リアルタイムでの遠隔制御を実現するために、TSNの制御元の時刻及びエンドステーション40の時刻を、TSN時刻に合せる必要がある。 -The TSN time is the time reference within the network 10. In the network 10, in order to realize remote control in real time, it is necessary to match the time of the TSN control source and the time of the end station 40 with the TSN time.
 このため、TSN GM20は、生成されたTSN時刻を、TSNの制御元に送信するとともに、NRシステム30を経由してエンドステーション40に送信する。 Therefore, the TSNGM20 sends the generated TSN time to the control source of the TSN and also to the end station 40 via the NR system 30.
 NRシステム30は、NRグランドマスター(NR GM)31と、UE100と、gNB200と、コアネットワーク300とを含む。NR GM31は、NRシステム30の動作タイミングとなるクロックを発振する。以後、NR GM31が発振するクロックをNRグランドマスタークロック(NR GMC)と呼ぶ。 NR system 30 includes NR grand master (NRGM) 31, UE 100, gNB 200, and core network 300. The NR31 GM31 oscillates a clock that is the operation timing of the NR system 30. Hereinafter, the clock that NRGM31 oscillates is called the NR grand master clock (NRGMC).
 UE100は、UE100とgNB200及びコアネットワーク300との間においてNRに従った無線通信を実行する。UE100は、gNB200から報知されるシステム情報を周期的に受信する。UE100は、システム情報に含まれるTSN時刻を、エンドステーション40に送信する。 UE100 executes wireless communication according to NR between UE100 and gNB200 and core network 300. The UE 100 periodically receives the system information broadcast from the gNB 200. The UE 100 transmits the TSN time included in the system information to the end station 40.
 gNB200は、gNB200とコアネットワーク300との間においてNRに従った無線通信を実行する。gNB200は、コアネットワーク300からTSN時刻を受信する。 The gNB200 executes wireless communication according to NR between the gNB200 and the core network 300. The gNB 200 receives the TSN time from the core network 300.
 gNB200は、受信したTSN時刻をシステム情報に含める。例えば、TSN時刻は、時刻を報知するSystem Information Block(SIB)9に含められる。 -The gNB200 includes the received TSN time in the system information. For example, the TSN time is included in the System Information Block (SIB) 9 that notifies the time.
 gNB200は、NR GMCに基づく所定の送信タイミングで、TSN時刻を含んだシステム情報を、UE100に周期的に報知する。 The gNB200 periodically notifies the UE100 of system information including TSN time at a predetermined transmission timing based on NRGMC.
 コアネットワーク300は、gNB200を介して、UE100と通信する。コアネットワーク300は、User Plane Function(UPF)310を有する。UPF310は、U-plane処理に特化した機能を提供する。UPF310は、TSN GM20からTSN時刻を受信する。UPF310は、受信したTSN時刻をgNB200に送信する。 Core network 300 communicates with UE 100 via gNB200. The core network 300 has a User Plane Function (UPF) 310. UPF310 provides functions specialized for U-plane processing. UPF310 receives TSN time from TSNGM20. UPF310 transmits the received TSN time to gNB200.
 エンドステーション40は、生産工場内に設けられる機械(例えば、ロボットアーム)である。エンドステーション40は、UE100からTSN時刻を受信する。エンドステーション40は、受信したTSN時刻に基づいて、エンドステーション40が保持するTSN時刻を随時更新する。 The end station 40 is a machine (for example, a robot arm) installed in a production factory. The end station 40 receives the TSN time from the UE 100. The end station 40 updates the TSN time held by the end station 40 as needed based on the received TSN time.
 エンドステーション40は、NRシステム30を介して、TSNの制御元からの指令を受信する。例えば、エンドステーション40は、受信した指令に含まれる所定のTSN時刻と、エンドステーション40が保持するTSN時刻とに基づいて、エンドステーション40が保持するTSN時刻が所定のTSN時刻に達するか否かを判断する。 The end station 40 receives a command from the TSN control source via the NR system 30. For example, the end station 40 determines whether the TSN time held by the end station 40 reaches the predetermined TSN time based on the predetermined TSN time included in the received command and the TSN time held by the end station 40. To judge.
 エンドステーション40は、所定のTSN時刻に達すると判断すると、受信した指令に基づいた動作を行う。このように、TSNの制御元は、TSN時刻に基づいて、エンドステーション40を動作させるための時間スケジューリングを行うことにより、ネットワーク10において、リアルタイムな遠隔制御が実行される。 When the end station 40 determines that the predetermined TSN time is reached, it operates based on the received command. In this way, the TSN control source performs time scheduling for operating the end station 40 based on the TSN time, so that real-time remote control is executed in the network 10.
 (2)UE100の機能ブロック構成
 次に、UE100の機能ブロック構成について説明する。以下、本実施形態における特徴に関連する部分についてのみ説明する。したがって、当該UE100は、本実施形態における特徴に直接関係しない他の機能ブロックを備えることは勿論である。
(2) Functional Block Configuration of UE100 Next, a functional block configuration of the UE100 will be described. Hereinafter, only the portion related to the features of this embodiment will be described. Therefore, it goes without saying that the UE 100 includes other functional blocks that are not directly related to the features of this embodiment.
 図2は、UE100の機能ブロック構成図である。なお、UE100のハードウェア構成については後述する。図2に示すように、UE100は、送信部101と、受信部103と、制御部105とを備える。 FIG. 2 is a functional block configuration diagram of the UE100. The hardware configuration of UE 100 will be described later. As shown in FIG. 2, the UE 100 includes a transmitter 101, a receiver 103, and a controller 105.
 送信部101は、gNB200に対して、NRに従った上りリンク信号を送信する。送信部101は、エンドステーション40に対して、TSNの制御元からの指令及びTSN時刻を送信する。 The transmitting unit 101 transmits an uplink signal according to NR to the gNB 200. The transmission unit 101 transmits a command from the TSN control source and the TSN time to the end station 40.
 受信部103は、gNB200から、NRに従った下りリンク信号を受信する。例えば、受信部103は、gNB200から、TSNの制御元からの指令及びシステム情報を受信する。受信部103は、エンドステーション40から、応答信号などを受信する。 The receiving unit 103 receives a downlink signal according to NR from the gNB 200. For example, the receiving unit 103 receives a command and system information from the control source of the TSN from the gNB 200. The receiving unit 103 receives a response signal or the like from the end station 40.
 制御部105は、受信部103が、TSN時刻を含むシステム情報を受信する場合、当該TSN時刻をエンドステーション40に送信するように送信部101に指示する。制御部105は、TSNの制御元からの指令を受信する場合、当該指令をエンドステーション40に送信するように送信部101に指示する。 When the receiving unit 103 receives the system information including the TSN time, the control unit 105 instructs the transmitting unit 101 to transmit the TSN time to the end station 40. When receiving the command from the control source of the TSN, the control unit 105 instructs the transmission unit 101 to transmit the command to the end station 40.
 制御部105は、後述する報知頻度の算出、エラー通知などを行う。 The control unit 105 performs notification frequency calculation, error notification, etc., which will be described later.
 (3)gNB200の機能ブロック構成
 次に、gNB200の機能ブロック構成について説明する。以下、本実施形態における特徴に関連する部分についてのみ説明する。したがって、当該gNB200は、本実施形態における特徴に直接関係しない他の機能ブロックを備えることは勿論である。
(3) Functional block configuration of gNB200 Next, a functional block configuration of the gNB200 will be described. Hereinafter, only the portion related to the features of this embodiment will be described. Therefore, it goes without saying that the gNB 200 includes other functional blocks that are not directly related to the features of this embodiment.
 図3は、gNB200の機能ブロック構成図である。なお、gNB200のハードウェア構成については後述する。図3に示すように、gNB200は、送信部201と、受信部203と、制御部205とを備える。 FIG. 3 is a functional block configuration diagram of gNB200. The hardware configuration of gNB200 will be described later. As shown in FIG. 3, the gNB 200 includes a transmission unit 201, a reception unit 203, and a control unit 205.
 送信部201は、UE100に対して、TSNの制御元からの指令及びシステム情報を送信する。 The transmitting unit 201 transmits a command and system information from the TSN control source to the UE100.
 受信部203は、コアネットワーク300から、TSNの制御元からの指令及びTSN時刻を受信する。 The receiving unit 203 receives the command and the TSN time from the control source of the TSN from the core network 300.
 制御部205は、受信部203がTSN時刻を受信する場合、受信したTSN時刻をシステム情報(例えば、SIB9)に含める。制御部205は、NR GMCに基づく送信タイミングで、システム情報を周期的に報知するように、送信部201に指示する。 When the receiving unit 203 receives the TSN time, the control unit 205 includes the received TSN time in the system information (for example, SIB9). The control unit 205 instructs the transmission unit 201 to periodically notify the system information at the transmission timing based on NRGMC.
 制御部205は、後述するシステム情報の送信周期の設定、クロック周波数のずれ比率の算出、ユニキャスト通知、複数のTSN時刻の通知などを行う。 The control unit 205 performs setting of a transmission cycle of system information described later, calculation of a clock frequency deviation ratio, unicast notification, notification of a plurality of TSN times, and the like.
 (4)NRシステムの動作
 次に、ネットワーク10におけるNRシステム30の動作について説明する。
(4) Operation of NR System Next, the operation of the NR system 30 in the network 10 will be described.
 (4.1)UE100とgNB200との間における同期精度
 上述したように、ネットワーク10では、リアルタイムでの遠隔制御を実現するために、TSNの制御元の時刻及びエンドステーション40の時刻を、TSN時刻に合せる必要がある。しかしながら、TSNの制御元とエンドステーション40との間における同期精度が悪い場合、時間が経過するにつれて、TSNの制御元のTSN時刻と、エンドステーション40のTSN時刻との間において、ずれが発生する。
(4.1) Synchronization accuracy between UE100 and gNB200 As described above, in the network 10, in order to realize remote control in real time, the time of the TSN control source and the time of the end station 40 are set to the TSN time. Need to be adjusted to. However, if the synchronization accuracy between the TSN control source and the end station 40 is poor, a lag occurs between the TSN time of the TSN control source and the TSN time of the end station 40 as time passes. ..
 このため、例えば、TSNの制御元とエンドステーション40との間における同期精度を、1μs程度の同期ずれに抑えることが要求される。 Therefore, for example, it is required to suppress the synchronization accuracy between the TSN control source and the end station 40 to a synchronization deviation of about 1 μs.
 一方、NRシステム30において、gNB200とコアネットワーク300とを繋ぐ中継回線であるバックホールでは、500ns程度の同期ずれが発生する。このため、上述した要求に応えるためには、UE100とgNB200との間における同期精度を、500ns程度の同期ずれに抑える必要がある。 On the other hand, in the NR system 30, the backhaul, which is a relay line connecting the gNB 200 and the core network 300, causes a synchronization shift of about 500 ns. Therefore, in order to meet the above request, it is necessary to suppress the synchronization accuracy between the UE 100 and the gNB 200 to a synchronization deviation of about 500 ns.
 (4.1.1)システム情報の送信周期
 gNB200は、システム情報を用いてTSN時刻を報知する。しかしながら、gNB200において、TSN GMCとNR GMCとの間における時間同期は、stratum4のクロックを使用した場合、最大で1秒あたり32μs程度ずれる。
(4.1.1) Transmission cycle of system information gNB200 broadcasts TSN time using system information. However, in the gNB200, the time synchronization between the TSN GMC and the NR GMC is shifted by about 32 μs per second at the maximum when the stratum 4 clock is used.
 従来、システム情報の最小送信周期は80msであるため、TSN GMCとNR GMCとの間における時間同期が、最大で2.56μs程度ずれる。 Conventionally, the minimum transmission cycle of system information is 80 ms, so the time synchronization between TSN GMC and NR GMC is shifted by a maximum of about 2.56 μs.
 このため、UE100とgNB200との間における同期精度を、500ns程度の同期ずれに抑えるためには、gNB200において、システム情報の送信周期を、従来の最小送信周期80msより短くする必要がある。 Therefore, in order to suppress the synchronization accuracy between the UE 100 and the gNB 200 to a synchronization deviation of about 500 ns, it is necessary for the gNB 200 to make the system information transmission cycle shorter than the conventional minimum transmission cycle of 80 ms.
 そこで、本実施形態では、gNB200において、システム情報の送信周期を10msに設定する方法を説明する。システム情報の送信周期を10msに設定する場合、gNB200において、TSN GMCとNR GMCとの間における時間同期は、最大で0.32μS程度のずれに抑えられる。 Therefore, in this embodiment, a method of setting the transmission cycle of system information to 10 ms in the gNB 200 will be described. When the transmission cycle of the system information is set to 10 ms, the time synchronization between the TSN GMC and the NR GMC in the gNB 200 can be suppressed to a maximum deviation of about 0.32 μS.
 なお、システム情報の送信周期は、TSNの制御元とエンドステーション40との間における同期精度、NRシステム30におけるバックホールでの同期ずれ、及びgNB200におけるTSN GMCとNR GMCとの同期精度に応じて決定される。このため、システム情報の送信周期は10msには限定されない。 The transmission cycle of the system information depends on the synchronization accuracy between the control source of the TSN and the end station 40, the synchronization deviation in the backhaul in the NR system 30, and the synchronization accuracy between the TSNGMC and the NR GMC in the gNB200. It is determined. Therefore, the transmission cycle of system information is not limited to 10 ms.
 例えば、NRシステム30におけるバックホールでの同期ずれが改善される場合、又はgNB200におけるTSN GMCとNR GMCとの同期精度が高まる場合には、システム情報の送信周期は10msよりも大きい値に設定可能である。 For example, when the backhaul synchronization deviation in the NR system 30 is improved, or when the synchronization accuracy between the TSN GMC and the NR GMC in the gNB200 is increased, the system information transmission cycle can be set to a value larger than 10 ms. Is.
 図4は、送信周期の設定処理のフローチャートを示す図である。図4に示すように、gNB200は、コアネットワーク300からTSN時刻を受信する(図4のS11)。 FIG. 4 is a diagram showing a flowchart of a transmission cycle setting process. As shown in FIG. 4, the gNB 200 receives the TSN time from the core network 300 (S11 in FIG. 4).
 この場合、gNB200は、後述する設定例1乃至3の何れか1つに基づいて、システム情報の送信周期を設定する(図4のS13)。gNB200は、TSN時刻をシステム情報に含めて、設定した送信周期で、当該システム情報を報知する(図4のS15)。 In this case, the gNB 200 sets the transmission cycle of the system information based on any one of the setting examples 1 to 3 described later (S13 in FIG. 4). The gNB 200 includes the TSN time in the system information and broadcasts the system information at the set transmission cycle (S15 in FIG. 4).
 (4.1.1.1)設定例1
 設定例1では、gNB200は、従来のシステム情報の送信周期に対して、係数SF(0<SF<1)を乗じて、送信周期を設定する。gNB200は、設定された送信周期で、システム情報を報知する。
(4.1.1.1) Setting example 1
In Setting Example 1, the gNB 200 sets the transmission cycle by multiplying the conventional system information transmission cycle by a coefficient SF (0<SF<1). The gNB 200 broadcasts system information at the set transmission cycle.
 図5は、送信周期の設定例1を説明する図である。例えば、図5に示すように、gNB200は、従来のシステム情報の最小送信周期80msに対して、1/8を乗じて、送信周期を10msに設定する。 FIG. 5 is a diagram illustrating a setting example 1 of the transmission cycle. For example, as shown in FIG. 5, the gNB 200 multiplies the minimum transmission period of 80 ms of the conventional system information by 1/8 and sets the transmission period to 10 ms.
 この設定により、gNB200は、10ms間隔の送信タイミング、すなわち、送信周期10msで、システム情報を報知することができる。 With this setting, the gNB200 can notify the system information at the transmission timing of 10 ms intervals, that is, at the transmission cycle of 10 ms.
 gNB200は、係数SFのグループとして、複数の係数SFをコアネットワーク300から受信する。gNB200は、係数SFのグループの中から、適切な係数SFを選択する。 The gNB 200 receives a plurality of coefficient SFs from the core network 300 as a group of coefficient SFs. The gNB 200 selects an appropriate coefficient SF from the group of coefficient SFs.
 gNB200は、SIB1メッセージのSI-SchedulingInfo情報要素に対して、係数SFのグループを規定したsi-PeriodicitySF情報要素を追加してもよい。これにより、gNB200は、SIB1メッセージを用いて、UE100とgNB200との間において、係数SFのグループを共有することができる。 The gNB200 may add the si-PeriodicitySF information element that specifies the group of coefficient SFs to the SI-SchedulingInfo information element of the SIB1 message. Thereby, gNB200 can share the group of coefficient SF between UE100 and gNB200 using a SIB1 message.
 なお、gNB200は、設定した送信周期に加えて、従来の送信周期でも、システム情報を報知してもよい。また、gNB200は、システム情報の最小送信周期として、10msを直接割り当ててもよい。 Note that gNB200 may broadcast system information in the conventional transmission cycle in addition to the set transmission cycle. Further, the gNB 200 may directly allocate 10 ms as the minimum system information transmission cycle.
 (4.1.1.2)設定例2
 設定例2では、gNB200は、従来のシステム情報の送信周期の送信タイミング(主送信タイミング)を時間軸方向にオフセット分ずらした、少なくとも1つの送信タイミング(副送信タイミング)を設定する。gNB200は、従来の送信タイミングに加えて、設定された少なくとも1つの送信タイミングで、システム情報を報知する。
(4.1.1.2) Setting example 2
In Setting Example 2, the gNB 200 sets at least one transmission timing (sub-transmission timing) obtained by shifting the transmission timing (main transmission timing) of the conventional system information transmission cycle by the offset in the time axis direction. The gNB 200 broadcasts system information at at least one set transmission timing in addition to the conventional transmission timing.
 図6は、送信周期の設定例2を説明する図である。例えば、図6に示すように、gNB200は、従来のシステム情報の最小送信周期80msの送信タイミングを、10msずつずらして、7つの送信タイミングを設定する。 FIG. 6 is a diagram illustrating a setting example 2 of the transmission cycle. For example, as shown in FIG. 6, the gNB 200 sets the seven transmission timings by shifting the transmission timing of the conventional system information with the minimum transmission cycle of 80 ms by 10 ms.
 この設定により、gNB200は、10ms間隔の送信タイミング、すなわち、送信周期10msで、システム情報を報知することができる。 With this setting, the gNB200 can notify the system information at the transmission timing of 10 ms intervals, that is, at the transmission cycle of 10 ms.
 gNB200は、オフセット値OFのグループとして、複数のオフセット値OFをコアネットワーク300から受信する。オフセット値OFは、従来の送信周期を時間軸方向にオフセットする値である。図6の例では、オフセット値OFは、10ms, 20ms, 30ms, 40ms, 50ms, 60ms及び70msである。gNB200は、オフセット値OFのグループの中から、少なくとも1つの適切なオフセット値OFを選択する。 The gNB 200 receives a plurality of offset values OF from the core network 300 as a group of offset values OF. The offset value OF is a value that offsets the conventional transmission cycle in the time axis direction. In the example of FIG. 6, the offset value OF is 10 ms, 20 ms, 30 ms, 40 ms, 50 ms, 60 ms, and 70 ms. The gNB 200 selects at least one appropriate offset value OF from the group of offset values OF.
 gNB200は、SIB1メッセージのSI-SchedulingInfo情報要素に対して、オフセット値OFのグループを規定したsi-PeriodicityOffset情報要素を追加してもよい。これにより、gNB200は、SIB1メッセージを用いて、UE100とgNB200との間において、オフセット値OFのグループを共有することができる。 The gNB200 may add the si-PeriodicityOffset information element that defines the group of offset value OF to the SI-SchedulingInfo information element of the SIB1 message. Thereby, gNB200 can share the group of offset value OF between UE100 and gNB200 using a SIB1 message.
 (4.1.1.3)設定例3
 設定例3では、gNB200は、第1周波数リソースにおいて、設定例1の方法で設定した送信周期で、システム情報を報知するとともに、第2周波数リソースにおいて、設定例2の方法で設定した送信タイミングで、システム情報を報知する。
(4.1.1.3) Setting example 3
In the setting example 3, the gNB 200 broadcasts system information at the transmission cycle set by the method of the setting example 1 in the first frequency resource, and at the transmission timing set by the method of the setting example 2 in the second frequency resource. , Inform system information.
 図7は、送信周期の設定例3を説明する図である。例えば、図7に示すように、gNB200は、従来のシステム情報の送信周期80msに対して、1/4を乗じて、送信周期を20msに設定する。 FIG. 7 is a diagram illustrating setting example 3 of the transmission cycle. For example, as shown in FIG. 7, the gNB 200 multiplies the conventional system information transmission cycle of 80 ms by 1/4 to set the transmission cycle to 20 ms.
 この設定に基づいて、gNB200は、周波数リソースBWP2を用いて、20ms間隔の送信タイミング、すなわち、送信周期20msで、システム情報を報知する。 Based on this setting, the gNB200 uses the frequency resource BWP2 to broadcast the system information at 20 ms interval transmission timing, that is, at a transmission cycle of 20 ms.
 同時に、gNB200は、従来のシステム情報の最小送信周期80msの送信タイミングを、20msずつずらして、3つの送信タイミングを設定する。 At the same time, the gNB200 sets three transmission timings by shifting the transmission timing of the conventional system information with a minimum transmission cycle of 80 ms by 20 ms.
 この設定に基づいて、gNB200は、周波数リソースBWP3を用いて、20ms間隔の送信タイミング、すなわち、送信周期20msで、システム情報を報知することができる。 Based on this setting, the gNB200 can broadcast the system information using the frequency resource BWP3 at the transmission timing of 20 ms intervals, that is, at the transmission cycle of 20 ms.
 なお、周波数リソースBWP2での送信タイミングは、周波数リソースBWP3での送信タイミングと、時間軸上で10msずれている。 Note that the transmission timing of frequency resource BWP2 is 10 ms off the transmission timing of frequency resource BWP3 on the time axis.
 この設定により、gNB200は、時間軸上で、10ms間隔の送信タイミング、すなわち、送信周期10msで、システム情報を報知することができる。 With this setting, the gNB200 can notify the system information at the transmission timing of 10 ms intervals on the time axis, that is, at the transmission cycle of 10 ms.
 なお、周波数リソースは、BWPに限定されず、コンポーネントキャリア(CC)であってもよい。 Note that the frequency resource is not limited to BWP and may be a component carrier (CC).
 また、gNB200は、1つの周波数リソースにおいて、設定例1の方法で設定した送信周期で、システム情報を報知するとともに、設定例2の方法で設定した送信タイミングでシステム情報を報知してもよい。 Also, the gNB 200 may broadcast system information at a transmission cycle set by the method of setting example 1 and broadcast system information at the transmission timing set by the method of setting example 2 in one frequency resource.
 (4.1.2)クロック周波数のずれ比率
 次に、gNB200が、gNB200におけるTSN GMCとNR GMCとの間におけるクロック周波数のずれ比率を算出し、TSN時刻及びクロック周波数のずれ比率をシステム情報に含めて、従来の送信周期でシステム情報を報知する方法を説明する。
(4.1.2) Clock Frequency Deviation Ratio Next, the gNB200 calculates the clock frequency deviation ratio between the TSN GMC and the NR GMC in the gNB200, and uses the TSN time and the clock frequency deviation ratio as system information. Including this, a method of notifying system information in a conventional transmission cycle will be described.
 この方法により、UE100側で、クロック周波数のずれ比率に基づいて、TSN GMCとNR GMCとの間における時間同期のずれを補正することができる。このため、gNB200は、gNB200におけるTSN GMCとNR GMCとの間における時間同期のずれに対処しなくてすむ。 With this method, the UE 100 side can correct the time synchronization deviation between the TSN GMC and NR GMC based on the clock frequency deviation ratio. For this reason, the gNB 200 does not have to deal with the time synchronization shift between the TSN GMC and the NR GMC in the gNB 200.
 図8は、gNB200によるクロック周波数のずれ比率の通知処理のフローチャートを示す図である。図8に示すように、gNB200は、コアネットワーク300からTSN時刻を受信する(図8のS21)。 FIG. 8 is a diagram showing a flowchart of the notification processing of the deviation ratio of the clock frequency by the gNB 200. As shown in FIG. 8, the gNB 200 receives the TSN time from the core network 300 (S21 in FIG. 8).
 gNB200は、gNB200におけるTSN GMCとNR GMCと間におけるクロック周波数のずれ比率を算出する(図8のS23)。 The gNB200 calculates the clock frequency shift ratio between the TSN GMC and the NR GMC in the gNB200 (S23 in FIG. 8).
 具体的には、gNB200は、クロック周波数のずれ比率として、Generalized Precision Time Protocol(gPTP)のプロトコルパラメータであるcumulative scaled rate offset(CSRO)の値を算出する。なお、TSN GM20と直接接続されている場合には、クロック周波数のずれ比率として、Generalized Precision Time Protocol(gPTP)のプロトコルパラメータであるneighbor rate ratio(NRR)の値のみを算出する。 Specifically, gNB200 calculates the value of cumulative scaled rate offset (CSRO), which is the protocol parameter of Generalized Precision Time Protocol (gPTP), as the deviation ratio of the clock frequency. When directly connected to TSNGM20, only the value of the neighbor ratio (NRR), which is the protocol parameter of Generalized Precision Time Protocol (gPTP), is calculated as the deviation ratio of the clock frequency.
 gNB200は、受信したTSN時刻及び算出したクロック周波数のずれ比率をシステム情報に含めて、従来の送信周期でシステム情報を報知する(図8のS25)。 The gNB200 includes the received TSN time and the calculated deviation ratio of the clock frequency in the system information, and notifies the system information in the conventional transmission cycle (S25 in FIG. 8).
 なお、gNB200は、システム情報を報知する代わりに、ユニキャストにより、UE100に対して、TSN時刻及びクロック周波数のずれ比率を通知してもよい。この場合、例えば、gNB200は、RRC dedicated signalingを用いて、UE100に対して、TSN時刻及びクロック周波数のずれ比率を通知する。 Note that the gNB 200 may notify the UE 100 of the deviation ratio of the TSN time and the clock frequency by unicast, instead of notifying the system information. In this case, for example, the gNB 200 notifies the UE 100 of the deviation ratio of the TSN time and the clock frequency by using RRC dedicated signaling.
 (4.1.3)ユニキャスト通知
 次に、gNB200は、TSN時刻を含んだシステム情報を報知する代わりに、ユニキャストにより、UE100に対して、TSN時刻を含んだシステム情報を通知する方法を説明する。
(4.1.3) Unicast Notification Next, a method in which the gNB200 notifies the UE100 of system information including the TSN time by unicast instead of notifying the system information including the TSN time. explain.
 この方法により、gNB200は、コアネットワーク300からTSN時刻を受信する場合に、所定時間(例えば、システム情報の送信周期)待たずに、UE100に対して、TSN時刻を直接通知することができる。このため、gNB200は、gNB200におけるTSN GMCとNR GMCとの間における時間同期のずれに対処しなくてすむ。 By this method, when the gNB 200 receives the TSN time from the core network 300, the gNB 200 can directly notify the UE 100 of the TSN time without waiting for a predetermined time (for example, a system information transmission cycle). For this reason, the gNB 200 does not have to deal with the time synchronization shift between the TSN GMC and the NR GMC in the gNB 200.
 図9は、ユニキャスト通知のフローチャートを示す図である。図9に示すように、gNB200は、コアネットワーク300からTSN時刻を受信する(図9のS31)。 FIG. 9 is a diagram showing a flowchart of unicast notification. As shown in FIG. 9, the gNB 200 receives the TSN time from the core network 300 (S31 in FIG. 9).
 gNB200は、TSN時刻を含んだシステム情報を、RRCメッセージに含める(図9のS33)。gNB200は、UE100に対して、RRCメッセージを送信する(図9のS35)。 The gNB200 includes the system information including the TSN time in the RRC message (S33 in Fig. 9). gNB200 transmits an RRC message to UE100 (S35 of FIG. 9).
 RRCメッセージとして、例えば、RRC dedicated signalingを用いてもよい。この場合、gNB200は、システム情報をcontainerで、RRCreconfigurationメッセージに含める。 As the RRC message, for example, RRC dedicated signaling may be used. In this case, the gNB 200 includes the system information as a container in the RRC reconfiguration message.
 (4.2)報知頻度の通知
 次に、UE100が、システム情報の報知頻度をgNB200に通知する方法を説明する。
(4.2) Notification of Notification Frequency Next, a method in which the UE 100 notifies the gNB 200 of the notification frequency of system information will be described.
 gNB200は、システム情報の送信周期を設定する場合、例えば、係数SFのグループの中から、適切な係数SFを選択する(設定例1)、又はオフセット値OFのグループの中から、少なくとも1つの適切なオフセット値OFを選択する(設定例2)。 When setting the transmission cycle of the system information, the gNB 200 selects, for example, an appropriate coefficient SF from the group of coefficient SFs (setting example 1), or at least one appropriate value from the group of offset values OF. Select an appropriate offset value OF (Setting example 2).
 この際、gNB200は、UE100から通知されたシステム情報の報知頻度に応じて、係数SF又はオフセット値OFを選択することができる。 At this time, the gNB 200 can select the coefficient SF or the offset value OF according to the notification frequency of the system information notified from the UE 100.
 図10は、報知頻度の通知処理のシーケンスを示す図である。図10に示すように、UE100は、UE100で必要とするシステム情報の報知頻度を算出する(図10のS41)。UE100は、システム情報の報知頻度をgNB200に通知する(図10のS43)。 FIG. 10 is a diagram showing a sequence of notification processing of the notification frequency. As shown in FIG. 10, UE100 calculates the notification frequency of the system information required by UE100 (S41 of FIG. 10). UE100 notifies the notification frequency of system information to gNB200 (S43 of FIG. 10).
 例えば、UE100とエンドステーション40との間で通信において、どの程度の同期精度の高さが必要であるのかを通知するために、UE100は、UE100とエンドステーション40との間におけるQuality of Service(QoS)に応じて、システム情報要求(SI request)をgNB200に通知してもよい。 For example, in communication between the UE 100 and the end station 40, in order to notify how much high synchronization accuracy is required, the UE 100 is a Quality of Service (QoS) between the UE 100 and the end station 40. ), the system information request (SI request) may be notified to the gNB 200.
 UE100とgNB200との間の通信において、どの程度のシステム情報の送信周期の短縮に対応することができるのかを通知するために、UE100は、UE typeに応じて、システム情報要求をgNB200に通知してもよい。 In communication between the UE100 and the gNB200, the UE100 notifies the system information request to the gNB200 according to the UE type in order to notify how much the system information transmission cycle can be shortened. May be.
 UE100とgNB200との間の通信において、UE100が受信できる報知頻度の能力を通知するために、UE100は、報知頻度の能力を含んだUE capabilityメッセージをgNB3200に通知してもよい。 In communication between the UE100 and the gNB200, the UE100 may notify the gNB3200 of a UE capability message including the capability of the notification frequency in order to notify the capability of the notification frequency that the UE100 can receive.
 UE100は、UE100が要求する同期精度又は報知頻度をUEAssistanceInformationメッセージに含めて、gNB200に通知してもよい。 UE100 may notify the gNB200 by including the synchronization accuracy or notification frequency requested by UE100 in the UEAssistanceInformation message.
 図10に戻り、gNB200は、通知された報知頻度に基づいて、システム情報の送信周期を設定する(図10のS45)。例えば、gNB200は、通知された報知頻度に応じて、係数SF及びオフセット値OFのうちの少なくとも一方を選択し、システム情報の送信周期を設定する。 Returning to FIG. 10, the gNB 200 sets the transmission cycle of system information based on the notified notification frequency (S45 of FIG. 10). For example, the gNB 200 selects at least one of the coefficient SF and the offset value OF according to the notified notification frequency, and sets the transmission cycle of the system information.
 gNB200は、設定した送信周期で、システム情報を報知する(図10のS47)。 The gNB200 broadcasts system information at the set transmission cycle (S47 in Fig. 10).
 (4.3)エラー通知
 次に、UE100が、必要とする所定周期で、システム情報を受信できない場合の処理を説明する。図11は、エラー通知のフローチャートを示す図である。
(4.3) Error Notification Next, a process in the case where the UE 100 cannot receive the system information in a required predetermined cycle will be described. FIG. 11 is a diagram showing a flowchart of error notification.
 図11に示すように、UE100は、TSN時刻を含むシステム情報を周期的に受信する(図11のS51)。UE100は、必要とする所定周期で、システム情報を受信するか否かを判断する(図11のS53)。所定周期でシステム情報を受信している場合(図11のS53:YES)、UE100は、処理を終了する。 As shown in FIG. 11, the UE 100 periodically receives system information including TSN time (S51 in FIG. 11). The UE 100 determines whether or not to receive the system information at a required predetermined period (S53 of FIG. 11). When the system information is received in the predetermined cycle (S53: YES in FIG. 11), the UE 100 ends the process.
 一方、所定周期でシステム情報を受信していない場合(図11のS53:NO)、UE100は、エラーメッセージを、gNB200を介して、コアネットワーク300又はTSNの制御元に通知する(図11のS55)。 On the other hand, when the system information is not received in the predetermined cycle (S53: NO in FIG. 11), the UE100 notifies the core network 300 or the control source of the TSN of the error message via the gNB200 (S55 in FIG. 11). ).
 なお、UE100は、無線リンク障害(Radio Link Failure: RLF)を検出した場合にも、gNB200を介して、コアネットワーク300又はTSNの制御元に通知してもよい。 Note that the UE 100 may notify the core network 300 or the control source of the TSN via the gNB 200 when detecting a radio link failure (Radio Link Failure: RLF).
 (4.4)複数のTSN時刻の通知
 次に、gNB200が、複数のUE100に対して、それぞれ異なるTSN時刻を通知する方法を説明する。
(4.4) Notification of a plurality of TSN times Next, a method in which the gNB 200 notifies a plurality of UEs 100 of different TSN times will be described.
 gNB200は、1つのシステム情報に複数のTSN時刻を含めて、UE100に報知する。この場合、各TSN時刻には時刻識別子が対応付けられている。UE100は、複数のTSN時刻を含んだシステム情報を受信する場合、UE100は、複数のTSN時刻の中から、上位レイヤから予め通知された時刻識別子に対応付けられたTSN時刻のみを選択する。 GNB200 notifies UE100 by including multiple TSN times in one system information. In this case, a time identifier is associated with each TSN time. When the UE 100 receives system information including a plurality of TSN times, the UE 100 selects only the TSN time associated with the time identifier previously notified from the higher layer, from the plurality of TSN times.
 なお、gNB200は、RRC dedicated signalingを用いて、各UE100に対して、対応するTSN時刻を通知してもよい。 Note that the gNB 200 may notify each UE 100 of the corresponding TSN time by using RRC dedicated signaling.
 gNB200は、複数のシステム情報のそれぞれに、互いに異なるTSN時刻を含めて、複数のUE100に報知してもよい。 The gNB 200 may include different TSN times in each of the plurality of system information and notify the plurality of UEs 100.
(5)作用・効果
 上述した実施形態によれば、gNB200は、ネットワーク10内の時刻基準となるTSN時刻を受信する受信部203と、TSN時刻を含むシステム情報の送信周期を短縮する制御部205と、短縮された送信周期で、システム情報を報知する送信部201とを備える。
(5) Operation/Effect According to the above-described embodiment, the gNB 200 includes the receiving unit 203 that receives the TSN time serving as the time reference within the network 10, and the control unit 205 that shortens the transmission cycle of system information including the TSN time. And a transmission unit 201 that notifies system information in a shortened transmission cycle.
 このような構成により、gNB200におけるTSN GMCとNR GMCとの間における時間同期のずれを最小限に抑えることができる。このため、TSNの制御元と、TSNのエンドステーションとの間における同期精度を、遠隔制御で求められる許容範囲内に抑えることができる。 With such a configuration, it is possible to minimize the deviation of the time synchronization between TSN GMC and NR GMC in gNB200. Therefore, the synchronization accuracy between the TSN control source and the TSN end station can be suppressed within the allowable range required for remote control.
 したがって、TSNの制御元が、NRシステムを経由して、TSNのエンドステーションをより高い同期精度で遠隔制御を実行することができる。 Therefore, the TSN control source can execute remote control of the TSN end station with higher synchronization accuracy via the NR system.
 本実施形態によれば、制御部205は、システム情報の送信周期に対して、1より小さい係数を乗じて、送信周期を短縮する。 According to this embodiment, the control unit 205 shortens the transmission cycle by multiplying the transmission cycle of the system information by a coefficient smaller than 1.
 このような構成により、システム情報の送信周期を簡易に短縮することができる。 With such a configuration, the transmission cycle of system information can be easily shortened.
 本実施形態によれば、gNB200は、ネットワーク10内の時刻基準となるTSN時刻を受信する受信部203と、TSN時刻を含むシステム情報を周期的に送信する主送信タイミングを時間軸方向にずらした、少なくとも1つの副送信タイミングを設定する制御部205と、主送信タイミング及び少なくとも1つの副送信タイミングで、システム情報を報知する送信部201とを備える。 According to the present embodiment, the gNB 200, the receiving unit 203 that receives the TSN time that is the time reference within the network 10, and the main transmission timing that periodically transmits the system information including the TSN time are shifted in the time axis direction. A control unit 205 that sets at least one sub transmission timing, and a transmission unit 201 that notifies system information at the main transmission timing and at least one sub transmission timing.
 このような構成により、gNB200におけるTSN GMCとNR GMCとの間における時間同期のずれを最小限に抑えることができる。このため、TSNの制御元と、TSNのエンドステーションとの間における同期精度を、遠隔制御で求めえる許容範囲内に抑えることができる。 With such a configuration, it is possible to minimize the deviation of the time synchronization between TSN GMC and NR GMC in gNB200. Therefore, the synchronization accuracy between the control source of TSN and the end station of TSN can be suppressed within the allowable range required by remote control.
 したがって、TSNの制御元が、NRシステムを経由して、TSNのエンドステーションをより高い同期精度で遠隔制御を実行することができる。 Therefore, the TSN control source can execute remote control of the TSN end station with higher synchronization accuracy via the NR system.
 本実施形態によれば、gNB200は、ネットワーク10内の時刻基準となるTSN時刻を受信する受信部203と、TSN時刻を含むシステム情報の送信周期を短縮し、かつ、TSN時刻を含むシステム情報を周期的に送信する主送信タイミングを時間軸方向にずらした、少なくとも1つの副送信タイミングを設定する制御部205と、第1周波数リソースを用いて、短縮された送信周期で、システム情報を報知し、かつ、第2周波数リソースを用いて、主送信タイミング及び少なくとも1つの副送信タイミングで、システム情報を報知する送信部201とを備える。 According to the present embodiment, the gNB 200, the receiving unit 203 that receives the TSN time that is the time reference in the network 10, shortens the transmission cycle of the system information that includes the TSN time, and the system information that includes the TSN time. A control unit 205 that sets at least one sub-transmission timing in which the main transmission timing that is periodically transmitted is shifted in the time axis direction, and uses the first frequency resource to notify the system information in a shortened transmission cycle. And a transmitting unit 201 that broadcasts system information at the main transmission timing and at least one sub-transmission timing using the second frequency resource.
 このような構成により、1つの周波数リソースにおいて、TSN時刻を含むシステム情報の送信用リソースの割り当てが増加するのを抑えることができる。 With such a configuration, it is possible to suppress an increase in allocation of resources for transmitting system information including TSN time in one frequency resource.
 本実施形態によれば、gNB200は、ネットワーク10内の時刻基準となるTSN時刻を受信する受信部203と、TSN時刻を決定するTSN GMCと、gNB200の動作基準となるNR GMCとの間におけるクロック周波数のずれ比率を決定する制御部205と、TSN時刻及クロック周波数のずれ比率を含むシステム情報を報知する送信部201とを備える。 According to the present embodiment, the gNB 200 is a receiving unit 203 that receives the TSN time that is the time reference in the network 10, a TSN GMC that determines the TSN time, and a clock between the NR GMC that is the operation reference of the gNB 200. A control unit 205 for determining a frequency shift ratio and a transmission unit 201 for notifying system information including the TSN time and clock frequency shift ratio are provided.
 このような構成により、UE100側で、クロック周波数のずれ比率に基づいて、TSN GMCとNR GMCとの間における時間同期のずれを補正することができる。このため、gNB200は、gNB200におけるTSN GMCとNR GMCとの間における時間同期のずれに対処しなくてすむ。 With such a configuration, the UE 100 side can correct the time synchronization deviation between the TSN GMC and the NR GMC based on the clock frequency deviation ratio. For this reason, the gNB 200 does not have to deal with the time synchronization shift between the TSN GMC and the NR GMC in the gNB 200.
 本実施形態によれば、gNB200は、ネットワーク10内の時刻基準となるTSN時刻を受信する受信部203と、TSN時刻をRRCメッセージに含める制御部205と、所定のUE100に対して、RRCメッセージを送信する送信部201とを備える。 According to the present embodiment, the gNB 200, the receiving unit 203 that receives the TSN time that is the time reference within the network 10, the control unit 205 that includes the TSN time in the RRC message, and the predetermined UE 100, the RRC message. And a transmitting unit 201 for transmitting.
 このような構成により、gNB200は、コアネットワーク300からTSN時刻を受信する場合に、所定時間(例えば、システム情報の送信周期)待たずに、所定のUE100に対して、TSN時刻を直接通知することができる。このため、gNB200は、gNB200におけるTSN GMCとNR GMCとの間における時間同期のずれに対処しなくてすむ。 With such a configuration, the gNB 200, when receiving the TSN time from the core network 300, directly notifies the predetermined UE 100 of the TSN time without waiting for a predetermined time (for example, a transmission cycle of system information). You can For this reason, the gNB 200 does not have to deal with the time synchronization shift between the TSN GMC and the NR GMC in the gNB 200.
 本実施形態によれば、UE100は、ネットワーク10内の時刻基準となるTSN時刻を含むシステム情報の報知頻度を、メッセージに含める制御部105と、gNB200に対して、メッセージを送信する送信部101と、gNB200から、当該報知頻度に対応付けられた送信周期で、システム情報を受信する受信部103とを備える。 According to the present embodiment, the UE 100, the notification frequency of the system information including the TSN time that is the time reference in the network 10, the control unit 105 included in the message, to the gNB200, the transmission unit 101 for transmitting the message. , GNB200, and a receiving unit 103 that receives system information in a transmission cycle associated with the notification frequency.
 このような構成により、gNB200は、UE100から通知されたシステム情報の報知頻度に応じて、TSN時刻を含むシステム情報の送信周期を設定することができる。このため、gNB200は、UE100の能力に基づいて、TSN時刻を含むシステム情報を報知することができる。 With such a configuration, the gNB 200 can set the transmission cycle of the system information including the TSN time according to the notification frequency of the system information notified from the UE 100. Therefore, the gNB 200 can notify the system information including the TSN time based on the capability of the UE 100.
 本実施形態によれば、UE100は、ネットワーク10内の時刻基準となるTSN時刻を含むシステム情報を、gNB200から周期的に受信する受信部103と、受信部103が、所定周期でシステム情報を受信したか否かを判断する制御部105と、制御部105が、所定周期でシステム情報を受信していないと判断する場合、ネットワークに対して、エラーメッセージを通知する送信部101とを備える。 According to the present embodiment, the UE 100 receives the system information including the TSN time serving as the time reference in the network 10, the receiving unit 103 that periodically receives from the gNB 200, and the receiving unit 103 receives the system information at a predetermined period. The control unit 105 includes a transmission unit 101 that determines whether the system information has been received, and a transmission unit 101 that notifies the network of an error message when the control unit 105 determines that the system information has not been received in a predetermined cycle.
 このような構成により、UE100は、ネットワークに対して、所定周期で、TSN時刻を含むシステム情報を受信していないことを通知することができる。 With such a configuration, the UE 100 can notify the network that the system information including the TSN time has not been received in a predetermined cycle.
 (6)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(6) Other Embodiments The contents of the present invention have been described above along with the embodiments. However, the present invention is not limited to these descriptions, and various modifications and improvements are possible. It is obvious to the trader.
 上述した実施形態の説明に用いたブロック構成図(図2及び図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagrams (FIGS. 2 and 3) used in the description of the above-described embodiment show blocks in functional units. These functional blocks (components) are realized by an arbitrary combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be implemented by using one device that is physically or logically coupled, or directly or indirectly (for example, two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices. The functional block may be realized by combining the one device or the plurality of devices with software.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deemed, and notification ( Broadcasting, notifying, communicating, forwarding, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but are not limited to these. .. For example, a functional block (component) that causes transmission to function is called a transmitter (transmitting unit) or a transmitter (transmitter). In any case, the implementation method is not particularly limited as described above.
 さらに、上述したUE100及びgNB200は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、当該装置のハードウェア構成の一例を示す図である。図12に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the UE 100 and the gNB 200 described above may function as a computer that performs the process of the wireless communication method of the present disclosure. FIG. 12 is a diagram illustrating an example of the hardware configuration of the device. As shown in FIG. 12, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "device" can be read as a circuit, device, unit, or the like. The hardware configuration of the device may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
 当該装置の各機能ブロックは、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Further, each function in the device is such that the processor 1001 performs an arithmetic operation by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and controls communication by the communication device 1004 and a memory. It is realized by controlling at least one of reading and writing of data in the storage 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 The processor 1001, for example, runs an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, a calculation device, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least part of the operations described in the above-described embodiments is used. Furthermore, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is configured by at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), and Random Access Memory (RAM). May be done. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 may store a program (program code) capable of executing the method according to an embodiment of the present disclosure, a software module, and the like.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disc drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disc). At least one of a (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, or the like may be used. The storage 1003 may be called an auxiliary storage device. The above-described recording medium may be, for example, a database including at least one of the memory 1002 and the storage 1003, a server, or another appropriate medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission/reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD). May be composed of
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間毎に異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device is configured to include hardware such as a microprocessor, digital signal processor (DSP), Application Specific Integrated Circuit (ASIC), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA). Alternatively, some or all of the functional blocks may be implemented by the hardware. For example, processor 1001 may be implemented with at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Also, the notification of information is not limited to the mode/embodiment described in the present disclosure, and may be performed using another method. For example, information is notified by physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (for example, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block). (MIB), System Information Block (SIB)), other signals, or a combination thereof, and RRC signaling may be referred to as RRC message, for example, RRC Connection Setup (RRC Connection Setup). ) Message, RRC connection reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in the present disclosure is Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (4G). 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX (registered trademark)), IEEE802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), at least one of the systems using appropriate systems and the next-generation system expanded based on these May be applied to one. Further, a plurality of systems may be combined and applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps in a sample order, and are not limited to the specific order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 The specific operation that is performed by the base station in the present disclosure may be performed by its upper node in some cases. In a network composed of one or more network nodes having a base station, various operations performed for communication with a terminal include a base station and other network nodes other than the base station (eg, MME or S-GW and the like are conceivable, but not limited to these). Although the case where there is one other network node other than the base station has been described above, a combination of a plurality of other network nodes (for example, MME and S-GW) may be used.
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input/output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. The input/output information may be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value represented by 1 bit (whether 0 or 1), may be performed by a Boolean value (Boolean: true or false), and may be performed by comparing numerical values (for example, a predetermined value). Value comparison).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, in combination, or may be switched according to execution. Further, the notification of the predetermined information (for example, the notification of “being X”) is not limited to the explicit notification, and is performed implicitly (for example, the notification of the predetermined information is not performed). Good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether called software, firmware, middleware, microcode, hardware description language, or any other name, instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules. , Application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc. should be construed broadly.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses a wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) websites, When sent from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms described in the present disclosure and terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal (signaling). The signal may also be a message. Moreover, a component carrier (Component Carrier: CC) may be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented. For example, the radio resources may be those indicated by the index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 -The names used for the above parameters are not limited in any way. Further, the formulas and the like that use these parameters may differ from those explicitly disclosed in this disclosure. Since different channels (eg PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the different names assigned to these different channels and information elements are in no way limited names. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", "cell point" The terms "carrier", "component carrier" and the like may be used interchangeably. A base station may be referred to by terms such as macro cell, small cell, femto cell, and pico cell.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (e.g., a small indoor base station (Remote Radio Radio). Head: RRH) can also provide communication services.
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a part or the entire coverage area of at least one of the base station and the base station subsystem that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment (UE)”, and “terminal” may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations are defined by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmission device, a reception device, a communication device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned type or unmanned type). ). At least one of the base station and the mobile station also includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 The base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, the communication between base stations and mobile stations has been replaced with communication between multiple mobile stations (eg, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the function of the base station. In addition, the wording such as “up” and “down” may be replaced with the wording corresponding to the terminal-to-terminal communication (for example, “side”). For example, the uplink channel and the downlink channel may be replaced with the side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the function of the mobile station.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof, mean any direct or indirect connection or coupling between two or more elements, and It can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The connections or connections between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”. As used in this disclosure, two elements are in the radio frequency domain, with at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , Can be considered to be “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), or may be referred to as Pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements may be employed there, or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 Where the terms “include”, “including” and variations thereof are used in this disclosure, these terms are inclusive, as is the term “comprising”. Is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, when translations add articles, such as a,  an and the in English, the present disclosure may include that the noun that follows these articles is plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term “A and B are different” may mean “A and B are different from each other”. The term may mean that “A and B are different from C”. The terms "remove", "coupled" and the like may be construed similarly as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is obvious to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modified and changed modes without departing from the spirit and scope of the present disclosure defined by the description of the claims. Therefore, the description of the present disclosure is for the purpose of exemplification, and does not have any restrictive meaning to the present disclosure.
 上述したユーザ装置によれば、複数の無線基地局との間において行われる同時通信において、複数の無線基地局が対応し得る送信タイミングによって上りリンク信号を送信し得るため、有用である。 The user device described above is useful because it can transmit an uplink signal at a transmission timing that can be supported by a plurality of wireless base stations in simultaneous communication with a plurality of wireless base stations.
10 ネットワーク
20 TSN GM
30 NRシステム
31 NR GM
40 エンドステーション
100 UE
101 送信部
103 受信部
105 制御部
200 gNB
201 送信部
203 受信部
205 制御部
300 コアネットワーク
310 UPF
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス
10 network
20 TSN GM
30 NR system
31 NR GM
40 end station
100 UE
101 Transmitter
103 Receiver
105 control unit
200 gNB
201 Transmitter
203 Receiver
205 controller
300 core network
310 UPF
1001 processor
1002 memory
1003 storage
1004 Communication device
1005 input device
1006 Output device
1007 bus

Claims (8)

  1.  所定ネットワーク内の時刻基準となる時刻情報を受信する受信部と、
     前記時刻情報を含むシステム情報の送信周期を短縮する制御部と、
     短縮された前記送信周期で、前記システム情報を報知する送信部と、
    を備える無線基地局。
    A receiving unit that receives time information that serves as a time reference within a predetermined network;
    A control unit that shortens the transmission cycle of system information including the time information;
    A transmission unit that notifies the system information at the shortened transmission cycle,
    A radio base station including.
  2.  前記制御部は、前記システム情報の送信周期に対して、1より小さい係数を乗じて、前記送信周期を短縮する請求項1に記載の無線基地局。 The radio base station according to claim 1, wherein the control unit shortens the transmission cycle by multiplying the transmission cycle of the system information by a coefficient smaller than 1.
  3.  所定ネットワーク内の時刻基準となる時刻情報を受信する受信部と、
     前記時刻情報を含むシステム情報を周期的に送信する主送信タイミングを時間軸方向にずらした、少なくとも1つの副送信タイミングを設定する制御部と、
     前記主送信タイミング及び前記少なくとも1つの副送信タイミングで、前記システム情報を報知する送信部と、
    を備える無線基地局。
    A receiving unit that receives time information that serves as a time reference within a predetermined network;
    A control unit that sets at least one sub-transmission timing by shifting the main transmission timing that periodically transmits the system information including the time information in the time axis direction;
    A transmission unit that notifies the system information at the main transmission timing and the at least one sub transmission timing;
    A radio base station including.
  4.  所定ネットワーク内の時刻基準となる時刻情報を受信する受信部と、
     前記時刻情報を含むシステム情報の送信周期を短縮し、かつ、前記時刻情報を含むシステム情報を周期的に送信する主送信タイミングを時間軸方向にずらした、少なくとも1つの副送信タイミングを設定する制御部と、
     第1周波数リソースを用いて、短縮された前記送信周期で、前記システム情報を報知し、かつ、第2周波数リソースを用いて、前記主送信タイミング及び前記少なくとも1つの副送信タイミングで、前記システム情報を報知する送信部と、
    を備える無線基地局。
    A receiving unit that receives time information that serves as a time reference within a predetermined network;
    Control for shortening the transmission cycle of the system information including the time information and setting at least one sub transmission timing in which the main transmission timing for periodically transmitting the system information including the time information is shifted in the time axis direction. Department,
    The system information is broadcast at the shortened transmission cycle using a first frequency resource, and the system information is broadcast at the main transmission timing and the at least one sub-transmission timing using a second frequency resource. And a transmission unit that notifies
    A radio base station including.
  5.  無線基地局であって、
     所定ネットワーク内の時刻基準となる時刻情報を受信する受信部と、
     前記時刻情報を決定するクロックと、前記無線基地局の動作基準となるクロックとの周波数ずれ比率を決定する制御部と、
     前記時刻情報及び前記周波数ずれ比率を含むシステム情報を報知する送信部と、
    を備える無線基地局。
    A wireless base station,
    A receiving unit that receives time information that serves as a time reference within a predetermined network;
    A control unit that determines a frequency deviation ratio between a clock that determines the time information and a clock that is an operation reference of the wireless base station;
    A transmission unit for notifying system information including the time information and the frequency deviation ratio,
    A radio base station including.
  6.  所定ネットワーク内の時刻基準となる時刻情報を受信する受信部と、
     前記時刻情報をRRCメッセージに含める制御部と、
     所定のユーザ装置に対して、前記RRCメッセージを送信する送信部と、
    を備える無線基地局。
    A receiving unit that receives time information that serves as a time reference within a predetermined network;
    A control unit that includes the time information in an RRC message,
    A transmission unit that transmits the RRC message to a predetermined user device,
    A radio base station including.
  7.  所定ネットワーク内の時刻基準となる時刻情報を含むシステム情報の報知頻度を、メッセージに含める制御部と、
     無線基地局に対して、前記メッセージを送信する送信部と、
     前記無線基地局から、前記報知頻度に対応付けられた送信周期で、前記システム情報を受信する受信部と、
    を備えるユーザ装置。
    A control unit that includes, in a message, a notification frequency of system information including time information that is a time reference within a predetermined network,
    A transmitter for transmitting the message to the radio base station,
    From the radio base station, a reception unit that receives the system information in a transmission cycle associated with the notification frequency,
    A user equipment comprising.
  8.  所定ネットワーク内の時刻基準となる時刻情報を含むシステム情報を、無線基地局から周期的に受信する受信部と、
     前記受信部が、所定周期で前記システム情報を受信したか否かを判断する制御部と、
     前記制御部が、前記所定周期で前記システム情報を受信していないと判断する場合、前記所定ネットワークに対して、エラーメッセージを通知する送信部と、
    を備えるユーザ装置。
    A receiving unit that periodically receives system information including time information serving as a time reference within a predetermined network from a wireless base station,
    A control unit for determining whether or not the receiving unit has received the system information in a predetermined cycle;
    When the control unit determines that the system information is not received in the predetermined cycle, the transmission unit that notifies the predetermined network of an error message,
    A user equipment comprising.
PCT/JP2019/005166 2019-02-13 2019-02-13 Radio base station and user equipment WO2020165979A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/005166 WO2020165979A1 (en) 2019-02-13 2019-02-13 Radio base station and user equipment
JP2020571970A JPWO2020165979A1 (en) 2019-02-13 2019-02-13 Wireless base stations and user equipment
JP2023017759A JP2023058607A (en) 2019-02-13 2023-02-08 Radio base station and user device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005166 WO2020165979A1 (en) 2019-02-13 2019-02-13 Radio base station and user equipment

Publications (1)

Publication Number Publication Date
WO2020165979A1 true WO2020165979A1 (en) 2020-08-20

Family

ID=72043809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005166 WO2020165979A1 (en) 2019-02-13 2019-02-13 Radio base station and user equipment

Country Status (2)

Country Link
JP (2) JPWO2020165979A1 (en)
WO (1) WO2020165979A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022176026A1 (en) * 2021-02-16 2022-08-25

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071735A (en) * 2009-09-25 2011-04-07 Mitsubishi Electric Corp Radio base station device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071735A (en) * 2009-09-25 2011-04-07 Mitsubishi Electric Corp Radio base station device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Provision of UTC SIB to connected UEs", 3GPP TSG RAN WG2 #102 R2-1808200, 25 May 2018 (2018-05-25), XP051444493, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_102/Docs/R2-1808200.zip> *
I TRI: "Discussion on indicating the broadcast of on-demand SIBs", 3 GPP TSG RAN WG2 #97BIS R2-1703140, 7 April 2017 (2017-04-07), XP051245079, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_97bis/Docs/R2-1703140.zip> *
NOKIA ET AL.: "TSN Time Synchronization", 3GPP TSG SA WG2 #129 S 2-1811208, 19 October 2018 (2018-10-19), XP051540056, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_129_Dongguan/Docs/S2-1811208.zip> [retrieved on 20190313] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022176026A1 (en) * 2021-02-16 2022-08-25
WO2022176026A1 (en) * 2021-02-16 2022-08-25 三菱電機株式会社 Network translator and device translator
JP7258261B2 (en) 2021-02-16 2023-04-14 三菱電機株式会社 network translator and device translator
KR20230121934A (en) * 2021-02-16 2023-08-21 미쓰비시덴키 가부시키가이샤 Network translator and device translator
KR102628183B1 (en) 2021-02-16 2024-01-23 미쓰비시덴키 가부시키가이샤 Network translator and device translator

Also Published As

Publication number Publication date
JP2023058607A (en) 2023-04-25
JPWO2020165979A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
EP3174257B1 (en) Synchronization signal transmitting and receiving method and device
WO2020217539A1 (en) User device
WO2020217534A1 (en) Wireless communication node
JP2023058607A (en) Radio base station and user device
WO2020217488A1 (en) Wireless base station
WO2021064975A1 (en) User device and communication method
WO2020222271A1 (en) User device and communication method
WO2020170460A1 (en) Wireless base station and user equipment
WO2021161489A1 (en) Terminal, base station, and communication method
CN114009085B (en) Terminal
US20220286880A1 (en) Terminal and communication method
WO2020065802A1 (en) User device
WO2020065897A1 (en) User equipment
JPWO2020170404A1 (en) User device
JP7165816B2 (en) wireless base station
US20230300917A1 (en) Terminal
CN113678518B (en) User device and radio base station
WO2020165957A1 (en) Communication device
WO2021070388A1 (en) Terminal
WO2020202403A1 (en) Relay apparatus and communication method
WO2020255420A1 (en) Terminal
WO2021038861A1 (en) Switching equipment and communication method
WO2021019701A1 (en) Terminal and communication node
WO2020222270A1 (en) User equipment and communication method
WO2020166019A1 (en) User equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915047

Country of ref document: EP

Kind code of ref document: A1