WO2022176026A1 - Network translator and device translator - Google Patents

Network translator and device translator Download PDF

Info

Publication number
WO2022176026A1
WO2022176026A1 PCT/JP2021/005744 JP2021005744W WO2022176026A1 WO 2022176026 A1 WO2022176026 A1 WO 2022176026A1 JP 2021005744 W JP2021005744 W JP 2021005744W WO 2022176026 A1 WO2022176026 A1 WO 2022176026A1
Authority
WO
WIPO (PCT)
Prior art keywords
translator
clock deviation
time
network
message
Prior art date
Application number
PCT/JP2021/005744
Other languages
French (fr)
Japanese (ja)
Inventor
家佳 宋
大介 滝田
慎 久保見
ジェフリ ジャオ
竜真 松下
善文 堀田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/005744 priority Critical patent/WO2022176026A1/en
Priority to JP2023500153A priority patent/JP7258261B2/en
Priority to KR1020237026915A priority patent/KR102628183B1/en
Priority to TW110118981A priority patent/TW202234920A/en
Publication of WO2022176026A1 publication Critical patent/WO2022176026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • H04L43/106Active monitoring, e.g. heartbeat, ping or trace-route using time related information in packets, e.g. by adding timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0054Detection of the synchronisation error by features other than the received signal transition
    • H04L7/007Detection of the synchronisation error by features other than the received signal transition detection of error based on maximum signal power, e.g. peak value, maximizing autocorrelation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • This disclosure relates to a 5G-TSN translator that considers clock deviation.
  • the link delay of each section and the clock deviation of each section are calculated by exchanging delay measurement messages between adjacent devices.
  • the slave obtains the time notified from the master device, it corrects the time difference with the master device using the integrated value of the link delay in each upstream section and the integrated value of the clock deviation in each upstream section. This realizes highly accurate time synchronization.
  • TSN is an abbreviation for Time-Sensitive Networking.
  • a 5G-TSN system is a TSN system in which TSN devices are connected by wire via 5G.
  • the 5G section is treated as one-stage virtual equipment. Physically, however, in the 5G section, a device network translator (NW-TT) is arranged on one side across the wireless section, and a device translator (DS-TT) is arranged on the other side across the wireless section.
  • NW-TT device network translator
  • DS-TT device translator
  • a translator is a device having a wired TSN function, and is also called a TSN translator.
  • NW-TT and DS-TT use the fact that the equipment in the 5G section is synchronized with the time (5G time) that is independent of the time of the TSN, and by time stamping the 5G time, the link in the 5G section Measure latency.
  • Non-Patent Document 1 discloses a conventional 5G-TSN network.
  • a conventional 5G-TSN network it is assumed that the clock deviation of each of the NW-TT and DS-TT to the GrandMaster (GM) of the 5G network is zero.
  • the DS-TT then puts the clock deviation of the NW-TT with respect to the GM of the TSN into the time transfer message Sync/Follow_Up and sends the time transfer message downstream to the TSN slave.
  • the present disclosure aims to suppress synchronization time errors in TSN slaves downstream of DS-TT by considering clock deviations in 5G-TSN.
  • a network translator of the present disclosure is used in a mobile communication system provided upstream of a time synchronization network system and downstream of the time synchronization network system.
  • the upstream of the time synchronization network system has a master, which is a device serving as a time source of the time synchronization network system.
  • the mobile communication system has a time server serving as a time source for the mobile communication system and a device translator.
  • the device translator calculates the clock deviation between the master and the device translator using the clock deviation between the master and the time server and the clock deviation between the time server and the device translator, and the calculated clock deviation is set to generate a message, and the generated message is transmitted downstream of the time synchronization network system.
  • the network translator is a clock deviation calculation unit that calculates the clock deviation between the master and the time server; an intra-section communication unit that sets the clock deviation between the master and the time server to generate a message and transmits the generated message to the device translator.
  • FIG. 1 is a configuration diagram of a time synchronization network system 100 according to Embodiment 1;
  • FIG. 2 is a hardware configuration diagram of a translator 300 according to Embodiment 1.
  • FIG. 3 is a functional configuration diagram of a network translator 210 according to Embodiment 1.
  • FIG. 3 is a functional configuration diagram of a device translator 220 according to Embodiment 1.
  • FIG. 4 is a flowchart of clock deviation calculation according to the first embodiment;
  • 4 is a flowchart of link delay calculation according to the first embodiment; 4 is a flowchart of time adjustment according to Embodiment 1; 4 is a flowchart of additional message transmission (5G) according to Embodiment 1; 4 is a flowchart of additional message transmission (TSN) according to Embodiment 1; 4 is a flowchart of additional message transmission (TSN) according to Embodiment 1; 4 is a table showing a frame format of additional message Follow_Up (NW-TT ⁇ DS-TT) in Embodiment 1; 4 is a table showing a frame format of additional message Follow_Up (DS-TT ⁇ TSN) in Embodiment 1; 4 is a diagram showing a clock deviation R set in each PTP message according to the first embodiment; FIG. 4 is a supplementary diagram of the hardware configuration of the translator 300 according to the first embodiment; FIG.
  • Embodiment 1 The time synchronization network system 100 will be described with reference to FIGS. 1 to 13.
  • FIG. 1 A time synchronization network system 100 will be described with reference to FIGS. 1 to 13.
  • FIG. 1 A time synchronization network system 100 will be described with reference to FIGS. 1 to 13.
  • FIG. 1 A time synchronization network system 100 will be described with reference to FIGS. 1 to 13.
  • a time synchronization network system 100 is a time synchronization network system in which a plurality of network devices are connected via a mobile communication system.
  • a time-synchronized network system is a network system in which the times of a plurality of network devices are synchronized.
  • a network device is a device having a communication function.
  • the time synchronization network system 100 is a 5G-TSN system.
  • 5G is the fifth generation mobile communication system.
  • a fifth generation mobile communication system is an example of a mobile communication system.
  • TSN is a time synchronization network system called time sensitive networking.
  • the time synchronization network system 100 includes a TSN master 101, a first bridge 102, a TSN slave 121 and an Mth bridge 122. These are TSN's network equipment.
  • the TSN master 101 is a network device that serves as a time source in TSN, and is called a grandmaster (GM).
  • the side where the TSN master 101 is located is called "upstream”.
  • the TSN slave 121 is network equipment that synchronizes with the time of the TSN master 101 .
  • the side where the TSN slave 121 is located is called “downstream”.
  • the TSN master 101 is denoted as "GM”.
  • the TSN slave 121 is described as "SLAVE”.
  • the first bridge 102 is the first bridge counted from the TSN master 101 on the communication path from the TSN master 101 to the TSN slave 121 .
  • a bridge is a type of network device.
  • the Mth bridge 122 is the Mth bridge counted from the TSN master 101 on the communication path from the TSN master 101 to the TSN slave 121 .
  • the first bridge 102 is located upstream with respect to the 5G network 110 and the Mth bridge 122 is located downstream with respect to the 5G network 110 .
  • the first bridge 102 is denoted as "S1".
  • the Mth bridge 122 is denoted as "SM".
  • the time synchronization network system 100 includes a 5G time source 111, a network translator 210, and a device translator 220. These are the network equipment of the 5G network 110 .
  • the 5G time source 111 is a network device that serves as a time source for the 5G network 110, and is called a time server (TS).
  • the 5G time source 111 is referred to as "5G-TS”.
  • the 5G network 110 time is independent of the TSN time.
  • the network translator 210 is a translator that performs 5G-TSN inter-network connection, has a TSN time synchronization function, and is arranged upstream in the 5G network 110 .
  • the device translator 220 is a translator that performs 5G-TSN inter-network connection, has a TSN time synchronization function, and is arranged downstream in the 5G network 110 .
  • Network translator 210 and device translator 220 are also referred to as TSN translators (TT).
  • the network translator 210 is referred to as "NW-TT”.
  • Device translator 220 is referred to as “DS-TT”.
  • Translator 300 is a general term for network translator 210 and device translator 220 .
  • Translator 300 includes motherboard 310 and expansion card 320 .
  • Motherboard 310 is connected to computer 301 for control.
  • Motherboard 310 includes processor 311 , serial communication device 312 and translator circuit 313 . These are connected to each other via a bus. This bus is also called a data bus, and provides connection for register access (setting, reading) from the processor 311 .
  • the processor 311 is an electronic circuit that performs arithmetic processing, and includes a logic circuit, primary cache, and the like.
  • a serial communication device 312 is a device for performing serial communication. Specifically, serial communication device 312 is a UART. UART is an abbreviation for Universal Asynchronous Receiver/Transmitter.
  • the translator circuit 313 is an electronic circuit having a translator function. Specifically, the translator circuit 313 is an FPGA circuit, and the function of the translator is constructed with programmable logic. FPGA is an abbreviation for Field-Programmable Gate Array.
  • Expansion cards 320 are connected to motherboard 310 .
  • the expansion card 320 is connected to a dedicated connector provided on the motherboard 310 .
  • the expansion card 320 has ports 321 and 322 .
  • Port 321 is the port connected to TSN
  • port 322 is the port connected to 5G.
  • ports 321 and 322 are ports called SFP.
  • SFP is an abbreviation for Small Form Factor Pluggable.
  • the network translator 210 includes elements such as an out-of-section communication unit 211 , a delay measurement unit 212 , a time synchronization control unit 213 , a clock deviation calculation unit 214 , and an in-section communication unit 215 . These elements are realized by translator circuit 313 .
  • the outside section communication unit 211 performs transmission and reception with the TSN. Also, the outside communication unit 211 receives and analyzes the frame, extracts the header and message from the received PTP frame, and terminates. In addition, the out-of-section communication unit 211 performs error check and length measurement, and discards the error frame. In addition, the outside communication section 211 notifies the delay measurement section 212 of the transmission/reception time of the PTP frame. Therefore, the out-of-section communication unit 211 holds the 5G time (TSi) when the network translator 210 received the Sync message.
  • TSi 5G time
  • the delay measurement unit 212 measures delay times and clock deviations between adjacent TSN devices used for time synchronization using a two-step peer-to-peer (P2P) path delay algorithm called Pdelay_Req, Pdelay_Resp and Pdelay_Resp_Follow_Up.
  • the clock deviation is calculated based on the time difference of the P2P delay measurement messages.
  • the delay measurement unit 212 generates status information regarding transmission/reception control and delay measurement functions of PTP messages (Pdelay_Req, Pdelay_Resp, Pdelay_Resp_Follow_Up).
  • a PTP message is a message defined in IEEE 802.1 AS.
  • the delay measurement unit 212 measures the transmission delay between the network translator 210 and adjacent TSN devices to measure the link delay.
  • the time synchronization control unit 213 adds the accumulated clock deviation with the GM and the accumulated delay with the GM calculated by the own device to the time information (GM is the starting point) distributed from the adjacent TSN device (upstream), Calculate the time synchronized with the time. This allows the synchronization time to follow the GM.
  • the clock deviation calculation unit 214 uses the clock deviation between the own device and the GM calculated by the delay measurement unit 212 and the clock deviation between the own device and the 5G time source calculated by the intra-section communication unit 215, and the 5G time source and the GM Calculate the clock deviation of
  • the intra-section communication unit 215 provides the synchronized time to the 5G time source 111 .
  • the intra-section communication unit 215 calculates the clock deviation between its own device and the 5G time source.
  • the intra-section communication unit 215 stores the 5G time (TSi) when the network translator 210 receives the Sync message and the accumulated clock deviation between the GM and the 5G time source calculated by the clock deviation calculation unit 214 in the TLV1 area of the Follow_Up message. Add and send a Follow_Up message to 5G.
  • TSi 5G time
  • the device translator 220 includes elements such as an intra-interval communication unit 221 , a delay measurement unit 222 , a clock deviation calculation unit 223 and an extra-interval communication unit 224 . These elements are realized by translator circuit 313 .
  • the intra-section communication unit 221 transmits and receives with 5G.
  • the intra-section communication unit 221 from the TLV1 area of the received Follow_Up message, the 5G time (TSi) when the network translator 210 received the Sync message, the GM calculated by the network translator 210, and the cumulative clock deviation of the 5G time source and transmits the extracted information to the delay measurement unit 222 .
  • the delay measurement unit 222 receives the 5G time (TSe) at the time of transmission of the Sync message from the outside communication unit 224 .
  • the delay measurement unit 222 uses TSi received from the intra-section communication unit 221, the cumulative clock deviation of the GM received from the intra-section communication unit 221, the cumulative clock deviation of the 5G time source, and the TSe received from the outside communication unit 224. Calculate the delay time. Then, the delay measurement unit 222 transmits the delay time inside 5G to the outside communication unit 224 .
  • the clock deviation calculation unit 223 uses the cumulative clock deviation of the GM and the 5G time source received from the internal communication unit 221 and the clock deviation of the own device and the 5G time source received from the outside communication unit 224 to calculate the difference between the own device and the GM. Calculate the clock deviation of Then, the clock deviation calculation unit 223 transmits the clock deviation between its own device and the GM to the outside communication unit 224 .
  • the outside section communication unit 224 performs transmission and reception with downstream TSN devices. Also, the outside communication unit 224 receives and analyzes the PTP frame, extracts the header and message from the received PTP frame, and terminates. In addition, the out-of-section communication unit 224 performs error check and length measurement, and discards the error frame. In addition, the out-of-section communication unit 224 notifies the delay measurement unit 222 of the 5G time (TSe) at which the Sync message was transmitted. The outside communication unit 224 adds the internal 5G delay time calculated by the delay measurement unit 222 to the correction field of the Follow_Up message.
  • TSe 5G time
  • the out-of-interval communication unit 224 rewrites the TLV of the Follow_Up message to the clock deviation between its own device and the GM calculated by the clock deviation calculation unit 223 . Then, the out-of-section communication unit 224 transmits the Follow_Up message to downstream TSN devices. Also, the outside communication unit 224 is: A clock deviation between the own device and the 5G time source is calculated and transmitted to the clock deviation calculation unit 223 .
  • the operation procedure of the time synchronization network system 100 corresponds to the time synchronization method.
  • the clock deviation calculation is a process of calculating the clock deviation CD a between the network translator 210 and the adjacent TSN device, and is executed by the network translator 210 .
  • TSN equipment is TSN network equipment.
  • the adjacent TSN equipment is specifically the first bridge 102 .
  • step S111 the outside communication unit 211 receives the first delay measurement response message Pdelay_Resp from the adjacent TSN device.
  • the delay measurement response message Pdelay_Resp is a response to the delay measurement request message Pdelay_Req.
  • step S112 the outside section communication unit 211 acquires the first response reception time tn .
  • the first response reception time tn is the reception time of the first delay measurement response message Pdelay_Resp .
  • the translator 300 time is obtained from the local operating system (OS).
  • step S113 the out-of-interval communication unit 211 extracts the first response transmission time t'n from the payload of the first delay measurement response message Pdelay_Resp_Follow_Up.
  • the first response transmission time t'n is the transmission time (ResponseOriginTimestamp) of the delay measurement response message Pdelay_Resp, and is measured and set by the adjacent TSN device.
  • step S114 the outside communication section 211 waits for the Nth delay measurement response message Pdelay_Resp and receives the Nth delay measurement response message Pdelay_Resp.
  • N is an integer of 2 or more.
  • step S115 the out-of-interval communication unit 211 acquires the N-th response reception time tnn (PdelayRespEventIngressTimestamp).
  • the Nth response reception time tnn is the reception time of the Nth delay measurement response message Pdelay_Resp.
  • step S116 the out-of-interval communication unit 211 extracts the Nth request reception time t'nn from the payload of the Nth delay measurement response message Pdelay_Resp_Follow_Up.
  • the N-th response transmission time t'nn is the transmission time (ResponseOriginTimestamp) of the delay measurement response message Pdelay_Resp, and is measured and set by the adjacent TSN device.
  • step S117 the delay measurement unit 212 uses the first response reception time tn, the first response transmission time t'n, the Nth response reception time tnn, and the Nth response transmission time t'nn to determine the clock deviation.
  • Clock deviation CDa is the clock deviation of network translator 210 and adjacent TSN devices.
  • the clock deviation CD a is calculated by calculating equation (a) below.
  • CDa ( tnn -tn)/( t'nn - t'n ) (a)
  • the clock deviation RNW_GM corresponds to the clock deviation CDa .
  • NW-TT sends a delay measurement request message Pdelay_Req.
  • the transmission time is time t1.
  • the GM receives the delay measurement request message Pdelay_Req.
  • the reception time is time t2.
  • the GM sends a first delay measurement response message Pdelay_Resp.
  • the transmission time is time t'n .
  • the NW-TT receives the first delay measurement response message Pdelay_Resp.
  • the reception time is time tn .
  • the GM sends the Nth delay measurement response message Pdelay_Resp.
  • the transmission time is time t'nn .
  • the NW-TT receives the Nth delay measurement response message Pdelay_Resp.
  • the reception time is time tnn .
  • the clock deviation RNW_GM is calculated by calculating equation (a) above.
  • Link delay calculation is a process of calculating the link delay LD b between the network translator 210 and the adjacent TSN device, and is executed by the network translator 210 .
  • the link delay LD b corresponds to the transmission delay time.
  • step S121 the outside section communication unit 211 transmits a delay measurement request message Pdelay_Req to the adjacent TSN device.
  • step S122 the outside section communication unit 211 acquires the request transmission time t1.
  • the request transmission time t1 is the transmission time of the delay measurement request message Pdelay_Req.
  • step S123 the out-of-section communication unit 211 waits for the delay measurement response message Pdelay_Resp from the adjacent TSN device and receives the delay measurement response message Pdelay_Resp.
  • step S124 the outside section communication unit 211 acquires the response reception time t4.
  • the response reception time t4 is the reception time of the delay measurement response message Pdelay_Resp .
  • step S125 the out-of-interval communication unit 211 extracts the request reception time t2 from the payload of the delay measurement response message Pdelay_Resp.
  • the request reception time t2 is the reception time ( RequestReceiptTimestamp ) of the delay measurement request message Pdelay_Req, and is measured and set by the adjacent TSN device.
  • step S126 the out-of-interval communication unit 211 waits for the additional message Pdelay_Resp_Follow_Up of the delay measurement response message Pdelay_Resp and receives the additional message Pdelay_Resp_Follow_Up.
  • step S127 the out-of-interval communication unit 211 extracts the response transmission time t3 from the payload of the additional message Pdelay_Resp_Follow_Up .
  • the response transmission time t3 is the transmission time (ResponseOriginTimeStamp) of the delay measurement response message Pdelay_Resp , which is measured and set by the adjacent TSN device.
  • step S1208 the delay measuring unit 212 calculates the link delay LDb using the clock deviation CDa , the request transmission time t1, the response reception time t4, the request reception time t2 , and the response transmission time t3.
  • Link delay LD b is the link delay between network translator 210 and adjacent TSN equipment.
  • the link delay LD b is calculated by calculating equation (b) below.
  • LD b (CD a ⁇ (t 4 ⁇ t 1 ) ⁇ (t 2 ⁇ t 3 ))/2 (b)
  • Time adjustment is a process of synchronizing the time of the network translator 210 with the time of the TSN master 101 and is executed by the network translator 210 .
  • step S131 the out-of-section communication unit 211 receives the synchronization message Sync from the adjacent TSN device.
  • step S132 the out-of-section communication unit 211 acquires the synchronous reception time TSi.
  • the synchronous reception time TSi is the 5G time when the synchronization message Sync is received.
  • step S133 the outside communication unit 211 waits for the additional message Follow_Up of the synchronization message Sync and receives the additional message Follow_Up. Then, the out-of-section communication unit 211 transmits the synchronization message Sync to 5G.
  • step S134 the out-of-interval communication unit 211 extracts the cumulative clock deviation ACD' from the additional message Follow_Up.
  • Cumulative clock deviation ACD′ is the cumulative clock deviation of TSN master 101 and adjacent TSN devices of network translator 210 .
  • step S135 the delay measuring unit 212 calculates the cumulative clock deviation ACDc using the clock deviation CDa and the cumulative clock deviation ACD'.
  • Cumulative clock deviation ACD c is the cumulative clock deviation of network translator 210 and TSN master 101 .
  • ACDc ACD' x CDa ( c )
  • step S136 the out-of-interval communication unit 211 extracts the accumulated delay value AD' from the Correction field of the additional message follow_Up.
  • the accumulated delay value AD′ is the accumulated delay value between the TSN device adjacent to the network translator 210 and the TSN master 101 .
  • step S137 the delay measurement unit 212 calculates an integrated delay ADd using the integrated delay value AD', the link delay LDb , and the integrated clock deviation ACDc .
  • the accumulated delay AD d is the accumulated delay between network translator 210 and TSN master 101 .
  • ADd AD' + ( LDb * ACDc ) (d)
  • step S138 the outside communication unit 211 extracts the time TG from the additional message Follow_Up.
  • Time TG is the time of TSN master 101 .
  • the time synchronization control section 213 uses the time TG and the integrated delay AD d to calculate the synchronization time ST e .
  • Synchronization time ST e is calculated by calculating the following formula (e).
  • ST e TG + AD d (e)
  • step S139 the time synchronization control unit 213 updates the time of the network translator 210 to the synchronization time STe to synchronize the time.
  • Send additional message (5G) is the process of sending an additional message Follow_Up from network translator 210 within 5G network 110 and is performed by network translator 210 .
  • step S141 the intra-interval communication unit 215 calculates the clock deviation CD f .
  • the clock deviation CD f is the clock deviation between the 5G time source 111 and the network translator 210 .
  • step S142 the clock deviation calculator 214 uses the cumulative clock deviation ACD c and the clock deviation CD f to calculate the clock deviation CD g .
  • the clock deviation CD g is the clock deviation between the TSN master 101 and the 5G time source 111 .
  • the clock deviation CD g is calculated by calculating equation (g) below.
  • CDg ACDc x CDf (g)
  • step S143 the intra-section communication unit 215 generates an additional message Follow_Up.
  • the intra-section communication unit 215 operates as follows.
  • the intra-interval communication unit 215 sets the synchronous reception time TSi acquired in step S132 (see FIG. 8) in the TLV2 field of the additional message follow_Up.
  • the intra-interval communication unit 215 sets the clock deviation CD g calculated in step S142 in the TLV1 field of the additional message follow_Up.
  • the intra-interval communication unit 215 sets the accumulated delay AD d calculated in step S137 (see FIG. 8) in the Correction field of the additional message follow_Up.
  • step S ⁇ b>144 the intra-section communication unit 215 transmits the additional message Follow_Up to the device translator 220 .
  • FIG. Send Additional Message is the process of sending an additional message Follow_Up from device translator 220 to TSN and is performed by device translator 220 .
  • step S ⁇ b>201 the intra-section communication unit 221 receives the synchronization message Sync transmitted from the network translator 210 .
  • step S202 the intra-section communication unit 221 waits for the additional message Follow_Up transmitted from the network translator 210 and receives the additional message Follow_Up. After step S202, the process proceeds to step S203 and step S211.
  • step S203 the intra-section communication unit 221 extracts information from the additional message Follow_Up. After step S203, the process proceeds to step S221.
  • the intra-section communication unit 221 operates as follows.
  • the intra-interval communication unit 221 extracts the synchronous reception time TSi from the TLV2 field of the additional message follow_Up.
  • the intra-interval communication unit 221 extracts the clock deviation CD g from the TVL1 field of the additional message follow_Up.
  • the intra-interval communication unit 221 extracts the accumulated delay AD d from the Correction field of the additional message follow_Up.
  • step S211 the out-of-section communication unit 224 transmits a synchronization message Sync to TSN. That is, the outside section communication unit 224 transmits the synchronization message Sync to downstream TSN devices. Specifically, the outside section communication unit 224 transmits the synchronization message Sync to the Mth bridge 122 .
  • step S212 the out-of-section communication unit 224 acquires the synchronous transmission time TSe.
  • the synchronous transmission time TSe is the 5G time when the synchronization message Sync is transmitted.
  • step S213 the delay measurement unit 222 calculates the internal delay ID h using the synchronous transmission time TSe and the synchronous reception time TSi extracted in step S203.
  • Internal delay ID h is the delay incurred in the 5G network 110 .
  • the internal delay ID h is the difference between the synchronous transmission time TSe and the synchronous reception time TSi.
  • ID h TSe-TSi (h)
  • step S214 the delay measurement unit 222 calculates the integrated delay AD k using the internal delay ID h , the integrated delay AD d extracted in step S203, and the clock deviation CD g extracted in step S203.
  • Accumulated delay AD k is the accumulated delay of device translator 220 and TSN master 101 .
  • ADk ADd + ( IDh x CDg ) (k)
  • step S221 the section outside communication section 224 calculates the clock deviation CD i .
  • the clock deviation CD i is the clock deviation between the 5G time source 111 and the device translator 220 .
  • step S222 the out-of-interval communication unit 224 uses the clock deviation CD i and the clock deviation CD g extracted in step S203 to calculate the clock deviation CD j .
  • Clock deviation CD j is the clock deviation between TSN master 101 and device translator 220 .
  • the clock deviation CD j is calculated by calculating equation (j) below.
  • CD j CD g ⁇ CD i Formula (j)
  • step S223 the out-of-section communication unit 224 generates an additional message follow_Up.
  • the outside section communication unit 224 operates as follows.
  • the out-of-interval communication unit 224 sets the clock deviation CD j calculated in step S222 in the TLV1 field of the additional message follow_Up.
  • the out-of-interval communication unit 224 sets the accumulated delay AD k calculated in step S214 in the Correction field of the additional message follow_Up.
  • the outside communication unit 224 deletes TLV2 of Follow_Up.
  • step S224 the outside section communication unit 224 transmits the additional message Follow_Up to TSN. That is, the out-of-section communication unit 224 transmits the additional message Follow to the downstream TSN device. Specifically, the out-of-section communication unit 224 transmits the additional message Follow_Up to the Mth bridge 122 .
  • FIG. 12 shows the frame format of the additional message follow_Up from network translator 210 to device translator 220 .
  • the header contains a Correction field.
  • the Correction field is set with the accumulated delay AD d .
  • a clock deviation CD g is set in the TLV1 field.
  • a synchronous reception time TSi is set in the TLV2 field.
  • FIG. 13 shows the frame format of the additional message follow_Up from device translator 220 to TSN.
  • the header contains a Correction field.
  • An accumulated delay AD k is set in the Correction field.
  • a clock deviation CD j is set in the TLV1 field.
  • Time TM is the transmission time of the PTP message in the GM.
  • Time TS1 is the time when S1 is synchronized with GM.
  • Time TNW is the time when NW -TT is synchronized with GM.
  • Time TDS is the time when DS -TT is synchronized with GM.
  • Time T SN is the time when SN is synchronized with GM.
  • Delay D1 corresponds to the time from time TM to time TS1 .
  • the delay D 5G corresponds to the time from time T M to time T DS .
  • Delay D N corresponds to the time from time T M to time T SN .
  • Each PTP message has a clock deviation R set in addition to the GM time.
  • the clock deviation RGM is "1".
  • the PTP message from S1 to NW-TT is set with the same clock deviation R S1_GM as before.
  • Clock deviation RS1_GM is the clock deviation between GM and S1.
  • a non-conventional clock deviation R 5G_GM is set in the PTP message from NW-TT to DS-TT. Conventionally, a clock deviation RNW_GM between GM and NW-TT was set.
  • the clock deviation R NW_GM corresponds to the cumulative clock deviation ACD c (see step S135).
  • the clock deviation R 5G_GM is the clock deviation between GM and 5G-TS and corresponds to the clock deviation CD g (see step S142).
  • Clock deviation R 5G_GM is expressed as follows using clock deviation R NW_GM and clock deviation R 5G_NW .
  • the clock deviation R 5G_NW is the clock deviation between 5G-TS and NW-TT, and corresponds to the clock deviation CD f (see step S141).
  • R 5G_GM R 5G_NW R NW_GM
  • a non-conventional clock deviation R DS_GM is set in the PTP message from DS-TT to SM. Conventionally, a clock deviation RNW_GM was set.
  • the clock deviation R DS_GM is the clock deviation between GM and DS-TT and corresponds to the clock deviation CD j (see step S222).
  • the clock deviation R DS_GM is expressed as follows using clock deviation R 5G_GM and clock deviation R DS_5G .
  • the clock deviation R DS_5G is the clock deviation between 5G-TS and DS-TT, and corresponds to the clock deviation CD i (see step S221).
  • RDS_GM RDS_5G R 5G_GM
  • NW-TT and DS-TT operate as follows.
  • the NW-TT calculates a clock deviation R 5G_NW from the 5G-TS, and uses the clock deviation R NW_5G to calculate a clock deviation R 5G_GM .
  • the NW-TT then sends the clock deviation R 5G_GM to the DS-TT instead of the clock deviation R NW_GM .
  • the DS-TT calculates the clock deviation R DS_5G from the 5G-TS, and calculates the clock deviation R DS_GM using the clock deviation R DS_5G and the clock deviation R 5G_GM .
  • DS-TT then sends clock deviation R_DS_GM to SN instead of clock deviation R_NW_GM .
  • Embodiment 1 it is possible to eliminate the time error caused by a 5G network that originally does not exist in the TSN network joining the TSN network, that is, the time error caused by the clock deviation between network devices.
  • each of the network translator 210 and the device translator 220 uses the clock deviation (CD f , CD i ) with the 5G time source 111 to calculate the clock deviation between the network translator 210 and the device translator 220. Calculate indirectly. This makes it possible to eliminate the synchronization time error of the TSN slave 121 .
  • Embodiment 1 is advantageous in terms of cost because it eliminates the need to add control messages by changing existing time synchronization messages.
  • Translator 300 comprises processing circuitry 309 .
  • the processing circuit 309 is hardware that implements functional configuration elements of the network translator 210 or the device translator 220 .
  • the processing circuitry 309 may be dedicated hardware or may be a processor 311 that executes programs stored in memory.
  • processing circuitry 309 may be, for example, a single circuit, multiple circuits, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • the translator 300 may include a plurality of processing circuits that substitute for the processing circuit 309.
  • processing circuit 309 some functions may be implemented by dedicated hardware, and the remaining functions may be implemented by software or firmware.
  • translator 300 can be implemented in hardware, software, firmware, or a combination thereof.
  • the "unit” that is an element of the network translator 210 or the device translator 220 may be read as “processing”, “process”, “circuit” or “circuitry”.
  • 100 time synchronization network system 101 TSN master, 102 first bridge, 110 5G network, 111 5G time source, 121 TSN slave, 122 M bridge, 210 network translator, 211 outside section communication unit, 212 delay measurement unit, 213 time Synchronization control unit 214 Clock deviation calculation unit 215 Intra-section communication unit 220 Device translator 221 In-section communication unit 222 Delay measurement unit 223 Clock deviation calculation unit 224 Out-of-section communication unit 300 Translator 301 Computer 309 Processing circuit, 310 motherboard, 311 processor, 312 serial communication device, 313 translator circuit, 320 expansion card, 321 port, 322 port.

Abstract

This network translator (210) calculates a clock deviation between a TSN master (101) and a 5G time source (111), sets the calculated clock deviation to generate a message, and transmits the generated message to a device translator (220). The device translator receives a message from the network translator, calculates a clock deviation between the TSN master and the device translator by using the clock deviation between the TSN master and the 5G time source, sets the calculated clock deviation to generate a message, and transmits the generated message to the downstream side of a time synchronization network system (100).

Description

ネットワークトランスレータおよびデバイストランスレータnetwork translator and device translator
 本開示は、クロック偏差を考慮した5G-TSNトランスレータに関するものである。 This disclosure relates to a 5G-TSN translator that considers clock deviation.
 複数段に渡る有線TSNの時刻同期方式では、隣接機器間で遅延測定メッセージを交換することにより、各区間のリンク遅延と各区間のクロック偏差とを算出する。
 スレーブは、マスタ装置から通知される時刻を得たとき、上流の各区間のリンク遅延の積算値と上流の各区間のクロック偏差の積算値とを用いて、マスタ装置との時差を補正する。これにより、高精度な時刻同期が実現される。
 TSNは、Time-Sensitive Networkingの略称である。
In the time synchronization method of wired TSN over multiple stages, the link delay of each section and the clock deviation of each section are calculated by exchanging delay measurement messages between adjacent devices.
When the slave obtains the time notified from the master device, it corrects the time difference with the master device using the integrated value of the link delay in each upstream section and the integrated value of the clock deviation in each upstream section. This realizes highly accurate time synchronization.
TSN is an abbreviation for Time-Sensitive Networking.
 5G-TSNシステムは、5Gを経由して有線でTSN機器が接続されるTSNシステムである。
 5G-TSNシステムでは、5G区間は1段の仮想的な機器として扱われる。しかし、物理的には、5G区間において、無線区間を挟んだ一方に機器ネットワークトランスレータ(NW-TT)が配置され、無線区間を挟んだ他方にデバイストランスレータ(DS-TT)が配置される。
 トランスレータは、有線TSNの機能を持つ機器であり、TSNトランスレータともいう。
A 5G-TSN system is a TSN system in which TSN devices are connected by wire via 5G.
In the 5G-TSN system, the 5G section is treated as one-stage virtual equipment. Physically, however, in the 5G section, a device network translator (NW-TT) is arranged on one side across the wireless section, and a device translator (DS-TT) is arranged on the other side across the wireless section.
A translator is a device having a wired TSN function, and is also called a TSN translator.
 5Gネットワークでは、上り通信と下り通信で遅延が異なる。そのため、NW-TTとDS-TTの間で遅延測定メッセージを交換しても、5G区間のリンク遅延を測定することができない。
 そこで、NW-TTおよびDS-TTは、5G区間の機器がTSNの時刻とは独立した時刻(5G時刻)で同期されていることを利用して、5G時刻のタイムスタンピングにより、5G区間のリンク遅延を測定する。
In 5G networks, the delay is different between uplink and downlink communication. Therefore, even if delay measurement messages are exchanged between the NW-TT and DS-TT, the link delay in the 5G section cannot be measured.
Therefore, NW-TT and DS-TT use the fact that the equipment in the 5G section is synchronized with the time (5G time) that is independent of the time of the TSN, and by time stamping the 5G time, the link in the 5G section Measure latency.
 非特許文献1は、従来の5G-TSNネットワークを開示している。
 従来の5G-TSNネットワーでは、5GネットワークのGrandMaster(GM)に対するNW-TTとDS-TTとのそれぞれのクロック偏差がゼロであると想定される。そして、DS-TTは、TSNのGMに対するNW-TTのクロック偏差を時刻転送メッセージSync/Follow_Upに入れて、時刻転送メッセージを下流のTSNスレーブに送る。
Non-Patent Document 1 discloses a conventional 5G-TSN network.
In a conventional 5G-TSN network, it is assumed that the clock deviation of each of the NW-TT and DS-TT to the GrandMaster (GM) of the 5G network is zero. The DS-TT then puts the clock deviation of the NW-TT with respect to the GM of the TSN into the time transfer message Sync/Follow_Up and sends the time transfer message downstream to the TSN slave.
 従来、DS-TTがNW-TTとの間のクロック偏差を計算する方法がない。そのため、5G区間のクロック偏差が考慮されない。これにより、DS-TTの下流にあるTSNスレーブに同期時刻誤差が発生する。 Conventionally, there is no method for calculating the clock deviation between DS-TT and NW-TT. Therefore, the clock deviation in the 5G section is not considered. This causes a synchronization time error in the TSN slave downstream of the DS-TT.
 本開示は、5G-TSNにおいてクロック偏差を考慮することによって、DS-TTの下流にあるTSNスレーブでの同期時刻誤差を抑止できるようにすることを目的とする。 The present disclosure aims to suppress synchronization time errors in TSN slaves downstream of DS-TT by considering clock deviations in 5G-TSN.
 本開示のネットワークトランスレータは、時刻同期ネットワークシステムの上流と前記時刻同期ネットワークシステムの下流との間に設けられる移動通信システムで使用される。
 前記時刻同期ネットワークシステムの上流は、前記時刻同期ネットワークシステムの時刻源となる機器であるマスタを有する。
 前記移動通信システムは、前記移動通信システムの時刻源となるタイムサーバと、デバイストランスレータと、を有する。
 前記デバイストランスレータは、前記マスタと前記タイムサーバのクロック偏差と、前記タイムサーバと前記デバイストランスレータのクロック偏差と、を用いて、前記マスタと前記デバイストランスレータのクロック偏差を算出し、算出した前記クロック偏差を設定してメッセージを生成し、生成したメッセージを前記時刻同期ネットワークシステムの下流へ送信するトランスレータである。
 前記ネットワークトランスレータは、
 前記マスタと前記タイムサーバの前記クロック偏差を算出するクロック偏差算出部と、
 前記マスタと前記タイムサーバの前記クロック偏差を設定してメッセージを生成し、生成したメッセージを前記デバイストランスレータへ送信する区間内通信部と、を備える。
A network translator of the present disclosure is used in a mobile communication system provided upstream of a time synchronization network system and downstream of the time synchronization network system.
The upstream of the time synchronization network system has a master, which is a device serving as a time source of the time synchronization network system.
The mobile communication system has a time server serving as a time source for the mobile communication system and a device translator.
The device translator calculates the clock deviation between the master and the device translator using the clock deviation between the master and the time server and the clock deviation between the time server and the device translator, and the calculated clock deviation is set to generate a message, and the generated message is transmitted downstream of the time synchronization network system.
The network translator is
a clock deviation calculation unit that calculates the clock deviation between the master and the time server;
an intra-section communication unit that sets the clock deviation between the master and the time server to generate a message and transmits the generated message to the device translator.
 本開示によれば、5G-TSNにおいてクロック偏差を考慮し、DS-TTの下流にあるTSNスレーブでの同期時刻誤差を抑止することが可能となる。 According to the present disclosure, it is possible to consider clock deviation in 5G-TSN and suppress synchronization time errors in TSN slaves downstream of DS-TT.
実施の形態1における時刻同期ネットワークシステム100の構成図。1 is a configuration diagram of a time synchronization network system 100 according to Embodiment 1; FIG. 実施の形態1におけるトランスレータ300のハードウェア構成図。2 is a hardware configuration diagram of a translator 300 according to Embodiment 1. FIG. 実施の形態1におけるネットワークトランスレータ210の機能構成図。3 is a functional configuration diagram of a network translator 210 according to Embodiment 1. FIG. 実施の形態1におけるデバイストランスレータ220の機能構成図。3 is a functional configuration diagram of a device translator 220 according to Embodiment 1. FIG. 実施の形態1におけるクロック偏差算出のフローチャート。4 is a flowchart of clock deviation calculation according to the first embodiment; 実施の形態1におけるクロック偏差RNW_GM(=CD)と各時刻の関係図。FIG. 4 is a diagram showing the relationship between the clock deviation RNW_GM (=CD a ) and each time according to the first embodiment; FIG. 実施の形態1におけるリンク遅延算出のフローチャート。4 is a flowchart of link delay calculation according to the first embodiment; 実施の形態1における時刻合わせのフローチャート。4 is a flowchart of time adjustment according to Embodiment 1; 実施の形態1における追加メッセージ送信(5G)のフローチャート。4 is a flowchart of additional message transmission (5G) according to Embodiment 1; 実施の形態1における追加メッセージ送信(TSN)のフローチャート。4 is a flowchart of additional message transmission (TSN) according to Embodiment 1; 実施の形態1における追加メッセージ送信(TSN)のフローチャート。4 is a flowchart of additional message transmission (TSN) according to Embodiment 1; 実施の形態1における追加メッセージFollow_Up(NW-TT→DS-TT)のフレームフォーマットを示す表。4 is a table showing a frame format of additional message Follow_Up (NW-TT→DS-TT) in Embodiment 1; 実施の形態1における追加メッセージFollow_Up(DS-TT→TSN)のフレームフォーマットを示す表。4 is a table showing a frame format of additional message Follow_Up (DS-TT→TSN) in Embodiment 1; 実施の形態1における各PTPメッセージに設定されるクロック偏差Rを示す図。4 is a diagram showing a clock deviation R set in each PTP message according to the first embodiment; FIG. 実施の形態1におけるトランスレータ300のハードウェア構成の補足図。4 is a supplementary diagram of the hardware configuration of the translator 300 according to the first embodiment; FIG.
 実施の形態および図面において、同じ要素または対応する要素には同じ符号を付している。説明した要素と同じ符号が付された要素の説明は適宜に省略または簡略化する。図中の矢印はデータの流れ又は処理の流れを主に示している。 In the embodiments and drawings, the same or corresponding elements are denoted by the same reference numerals. Descriptions of elements having the same reference numerals as those described will be omitted or simplified as appropriate. Arrows in the figure mainly indicate the flow of data or the flow of processing.
 実施の形態1.
 時刻同期ネットワークシステム100について、図1から図13に基づいて説明する。
Embodiment 1.
The time synchronization network system 100 will be described with reference to FIGS. 1 to 13. FIG.
 時刻同期ネットワークシステム100は、複数のネットワーク機器が移動通信システムを経由して接続される時刻同期ネットワークシステムである。
 時刻同期ネットワークシステムは、複数のネットワーク機器の時刻が同期されるネットワークシステムである。
 ネットワーク機器は、通信機能を有する機器である。
A time synchronization network system 100 is a time synchronization network system in which a plurality of network devices are connected via a mobile communication system.
A time-synchronized network system is a network system in which the times of a plurality of network devices are synchronized.
A network device is a device having a communication function.
 具体的には、時刻同期ネットワークシステム100は、5G-TSNシステムである。
 5Gは、第5世代移動通信システムである。第5世代移動通信システムは移動通信システムの一例である。
 TSNは、タイムセンシティブネットワーキングと呼ばれる時刻同期ネットワークシステムである。
Specifically, the time synchronization network system 100 is a 5G-TSN system.
5G is the fifth generation mobile communication system. A fifth generation mobile communication system is an example of a mobile communication system.
TSN is a time synchronization network system called time sensitive networking.
***構成の説明***
 図1に基づいて、時刻同期ネットワークシステム100の構成を説明する。
 時刻同期ネットワークシステム100は、TSNマスタ101と第1ブリッジ102とTSNスレーブ121と第Mブリッジ122とを備える。これらはTSNのネットワーク機器である。
*** Configuration description ***
The configuration of the time synchronization network system 100 will be described based on FIG.
The time synchronization network system 100 includes a TSN master 101, a first bridge 102, a TSN slave 121 and an Mth bridge 122. These are TSN's network equipment.
 TSNマスタ101は、TSNにおいて時刻源となるネットワーク機器であり、グランドマスタ(GM)と呼ばれる。TSNマスタ101が位置する方を「上流」と呼ぶ。
 TSNスレーブ121は、TSNマスタ101の時刻に合わせて同期するネットワーク機器である。TSNスレーブ121が位置する方を「下流」と呼ぶ。
 TSNマスタ101を「GM」と記す。
 TSNスレーブ121を「SLAVE」と記す。
The TSN master 101 is a network device that serves as a time source in TSN, and is called a grandmaster (GM). The side where the TSN master 101 is located is called "upstream".
The TSN slave 121 is network equipment that synchronizes with the time of the TSN master 101 . The side where the TSN slave 121 is located is called "downstream".
The TSN master 101 is denoted as "GM".
The TSN slave 121 is described as "SLAVE".
 第1ブリッジ102は、TSNマスタ101からTSNスレーブ121への通信経路においてTSNマスタ101から数えて1番目のブリッジである。ブリッジはネットワーク機器の一種である。
 第Mブリッジ122は、TSNマスタ101からTSNスレーブ121への通信経路においてTSNマスタ101から数えてM番目のブリッジである。
 第1ブリッジ102は5Gネットワーク110に対して上流側に配置され、第Mブリッジ122は5Gネットワーク110に対して下流側に配置される。
 第1ブリッジ102を「S1」と記す。
 第Mブリッジ122を「SM」と記す。
The first bridge 102 is the first bridge counted from the TSN master 101 on the communication path from the TSN master 101 to the TSN slave 121 . A bridge is a type of network device.
The Mth bridge 122 is the Mth bridge counted from the TSN master 101 on the communication path from the TSN master 101 to the TSN slave 121 .
The first bridge 102 is located upstream with respect to the 5G network 110 and the Mth bridge 122 is located downstream with respect to the 5G network 110 .
The first bridge 102 is denoted as "S1".
The Mth bridge 122 is denoted as "SM".
 時刻同期ネットワークシステム100は、5G時刻源111とネットワークトランスレータ210とデバイストランスレータ220とを備える。これらは5Gネットワーク110のネットワーク機器である。 The time synchronization network system 100 includes a 5G time source 111, a network translator 210, and a device translator 220. These are the network equipment of the 5G network 110 .
 5G時刻源111は、5Gネットワーク110の時刻源となるネットワーク機器であり、タイムサーバ(TS)と呼ばれる。
 5G時刻源111を「5G-TS」と記す。
 5Gネットワーク110の時刻はTSNの時刻から独立している。
The 5G time source 111 is a network device that serves as a time source for the 5G network 110, and is called a time server (TS).
The 5G time source 111 is referred to as "5G-TS".
The 5G network 110 time is independent of the TSN time.
 ネットワークトランスレータ210は、5G-TSNの網間接続を行うトランスレータであり、TSNの時刻同期機能を持ち、5Gネットワーク110において上流側に配置される。
 デバイストランスレータ220は、5G-TSNの網間接続を行うトランスレータであり、TSNの時刻同期機能を持ち、5Gネットワーク110において下流側に配置される。
 ネットワークトランスレータ210とデバイストランスレータ220は、TSNトランスレータ(TT)ともいう。
 ネットワークトランスレータ210を「NW-TT」と記す。
 デバイストランスレータ220を「DS-TT」と記す。
The network translator 210 is a translator that performs 5G-TSN inter-network connection, has a TSN time synchronization function, and is arranged upstream in the 5G network 110 .
The device translator 220 is a translator that performs 5G-TSN inter-network connection, has a TSN time synchronization function, and is arranged downstream in the 5G network 110 .
Network translator 210 and device translator 220 are also referred to as TSN translators (TT).
The network translator 210 is referred to as "NW-TT".
Device translator 220 is referred to as “DS-TT”.
 図2に基づいて、トランスレータ300のハードウェア構成を説明する。
 トランスレータ300は、ネットワークトランスレータ210とデバイストランスレータ220との総称である。
The hardware configuration of the translator 300 will be described based on FIG.
Translator 300 is a general term for network translator 210 and device translator 220 .
 トランスレータ300は、マザーボード310と拡張カード320とを備える。
 マザーボード310は、制御用のコンピュータ301に接続される。
 マザーボード310は、プロセッサ311とシリアル通信デバイス312とトランスレータ回路313とを備える。これらはバスを介して互いに接続される。このバスは、データバスともいい、プロセッサ311からレジスタアクセス(設定、読取)を行うための接続を行う。
Translator 300 includes motherboard 310 and expansion card 320 .
Motherboard 310 is connected to computer 301 for control.
Motherboard 310 includes processor 311 , serial communication device 312 and translator circuit 313 . These are connected to each other via a bus. This bus is also called a data bus, and provides connection for register access (setting, reading) from the processor 311 .
 プロセッサ311は、演算処理を行う電子回路であり、論理回路および1次キャッシュなどを備える。
 シリアル通信デバイス312は、シリアル通信を行うためのデバイスである。具体的には、シリアル通信デバイス312はUARTである。UARTは、Universal Asynchronous Receiver/Transmitterの略称である。
 トランスレータ回路313は、トランスレータの機能を持った電子回路である。具体的には、トランスレータ回路313はFPGA回路であり、トランスレータの機能はプログラマブルロジックで構築される。FPGAは、Field-Programmable Gate Arrayの略称である。
The processor 311 is an electronic circuit that performs arithmetic processing, and includes a logic circuit, primary cache, and the like.
A serial communication device 312 is a device for performing serial communication. Specifically, serial communication device 312 is a UART. UART is an abbreviation for Universal Asynchronous Receiver/Transmitter.
The translator circuit 313 is an electronic circuit having a translator function. Specifically, the translator circuit 313 is an FPGA circuit, and the function of the translator is constructed with programmable logic. FPGA is an abbreviation for Field-Programmable Gate Array.
 拡張カード320は、メザニンカードまたはドーターカードとも呼ばれ、マザーボード310に接続される。具体的には、拡張カード320は、マザーボード310に設けられる専用のコネクタに接続される。
 拡張カード320は、ポート321とポート322とを備える。
 ポート321はTSNに接続されるポートであり、ポート322は5Gに接続されるポートである。具体的には、ポート321およびポート322はSFPと呼ばれるポートである。SFPは、Small Form Factor Pluggableの略称である。
Expansion cards 320 , also called mezzanine cards or daughter cards, are connected to motherboard 310 . Specifically, the expansion card 320 is connected to a dedicated connector provided on the motherboard 310 .
The expansion card 320 has ports 321 and 322 .
Port 321 is the port connected to TSN, and port 322 is the port connected to 5G. Specifically, ports 321 and 322 are ports called SFP. SFP is an abbreviation for Small Form Factor Pluggable.
 図3に基づいて、ネットワークトランスレータ210の機能構成を説明する。
 ネットワークトランスレータ210は、区間外通信部211と遅延測定部212と時刻同期制御部213とクロック偏差算出部214と区間内通信部215といった要素を備える。
 これらの要素は、トランスレータ回路313によって実現される。
Based on FIG. 3, the functional configuration of the network translator 210 will be described.
The network translator 210 includes elements such as an out-of-section communication unit 211 , a delay measurement unit 212 , a time synchronization control unit 213 , a clock deviation calculation unit 214 , and an in-section communication unit 215 .
These elements are realized by translator circuit 313 .
 区間外通信部211は、TSNと送受信を行う。また、区間外通信部211は、フレームを受信して解析し、受信したPTPフレームからヘッダおよびメッセージを抽出し、終端する。また、区間外通信部211は、エラーチェック・レングス計測を行い、エラーフレームを廃棄する。
 また、区間外通信部211は、PTPフレームの送受信時刻を遅延測定部212に通知する。そこで、区間外通信部211は、ネットワークトランスレータ210がSyncメッセージを受信したときの5G時刻(TSi)を保持する。
 PTPは、Precision Time Protocolの略称である。
The outside section communication unit 211 performs transmission and reception with the TSN. Also, the outside communication unit 211 receives and analyzes the frame, extracts the header and message from the received PTP frame, and terminates. In addition, the out-of-section communication unit 211 performs error check and length measurement, and discards the error frame.
In addition, the outside communication section 211 notifies the delay measurement section 212 of the transmission/reception time of the PTP frame. Therefore, the out-of-section communication unit 211 holds the 5G time (TSi) when the network translator 210 received the Sync message.
PTP is an abbreviation for Precision Time Protocol.
 遅延測定部212は、Pdelay_Req、Pdelay_RespおよびPdelay_Resp_Follow_Upと呼ばれる2段階のピアツーピア(P2P)によるパス遅延アルゴリズムを使って、時刻同期で使用する隣接のTSN機器との間の遅延時間およびクロック偏差を測定する。クロック偏差は、P2Pの遅延測定メッセージの時間差に基づいて算出される。
 遅延測定部212は、PTPメッセージ(Pdelay_Req, Pdelay_Resp, Pdelay_Resp_Follow_Up)の送受信制御および遅延測定機能に関するステータス情報を生成する。
 PTPメッセージは、IEEE 802.1 ASに規定されるメッセージである。
The delay measurement unit 212 measures delay times and clock deviations between adjacent TSN devices used for time synchronization using a two-step peer-to-peer (P2P) path delay algorithm called Pdelay_Req, Pdelay_Resp and Pdelay_Resp_Follow_Up. The clock deviation is calculated based on the time difference of the P2P delay measurement messages.
The delay measurement unit 212 generates status information regarding transmission/reception control and delay measurement functions of PTP messages (Pdelay_Req, Pdelay_Resp, Pdelay_Resp_Follow_Up).
A PTP message is a message defined in IEEE 802.1 AS.
 遅延測定部212は、ネットワークトランスレータ210と隣接のTSN機器との間の伝送遅延測定を行って、リンク遅延を測定する。 The delay measurement unit 212 measures the transmission delay between the network translator 210 and adjacent TSN devices to measure the link delay.
 時刻同期制御部213は、隣接のTSN機器(上流)から配信された時刻情報(GMが起点)に、自装置で算出したGMとの累積クロック偏差およびGMとの積算遅延を加えて、GMの時刻に同期した時刻を算出する。これにより、同期時刻がGMに対して追従するようにする。 The time synchronization control unit 213 adds the accumulated clock deviation with the GM and the accumulated delay with the GM calculated by the own device to the time information (GM is the starting point) distributed from the adjacent TSN device (upstream), Calculate the time synchronized with the time. This allows the synchronization time to follow the GM.
 クロック偏差算出部214は、遅延測定部212によって算出される自装置とGMのクロック偏差および区間内通信部215によって算出される自装置と5G時刻源のクロック偏差を使用し、5G時刻源とGMのクロック偏差を算出する。 The clock deviation calculation unit 214 uses the clock deviation between the own device and the GM calculated by the delay measurement unit 212 and the clock deviation between the own device and the 5G time source calculated by the intra-section communication unit 215, and the 5G time source and the GM Calculate the clock deviation of
 区間内通信部215は、5G時刻源111に同期した時刻を提供する。また、区間内通信部215は、自装置と5G時刻源のクロック偏差を算出する。
 また、区間内通信部215は、ネットワークトランスレータ210がSyncメッセージを受信したときの5G時刻(TSi)とクロック偏差算出部214が算出したGMと5G時刻源の累積クロック偏差をFollow_UpメッセージのTLV1領域に追加し、Follow_Upメッセージを5Gに送信する。
The intra-section communication unit 215 provides the synchronized time to the 5G time source 111 . In addition, the intra-section communication unit 215 calculates the clock deviation between its own device and the 5G time source.
In addition, the intra-section communication unit 215 stores the 5G time (TSi) when the network translator 210 receives the Sync message and the accumulated clock deviation between the GM and the 5G time source calculated by the clock deviation calculation unit 214 in the TLV1 area of the Follow_Up message. Add and send a Follow_Up message to 5G.
 さらに、各要素の機能について後述する。 Furthermore, the function of each element will be described later.
 図4に基づいて、デバイストランスレータ220の機能構成を説明する。
 デバイストランスレータ220は、区間内通信部221と遅延測定部222とクロック偏差算出部223と区間外通信部224といった要素を備える。
 これらの要素は、トランスレータ回路313によって実現される。
A functional configuration of the device translator 220 will be described based on FIG.
The device translator 220 includes elements such as an intra-interval communication unit 221 , a delay measurement unit 222 , a clock deviation calculation unit 223 and an extra-interval communication unit 224 .
These elements are realized by translator circuit 313 .
 区間内通信部221は、5Gと送受信する。また、区間内通信部221は、受信したFollow_UpメッセージのTLV1領域から、ネットワークトランスレータ210がSyncメッセージを受信したときの5G時刻(TSi)とネットワークトランスレータ210が算出したGMと5G時刻源の累積クロック偏差といった情報を抽出し、抽出した情報を遅延測定部222に送信する。 The intra-section communication unit 221 transmits and receives with 5G. In addition, the intra-section communication unit 221, from the TLV1 area of the received Follow_Up message, the 5G time (TSi) when the network translator 210 received the Sync message, the GM calculated by the network translator 210, and the cumulative clock deviation of the 5G time source and transmits the extracted information to the delay measurement unit 222 .
 遅延測定部222は、Syncメッセージの送信時の5G時刻(TSe)を区間外通信部224から受信する。
 遅延測定部222は、区間内通信部221から受信したTSiと区間内通信部221から受信したGMと5G時刻源の累積クロック偏差と区間外通信部224から受信したTSeを使用して5G内部の遅延時間を算出する。そして、遅延測定部222は、5G内部の遅延時間を区間外通信部224に送信する。
The delay measurement unit 222 receives the 5G time (TSe) at the time of transmission of the Sync message from the outside communication unit 224 .
The delay measurement unit 222 uses TSi received from the intra-section communication unit 221, the cumulative clock deviation of the GM received from the intra-section communication unit 221, the cumulative clock deviation of the 5G time source, and the TSe received from the outside communication unit 224. Calculate the delay time. Then, the delay measurement unit 222 transmits the delay time inside 5G to the outside communication unit 224 .
 クロック偏差算出部223は、区間外通信部224から受信した自装置と5G時刻源のクロック偏差と区間内通信部221から受信したGMと5G時刻源の累積クロック偏差を使用して自装置とGMのクロック偏差を算出する。そして、クロック偏差算出部223は、自装置とGMのクロック偏差を区間外通信部224に送信する。 The clock deviation calculation unit 223 uses the cumulative clock deviation of the GM and the 5G time source received from the internal communication unit 221 and the clock deviation of the own device and the 5G time source received from the outside communication unit 224 to calculate the difference between the own device and the GM. Calculate the clock deviation of Then, the clock deviation calculation unit 223 transmits the clock deviation between its own device and the GM to the outside communication unit 224 .
 区間外通信部224は、下流のTSN機器と送受信を行う。また、区間外通信部224は、PTPフレームを受信して解析し、受信したPTPフレームからヘッダおよびメッセージを抽出し、終端する。また、区間外通信部224は、エラーチェック・レングス計測を行い、エラーフレームを廃棄する。また、区間外通信部224は、Syncメッセージの送信時の5G時刻(TSe)を遅延測定部222に通知する。
 区間外通信部224は、遅延測定部222で算出された5G内部の遅延時間をFollow_Upメッセージのcorrection fieldに追加する。また、区間外通信部224は、Follow_UpメッセージのTLVを、クロック偏差算出部223で算出した自装置とGMのクロック偏差に書き換える。そして、区間外通信部224は、Follow_Upメッセージを下流のTSN機器に送信する。
 また、区間外通信部224は。自装置と5G時刻源のクロック偏差を算出してクロック偏差算出部223に送信する。
The outside section communication unit 224 performs transmission and reception with downstream TSN devices. Also, the outside communication unit 224 receives and analyzes the PTP frame, extracts the header and message from the received PTP frame, and terminates. In addition, the out-of-section communication unit 224 performs error check and length measurement, and discards the error frame. In addition, the out-of-section communication unit 224 notifies the delay measurement unit 222 of the 5G time (TSe) at which the Sync message was transmitted.
The outside communication unit 224 adds the internal 5G delay time calculated by the delay measurement unit 222 to the correction field of the Follow_Up message. Further, the out-of-interval communication unit 224 rewrites the TLV of the Follow_Up message to the clock deviation between its own device and the GM calculated by the clock deviation calculation unit 223 . Then, the out-of-section communication unit 224 transmits the Follow_Up message to downstream TSN devices.
Also, the outside communication unit 224 is: A clock deviation between the own device and the 5G time source is calculated and transmitted to the clock deviation calculation unit 223 .
 さらに、各要素の機能について後述する。 Furthermore, the function of each element will be described later.
***動作の説明***
 時刻同期ネットワークシステム100の動作の手順は時刻同期方法に相当する。
***Description of operation***
The operation procedure of the time synchronization network system 100 corresponds to the time synchronization method.
 図5に基づいて、クロック偏差算出を説明する。
 クロック偏差算出は、ネットワークトランスレータ210と隣接のTSN機器のクロック偏差CDを算出する処理であり、ネットワークトランスレータ210によって実行される。
 TSN機器は、TSNのネットワーク機器である。
 隣接のTSN機器は、具体的には第1ブリッジ102である。
Based on FIG. 5, clock deviation calculation will be described.
The clock deviation calculation is a process of calculating the clock deviation CD a between the network translator 210 and the adjacent TSN device, and is executed by the network translator 210 .
TSN equipment is TSN network equipment.
The adjacent TSN equipment is specifically the first bridge 102 .
 ステップS111において、区間外通信部211は、隣接のTSN機器から、1個目の遅延測定応答メッセージPdelay_Respを受信する。
 遅延測定応答メッセージPdelay_Respは、遅延測定要求メッセージPdelay_Reqに対する応答である。
In step S111, the outside communication unit 211 receives the first delay measurement response message Pdelay_Resp from the adjacent TSN device.
The delay measurement response message Pdelay_Resp is a response to the delay measurement request message Pdelay_Req.
 ステップS112において、区間外通信部211は、第1応答受信時刻tを取得する。
 第1応答受信時刻tは、1個目の遅延測定応答メッセージPdelay_Respの受信時刻である。
 例えば、トランスレータ300の時刻は、ローカルのオペレーティングシステム(OS)から取得される。
In step S112, the outside section communication unit 211 acquires the first response reception time tn .
The first response reception time tn is the reception time of the first delay measurement response message Pdelay_Resp .
For example, the translator 300 time is obtained from the local operating system (OS).
 ステップS113において、区間外通信部211は、1個目の遅延測定応答メッセージPdelay_Resp_Follow_Upのペイロードから、第1応答送信時刻t’を抽出する。
 第1応答送信時刻t’は、遅延測定応答メッセージPdelay_Respの送信時刻(ResponseOriginTimestamp)であり、隣接のTSN機器で測定され設定される。
In step S113, the out-of-interval communication unit 211 extracts the first response transmission time t'n from the payload of the first delay measurement response message Pdelay_Resp_Follow_Up.
The first response transmission time t'n is the transmission time (ResponseOriginTimestamp) of the delay measurement response message Pdelay_Resp, and is measured and set by the adjacent TSN device.
 ステップS114において、区間外通信部211は、N個目の遅延測定応答メッセージPdelay_Respを待ち、N個目の遅延測定応答メッセージPdelay_Respを受信する。「N」は2以上の整数である。 In step S114, the outside communication section 211 waits for the Nth delay measurement response message Pdelay_Resp and receives the Nth delay measurement response message Pdelay_Resp. "N" is an integer of 2 or more.
 ステップS115において、区間外通信部211は、第N応答受信時刻tnn(PdelayRespEventIngressTimestamp)を取得する。
 第N応答受信時刻tnnは、N個目の遅延測定応答メッセージPdelay_Respの受信時刻である。
In step S115, the out-of-interval communication unit 211 acquires the N-th response reception time tnn (PdelayRespEventIngressTimestamp).
The Nth response reception time tnn is the reception time of the Nth delay measurement response message Pdelay_Resp.
 ステップS116において、区間外通信部211は、N個目の遅延測定応答メッセージPdelay_Resp_Follow_Upのペイロードから、第N要求受信時刻t’nnを抽出する。
 第N応答送信時刻t’nnは、遅延測定応答メッセージPdelay_Respの送信時刻(ResponseOriginTimestamp)であり、隣接のTSN機器で測定され設定される。
In step S116, the out-of-interval communication unit 211 extracts the Nth request reception time t'nn from the payload of the Nth delay measurement response message Pdelay_Resp_Follow_Up.
The N-th response transmission time t'nn is the transmission time (ResponseOriginTimestamp) of the delay measurement response message Pdelay_Resp, and is measured and set by the adjacent TSN device.
 ステップS117において、遅延測定部212は、第1応答受信時刻tと第1応答送信時刻t’と第N応答受信時刻tnnと第N応答送信時刻t’nnとを用いて、クロック偏差CDを算出する。
 クロック偏差CDは、ネットワークトランスレータ210と隣接のTSN機器のクロック偏差である。
In step S117, the delay measurement unit 212 uses the first response reception time tn, the first response transmission time t'n, the Nth response reception time tnn, and the Nth response transmission time t'nn to determine the clock deviation. Calculate the CDa .
Clock deviation CDa is the clock deviation of network translator 210 and adjacent TSN devices.
 クロック偏差CDは、以下の式(a)を計算することによって算出される。
 CD = (tnn-t)/(t’nn-t’)   (a)
The clock deviation CD a is calculated by calculating equation (a) below.
CDa = ( tnn -tn)/( t'nn - t'n ) (a)
 図6に基づいて、クロック偏差RNW_GMと各時刻の関係について説明する。クロック偏差RNW_GMは、クロック偏差CDに相当する。
 NW-TTが、遅延測定要求メッセージPdelay_Reqを送信する。送信時刻は時刻tである。
 GMは、遅延測定要求メッセージPdelay_Reqを受信する。受信時刻は時刻tである。
 GMは、1回目の遅延測定応答メッセージPdelay_Respを送信する。送信時刻は時刻t’である。
 NW-TTは、1回目の遅延測定応答メッセージPdelay_Respを受信する。受信時刻は時刻tである。
 GMは、N回目の遅延測定応答メッセージPdelay_Respを送信する。送信時刻は時刻t’nnである。
 NW-TTは、N回目の遅延測定応答メッセージPdelay_Respを受信する。受信時刻は時刻tnnである。
 クロック偏差RNW_GMは、上記の式(a)を計算することによって、算出される。
Based on FIG. 6, the relationship between the clock deviation RNW_GM and each time will be described. The clock deviation RNW_GM corresponds to the clock deviation CDa .
NW-TT sends a delay measurement request message Pdelay_Req. The transmission time is time t1.
The GM receives the delay measurement request message Pdelay_Req. The reception time is time t2.
The GM sends a first delay measurement response message Pdelay_Resp. The transmission time is time t'n .
The NW-TT receives the first delay measurement response message Pdelay_Resp. The reception time is time tn .
The GM sends the Nth delay measurement response message Pdelay_Resp. The transmission time is time t'nn .
The NW-TT receives the Nth delay measurement response message Pdelay_Resp. The reception time is time tnn .
The clock deviation RNW_GM is calculated by calculating equation (a) above.
 図7に基づいて、リンク遅延算出を説明する。
 リンク遅延算出は、ネットワークトランスレータ210と隣接のTSN機器との間のリンク遅延LDを算出する処理であり、ネットワークトランスレータ210によって実行される。リンク遅延LDは伝送遅延の時間に相当する。
Based on FIG. 7, link delay calculation will be described.
Link delay calculation is a process of calculating the link delay LD b between the network translator 210 and the adjacent TSN device, and is executed by the network translator 210 . The link delay LD b corresponds to the transmission delay time.
 ステップS121において、区間外通信部211は、遅延測定要求メッセージPdelay_Reqを隣接のTSN機器へ送信する。 In step S121, the outside section communication unit 211 transmits a delay measurement request message Pdelay_Req to the adjacent TSN device.
 ステップS122において、区間外通信部211は、要求送信時刻tを取得する。
 要求送信時刻tは、遅延測定要求メッセージPdelay_Reqの送信時刻である。
In step S122, the outside section communication unit 211 acquires the request transmission time t1.
The request transmission time t1 is the transmission time of the delay measurement request message Pdelay_Req.
 ステップS123において、区間外通信部211は、隣接のTSN機器からの遅延測定応答メッセージPdelay_Respを待ち、遅延測定応答メッセージPdelay_Respを受信する。 In step S123, the out-of-section communication unit 211 waits for the delay measurement response message Pdelay_Resp from the adjacent TSN device and receives the delay measurement response message Pdelay_Resp.
 ステップS124において、区間外通信部211は、応答受信時刻tを取得する。
 応答受信時刻tは、遅延測定応答メッセージPdelay_Respの受信時刻である。
In step S124, the outside section communication unit 211 acquires the response reception time t4.
The response reception time t4 is the reception time of the delay measurement response message Pdelay_Resp .
 ステップS125において、区間外通信部211は、遅延測定応答メッセージPdelay_Respのペイロードから、要求受信時刻tを抽出する。
 要求受信時刻tは、遅延測定要求メッセージPdelay_Reqの受信時刻(RequestReceiptTimestamp)であり、隣接のTSN機器で測定され設定される。
In step S125, the out-of-interval communication unit 211 extracts the request reception time t2 from the payload of the delay measurement response message Pdelay_Resp.
The request reception time t2 is the reception time ( RequestReceiptTimestamp ) of the delay measurement request message Pdelay_Req, and is measured and set by the adjacent TSN device.
 ステップS126において、区間外通信部211は、遅延測定応答メッセージPdelay_Respの追加メッセージPdelay_Resp_Follow_Upを待ち、追加メッセージPdelay_Resp_Follow_Upを受信する。 In step S126, the out-of-interval communication unit 211 waits for the additional message Pdelay_Resp_Follow_Up of the delay measurement response message Pdelay_Resp and receives the additional message Pdelay_Resp_Follow_Up.
 ステップS127において、区間外通信部211は、追加メッセージPdelay_Resp_Follow_Upのペイロードから、応答送信時刻tを抽出する。
 応答送信時刻tは、遅延測定応答メッセージPdelay_Respの送信時刻(ResponseOriginTimeStamp)であり、隣接のTSN機器で測定され設定される。
In step S127, the out-of-interval communication unit 211 extracts the response transmission time t3 from the payload of the additional message Pdelay_Resp_Follow_Up .
The response transmission time t3 is the transmission time (ResponseOriginTimeStamp) of the delay measurement response message Pdelay_Resp , which is measured and set by the adjacent TSN device.
 ステップS128において、遅延測定部212は、クロック偏差CDと要求送信時刻tと応答受信時刻tと要求受信時刻tと応答送信時刻tとを用いて、リンク遅延LDを算出する。
 リンク遅延LDは、ネットワークトランスレータ210と隣接のTSN機器との間のリンク遅延である。
In step S128, the delay measuring unit 212 calculates the link delay LDb using the clock deviation CDa , the request transmission time t1, the response reception time t4, the request reception time t2 , and the response transmission time t3. .
Link delay LD b is the link delay between network translator 210 and adjacent TSN equipment.
 リンク遅延LDは、以下の式(b)を計算することによって算出される。
 LD = (CD×(t-t)-(t-t))/2   (b)
The link delay LD b is calculated by calculating equation (b) below.
LD b = (CD a ×(t 4 −t 1 )−(t 2 −t 3 ))/2 (b)
 図8に基づいて、時刻合わせを説明する。
 時刻合わせは、ネットワークトランスレータ210の時刻をTSNマスタ101の時刻に合わせる処理であり、ネットワークトランスレータ210によって実行される。
Time adjustment will be described based on FIG.
Time synchronization is a process of synchronizing the time of the network translator 210 with the time of the TSN master 101 and is executed by the network translator 210 .
 ステップS131において、区間外通信部211は、隣接のTSN機器から同期メッセージSyncを受信する。 In step S131, the out-of-section communication unit 211 receives the synchronization message Sync from the adjacent TSN device.
 ステップS132において、区間外通信部211は、同期受信時刻TSiを取得する。
 同期受信時刻TSiは、同期メッセージSyncの受信時の5G時刻である。
In step S132, the out-of-section communication unit 211 acquires the synchronous reception time TSi.
The synchronous reception time TSi is the 5G time when the synchronization message Sync is received.
 ステップS133において、区間外通信部211は、同期メッセージSyncの追加メッセージFollow_Upを待ち、追加メッセージFollow_Upを受信する。そして、区間外通信部211は、同期メッセージSyncを5Gへ送信する。 In step S133, the outside communication unit 211 waits for the additional message Follow_Up of the synchronization message Sync and receives the additional message Follow_Up. Then, the out-of-section communication unit 211 transmits the synchronization message Sync to 5G.
 ステップS134において、区間外通信部211は、追加メッセージFollow_Upから、累積クロック偏差ACD’を抽出する。
 累積クロック偏差ACD’は、ネットワークトランスレータ210の隣接のTSN機器とTSNマスタ101の累積クロック偏差である。
In step S134, the out-of-interval communication unit 211 extracts the cumulative clock deviation ACD' from the additional message Follow_Up.
Cumulative clock deviation ACD′ is the cumulative clock deviation of TSN master 101 and adjacent TSN devices of network translator 210 .
 ステップS135において、遅延測定部212は、クロック偏差CDと累積クロック偏差ACD’とを用いて、累積クロック偏差ACDを算出する。
 累積クロック偏差ACDは、ネットワークトランスレータ210とTSNマスタ101の累積クロック偏差である。
In step S135, the delay measuring unit 212 calculates the cumulative clock deviation ACDc using the clock deviation CDa and the cumulative clock deviation ACD'.
Cumulative clock deviation ACD c is the cumulative clock deviation of network translator 210 and TSN master 101 .
 累積クロック偏差ACDは、以下の式(c)を計算することによって算出される。
 ACD = ACD’×CD   (c)
The accumulated clock deviation ACD c is calculated by calculating equation (c) below.
ACDc = ACD' x CDa ( c )
 ステップS136において、区間外通信部211は、追加メッセージFollow_UpのCorrectionフィールドから、積算遅延値AD’を抽出する。
 積算遅延値AD’は、ネットワークトランスレータ210の隣接のTSN機器とTSNマスタ101の積算遅延値である。
In step S136, the out-of-interval communication unit 211 extracts the accumulated delay value AD' from the Correction field of the additional message Follow_Up.
The accumulated delay value AD′ is the accumulated delay value between the TSN device adjacent to the network translator 210 and the TSN master 101 .
 ステップS137において、遅延測定部212は、積算遅延値AD’とリンク遅延LDと累積クロック偏差ACDとを用いて、積算遅延ADを算出する。
 積算遅延ADは、ネットワークトランスレータ210とTSNマスタ101の積算遅延である。
In step S137, the delay measurement unit 212 calculates an integrated delay ADd using the integrated delay value AD', the link delay LDb , and the integrated clock deviation ACDc .
The accumulated delay AD d is the accumulated delay between network translator 210 and TSN master 101 .
 積算遅延ADは、以下の式(d)を計算することによって算出される。
 AD = AD’+(LD*ACD)   (d)
The integrated delay AD d is calculated by calculating equation (d) below.
ADd = AD' + ( LDb * ACDc ) (d)
 ステップS138において、区間外通信部211は、追加メッセージFollow_Upから、時刻TGを抽出する。
 時刻TGは、TSNマスタ101の時刻である。
In step S138, the outside communication unit 211 extracts the time TG from the additional message Follow_Up.
Time TG is the time of TSN master 101 .
 そして、時刻同期制御部213は、時刻TGと積算遅延ADとを用いて、同期時刻STを算出する。 Then, the time synchronization control section 213 uses the time TG and the integrated delay AD d to calculate the synchronization time ST e .
 同期時刻STは、以下の式(e)を計算することによって算出される。
 ST = TG+AD   (e)
Synchronization time ST e is calculated by calculating the following formula (e).
ST e = TG + AD d (e)
 ステップS139において、時刻同期制御部213は、ネットワークトランスレータ210の時刻を同期時刻STに更新して時刻合わせを行う。 In step S139, the time synchronization control unit 213 updates the time of the network translator 210 to the synchronization time STe to synchronize the time.
 図9に基づいて、追加メッセージ送信(5G)を説明する。
 追加メッセージ送信(5G)は、5Gネットワーク110内でネットワークトランスレータ210から追加メッセージFollow_Upを送信する処理であり、ネットワークトランスレータ210によって実行される。
The additional message transmission (5G) will be explained based on FIG.
Send additional message (5G) is the process of sending an additional message Follow_Up from network translator 210 within 5G network 110 and is performed by network translator 210 .
 ステップS141において、区間内通信部215では、クロック偏差CDを算出する。
 クロック偏差CDは、5G時刻源111とネットワークトランスレータ210のクロック偏差である。
In step S141, the intra-interval communication unit 215 calculates the clock deviation CD f .
The clock deviation CD f is the clock deviation between the 5G time source 111 and the network translator 210 .
 ステップS142において、クロック偏差算出部214は、累積クロック偏差ACDとクロック偏差CDとを用いて、クロック偏差CDを算出する。
 クロック偏差CDは、TSNマスタ101と5G時刻源111のクロック偏差である。
In step S142, the clock deviation calculator 214 uses the cumulative clock deviation ACD c and the clock deviation CD f to calculate the clock deviation CD g .
The clock deviation CD g is the clock deviation between the TSN master 101 and the 5G time source 111 .
 クロック偏差CDは、以下の式(g)を計算することによって算出される。
 CD = ACD×CD   (g)
The clock deviation CD g is calculated by calculating equation (g) below.
CDg = ACDc x CDf (g)
 ステップS143において、区間内通信部215は、追加メッセージFollow_Upを生成する。 In step S143, the intra-section communication unit 215 generates an additional message Follow_Up.
 具体的には、区間内通信部215は以下のように動作する。
 区間内通信部215は、追加メッセージFollow_UpのTLV2フィールドに、ステップS132(図8を参照)で取得された同期受信時刻TSiを設定する。
 区間内通信部215は、追加メッセージFollow_UpのTLV1フィールドに、ステップS142で算出されたクロック偏差CDを設定する。
 区間内通信部215は、追加メッセージFollow_UpのCorrectionフィールドに、ステップS137(図8を参照)で算出された積算遅延ADを設定する。
Specifically, the intra-section communication unit 215 operates as follows.
The intra-interval communication unit 215 sets the synchronous reception time TSi acquired in step S132 (see FIG. 8) in the TLV2 field of the additional message Follow_Up.
The intra-interval communication unit 215 sets the clock deviation CD g calculated in step S142 in the TLV1 field of the additional message Follow_Up.
The intra-interval communication unit 215 sets the accumulated delay AD d calculated in step S137 (see FIG. 8) in the Correction field of the additional message Follow_Up.
 ステップS144において、区間内通信部215は、追加メッセージFollow_Upをデバイストランスレータ220へ送信する。 In step S<b>144 , the intra-section communication unit 215 transmits the additional message Follow_Up to the device translator 220 .
 図10および図11に基づいて、追加メッセージ送信(TSN)を説明する。
 追加メッセージ送信(TSN)は、デバイストランスレータ220からTSNへ追加メッセージFollow_Upを送信する処理であり、デバイストランスレータ220によって実行される。
Additional message transmission (TSN) will be described based on FIGS. 10 and 11. FIG.
Send Additional Message (TSN) is the process of sending an additional message Follow_Up from device translator 220 to TSN and is performed by device translator 220 .
 ステップS201において、区間内通信部221は、ネットワークトランスレータ210から送信された同期メッセージSyncを受信する。 In step S<b>201 , the intra-section communication unit 221 receives the synchronization message Sync transmitted from the network translator 210 .
 ステップS202において、区間内通信部221は、ネットワークトランスレータ210から送信される追加メッセージFollow_Upを待ち、追加メッセージFollow_Upを受信する。
 ステップS202の後、処理はステップS203およびステップS211に進む。
In step S202, the intra-section communication unit 221 waits for the additional message Follow_Up transmitted from the network translator 210 and receives the additional message Follow_Up.
After step S202, the process proceeds to step S203 and step S211.
 ステップS203において、区間内通信部221は、追加メッセージFollow_Upから情報を抽出する。
 ステップS203の後、処理はステップS221に進む。
In step S203, the intra-section communication unit 221 extracts information from the additional message Follow_Up.
After step S203, the process proceeds to step S221.
 具体的には、区間内通信部221は以下のように動作する。
 区間内通信部221は、追加メッセージFollow_UpのTLV2フィールドから、同期受信時刻TSiを抽出する。
 区間内通信部221は、追加メッセージFollow_UpのTVL1フィールドから、クロック偏差CDを抽出する。
 区間内通信部221は、追加メッセージFollow_UpのCorrectionフィールドから、積算遅延ADを抽出する。
Specifically, the intra-section communication unit 221 operates as follows.
The intra-interval communication unit 221 extracts the synchronous reception time TSi from the TLV2 field of the additional message Follow_Up.
The intra-interval communication unit 221 extracts the clock deviation CD g from the TVL1 field of the additional message Follow_Up.
The intra-interval communication unit 221 extracts the accumulated delay AD d from the Correction field of the additional message Follow_Up.
 ステップS211において、区間外通信部224は、同期メッセージSyncをTSNへ送信する。つまり、区間外通信部224は、同期メッセージSyncを下流のTSN機器へ送信する。具体的には、区間外通信部224は、同期メッセージSyncを第Mブリッジ122へ送信する。 In step S211, the out-of-section communication unit 224 transmits a synchronization message Sync to TSN. That is, the outside section communication unit 224 transmits the synchronization message Sync to downstream TSN devices. Specifically, the outside section communication unit 224 transmits the synchronization message Sync to the Mth bridge 122 .
 ステップS212において、区間外通信部224は、同期送信時刻TSeを取得する。
 同期送信時刻TSeは、同期メッセージSyncの送信時の5G時刻である。
In step S212, the out-of-section communication unit 224 acquires the synchronous transmission time TSe.
The synchronous transmission time TSe is the 5G time when the synchronization message Sync is transmitted.
 ステップS213において、遅延測定部222は、同期送信時刻TSeとステップS203で抽出された同期受信時刻TSiとを用いて、内部遅延IDを算出する。
 内部遅延IDは、5Gネットワーク110で生じる遅延である。具体的には、内部遅延IDは、同期送信時刻TSeと同期受信時刻TSiの差である。
In step S213, the delay measurement unit 222 calculates the internal delay ID h using the synchronous transmission time TSe and the synchronous reception time TSi extracted in step S203.
Internal delay ID h is the delay incurred in the 5G network 110 . Specifically, the internal delay ID h is the difference between the synchronous transmission time TSe and the synchronous reception time TSi.
 内部遅延IDは、以下の式(h)を計算することによって算出される。
 ID = TSe-TSi   (h)
The internal delay ID h is calculated by calculating equation (h) below.
ID h = TSe-TSi (h)
 ステップS214において、遅延測定部222は、内部遅延IDとステップS203で抽出された積算遅延ADとステップS203で抽出されたクロック偏差CDとを用いて、積算遅延ADを算出する。
 積算遅延ADは、デバイストランスレータ220とTSNマスタ101の積算遅延である。
 ステップS214の後、処理はステップS223に進む。
In step S214, the delay measurement unit 222 calculates the integrated delay AD k using the internal delay ID h , the integrated delay AD d extracted in step S203, and the clock deviation CD g extracted in step S203.
Accumulated delay AD k is the accumulated delay of device translator 220 and TSN master 101 .
After step S214, the process proceeds to step S223.
 積算遅延ADは、以下の式(k)を計算することによって算出される。
 AD = AD+(ID×CD)   (k)
The integrated delay AD k is calculated by calculating equation (k) below.
ADk = ADd + ( IDh x CDg ) (k)
 ステップS221において、区間外通信部224は、クロック偏差CDを算出する。
 クロック偏差CDは、5G時刻源111とデバイストランスレータ220のクロック偏差である。
In step S221, the section outside communication section 224 calculates the clock deviation CD i .
The clock deviation CD i is the clock deviation between the 5G time source 111 and the device translator 220 .
 ステップS222において、区間外通信部224は、クロック偏差CDとステップS203で抽出されたクロック偏差CDとを用いて、クロック偏差CDを算出する。
 クロック偏差CDは、TSNマスタ101とデバイストランスレータ220のクロック偏差である。
In step S222, the out-of-interval communication unit 224 uses the clock deviation CD i and the clock deviation CD g extracted in step S203 to calculate the clock deviation CD j .
Clock deviation CD j is the clock deviation between TSN master 101 and device translator 220 .
 クロック偏差CDは、以下の式(j)を計算することによって算出される。
 CD = CD×CD   式(j)
The clock deviation CD j is calculated by calculating equation (j) below.
CD j = CD g × CD i Formula (j)
 ステップS223において、区間外通信部224は、追加メッセージFollow_Upを生成する。 In step S223, the out-of-section communication unit 224 generates an additional message Follow_Up.
 具体的には、区間外通信部224は以下のように動作する。
 区間外通信部224は、追加メッセージFollow_UpのTLV1フィールドに、ステップS222で算出されたクロック偏差CDを設定する。
 区間外通信部224は、追加メッセージFollow_UpのCorrectionフィールドに、ステップS214で算出された積算遅延ADを設定する。
 区間外通信部224は、Follow_UpのTLV2を削除する。
Specifically, the outside section communication unit 224 operates as follows.
The out-of-interval communication unit 224 sets the clock deviation CD j calculated in step S222 in the TLV1 field of the additional message Follow_Up.
The out-of-interval communication unit 224 sets the accumulated delay AD k calculated in step S214 in the Correction field of the additional message Follow_Up.
The outside communication unit 224 deletes TLV2 of Follow_Up.
 ステップS224において、区間外通信部224は、追加メッセージFollow_UpをTSNへ送信する。つまり、区間外通信部224は、追加メッセージFollowを下流のTSN機器へ送信する。具体的には、区間外通信部224は、追加メッセージFollow_Upを第Mブリッジ122へ送信する。 In step S224, the outside section communication unit 224 transmits the additional message Follow_Up to TSN. That is, the out-of-section communication unit 224 transmits the additional message Follow to the downstream TSN device. Specifically, the out-of-section communication unit 224 transmits the additional message Follow_Up to the Mth bridge 122 .
 図12に、ネットワークトランスレータ210からデバイストランスレータ220への追加メッセージFollow_Upのフレームフォーマットを示す。
 ヘッダは、Correctionフィールドを含む。
 Correctionフィールドには、積算遅延ADが設定される。
 TLV1フィールドには、クロック偏差CDが設定される。
 TLV2フィールドには、同期受信時刻TSiが設定される。
FIG. 12 shows the frame format of the additional message Follow_Up from network translator 210 to device translator 220 .
The header contains a Correction field.
The Correction field is set with the accumulated delay AD d .
A clock deviation CD g is set in the TLV1 field.
A synchronous reception time TSi is set in the TLV2 field.
 図13に、デバイストランスレータ220からTSNへの追加メッセージFollow_Upのフレームフォーマットを示す。
 ヘッダは、Correctionフィールドを含む。
 Correctionフィールドには、積算遅延ADが設定される。
 TLV1フィールドには、クロック偏差CDが設定される。
FIG. 13 shows the frame format of the additional message Follow_Up from device translator 220 to TSN.
The header contains a Correction field.
An accumulated delay AD k is set in the Correction field.
A clock deviation CD j is set in the TLV1 field.
***実施の形態1の特徴***
 図14に基づいて、実施の形態1の特徴について説明する。
 矢印付きの斜めの線は、PTPメッセージの流れを表している。具体的なPTPメッセージは、追加メッセージFollow_Upである。
 時刻Tは、GMにおけるPTPメッセージの送信時刻である。
 時刻TS1は、S1がGMに同期した時刻である。
 時刻TNWは、NW-TTがGMに同期した時刻である。
 時刻TDSは、DS-TTがGMに同期した時刻である。
 時刻TSNは、SNがGMに同期した時刻である。
 遅延Dは、時刻Tから時刻TS1までの時間に相当する。遅延D5Gは、時刻Tから時刻TDSまでの時間に相当する。遅延Dは、時刻Tから時刻TSNまでの時間に相当する。
*** Features of Embodiment 1 ***
Features of the first embodiment will be described with reference to FIG.
Diagonal lines with arrows represent the flow of PTP messages. A specific PTP message is the additional message Follow_Up.
Time TM is the transmission time of the PTP message in the GM.
Time TS1 is the time when S1 is synchronized with GM.
Time TNW is the time when NW -TT is synchronized with GM.
Time TDS is the time when DS -TT is synchronized with GM.
Time T SN is the time when SN is synchronized with GM.
Delay D1 corresponds to the time from time TM to time TS1 . The delay D 5G corresponds to the time from time T M to time T DS . Delay D N corresponds to the time from time T M to time T SN .
 各PTPメッセージには、GM時刻の他に、クロック偏差Rが設定される。
 GMからS1へのPTPメッセージには、従来と同じクロック偏差RGM(=1)が設定される。クロック偏差RGMは「1」である。
 S1からNW-TTへのPTPメッセージには、従来と同じクロック偏差RS1_GMが設定される。クロック偏差RS1_GMは、GMとS1のクロック偏差である。
 NW-TTからDS-TTへのPTPメッセージには、従来と異なるクロック偏差R5G_GMが設定される。従来は、GMとNW-TTのクロック偏差RNW_GMが設定されていた。クロック偏差RNW_GMは、累積クロック偏差ACD(ステップS135を参照)に相当する。
 クロック偏差R5G_GMは、GMと5G-TSのクロック偏差であり、クロック偏差CD(ステップS142を参照)に相当する。
 クロック偏差R5G_GMは、クロック偏差RNW_GMとクロック偏差R5G_NWを用いて、以下のように表される。クロック偏差R5G_NWは、5G-TSとNW-TTのクロック偏差であり、クロック偏差CD(ステップS141を参照)に相当する。
 R5G_GM = R5G_NWNW_GM
 DS-TTからSMへのPTPメッセージには、従来と異なるクロック偏差RDS_GMが設定される。従来は、クロック偏差RNW_GMが設定されていた。
 クロック偏差RDS_GMは、GMとDS-TTのクロック偏差であり、クロック偏差CD(ステップS222を参照)に相当する。
 クロック偏差RDS_GMは、クロック偏差R5G_GMとクロック偏差RDS_5Gを用いて、以下のように表される。クロック偏差RDS_5Gは、5G-TSとDS-TTのクロック偏差であり、クロック偏差CD(ステップS221を参照)に相当する。
 RDS_GM = RDS_5G5G_GM
Each PTP message has a clock deviation R set in addition to the GM time.
The PTP message from GM to S1 is set with the same clock deviation R GM (=1) as before. The clock deviation RGM is "1".
The PTP message from S1 to NW-TT is set with the same clock deviation R S1_GM as before. Clock deviation RS1_GM is the clock deviation between GM and S1.
A non-conventional clock deviation R 5G_GM is set in the PTP message from NW-TT to DS-TT. Conventionally, a clock deviation RNW_GM between GM and NW-TT was set. The clock deviation R NW_GM corresponds to the cumulative clock deviation ACD c (see step S135).
The clock deviation R 5G_GM is the clock deviation between GM and 5G-TS and corresponds to the clock deviation CD g (see step S142).
Clock deviation R 5G_GM is expressed as follows using clock deviation R NW_GM and clock deviation R 5G_NW . The clock deviation R 5G_NW is the clock deviation between 5G-TS and NW-TT, and corresponds to the clock deviation CD f (see step S141).
R 5G_GM = R 5G_NW R NW_GM
A non-conventional clock deviation R DS_GM is set in the PTP message from DS-TT to SM. Conventionally, a clock deviation RNW_GM was set.
The clock deviation R DS_GM is the clock deviation between GM and DS-TT and corresponds to the clock deviation CD j (see step S222).
The clock deviation R DS_GM is expressed as follows using clock deviation R 5G_GM and clock deviation R DS_5G . The clock deviation R DS_5G is the clock deviation between 5G-TS and DS-TT, and corresponds to the clock deviation CD i (see step S221).
RDS_GM = RDS_5G R 5G_GM
 つまり、NW-TTとDS-TTは、以下のように動作する。
 NW-TTは、5G-TSとのクロック偏差R5G_NWを算出し、クロック偏差RNW_5Gを用いてクロック偏差R5G_GMを算出する。そして、NW-TTは、クロック偏差RNW_GMの代わりにクロック偏差R5G_GMをDS-TTに送る。
 DS-TTは、5G-TSとのクロック偏差RDS_5Gを算出し、クロック偏差RDS_5Gとクロック偏差R5G_GMを用いてクロック偏差RDS_GMを算出する。そして、DS-TTは、クロック偏差RNW_GMの代わりにクロック偏差RDS_GMをSNに送る。
That is, NW-TT and DS-TT operate as follows.
The NW-TT calculates a clock deviation R 5G_NW from the 5G-TS, and uses the clock deviation R NW_5G to calculate a clock deviation R 5G_GM . The NW-TT then sends the clock deviation R 5G_GM to the DS-TT instead of the clock deviation R NW_GM .
The DS-TT calculates the clock deviation R DS_5G from the 5G-TS, and calculates the clock deviation R DS_GM using the clock deviation R DS_5G and the clock deviation R 5G_GM . DS-TT then sends clock deviation R_DS_GM to SN instead of clock deviation R_NW_GM .
 3GPP23.501による従来の方法では、5G_TSとNW-TTのクロック偏差およびNW-TTとDS-TTのクロック偏差がゼロであると想定されていた。そのため、最終の時刻同期精度が悪い。
 実施の形態1の方法では、5G_TSとNW-TTのクロック偏差およびNW-TTとDS-TTのクロック偏差が考慮される。
The previous method according to 3GPP 23.501 assumed that the 5G_TS and NW-TT clock deviations and the NW-TT and DS-TT clock deviations were zero. Therefore, the final time synchronization accuracy is poor.
In the method of Embodiment 1, the clock deviation between 5G_TS and NW-TT and the clock deviation between NW-TT and DS-TT are considered.
***実施の形態1の効果***
 実施の形態1により、本来はTSNネットワークに存在しない5GネットワークがTSNネットワークに加入することによって生じる時刻誤差、つまり、ネットワークデバイス間のクロック偏差によって生じる時刻誤差を解消できる。
 具体的には、ネットワークトランスレータ210とデバイストランスレータ220とのそれぞれが、5G時刻源111とのクロック偏差(CD、CD)を用いて、ネットワークトランスレータ210とデバイストランスレータ220との間のクロック偏差を間接的に算出する。これにより、TSNスレーブ121の同期時刻誤差を解消することが可能となる。
*** Effect of Embodiment 1 ***
According to Embodiment 1, it is possible to eliminate the time error caused by a 5G network that originally does not exist in the TSN network joining the TSN network, that is, the time error caused by the clock deviation between network devices.
Specifically, each of the network translator 210 and the device translator 220 uses the clock deviation (CD f , CD i ) with the 5G time source 111 to calculate the clock deviation between the network translator 210 and the device translator 220. Calculate indirectly. This makes it possible to eliminate the synchronization time error of the TSN slave 121 .
 実施の形態1は、既存の時刻同期メッセージを変更することで制御メッセージの追加が不要となるため、コスト面で優位性がある。 Embodiment 1 is advantageous in terms of cost because it eliminates the need to add control messages by changing existing time synchronization messages.
***実施の形態の補足***
 図15に基づいて、トランスレータ300のハードウェア構成を補足する。
 トランスレータ300は処理回路309を備える。
 処理回路309は、ネットワークトランスレータ210またはデバイストランスレータ220の機能構成の要素を実現するハードウェアである。
 処理回路309は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するプロセッサ311であってもよい。
*** Supplement to the embodiment ***
Based on FIG. 15, the hardware configuration of the translator 300 is supplemented.
Translator 300 comprises processing circuitry 309 .
The processing circuit 309 is hardware that implements functional configuration elements of the network translator 210 or the device translator 220 .
The processing circuitry 309 may be dedicated hardware or may be a processor 311 that executes programs stored in memory.
 処理回路309が専用のハードウェアである場合、処理回路309は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。
 ASICは、Application Specific Integrated Circuitの略称である。
 FPGAは、Field Programmable Gate Arrayの略称である。
If processing circuitry 309 is dedicated hardware, processing circuitry 309 may be, for example, a single circuit, multiple circuits, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
ASIC is an abbreviation for Application Specific Integrated Circuit.
FPGA is an abbreviation for Field Programmable Gate Array.
 トランスレータ300は、処理回路309を代替する複数の処理回路を備えてもよい。 The translator 300 may include a plurality of processing circuits that substitute for the processing circuit 309.
 処理回路309において、一部の機能が専用のハードウェアで実現されて、残りの機能がソフトウェアまたはファームウェアで実現されてもよい。 In the processing circuit 309, some functions may be implemented by dedicated hardware, and the remaining functions may be implemented by software or firmware.
 このように、トランスレータ300の機能はハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。 In this way, the functions of translator 300 can be implemented in hardware, software, firmware, or a combination thereof.
 各実施の形態は、好ましい形態の例示であり、本開示の技術的範囲を制限することを意図するものではない。各実施の形態は、部分的に実施してもよいし、他の形態と組み合わせて実施してもよい。フローチャート等を用いて説明した手順は、適宜に変更してもよい。 Each embodiment is an example of a preferred form and is not intended to limit the technical scope of the present disclosure. Each embodiment may be implemented partially or in combination with other embodiments. The procedures described using flowcharts and the like may be changed as appropriate.
 ネットワークトランスレータ210またはデバイストランスレータ220の要素である「部」は、「処理」、「工程」、「回路」または「サーキットリ」と読み替えてもよい。 The "unit" that is an element of the network translator 210 or the device translator 220 may be read as "processing", "process", "circuit" or "circuitry".
 100 時刻同期ネットワークシステム、101 TSNマスタ、102 第1ブリッジ、110 5Gネットワーク、111 5G時刻源、121 TSNスレーブ、122 第Mブリッジ、210 ネットワークトランスレータ、211 区間外通信部、212 遅延測定部、213 時刻同期制御部、214 クロック偏差算出部、215 区間内通信部、220 デバイストランスレータ、221 区間内通信部、222 遅延測定部、223 クロック偏差算出部、224 区間外通信部、300 トランスレータ、301 コンピュータ、309 処理回路、310 マザーボード、311 プロセッサ、312 シリアル通信デバイス、313 トランスレータ回路、320 拡張カード、321 ポート、322 ポート。 100 time synchronization network system, 101 TSN master, 102 first bridge, 110 5G network, 111 5G time source, 121 TSN slave, 122 M bridge, 210 network translator, 211 outside section communication unit, 212 delay measurement unit, 213 time Synchronization control unit 214 Clock deviation calculation unit 215 Intra-section communication unit 220 Device translator 221 In-section communication unit 222 Delay measurement unit 223 Clock deviation calculation unit 224 Out-of-section communication unit 300 Translator 301 Computer 309 Processing circuit, 310 motherboard, 311 processor, 312 serial communication device, 313 translator circuit, 320 expansion card, 321 port, 322 port.

Claims (6)

  1.  時刻同期ネットワークシステムの上流と前記時刻同期ネットワークシステムの下流との間に設けられる移動通信システムで使用されるネットワークトランスレータであって、
     前記時刻同期ネットワークシステムの上流は、前記時刻同期ネットワークシステムの時刻源となる機器であるマスタを有し、
     前記移動通信システムは、前記移動通信システムの時刻源となるタイムサーバと、デバイストランスレータと、を有し、
     前記デバイストランスレータは、前記マスタと前記タイムサーバのクロック偏差と、前記タイムサーバと前記デバイストランスレータのクロック偏差と、を用いて、前記マスタと前記デバイストランスレータのクロック偏差を算出し、算出した前記クロック偏差を設定してメッセージを生成し、生成したメッセージを前記時刻同期ネットワークシステムの下流へ送信するトランスレータであり、
     前記ネットワークトランスレータは、
     前記マスタと前記タイムサーバの前記クロック偏差を算出するクロック偏差算出部と、
     前記マスタと前記タイムサーバの前記クロック偏差を設定してメッセージを生成し、生成したメッセージを前記デバイストランスレータへ送信する区間内通信部と、
    を備えるネットワークトランスレータ。
    A network translator used in a mobile communication system provided between an upstream of a time synchronization network system and a downstream of the time synchronization network system,
    The upstream of the time synchronization network system has a master that is a device serving as a time source of the time synchronization network system,
    The mobile communication system has a time server serving as a time source for the mobile communication system and a device translator,
    The device translator calculates the clock deviation between the master and the device translator using the clock deviation between the master and the time server and the clock deviation between the time server and the device translator, and the calculated clock deviation A translator that generates a message by setting and transmits the generated message downstream of the time synchronization network system,
    The network translator is
    a clock deviation calculation unit that calculates the clock deviation between the master and the time server;
    an intra-section communication unit that sets the clock deviation between the master and the time server to generate a message and transmits the generated message to the device translator;
    A network translator with
  2.  前記ネットワークトランスレータは、
     前記マスタと前記ネットワークトランスレータのクロック偏差を算出する遅延測定部と、
     前記ネットワークトランスレータと前記タイムサーバのクロック偏差を算出する区間内通信部と、を備え、
     前記クロック偏差算出部は、前記マスタと前記ネットワークトランスレータの前記クロック偏差と、前記ネットワークトランスレータと前記タイムサーバの前記クロック偏差と、を用いて、前記マスタと前記タイムサーバの前記クロック偏差を算出する
    請求項1に記載のネットワークトランスレータ。
    The network translator is
    a delay measuring unit that calculates a clock deviation between the master and the network translator;
    An intra-section communication unit that calculates the clock deviation of the network translator and the time server,
    The clock deviation calculating unit calculates the clock deviation between the master and the time server using the clock deviation between the master and the network translator and the clock deviation between the network translator and the time server. Item 1. The network translator according to Item 1.
  3.  前記ネットワークトランスレータから前記デバイストランスレータへの前記メッセージと前記デバイストランスレータから前記時刻同期ネットワークシステムの下流への前記メッセージとのそれぞれが、Precision Time Protocolの追加メッセージである
    請求項1または請求項2に記載のネットワークトランスレータ。
    3. The message according to claim 1 or 2, wherein each of the message from the network translator to the device translator and the message from the device translator to the downstream of the time synchronization network system is an additional message of Precision Time Protocol. network translator.
  4.  時刻同期ネットワークシステムの上流と前記時刻同期ネットワークシステムの下流との間に設けられる移動通信システムで使用されるデバイストランスレータであって、
     前記時刻同期ネットワークシステムの上流は、前記時刻同期ネットワークシステムの時刻源となる機器であるマスタを有し、
     前記移動通信システムは、前記移動通信システムの時刻源となるタイムサーバと、ネットワークトランスレータと、を有し、
     前記ネットワークトランスレータは、前記マスタと前記ネットワークトランスレータのクロック偏差と、前記ネットワークトランスレータと前記タイムサーバのクロック偏差と、を用いて、前記マスタと前記タイムサーバのクロック偏差を算出し、算出したクロック偏差を設定してメッセージを生成し、生成したメッセージを送信するトランスレータであり、
     前記デバイストランスレータは、
     前記ネットワークトランスレータからの前記メッセージを受信し、受信した前記メッセージから前記マスタと前記タイムサーバの前記クロック偏差を抽出する区間内通信部と、
     前記マスタと前記タイムサーバの前記クロック偏差を用いて、前記マスタと前記デバイストランスレータのクロック偏差を算出するクロック偏差算出部と、
     前記マスタと前記デバイストランスレータの前記クロック偏差を設定してメッセージを生成し、生成したメッセージを前記時刻同期ネットワークシステムの下流へ送信する区間外通信部と、
    を備えるデバイストランスレータ。
    A device translator used in a mobile communication system provided between an upstream of a time synchronization network system and a downstream of the time synchronization network system,
    The upstream of the time synchronization network system has a master that is a device serving as a time source of the time synchronization network system,
    The mobile communication system has a time server serving as a time source for the mobile communication system and a network translator,
    The network translator calculates the clock deviation between the master and the time server using the clock deviation between the master and the network translator and the clock deviation between the network translator and the time server, and calculates the calculated clock deviation. is a translator that configures and generates messages and sends the generated messages,
    The device translator is
    an intra-section communication unit that receives the message from the network translator and extracts the clock deviation between the master and the time server from the received message;
    a clock deviation calculation unit that calculates the clock deviation between the master and the device translator using the clock deviation between the master and the time server;
    an out-of-section communication unit that sets the clock deviation between the master and the device translator to generate a message and transmits the generated message downstream of the time synchronization network system;
    A device translator with
  5.  前記区間外通信部は、前記タイムサーバと前記デバイストランスレータのクロック偏差を算出し、前記マスタと前記タイムサーバの前記クロック偏差と、前記タイムサーバと前記デバイストランスレータの前記クロック偏差と、を用いて、前記マスタと前記デバイストランスレータの前記クロック偏差を算出する
    請求項4に記載のデバイストランスレータ。
    The outside communication unit calculates the clock deviation between the time server and the device translator, and uses the clock deviation between the master and the time server and the clock deviation between the time server and the device translator, 5. The device translator of claim 4, wherein the clock deviation between the master and the device translator is calculated.
  6.  前記ネットワークトランスレータから前記デバイストランスレータへの前記メッセージと前記デバイストランスレータから前記時刻同期ネットワークシステムの下流への前記メッセージとのそれぞれが、Precision Time Protocolの追加メッセージである
    請求項4または請求項5に記載のデバイストランスレータ。
    6. The message according to claim 4 or 5, wherein each of said message from said network translator to said device translator and said message from said device translator to said time synchronization network system downstream is an additional message of Precision Time Protocol. device translator.
PCT/JP2021/005744 2021-02-16 2021-02-16 Network translator and device translator WO2022176026A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/005744 WO2022176026A1 (en) 2021-02-16 2021-02-16 Network translator and device translator
JP2023500153A JP7258261B2 (en) 2021-02-16 2021-02-16 network translator and device translator
KR1020237026915A KR102628183B1 (en) 2021-02-16 2021-02-16 Network translator and device translator
TW110118981A TW202234920A (en) 2021-02-16 2021-05-26 Network translator and device translator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005744 WO2022176026A1 (en) 2021-02-16 2021-02-16 Network translator and device translator

Publications (1)

Publication Number Publication Date
WO2022176026A1 true WO2022176026A1 (en) 2022-08-25

Family

ID=82931236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005744 WO2022176026A1 (en) 2021-02-16 2021-02-16 Network translator and device translator

Country Status (4)

Country Link
JP (1) JP7258261B2 (en)
KR (1) KR102628183B1 (en)
TW (1) TW202234920A (en)
WO (1) WO2022176026A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020165979A1 (en) * 2019-02-13 2020-08-20 株式会社Nttドコモ Radio base station and user equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200104217A (en) * 2019-02-26 2020-09-03 한국전자통신연구원 Packet managing method in network and network element performing the same
WO2020222197A1 (en) * 2019-05-02 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) 5g system signaling methods to convey tsn synchronization information

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020165979A1 (en) * 2019-02-13 2020-08-20 株式会社Nttドコモ Radio base station and user equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 16)", 3GPP TS 23.501 V16.4.0, 27 March 2020 (2020-03-27), XP055966194, [retrieved on 20220929] *

Also Published As

Publication number Publication date
TW202234920A (en) 2022-09-01
JP7258261B2 (en) 2023-04-14
KR102628183B1 (en) 2024-01-23
JPWO2022176026A1 (en) 2022-08-25
KR20230121934A (en) 2023-08-21

Similar Documents

Publication Publication Date Title
JP6214008B2 (en) Method and apparatus for communicating time information between time recognition devices
EP2448168A1 (en) Method and system for bearing time synchronization protocol in optical transport network
JP2012527660A (en) Synchronous network of SuperSpeedUSB devices and non-SuperSpeedUSB devices
US20200021379A1 (en) Peer-to-peer transparent clocks and methods of estimating skew in peer-to-peer transparent clocks
JP5127482B2 (en) Timing synchronization method, synchronization apparatus, synchronization system, and synchronization program
CN105429725A (en) SOPC (System on a Programmable Chip) networking based sub-microsecond level clock synchronizing method and system
US11099599B2 (en) Communication device, cascaded network and internal synchronization method
JP6351889B1 (en) Communication system and slave device
WO2016168064A1 (en) Methods, systems, and computer readable media for emulating network devices with different clocks
CN110719135A (en) Time calibration method and system and electronic device
JP2012222833A (en) System and method to overcome wander accumulation to achieve precision clock distribution over large networks
BR102019026425A2 (en) METHOD AND SYSTEM FOR SYNCHRONIZING A LOCAL CLOCK WITH A MASTER CLOCK, AND DISTRIBUTED DEVICE NETWORK
JP2014216669A (en) Communication system, synchronous system, and communication method
JP2013098788A (en) Time synchronization system and time synchronization method
WO2016092243A1 (en) Method and devices for time transfer using end to end transparent clocks
JP7258261B2 (en) network translator and device translator
TWI618432B (en) Frequency calibration apparatus and method
TWM605565U (en) Distributed synchronization system
US20230300068A1 (en) Synchronization in Distributed Communication Systems
WO2021103806A1 (en) Time synchronization method, device, and system, and storage medium
EP3518456A1 (en) Wireless device, processing method for wireless device and program
KR20190072745A (en) Stable Network-based Time Synchronization Method
TWM612938U (en) Distributed synchronization system
WO2022237238A1 (en) Packet transmission method and apparatus, device, and storage medium
TWI795678B (en) Synchronization device and synchronization method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500153

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237026915

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237026915

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926466

Country of ref document: EP

Kind code of ref document: A1