TW202234920A - Network translator and device translator - Google Patents

Network translator and device translator Download PDF

Info

Publication number
TW202234920A
TW202234920A TW110118981A TW110118981A TW202234920A TW 202234920 A TW202234920 A TW 202234920A TW 110118981 A TW110118981 A TW 110118981A TW 110118981 A TW110118981 A TW 110118981A TW 202234920 A TW202234920 A TW 202234920A
Authority
TW
Taiwan
Prior art keywords
time
converter
network
message
clock
Prior art date
Application number
TW110118981A
Other languages
Chinese (zh)
Inventor
宋家佳
滝田大介
久保見慎
傑佛瑞 趙
松下竜真
堀田善文
Original Assignee
日商三菱電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱電機股份有限公司 filed Critical 日商三菱電機股份有限公司
Publication of TW202234920A publication Critical patent/TW202234920A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • H04L43/106Active monitoring, e.g. heartbeat, ping or trace-route using time related information in packets, e.g. by adding timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0054Detection of the synchronisation error by features other than the received signal transition
    • H04L7/007Detection of the synchronisation error by features other than the received signal transition detection of error based on maximum signal power, e.g. peak value, maximizing autocorrelation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This network translator (210) calculates a clock deviation between a TSN master (101) and a 5G time source (111), sets the calculated clock deviation to generate a message, and transmits the generated message to a device translator (220). The device translator receives a message from the network translator, calculates a clock deviation between the TSN master and the device translator by using the clock deviation between the TSN master and the 5G time source, sets the calculated clock deviation to generate a message, and transmits the generated message to the downstream side of a time synchronization network system (100).

Description

網路轉換器及設備轉換器Network Converters and Device Converters

本揭示係關於一種考慮到時脈(clock)偏差的5G(第五代行動通訊技術)-TSN(Time-Sensitive Networking,時間敏感網路)轉換器(translator)者。The present disclosure relates to a 5G (fifth generation mobile communication technology)-TSN (Time-Sensitive Networking, Time-Sensitive Networking) translator that takes into account the clock deviation.

在跨越複數段之有線TSN的時刻同步方式中,係藉由在鄰接機器間交換延遲測量訊息,來算出各區間的鏈結(link)延遲與各區間的時脈偏差。 從屬站(slave)係在獲得從主控(master)裝置通知的時刻時,使用上游之各區間之鏈結延遲的累計值與上游之各區間之時脈偏差的累計值,來修正與主控裝置的時差。藉此,實現高精確度的時刻同步。 TSN係Time-Sensitive Networking(時間敏感網路)的簡稱。 In the time synchronization method of wired TSN spanning multiple segments, the link delay of each section and the clock offset of each section are calculated by exchanging delay measurement messages between adjacent devices. When the slave station obtains the time notified from the master device, it uses the cumulative value of the link delay of each upstream section and the cumulative value of the clock deviation of each upstream section to correct the communication with the master. The time difference of the device. Thereby, highly accurate time synchronization is realized. TSN is the abbreviation of Time-Sensitive Networking (Time-Sensitive Networking).

5G-TSN系統係經由5G以有線方式供TSN機器連接的TSN系統。 在5G-TSN系統中,5G區間係被作為一段虛擬機器來處理。然而,在實體上,於5G區間中,在隔著無線區間的一方配置有機器網路轉換器(network translator)(NW-TT(Network-side TSN Translator,網路端TSN轉換器)),而在隔著無線區間的另一方配置有設備轉換器(device translator)(DS-TT(Device-side TSN Translator,設備端TSN轉換器))。 轉換器為具有有線TSN之功能的機器,亦稱為TSN轉換器。 The 5G-TSN system is a TSN system that connects TSN devices via 5G in a wired manner. In the 5G-TSN system, the 5G interval is processed as a virtual machine. However, physically, in the 5G interval, a network translator (NW-TT (Network-side TSN Translator)) is configured on the side separated by the wireless interval, and A device translator (DS-TT (Device-side TSN Translator, device-side TSN translator)) is arranged on the other side across the wireless section. The converter is a machine with the function of wired TSN, also known as a TSN converter.

在5G網路中,於上行通信與下行通信中延遲有所不同。因此,即使在NW-TT與DS-TT之間交換延遲測量訊息,亦無法測量5G區間的鏈結延遲。 因此,NW-TT及DS-TT係利用5G區間之機器在獨立於TSN之時刻的時刻(5G時刻)同步的情形,藉由5G時刻的時間標記(time stamping)來測量5G區間的鏈結延遲。 In the 5G network, the delay is different between uplink communication and downlink communication. Therefore, even if delay measurement messages are exchanged between NW-TT and DS-TT, the link delay in the 5G interval cannot be measured. Therefore, NW-TT and DS-TT use the situation that the machines in the 5G interval are synchronized at a time (5G time) independent of the TSN time, and measure the link delay of the 5G interval by time stamping of the 5G time. .

非專利文獻1係揭示了以往的5G-TSN網路。 假設在以往的5G-TSN網路中,NW-TT與DS-TT之各者相對於5G網路之GrandMaster(GM)(最高主站)的時脈偏差為零。再者,DS-TT係將NW-TT相對於TSN之GM的時脈偏差放入時刻轉送訊息Sync/Follow_Up中,且將時刻轉送訊息傳送至下游的TSN從屬站。 [先前技術文獻] [非專利文獻] Non-Patent Document 1 discloses a conventional 5G-TSN network. It is assumed that in the conventional 5G-TSN network, the clock deviation of each of NW-TT and DS-TT relative to the Grand Master (GM) (the highest master station) of the 5G network is zero. Furthermore, the DS-TT puts the clock offset of the NW-TT relative to the GM of the TSN into the time forwarding message Sync/Follow_Up, and transmits the time forwarding message to the downstream TSN slave station. [Prior Art Literature] [Non-patent literature]

非專利文獻1:3GPP TS 23.501 V16.4.0(2020-03)“3rd Generation Partnership Project;Technical Specification Group Services and System Aspects;System architecture for the 5G System (5GS);Stage 2 (Release 16)”Non-Patent Document 1: 3GPP TS 23.501 V16.4.0 (2020-03) "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 16)"

[發明所欲解決之課題][The problem to be solved by the invention]

以往,並無DS-TT計算與NW-TT之間之時脈偏差的方法。因此,未考慮5G區間的時脈偏差。由此之故,會在位於DS-TT之下游的TSN從屬站產生同步時刻誤差。Conventionally, there is no method for calculating the clock offset between DS-TT and NW-TT. Therefore, the clock deviation in the 5G interval is not considered. For this reason, synchronization timing errors are generated at the TSN slave stations located downstream of the DS-TT.

本揭示之目的為在5G-TSN中考慮時脈偏差,藉此可抑制在位於DS-TT之下游之TSN從屬站的同步時刻誤差。 [用以解決問題的手段] The purpose of the present disclosure is to consider clock skew in 5G-TSN, thereby suppressing synchronization timing errors at TSN slave stations located downstream of DS-TT. [means to solve the problem]

本揭示之網路轉換器係在設於時刻同步網路系統的上游與前述時刻同步網路系統的下游之間的行動通信系統中使用。 前述時刻同步網路系統的上游係具有屬於成為前述時刻同步網路系統之時刻來源之機器的主站(master)。 前述行動通信系統係具有成為前述行動通信系統之時刻來源的時間伺服器(time server)、及設備轉換器。 前述設備轉換器係使用前述主站與前述時間伺服器的時脈偏差、及前述時間伺服器與前述設備轉換器的時脈偏差而算出前述主站與前述設備轉換器的時脈偏差,且設定所算出的前述時脈偏差而產生訊息,且將所產生的訊息傳送至前述時刻同步網路系統之下游的轉換器。 前述網路轉換器係具備: 時脈偏差算出部,係算出前述主站與前述時間伺服器的前述時脈偏差;及 區間內通信部,係設定前述主站與前述時間伺服器的前述時脈偏差而產生訊息,且將所產生的訊息傳送至前述設備轉換器。 [發明之功效] The network converter of the present disclosure is used in a mobile communication system provided between the upstream of the time-synchronized network system and the downstream of the aforementioned time-synchronized network system. The upstream of the time synchronization network system has a master station (master) belonging to the machine that becomes the time source of the time synchronization network system. The aforementioned mobile communication system includes a time server and a device converter that serve as a time source for the aforementioned mobile communication system. The device converter uses the clock deviation between the master station and the time server and the clock deviation between the time server and the device converter to calculate the clock deviation between the master station and the device converter, and set The calculated clock offset generates a message, and the generated message is sent to the downstream converter of the time synchronization network system. The aforementioned network converter is equipped with: a clock offset calculation unit for calculating the clock offset between the master station and the time server; and The intra-interval communication unit generates a message by setting the clock deviation between the master station and the time server, and transmits the generated message to the device converter. [Effect of invention]

依據本揭示,即能夠在5G-TSN中考慮時脈偏差,且抑制在位於DS-TT之下游之TSN從屬站的同步時刻誤差。According to the present disclosure, it is possible to consider the clock deviation in 5G-TSN, and suppress the synchronization timing error of the TSN slave station located downstream of the DS-TT.

在實施形態及圖式中,對於相同的要素或對應的要素係附有相同的符號。附有與所說明之要素相同符號之要素的說明係適當地予以省略或簡化。圖中的箭頭主要表示資料的流程或處理的流程。In the embodiment and the drawings, the same reference numerals are attached to the same elements or corresponding elements. Descriptions of elements with the same symbols as those described are omitted or simplified as appropriate. The arrows in the figure mainly indicate the flow of data or the flow of processing.

實施形態1 根據圖1至圖13來說明時刻同步網路系統100。 Embodiment 1 The time synchronization network system 100 will be described with reference to FIGS. 1 to 13 .

時刻同步網路系統100係複數個網路機器經由行動通信系統而連接的時刻同步網路系統。 時刻同步網路系統係供複數個網路機器之時刻同步的網路系統。 網路機器係具有通信功能的機器。 The time synchronization network system 100 is a time synchronization network system in which a plurality of network devices are connected via a mobile communication system. The time synchronization network system is a network system for time synchronization of a plurality of network devices. A network device is a device with a communication function.

具體而言,時刻同步網路系統100係5G-TSN系統。 5G係第五代行動通信系統。第五代行動通信系統係行動通信系統的一例。 TSN係被稱為時間敏感網路的時刻同步網路系統。 Specifically, the time synchronization network system 100 is a 5G-TSN system. 5G is the fifth generation mobile communication system. The fifth-generation mobile communication system is an example of a mobile communication system. TSN is a time-synchronized network system called time-sensitive network.

***構成的說明*** 根據圖1來說明時刻同步網路系統100的構成。 時刻同步網路系統100係具備TSN主站101、第一橋接器(bridge)102、TSN從屬站121、及第M橋接器122。此等係TSN的網路機器。 ***Explanation of composition*** The configuration of the time synchronization network system 100 will be described with reference to FIG. 1 . The time synchronization network system 100 includes a TSN master station 101 , a first bridge 102 , a TSN slave station 121 , and an Mth bridge 122 . These are network appliances of TSN.

TSN主站101係在TSN中成為時刻來源的網路機器,被稱為最高主站(GM)。將TSN主站101所在之一方稱為「上游」。 TSN從屬站121係對準TSN主站101的時刻進行同步的網路機器。將TSN從屬站121所在之一方稱為「下游」。 將TSN主站101記載為「GM」。 將TSN從屬站121記載為「SLAVE」。 The TSN master station 101 is a network device that becomes a time source in TSN, and is called the highest master station (GM). The side where the TSN master station 101 is located is referred to as "upstream". The TSN slave station 121 is a network device that synchronizes with the time of the TSN master station 101 . The side where the TSN slave station 121 is located is referred to as "downstream". The TSN master station 101 is described as "GM". The TSN slave station 121 is described as "SLAVE".

第一橋接器102係在從TSN主站101至TSN從屬站121的通信路徑中從TSN主站101數起為第一個橋接器。橋接器係網路機器的一種。 第M橋接器122係在從TSN主站101至TSN從屬站121的通信路徑中從TSN主站101數起為第M個橋接器。 第一橋接器102係相對於5G網路110配置於上游側,第M橋接器122係相對於5G網路110配置於下游側。 將第一橋接器102記載為「S1」。 將第M橋接器122記載為「SM」。 The first bridge 102 is the first bridge counted from the TSN master station 101 in the communication path from the TSN master station 101 to the TSN slave station 121 . A bridge is a type of network machine. The M-th bridge 122 is the M-th bridge counted from the TSN master station 101 in the communication path from the TSN master station 101 to the TSN slave station 121 . The first bridge 102 is arranged on the upstream side with respect to the 5G network 110 , and the M-th bridge 122 is arranged on the downstream side with respect to the 5G network 110 . The first bridge 102 is described as "S1". The M-th bridge 122 is described as "SM".

時刻同步網路系統100係具備5G時刻來源111、網路轉換器210、及設備轉換器220。此等係5G網路110的網路機器。The time synchronization network system 100 includes a 5G time source 111 , a network converter 210 , and a device converter 220 . These are network devices of the 5G network 110 .

5G時刻來源111係成為5G網路110之時刻來源的網路機器,被稱為時間伺服器(TS)。 將5G時刻來源111記載為「5G-TS」。 5G網路110的時刻係獨立於TSN的時刻。 The 5G time source 111 is a network machine that becomes the time source of the 5G network 110, and is called a time server (TS). The 5G time source 111 is recorded as "5G-TS". The time of the 5G network 110 is independent of the time of the TSN.

網路轉換器210係進行5G-TSN之網間連接的轉換器,具有TSN的時刻同步功能,在5G網路110中配置於上游側。 設備轉換器220係進行5G-TSN之網間連接的轉換器,具有TSN的時刻同步功能,在5G網路110中配置於下游側。 網路轉換器210與設備轉換器220亦稱為TSN轉換器(TT)。 將網路轉換器210記載為「NW-TT」。 將設備轉換器220記載為「DS-TT」。 The network switch 210 is a switch that performs network connection between 5G and TSN, has a time synchronization function of TSN, and is arranged on the upstream side of the 5G network 110 . The device switch 220 is a switch for connecting the 5G-TSN network, has a time synchronization function of TSN, and is arranged on the downstream side of the 5G network 110 . The network switch 210 and the device switch 220 are also referred to as TSN switches (TT). The network converter 210 is described as "NW-TT". The device converter 220 is described as "DS-TT".

根據圖2來說明轉換器300的硬體構成。 轉換器300係網路轉換器210與設備轉換器220的統稱。 The hardware configuration of the converter 300 will be described with reference to FIG. 2 . The switch 300 is a general term for the network switch 210 and the device switch 220 .

轉換器300係具備主機板(mother board)310、及擴張卡320。 主機板310係連接於控制用的電腦(computer)301。 主機板310係具備處理器(processor)311、序列通信設備312、及轉換器電路313。此等係通過匯流排(bus)而彼此連接。此匯流排亦稱為資料匯流排,進行用以從處理器311進行暫存器(register)存取(設定、讀取)的連接。 The converter 300 includes a mother board 310 and an expansion card 320 . The main board 310 is connected to a computer 301 for control. The motherboard 310 includes a processor 311 , a serial communication device 312 , and a converter circuit 313 . These are connected to each other by busses. This bus, also called a data bus, makes connections for register access (set, read) from the processor 311 .

處理器311係進行演算處理的電子電路,具備邏輯電路及一次快取(cache)等。 序列通信設備312係用以進行序列通信的設備。具體而言,序列通信設備312係UART。UART係Universal Asynchronous Receiver/Transmitter(通用異步接收機發射器)的簡稱。 轉換器電路313係具有轉換器之功能的電子電路。具體而言,轉換器電路313係FPGA電路,轉換器的功能係藉由可程式邏輯(programmable logic)來建構。FPGA係Field-Programmable Gate Array(現場可程式閘陣列)的簡稱。 The processor 311 is an electronic circuit that performs arithmetic processing, and includes a logic circuit, a primary cache, and the like. The serial communication device 312 is a device for serial communication. Specifically, serial communication device 312 is a UART. UART is the abbreviation of Universal Asynchronous Receiver/Transmitter (Universal Asynchronous Receiver Transmitter). The converter circuit 313 is an electronic circuit having the function of a converter. Specifically, the converter circuit 313 is an FPGA circuit, and the function of the converter is constructed by programmable logic. FPGA is the abbreviation of Field-Programmable Gate Array (Field Programmable Gate Array).

擴張卡320亦被稱為夾層卡(mezzanine card)或子卡(daughter card),連接於主機板310。具體而言,擴張卡320係連接於設在主機板310之專用的連接器(connector)。 擴張卡320係具備端口(port)321與端口322。 端口321係連接於TSN的端口,端口322係連接於5G的端口。具體而言,端口321及端口322係被稱為SFP的端口。SFP係Small Form Factor Pluggable(小成形要素插件)的簡稱。 The expansion card 320 is also called a mezzanine card or a daughter card, and is connected to the motherboard 310 . Specifically, the expansion card 320 is connected to a dedicated connector provided on the motherboard 310 . The expansion card 320 is provided with a port 321 and a port 322 . Port 321 is a port connected to TSN, and port 322 is a port connected to 5G. Specifically, the port 321 and the port 322 are ports called SFPs. SFP is short for Small Form Factor Pluggable.

根據圖3來說明網路轉換器210的功能構成。 網路轉換器210係具備區間外通信部211、延遲測量部212、時刻同步控制部213、時脈偏差算出部214、區間內通信部215之類的要素。 此等要素係藉由轉換器電路313來實現。 The functional configuration of the network converter 210 will be described with reference to FIG. 3 . The network converter 210 includes elements such as an out-of-zone communication unit 211 , a delay measurement unit 212 , a time synchronization control unit 213 , a clock offset calculation unit 214 , and an intra-area communication unit 215 . These elements are realized by the converter circuit 313 .

區間外通信部211係與TSN進行傳送接收。此外,區間外通信部211係接收訊框進行解析,且從所接收的PTP訊框抽出標頭(header)及訊息,且進行終結。此外,區間外通信部211係進行錯誤檢查(error check)、長度(length)測量,且棄置錯誤檢查。 此外,區間外通信部211係將PTP訊框的傳送接收時刻通知延遲測量部212。因此,區間外通信部211係保持網路轉換器210接收到Sync訊息時的5G時刻(TSi)。 PTP係Precision Time Protocol(精準時間協定)的簡稱。 The out-of-zone communication unit 211 transmits and receives with the TSN. In addition, the out-of-zone communication unit 211 analyzes the received frame, extracts a header and a message from the received PTP frame, and terminates it. In addition, the out-of-zone communication unit 211 performs error check and length measurement, and discards the error check. In addition, the out-of-zone communication unit 211 notifies the delay measurement unit 212 of the transmission and reception time of the PTP frame. Therefore, the out-of-zone communication unit 211 holds the 5G time (TSi) when the network switch 210 receives the Sync message. PTP stands for Precision Time Protocol (Precision Time Protocol).

延遲測量部212係使用藉由被稱作為Pdelay_Req、Pdelay_Resp和Pdelay_Resp_Follow_Up之二階段的點對點(P2P)的匯流排延遲演算法(algorithm),來測量與要在時刻同步中使用之鄰接之TSN機器之間的延遲時間及時脈偏差。時脈偏差係根據P2P之延遲測量訊息的時間差來算出。 延遲測量部212係產生關於PTP訊息(Pdelay_Req、Pdelay_Resp、Pdelay_Resp_Follow_Up)之傳送接收控制及延遲測量功能的狀態(status)資訊。 PTP訊息係IEEE 802.1 AS所規定的訊息。 The delay measurement unit 212 uses a peer-to-peer (P2P) bus delay algorithm (P2P) called Pdelay_Req, Pdelay_Resp, and Pdelay_Resp_Follow_Up to measure the time-to-time synchronization between adjacent TSN devices. delay time and pulse deviation. The clock skew is calculated according to the time difference of the P2P delay measurement messages. The delay measurement unit 212 generates status information about transmission and reception control of PTP messages (Pdelay_Req, Pdelay_Resp, Pdelay_Resp_Follow_Up) and delay measurement functions. PTP messages are messages specified by IEEE 802.1 AS.

延遲測量部212係進行網路轉換器210與鄰接之TSN機器之間的傳送延遲測量,以測量鏈結延遲。The delay measurement unit 212 measures the transmission delay between the network switch 210 and the adjacent TSN equipment to measure the link delay.

時刻同步控制部213係在從鄰接之TSN機器(上游)發送的時刻資訊(GM為起點)加上在自裝置所算出之與GM的累積時脈偏差及與GM的累計延遲,而算出與GM之時刻同步後的時刻。藉此,構成為同步時刻對於GM進行追隨。The time synchronization control unit 213 adds the accumulated clock deviation from the GM and the accumulated delay from the GM calculated by the self-device to the time information (the GM is the starting point) transmitted from the adjacent TSN device (upstream), and calculates the time between the GM and the GM. The time after the time is synchronized. Thereby, the synchronization time is configured to follow the GM.

時脈偏差算出部214係使用藉由延遲測量部212所算出之自裝置與GM的時脈偏差及藉由區間內通信部215所算出之自裝置與5G時刻來源的時脈偏差,算出5G時刻來源與GM的時脈偏差。The clock offset calculation unit 214 calculates the 5G time using the clock offset between the device and the GM calculated by the delay measurement unit 212 and the clock offset between the device and the 5G time source calculated by the intra-section communication unit 215 The clock offset of the source and the GM.

區間內通信部215係提供與5G時刻來源111同步後的時刻。此外,區間內通信部215係算出自裝置與5G時刻來源的時脈偏差。 此外,區間內通信部215係將網路轉換器210接收到Sync訊息時之5G時刻(TSi)和時脈偏差算出部214所算出之GM與5G時刻來源的累積時脈偏差追加於Follow_Up訊息的TLV1區域,且將Follow_Up訊息傳送至5G。 The intra-zone communication unit 215 provides the time synchronized with the 5G time source 111 . In addition, the intra-section communication unit 215 calculates the clock offset between the device and the source of the 5G time. In addition, the intra-section communication unit 215 adds the 5G time (TSi) when the network converter 210 received the Sync message and the accumulated clock offset between the GM and the 5G time source calculated by the clock offset calculation unit 214 to the Follow_Up message. TLV1 area, and send the Follow_Up message to 5G.

再者,關於各要素的功能將於後說明。In addition, the function of each element will be described later.

根據圖4來說明設備轉換器220的功能構成。 設備轉換器220係具備區間內通信部221、延遲測量部222、時脈偏差算出部223、及區間外通信部224之類的要素。 此等要素係藉由轉換器電路313來實現。 The functional configuration of the device converter 220 will be described with reference to FIG. 4 . The device converter 220 includes elements such as an intra-section communication unit 221 , a delay measurement unit 222 , a clock deviation calculation unit 223 , and an out-of-section communication unit 224 . These elements are realized by the converter circuit 313 .

區間內通信部221係與5G進行傳送接收。此外,區間內通信部221係從所接收到之Follow_Up訊息的TLV1區域,抽出網路轉換器210接收到Sync訊息時之5G時刻(TSi)和網路轉換器210所算出之GM與5G時刻來源之累積時脈偏差之類的資訊,且將所抽出的資訊傳送至延遲測量部222。The intra-zone communication unit 221 transmits and receives with 5G. In addition, the intra-zone communication unit 221 extracts, from the TLV1 area of the received Follow_Up message, the 5G time (TSi) when the network converter 210 received the Sync message, and the source of the GM and 5G time calculated by the network converter 210 The information such as the clock offset is accumulated, and the extracted information is sent to the delay measurement unit 222 .

延遲測量部222係從區間外通信部224接收Sync訊息之傳送時的5G時刻(TSe)。 延遲測量部222係使用從區間內通信部221接收到的TSi、從區間內通信部221接收到的GM與5G時刻來源的累積時脈偏差、及從區間外通信部224接收到的TSe而算出5G內部的延遲時間。再者,延遲測量部222係將5G內部的延遲時間傳送至區間外通信部224。 The delay measurement unit 222 receives the 5G time (TSe) when the Sync message is transmitted from the out-of-zone communication unit 224 . The delay measurement unit 222 calculates the delay measurement unit 222 using the TSi received from the intra-area communication unit 221 , the accumulated clock offset from the GM and 5G time received from the intra-area communication unit 221 , and the TSe received from the out-of-area communication unit 224 . Latency inside 5G. Furthermore, the delay measurement unit 222 transmits the delay time within the 5G to the out-of-zone communication unit 224 .

時脈偏差算出部223係使用從區間外通信部224接收到的自裝置與5G時刻來源的時脈偏差和從區間內通信部221接收到之GM與5G時刻來源的累積時脈偏差而算出自裝置與GM的時脈偏差。再者,時脈偏差算出部223係將自裝置與GM的時脈偏差傳送至區間外通信部224。The clock offset calculation unit 223 uses the clock offset between the device and the 5G time source received from the out-of-area communication unit 224 and the accumulated clock offset from the GM and the 5G time source received from the intra-area communication unit 221 to calculate the source. The clock offset of the device from the GM. In addition, the clock offset calculation unit 223 transmits the clock offset between the own device and the GM to the out-of-area communication unit 224 .

區間外通信部224係與下游的TSN機器進行傳送接收。此外,區間外通信部224係接收PTP訊框進行解析,且從所接收的PTP訊框抽出標頭及訊息,且進行終結。此外,區間外通信部224係進行錯誤檢查、長度測量,且廢棄錯誤訊框。此外,區間外通信部224係將Sync訊息之傳送時的5G時刻(TSe)通知延遲測量部222。 區間外通信部224係將在延遲測量部222所算出之5G內部的延遲時間追加於Follow_Up訊息的correction field(修正欄位)中。此外,區間外通信部224係將Follow_Up訊息的TLV改寫為由時脈偏差算出部223所算出之自裝置與GM的時脈偏差。再者,區間外通信部224係將Follow_Up訊息傳送至下游的TSN機器。 此外,區間外通信部224係算出自裝置與5G時刻來源的時脈偏差且傳送至時脈偏差算出部223。 The out-of-zone communication unit 224 transmits and receives with downstream TSN devices. In addition, the out-of-zone communication unit 224 receives and analyzes the PTP frame, extracts the header and the message from the received PTP frame, and terminates it. In addition, the out-of-zone communication unit 224 performs error checking, length measurement, and discards error frames. In addition, the out-of-zone communication unit 224 notifies the delay measurement unit 222 of the 5G time (TSe) at the time of transmission of the Sync message. The out-of-zone communication unit 224 adds the 5G internal delay time calculated by the delay measurement unit 222 to the correction field (correction field) of the Follow_Up message. In addition, the out-of-zone communication unit 224 rewrites the TLV of the Follow_Up message to the clock offset between the own device and the GM calculated by the clock offset calculation unit 223 . Furthermore, the out-of-zone communication unit 224 transmits the Follow_Up message to the downstream TSN device. In addition, the out-of-zone communication unit 224 calculates the clock offset between the device and the 5G time source, and sends it to the clock offset calculation unit 223 .

再者,關於各要素的功能將於後說明。In addition, the function of each element will be described later.

***動作的說明*** 時刻同步網路系統100之動作的程序係相當於時刻同步方法。 ***Description of action*** The procedure of the operation of the time synchronization network system 100 corresponds to the time synchronization method.

根據圖5來說明時脈偏差算出。 時脈偏差算出係算出網路轉換器210與鄰接之TSN機器之時脈偏差CD a的處理,藉由網路轉換器210來執行。 TSN機器係TSN的網路機器。 鄰接的TSN機器,具體而言係第一橋接器102。 The clock offset calculation will be described with reference to FIG. 5 . The clock offset calculation is a process of calculating the clock offset CD a between the network switch 210 and the adjacent TSN device, and is executed by the network switch 210 . TSN devices are network devices of TSN. The adjacent TSN device is specifically the first bridge 102 .

在步驟S111中,區間外通信部211係從鄰接的TSN機器接收第一個延遲測量響應訊息Pdelay_Resp。 延遲測量響應訊息Pdelay_Resp係對於延遲測量要求訊息Pdelay_Req的響應。 In step S111, the out-of-zone communication unit 211 receives the first delay measurement response message Pdelay_Resp from the adjacent TSN device. The delay measurement response message Pdelay_Resp is a response to the delay measurement request message Pdelay_Req.

在步驟S112中,區間外通信部211係取得第一響應接收時刻t n。 第一響應接收時刻t n係第一個延遲測量響應訊息Pdelay_Resp的接收時刻。 例如,轉換器300的時刻係從本地(local)的作業系統(operating system)(OS)取得。 In step S112, the out-of-area communication unit 211 acquires the first response reception time t n . The first response receiving time t n is the receiving time of the first delay measurement response message Pdelay_Resp. For example, the time of the converter 300 is obtained from a local operating system (OS).

在步驟S113中,區間外通信部211係從第一個延遲測量響應訊息Pdelay_Resp_Follow_Up的有效負載(payload)抽出第一響應傳送時刻t’ n。 第一響應傳送時刻t’ n係延遲測量響應訊息Pdelay_Resp的傳送時刻(ResponseOriginTimestamp),藉由鄰接的TSN機器來測量且設定。 In step S113, the out-of-zone communication unit 211 extracts the first response transmission time t' n from the payload of the first delay measurement response message Pdelay_Resp_Follow_Up. The first response transmission time t' n is the transmission time (ResponseOriginTimestamp) of the delay measurement response message Pdelay_Resp, which is measured and set by an adjacent TSN device.

在步驟S114中,區間外通信部211係等待第N個延遲測量響應訊息Pdelay_Resp,且接收第N個延遲測量響應訊息Pdelay_Resp。「N」係2以上的整數。In step S114, the out-of-section communication unit 211 waits for the Nth delay measurement response message Pdelay_Resp, and receives the Nth delay measurement response message Pdelay_Resp. "N" is an integer of 2 or more.

在步驟S115中,區間外通信部211係取得第N響應接收時刻t nn(PdelayRespEventIngressTimestamp)。 第N響應接收時刻t nn係第N個延遲測量響應訊息Pdelay_Resp的接收時刻。 In step S115 , the out-of-area communication unit 211 acquires the Nth response reception time t nn (PdelayRespEventIngressTimestamp). The Nth response reception time tnn is the reception time of the Nth delay measurement response message Pdelay_Resp.

在步驟S116中,區間外通信部211係從第N個延遲測量響應訊息Pdelay_Resp_Follow_Up的有效負載抽出第N響應傳送時刻t’ nn。 第N響應傳送時刻t’ nn係延遲測量響應訊息Pdelay_Resp的傳送時刻(ResponseOriginTimestamp),藉由鄰接的TSN機器來測量且設定。 In step S116, the out-of-zone communication unit 211 extracts the Nth response transmission time t' nn from the payload of the Nth delay measurement response message Pdelay_Resp_Follow_Up. The Nth response transmission time t'nn is the transmission time (ResponseOriginTimestamp) of the delay measurement response message Pdelay_Resp, which is measured and set by the adjacent TSN device.

在步驟S117中,延遲測量部212係使用第一響應接收時刻t n、第一響應傳送時刻t’ n、第N響應接收時刻t nn、及第N響應傳送時刻t’ nn而算出時脈偏差CD a。 時脈偏差CD a係網路轉換器210與鄰接之TSN機器的時脈偏差。 In step S117, the delay measurement unit 212 calculates the clock offset using the first response reception time tn , the first response transmission time t'n , the Nth response reception time tnn , and the Nth response transmission time t'nn CD a . The clock offset CD a is the clock offset between the network converter 210 and the adjacent TSN device.

時脈偏差CD a係藉由計算以下的公式(a)來算出。 CD a=(t nn-t n)/(t’ nn-t’ n)  (a) The clock deviation CD a is calculated by calculating the following formula (a). CD a = (t nn -t n )/(t' nn -t' n ) (a)

茲根據圖6來說明時脈偏差R NW_GM與各時刻的關係。時脈偏差R NW_GM係相當於時脈偏差CD a。 NW-TT係傳送延遲測量要求訊息Pdelay_Req。傳送時刻係時刻t 1。 GM係接收延遲測量要求訊息Pdelay_Req。接收時刻係時刻t 2。 GM係傳送第一次延遲測量響應訊息Pdelay_Resp。傳送時刻係時刻t’ n。 NW-TT係接收第一次延遲測量響應訊息Pdelay_Resp。接收時刻係時刻t n。 GM係傳送第N次延遲測量響應訊息Pdelay_Resp。傳送時刻係時刻t’ nn。 NW-TT係接收第N次延遲測量響應訊息Pdelay_Resp。接收時刻係時刻t nn。 時脈偏差R NW_GM係藉由計算上述的公式(a)而算出。 The relationship between the clock deviation R NW_GM and each time will now be described with reference to FIG. 6 . The clock deviation R NW_GM corresponds to the clock deviation CD a . The NW-TT transmits a delay measurement request message Pdelay_Req. The transmission time is time t 1 . The GM receives the delay measurement request message Pdelay_Req. The reception time is time t 2 . The GM transmits the first delay measurement response message Pdelay_Resp. The transmission time is time t' n . The NW-TT receives the first delay measurement response message Pdelay_Resp. The reception time is time t n . The GM transmits the Nth delay measurement response message Pdelay_Resp. The transmission time is time t' nn . The NW-TT receives the Nth delay measurement response message Pdelay_Resp. The reception time is time t nn . The clock offset R NW_GM is calculated by calculating the above-mentioned formula (a).

茲根據圖7來說明鏈結延遲算出。 鏈結延遲算出係算出網路轉換器210與鄰接之TSN機器之間之鏈結延遲LD b的處理,藉由網路轉換器210來執行。鏈結延遲LD b係相當於傳送延遲的時間。 The link delay calculation will now be described with reference to FIG. 7 . The link delay calculation is a process of calculating the link delay LD b between the network switch 210 and the adjacent TSN device, and is executed by the network switch 210 . The link delay LD b is the time equivalent to the transmission delay.

在步驟S121中,區間外通信部211係將延遲測量要求訊息Pdelay_Req傳送至鄰接的TSN機器。In step S121, the out-of-zone communication unit 211 transmits the delay measurement request message Pdelay_Req to the adjacent TSN device.

在步驟S122中,區間外通信部211係取得要求傳送時刻t 1。 要求傳送時刻t 1係延遲測量要求訊息Pdelay_Req的傳送時刻。 In step S122, the out-of-area communication unit 211 acquires the requested transmission time t 1 . The required transmission time t1 is the transmission time of the delayed measurement request message Pdelay_Req.

在步驟S123中,區間外通信部211係等待來自鄰接之TSN機器的延遲測量響應訊息Pdelay_Resp,且接收延遲測量響應訊息Pdelay_Resp。In step S123, the out-of-zone communication unit 211 waits for the delay measurement response message Pdelay_Resp from the adjacent TSN device, and receives the delay measurement response message Pdelay_Resp.

在步驟S124中,區間外通信部211係取得響應接收時刻t 4。 響應接收時刻t 4係延遲測量響應訊息Pdelay_Resp的接收時刻。 In step S124, the out-of-area communication unit 211 acquires the response reception time t 4 . The response reception time t4 is the reception time of the delay measurement response message Pdelay_Resp .

在步驟S125中,區間外通信部211係從延遲測量響應訊息Pdelay_Resp的有效負載抽出要求接收時刻t 2。 要求接收時刻t 2係延遲測量要求訊息Pdelay_Req的接收時刻(RequestReceiptTimestamp),藉由鄰接的TSN機器來測量且設定。 In step S125, the out-of-zone communication unit 211 extracts the request reception time t 2 from the payload of the delay measurement response message Pdelay_Resp. The request reception time t 2 is the reception time (RequestReceiptTimestamp) of the delay measurement request message Pdelay_Req, which is measured and set by an adjacent TSN device.

在步驟S126中,區間外通信部211係等待延遲測量響應訊息Pdelay_Resp的追加訊息Pdelay_Resp_Follow_Up,且接收追加訊息Pdelay_Resp_Follow_Up。In step S126, the out-of-section communication unit 211 waits for the additional message Pdelay_Resp_Follow_Up of the delay measurement response message Pdelay_Resp, and receives the additional message Pdelay_Resp_Follow_Up.

在步驟S127中,區間外通信部211係從追加訊息Pdelay_Resp_Follow_Up的有效負載抽出響應傳送時刻t 3。 響應傳送時刻t 3係延遲測量響應訊息Pdelay_Resp的傳送時刻(ResponseOriginTimeStamp),藉由鄰接的TSN機器來測量且設定。 In step S127, the out-of-zone communication unit 211 extracts the response transmission time t 3 from the payload of the additional message Pdelay_Resp_Follow_Up. The response transmission time t 3 is the transmission time (ResponseOriginTimeStamp) of the delay measurement response message Pdelay_Resp, which is measured and set by the adjacent TSN device.

在步驟S128中,延遲測量部212係使用時脈偏差CD a、要求傳送時刻t 1、響應接收時刻t 4、要求接收時刻t 2、及響應傳送時刻t 3而算出鏈結延遲LD b。 鏈結延遲LD b係網路轉換器210與鄰接之TSN機器之間的鏈結延遲。 In step S128, the delay measurement unit 212 calculates the link delay LDb using the clock deviation CDa , the requested transmission time t1 , the response reception time t4 , the requested reception time t2 , and the response transmission time t3 . The link delay LD b is the link delay between the network switch 210 and the adjacent TSN machine.

鏈結延遲LD b係藉由計算以下的公式(b)而算出。 LD b=(CD a×(t 4-t 1)-(t 2-t 3))/2  (b) The link delay LD b is calculated by calculating the following formula (b). LD b =(CD a ×(t 4 -t 1 )-(t 2 -t 3 ))/2(b)

使用圖8來說明時刻對準。 時刻對準係將網路轉換器210的時刻對準TSN主站101之時刻的處理,藉由網路轉換器210來執行。 Time alignment will be described using FIG. 8 . The time alignment is a process of aligning the time of the network switch 210 with the time of the TSN master station 101 , and is performed by the network switch 210 .

在步驟S131中,區間外通信部211係從鄰接的TSN機器接收同步訊息Sync。In step S131, the out-of-zone communication unit 211 receives the synchronization message Sync from the adjacent TSN device.

在步驟S132中,區間外通信部211係取得同步接收時刻TSi。 同步接收時刻TSi係同步訊息Sync之接收時的5G時刻。 In step S132, the out-of-zone communication unit 211 acquires the synchronous reception time TSi. The synchronization reception time TSi is the 5G time when the synchronization message Sync is received.

在步驟S133中,區間外通信部211係等待同步訊息Sync的追加訊息Follow_Up,且接收追加訊息Follow_Up。再者,區間外通信部211係將同步訊息Sync傳送至5G。In step S133, the out-of-zone communication unit 211 waits for the additional message Follow_Up of the synchronization message Sync, and receives the additional message Follow_Up. Furthermore, the out-of-zone communication unit 211 transmits the synchronization message Sync to 5G.

在步驟S134中,區間外通信部211係從追加訊息Follow_Up抽出累積時脈偏差ACD’。 累積時脈偏差ACD’係網路轉換器210之鄰接之TSN機器與TSN主站101的累積時脈偏差。 In step S134, the out-of-section communication unit 211 extracts the accumulated clock deviation ACD' from the additional message Follow_Up. The cumulative clock deviation ACD' is the cumulative clock deviation of the TSN device adjacent to the network converter 210 and the TSN master station 101.

在步驟S135中,延遲測量部212係使用時脈偏差CD a與累積時脈偏差ACD’而算出累積時脈偏差ACD C。 累積時脈偏差ACD C係網路轉換器210與TSN主站101的累積時脈偏差。 In step S135, the delay measurement unit 212 calculates the cumulative clock deviation ACD C using the clock deviation CD a and the cumulative clock deviation ACD'. Accumulated Clock Offset The accumulated clock offset of the ACD C series network converter 210 and the TSN master station 101 .

累積時脈偏差ACD C係藉由計算以下的公式(c)而算出。 ACD C=ACD’×CD a(C) The cumulative clock deviation ACD C is calculated by calculating the following formula (c). ACD C = ACD'×CD a (C)

在步驟S136中,區間外通信部211係從追加訊息Follow_Up的Correction欄位抽出累計延遲值AD’。 累計延遲值AD’係網路轉換器210之鄰接的TSN機器與TSN主站101的累計延遲值。 In step S136, the out-of-section communication unit 211 extracts the accumulated delay value AD' from the Correction field of the additional message Follow_Up. The accumulated delay value AD' is the accumulated delay value of the TSN device adjacent to the network switch 210 and the TSN master station 101.

在步驟S137中,延遲測量部212係使用累計延遲值AD’、鏈結延遲LD b和累積時脈偏差ACD C而算出累計延遲AD d。 累計延遲AD d係網路轉換器210與TSN主站101的累計延遲。 In step S137, the delay measurement unit 212 calculates the accumulated delay AD d using the accumulated delay value AD', the chain delay LD b , and the accumulated clock deviation ACDC . The accumulated delay AD d is the accumulated delay between the network converter 210 and the TSN master 101 .

累計延遲AD d係藉由計算以下的公式(d)而算出。 ADd=AD’+(LDb*ACD C)  (d) The accumulated delay AD d is calculated by calculating the following formula (d). ADd=AD'+(LDb*ACD C ) (d)

在步驟S138中,區間外通信部211係從追加訊息Follow_Up抽出時刻TG。 時刻TG係TSN主站101的時刻。 In step S138, the out-of-section communication unit 211 extracts the time TG from the additional message Follow_Up. The time TG is the time of the TSN master station 101 .

再者,時刻同步控制部213係使用時刻TG與累計延遲AD d而算出同步時刻ST eFurthermore, the time synchronization control unit 213 calculates the synchronization time ST e using the time TG and the accumulated delay AD d .

同步時刻ST e係藉由計算以下的公式(e)而算出。 ST e=TG+AD d(e) The synchronization time ST e is calculated by calculating the following formula (e). ST e =TG+AD d (e)

在步驟S139中,時刻同步控制部213係將網路轉換器210的時刻更新為同步時刻ST e而進行時刻對準。 In step S139, the time synchronization control unit 213 updates the time of the network switch 210 to the synchronization time ST e to perform time alignment.

根據圖9來說明追加訊息傳送(5G)。 追加訊息傳送(5G)係在5G網路110內從網路轉換器210傳送追加訊息Follow_Up的處理,藉由網路轉換器210來執行。 Additional message delivery (5G) will be described with reference to FIG. 9 . The additional message transmission (5G) is a process of transmitting the additional message Follow_Up from the network switch 210 in the 5G network 110 , and is executed by the network switch 210 .

於步驟S141中,在區間內通信部215中係算出時脈偏差CD f。 時脈偏差CD f係5G時刻來源111與網路轉換器210的時脈偏差。 In step S141, the intra-section communication unit 215 calculates the clock deviation CD f . The clock deviation CD f is the clock deviation between the 5G time source 111 and the network converter 210 .

在步驟S142中,時脈偏差算出部214係使用累積時脈偏差ACD C與時脈偏差CD f而算出時脈偏差CD g。 時脈偏差CD g係TSN主站101與5G時刻來源111的時脈偏差。 In step S142, the clock deviation calculation unit 214 calculates the clock deviation CD g using the accumulated clock deviation ACD C and the clock deviation CD f . The clock deviation CD g is the clock deviation between the TSN master station 101 and the 5G time source 111 .

時脈偏差CD g係藉由計算以下的公式(g)而算出。 CD g=ACD C×CD f(g) The clock deviation CD g is calculated by calculating the following formula (g). CD g =ACD C ×CD f (g)

在步驟S143中,區間內通信部215係產生追加訊息Follow_Up。In step S143, the intra-section communication unit 215 generates an additional message Follow_Up.

具體而言,區間內通信部215係動作如下。 區間內通信部215係將在步驟S132(參照圖8)所取得的同步接收時刻TSi設定於追加訊息Follow_Up的TLV2欄位。 區間內通信部215係將在步驟S142中所算出的時脈偏差CD g設定於追加訊息Follow_Up的TLV1欄位。 區間內通信部215係將在步驟S137(參照圖8)中所算出的累計延遲AD d設定於追加訊息Follow_Up的correction欄位。 Specifically, the intra-section communication unit 215 operates as follows. The intra-section communication unit 215 sets the synchronization reception time TSi acquired in step S132 (see FIG. 8 ) in the TLV2 field of the additional message Follow_Up. The intra-section communication unit 215 sets the clock offset CD g calculated in step S142 in the TLV1 field of the additional message Follow_Up. The intra-section communication unit 215 sets the cumulative delay AD d calculated in step S137 (see FIG. 8 ) in the correction field of the additional message Follow_Up.

在步驟S144中,區間內通信部215係將追加訊息Follow_Up傳送至設備轉換器220。In step S144 , the intra-section communication unit 215 transmits the additional message Follow_Up to the device switch 220 .

根據圖10及圖11來說明追加訊息傳送(TSN)。 追加訊息傳送(TSN)係從設備轉換器220傳送追加訊息Follow_Up至TSN的處理,藉由設備轉換器220來執行。 Additional message delivery (TSN) will be described with reference to FIGS. 10 and 11 . The additional message transmission (TSN) is a process of transmitting the additional message Follow_Up from the device switch 220 to the TSN, and is performed by the device switch 220 .

在步驟S201中,區間內通信部221係接收從網路轉換器210所傳送的同步訊息Sync。In step S201 , the intra-section communication unit 221 receives the synchronization message Sync transmitted from the network switch 210 .

在步驟S202中,區間內通信部221係等待從網路轉換器210所傳送的追加訊息Follow_Up,且接收追加訊息Follow_Up。 在步驟S202之後,處理前進至步驟S203及步驟S211。 In step S202, the intra-section communication unit 221 waits for the additional message Follow_Up transmitted from the network switch 210, and receives the additional message Follow_Up. After step S202, the process proceeds to step S203 and step S211.

在步驟S203中,區間內通信部221係從追加訊息Follow_Up抽出資訊。 在步驟S203之後,處理前進至步驟S221。 In step S203, the intra-section communication unit 221 extracts information from the additional message Follow_Up. After step S203, the process proceeds to step S221.

具體而言,區間內通信部221係動作如下。 區間內通信部221係從追加訊息Follow_Up的TLV2欄位抽出同步接收時刻TSi。 區間內通信部221係從追加訊息Follow_Up的TLV1欄位抽出時脈偏差CD g。 區間內通信部221係從追加訊息Follow_Up的correction欄位抽出累計延遲AD dSpecifically, the intra-section communication unit 221 operates as follows. The intra-section communication unit 221 extracts the synchronization reception time TSi from the TLV2 field of the additional message Follow_Up. The intra-section communication unit 221 extracts the clock offset CD g from the TLV1 field of the additional message Follow_Up. The intra-section communication unit 221 extracts the accumulated delay AD d from the correction field of the additional message Follow_Up.

在步驟S211中,區間外通信部224係將同步訊息Sync傳送至TSN。換言之,區間外通信部224係將同步訊息Sync傳送至下游的TSN機器。具體而言,區間外通信部224係將同步訊息Sync傳送至第M橋接器122。In step S211, the out-of-zone communication unit 224 transmits the synchronization message Sync to the TSN. In other words, the out-of-zone communication unit 224 transmits the synchronization message Sync to the downstream TSN device. Specifically, the out-of-zone communication unit 224 transmits the synchronization message Sync to the Mth bridge 122 .

在步驟S212中,區間外通信部224係取得同步傳送時刻TSe。 同步傳送時刻TSe係同步訊息Sync之傳送時的5G時刻。 In step S212, the out-of-zone communication unit 224 acquires the synchronous transmission time TSe. The synchronization transmission time TSe is the 5G time when the synchronization message Sync is transmitted.

在步驟S213中,延遲測量部222係使用同步傳送時刻TSe與在步驟S203中所抽出的同步接收時刻TSi而算出內部延遲ID h。 內部延遲ID h係在5G網路110所產生的延遲。具體而言,內部延遲ID h係同步傳送時刻TSe與同步接收時刻TSi的差。 In step S213, the delay measurement unit 222 calculates the internal delay IDh using the synchronous transmission time TSe and the synchronous reception time TSi extracted in step S203. The internal delay ID h is the delay generated in the 5G network 110 . Specifically, the internal delay ID h is the difference between the synchronous transmission time TSe and the synchronous reception time TSi.

內部延遲ID h係藉由計算以下的公式(h)而算出。 ID h=TSe-TSi  (h) The internal delay ID h is calculated by calculating the following formula (h). ID h =TSe-TSi(h)

在步驟S214中,延遲測量部222係使用內部延遲ID h、在步驟S203中所抽出的累計延遲AD d、及在步驟S203中所抽出的時脈偏差CD g而算出累計延遲AD K。 累計延遲AD K係設備轉換器220與TSN主站101的累計延遲。 在步驟S214之後,處理前進至步驟S223。 In step S214, the delay measurement unit 222 calculates the cumulative delay AD K using the internal delay ID h , the cumulative delay AD d extracted in step S203 , and the clock deviation CD g extracted in step S203 . The accumulated delay AD K is the accumulated delay between the device converter 220 and the TSN master 101 . After step S214, the process proceeds to step S223.

累計延遲AD K係藉由計算以下的公式(k)而算出。 AD K=AD d+(ID h×CD g)  (k) The accumulated delay AD K is calculated by calculating the following formula (k). AD K = AD d + (ID h × CD g ) (k)

在步驟S221中,區間外通信部224係算出時脈偏差CD i。 時脈偏差CD i係5G時刻來源111與設備轉換器220的時脈偏差。 In step S221, the out-of-section communication unit 224 calculates the clock deviation CD i . The clock offset CD i is the clock offset between the 5G time source 111 and the device converter 220 .

在步驟S222中,區間外通信部224係使用時脈偏差CD i與在步驟S203中所抽出的時脈偏差CD g而算出時脈偏差CD j。 時脈偏差CD j係TSN主站101與設備轉換器220的時脈偏差。 In step S222, the out-of-section communication unit 224 calculates the clock deviation CD j using the clock deviation CD i and the clock deviation CD g extracted in step S203. The clock deviation CD j is the clock deviation between the TSN master station 101 and the device converter 220 .

時脈偏差CD j係藉由計算以下的公式(j)而算出。 CD j=CD g×CD i公式(j) The clock deviation CD j is calculated by calculating the following formula (j). CD j =CD g ×CD i formula (j)

在步驟S223中,區間外通信部224係產生追加訊息Follow_Up。In step S223, the out-of-area communication unit 224 generates an additional message Follow_Up.

具體而言,區間外通信部224係動作如下。 區間外通信部224係將在步驟S222所算出的時脈偏差CD j設定於追加訊息Follow_Up的TLV1欄位。 區間外通信部224係將在步驟S214中所算出的累計延遲AD K設定於追加訊息Follow_Up的correction欄位。 區間外通信部224係刪除Follow_Up的TLV2。 Specifically, the out-of-zone communication unit 224 operates as follows. The out-of-section communication unit 224 sets the clock offset CD j calculated in step S222 in the TLV1 field of the additional message Follow_Up. The out-of-section communication unit 224 sets the accumulated delay AD K calculated in step S214 in the correction field of the additional message Follow_Up. The out-of-zone communication unit 224 deletes the TLV2 of Follow_Up.

在步驟S224中,區間外通信部224係將追加訊息Follow_Up傳送至TSN。換言之,區間外通信部224係將追加訊息Follow_Up傳送至下游的TSN機器。具體而言,區間外通信部224係將追加訊息Follow_Up傳送至第M橋接器122。In step S224, the out-of-zone communication unit 224 transmits the additional message Follow_Up to the TSN. In other words, the out-of-zone communication unit 224 transmits the additional message Follow_Up to the downstream TSN device. Specifically, the out-of-area communication unit 224 transmits the additional message Follow_Up to the Mth bridge 122 .

圖12係顯示從網路轉換器210傳送至設備轉換器220之追加訊息Follow_Up的訊框格式。 標頭係包含correction欄位。 在correction欄位中,係設定有累計延遲AD d。 在TLV1欄位中,係設定有時脈偏差CD g。 在TLV2欄位中,係設定有同步接收時刻TSi。 FIG. 12 shows the frame format of the additional message Follow_Up sent from the network switch 210 to the device switch 220 . The header contains the correction field. In the correction field, the accumulated delay AD d is set. In the TLV1 field, the clock deviation CD g is set. In the TLV2 field, the synchronization reception time TSi is set.

圖13係顯示從設備轉換器220傳送至TSN之追加訊息Follow_Up的訊框格式。 標頭係包含correction欄位。 在correction欄位中,係設定有累計延遲AD K。 在TLV1欄位中,係設定有時脈偏差CD jFIG. 13 shows the frame format of the follow-up message Follow_Up sent from the device switch 220 to the TSN. The header contains the correction field. In the correction field, the accumulated delay AD K is set. In the TLV1 field, the clock offset CD j is set.

***實施形態1的特徵*** 根據圖14來說明實施形態1的特徵。 附帶箭頭之傾斜的線,係表示PTP訊息的流程。具體的PTP訊息係追加訊息Follow_Up。 時刻T M係GM中之PTP訊息的傳送時刻。 時刻T S1係S1與GM同步後的時刻。 時刻T NW係NW-TT與GM同步後的時刻。 時刻T DS係DS-TT與GM同步後的時刻。 時刻T SN係SN與GM同步後的時刻。 延遲D 1係相當於從時刻T M至時刻T S1的時間。延遲D 5G係相當於從時刻T M至時刻T DS的時間。延遲D N係相當於從時刻T M至時刻T SN的時間。 ***Features of Embodiment 1*** The features of Embodiment 1 will be described with reference to FIG. 14 . The slanted line with the arrow indicates the flow of the PTP message. The specific PTP message is the additional message Follow_Up. The time T M is the transmission time of the PTP message in the GM. The time T S1 is the time after S1 is synchronized with the GM. Time T NW is the time after the NW-TT is synchronized with the GM. The time T DS is the time after the DS-TT is synchronized with the GM. Time TSN is the time after SN and GM are synchronized. The delay D1 corresponds to the time from time TM to time T S1 . The delay D5G corresponds to the time from time TM to time TDS . The delay DN corresponds to the time from time TM to time TSN .

在各PTP訊息中,除GM時刻外,還設定有時脈偏差R。 在從GM傳送至S1的PTP訊息中,係設定有與習知相同的時脈偏差R GM(=1)。時脈偏差R GM係「1」。 在從S1傳送至NW-TT的PTP訊息中,係設定有與習知相同的時脈偏差R S1_GM。時脈偏差R S1_GM係GM與S1的時脈偏差。 在從NW-TT傳送至DS-TT的PTP訊息中,係設定有與習知不同的時脈偏差R 5G_GM。習知係設定有GM與NW-TT的時脈偏差R NW_GM。時脈偏差R NW_GM係相當於累積時脈偏差ACD C(參照步驟S135)。 時脈偏差R 5G_GM係GM與5G-TS的時脈偏差,相當於時脈偏差CD g(參照步驟S142)。 時脈偏差R 5G_GM係使用時脈偏差R NW_GM與時脈偏差R 5G_GM而表示如下。時脈偏差R 5G_GM係5G-TS與NW-TT的時脈偏差,相當於時脈偏差CD f(參照步驟S141)。 R 5G_GM=R 5G_NWR NW_GM在從DS-TT傳送至SM的PTP訊息中,係設定有與習知不同的時脈偏差R DS_GM。習知係設定有時脈偏差R NW_GM。 時脈偏差R DS_GM係GM與DS-TT的時脈偏差,相當於時脈偏差CD j(參照步驟S222)。 時脈偏差R DS_GM係使用時脈偏差R 5G_GM與時脈偏差R DS_GM而表示如下。時脈偏差R DS_GM係5G-TS與DS-TT的時脈偏差,相當於時脈偏差CD i(參照步驟S221)。 R DS_GM=R DS_5GR 5G_GM In each PTP message, in addition to the GM time, a clock offset R is also set. In the PTP message transmitted from GM to S1, the same clock offset R GM (=1) as the conventional one is set. The clock offset R GM is "1". In the PTP message transmitted from S1 to the NW-TT, the same clock offset R S1_GM as the conventional one is set. The clock deviation R S1_GM is the clock deviation between GM and S1. In the PTP message transmitted from the NW-TT to the DS-TT, a clock offset R 5G_GM which is different from the conventional one is set. In the conventional system, the clock offset R NW_GM between GM and NW-TT is set. The clock deviation R NW_GM corresponds to the accumulated clock deviation ACD C (refer to step S135 ). The clock deviation R 5G_GM is the clock deviation between GM and 5G-TS, and corresponds to the clock deviation CD g (refer to step S142 ). The clock deviation R 5G_GM is expressed as follows using the clock deviation R NW_GM and the clock deviation R 5G_GM . The clock deviation R 5G_GM is the clock deviation between the 5G-TS and the NW-TT, and corresponds to the clock deviation CD f (refer to step S141 ). R 5G_GM =R 5G_NW R NW_GM In the PTP message sent from the DS-TT to the SM, a clock offset R DS_GM which is different from the conventional one is set. The conventional system sets the clock deviation R NW_GM . The clock deviation R DS_GM is the clock deviation between GM and DS-TT, and corresponds to the clock deviation CD j (refer to step S222 ). The clock deviation R DS_GM is expressed as follows using the clock deviation R 5G_GM and the clock deviation R DS_GM . The clock deviation R DS_GM is the clock deviation between the 5G-TS and the DS-TT, and corresponds to the clock deviation CD i (refer to step S221 ). R DS_GM =R DS_5G R 5G_GM

換言之,NW-TT與DS-TT係動作如下。 NW-TT係算出與5G-TS的時脈偏差R 5G_NW,且使用時脈偏差R NW_5G而算出時脈偏差R 5G_GM。再者,NW-TT係將時脈偏差R 5G_GM以替代時脈偏差R NW_GM傳送至DS-TT。 DS-TT係算出與5G-TS的時脈偏差R DS_5G,且使用時脈偏差R DS_5G與時脈偏差R 5G_GM而算出時脈偏差R DS_GM。再者,DS-TT係將時脈偏差R DS_GM以替代時脈偏差R NW_GM傳送至SN。 In other words, NW-TT and DS-TT operate as follows. The NW-TT system calculates the clock deviation R 5G_NW from the 5G-TS, and calculates the clock deviation R 5G_GM using the clock deviation R NW_5G . Furthermore, the NW-TT transmits the clock offset R 5G_GM to the DS-TT in place of the clock offset R NW_GM . The DS-TT system calculates the clock deviation R DS_5G from the 5G-TS, and calculates the clock deviation R DS_GM using the clock deviation R DS_5G and the clock deviation R 5G_GM . Furthermore, the DS-TT transmits the clock offset R DS_GM to the SN in place of the clock offset R NW_GM .

在藉由3GPP23.501之習知的方法中,係假設5G-TS與NW-TT之時脈偏差及NW-TT與DS-TT的時脈偏差為零。因此,最終的時刻同步精確度不佳。 在實施形態1的方法中,係考慮5G-TS與NW-TT的時脈偏差及NW-TT與DS-TT的時脈偏差。 In the conventional method by 3GPP23.501, it is assumed that the clock skew of 5G-TS and NW-TT and the clock skew of NW-TT and DS-TT are zero. Therefore, the final time synchronization accuracy is not good. In the method of Embodiment 1, the clock deviation between 5G-TS and NW-TT and the clock deviation between NW-TT and DS-TT are considered.

***實施形態1的功效*** 藉由實施形態1,可消除因為原本不存在於TSN網路中之5G網路加入TSN網路所產生的時刻誤差,亦即因為網路設備間的時脈偏差所產生的時刻誤差。 具體而言,係由網路轉換器210與設備轉換器220的各者使用與5G時刻來源111的時脈偏差(CD f、CD i)而間接地算出網路轉換器210與設備轉換器220之間的時脈偏差。藉此,即能夠消除TSN從屬站121的同步時刻誤差。 *******Effects of Embodiment 1*** By means of Embodiment 1, the time error caused by the joining of the 5G network that does not exist in the TSN network to the TSN network can be eliminated, that is, due to the The time error caused by the clock deviation. Specifically, the network converter 210 and the device converter 220 are indirectly calculated by each of the network converter 210 and the device converter 220 using the clock offsets (CD f , CD i ) from the 5G time source 111 . clock skew between. Thereby, the synchronization time error of the TSN slave station 121 can be eliminated.

實施形態1係藉由變更既有的時刻同步訊息從而不需追加控制訊息,故在成本面上具優勢。The first embodiment is advantageous in terms of cost because it is unnecessary to add control information by changing the existing time synchronization information.

***實施形態的補充*** 根據圖15來補充轉換器300的硬體構成。 轉換器300係具備處理電路309。 處理電路309係實現網路轉換器210或設備轉換器220之功能構成之要素的硬體。 處理電路309係可為專用的硬體,亦可為執行儲存於記憶體中之程式的處理器311。 ***Supplement to the embodiment *** The hardware configuration of the converter 300 is supplemented according to FIG. 15 . The converter 300 is provided with a processing circuit 309 . The processing circuit 309 is hardware that realizes the functional components of the network switch 210 or the device switch 220 . The processing circuit 309 may be dedicated hardware, or may be the processor 311 that executes the program stored in the memory.

當處理電路309為專用的硬體時,處理電路309係例如為單一電路、複合電路、經程式化後的處理器、經並聯程式化後的處理器、ASIC、FPGA或此等的組合。 ASIC係Application Specific Integrated Circuits(特殊應用積體電路)的簡稱。 FPGA係Field-Programmable Gate Array(現場可程式閘陣列)的簡稱。 When the processing circuit 309 is dedicated hardware, the processing circuit 309 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. ASIC is short for Application Specific Integrated Circuits. FPGA is the abbreviation of Field-Programmable Gate Array (Field Programmable Gate Array).

轉換器300係可具備代替處理電路309的複數個處理電路。The converter 300 may include a plurality of processing circuits instead of the processing circuit 309 .

在處理電路309中,可藉由專用的硬體來實現一部分的功能,亦可藉由軟體或韌體(firmware)來實現其餘的功能。In the processing circuit 309, a part of the functions can be implemented by dedicated hardware, and the remaining functions can also be implemented by software or firmware.

如此,轉換器300的功能係可藉由硬體、軟體、韌體或此等的組合來實現。As such, the functions of the converter 300 may be implemented by hardware, software, firmware, or a combination thereof.

各實施形態係較佳形態的例示,並未意圖限制本揭示的技術範圍。各實施形態係可局部地實施,亦可與其他形態組合來實施。使用流程圖等所說明的程序亦可適當地變更。Each embodiment is an illustration of a preferred form, and is not intended to limit the technical scope of the present disclosure. Each embodiment can be implemented locally or in combination with other forms. The procedures described using the flowcharts and the like may be appropriately changed.

屬於網路轉換器210或設備轉換器220之要素的「部」,亦可改稱為「處理」、「步驟」、「電路」或「電路系統(circuitry)」。A "section" that is an element of the network switch 210 or the device switch 220 may also be referred to as a "process," "step," "circuit," or "circuitry."

100:時刻同步網路系統 101:TSN主站 102:第一橋接器 110:5G網路 111:5G時刻來源 121:TSN從屬站 122:第M橋接器 210:網路轉換器 211:區間外通信部 212:延遲測量部 213:時刻同步控制部 214:時脈偏差算出部 215:區間內通信部 220:設備轉換器 221:區間內通信部 222:延遲測量部 223:時脈偏差算出部 224:區間外通信部 300:轉換器 301:電腦 309:處理電路 310:主機板 311:處理器 312:序列通信設備 313:轉換器電路 320:擴張卡 321:端口 322:端口 ACD C:累積時脈偏差 AD’:累計延遲值 AD d:累計延遲 AD K:累計延遲 CD a,CD f,CD g,CD i,CD j:時脈偏差 D 1,D 5G,D N:延遲 ID h:內部延遲 LD b:鏈結延遲 Pdelay_Resp:延遲測量響應訊息 Pdelay_Req:延遲測量要求訊息 R,R 5G_GM,R NW_GM(=CDa),R NW_GM,R DS_GM,R S1_GM,R GM,R NW_5G,R DS_5G:時脈偏差 ST e:同步時刻 Sync:同步訊息 t 1,t 2,t 3,t 4,T DS,TG,T M,T NW,T S1,T SN:時刻 t n:第一響應接收時刻 t’ n:第一響應傳送時刻 t nn:第N響應接收時刻 t’ nn:第N響應傳送時刻 TSi:同步接收時刻 TSe:同步傳送時刻 100: Time synchronization network system 101: TSN master station 102: First bridge 110: 5G network 111: 5G time source 121: TSN slave station 122: Mth bridge 210: Network converter 211: Out-of-area communication Section 212: Delay measurement section 213: Time synchronization control section 214: Clock deviation calculation section 215: Inter-section communication section 220: Device switch 221: In-section communication section 222: Delay measurement section 223: Clock deviation calculation section 224: External communication unit 300: Converter 301: Computer 309: Processing circuit 310: Motherboard 311: Processor 312: Serial communication device 313: Converter circuit 320: Expansion card 321: Port 322: Port ACD C : Cumulative clock deviation AD': Accumulated delay value AD d : Accumulated delay AD K : Accumulated delay CD a , CD f , CD g , CD i , CD j : Clock deviation D 1 , D 5G , DN : Delay ID h : Internal delay LD b : Link Delay Pdelay_Resp: Delay Measurement Response Message Pdelay_Req: Delay Measurement Request Message R,R 5G_GM ,R NW_GM (=CDa),R NW_GM ,R DS_GM ,R S1_GM ,R GM ,R NW_5G ,R DS_5G : Clock Deviation ST e : synchronization time Sync: synchronization messages t 1 , t 2 , t 3 , t 4 , T DS , TG, T M , T NW , T S1 , T SN : time t n : first response reception time t' n : first response transmission time t nn : Nth response reception time t' nn : Nth response transmission time TSi : synchronous reception time TSe : synchronous transmission time

圖1係顯示實施形態1中之時刻同步網路系統100的構成圖。 圖2係實施形態1中之轉換器300的硬體構成圖。 圖3係實施形態1中之網路轉換器210的功能構成圖。 圖4係實施形態1中之設備轉換器220的功能構成圖。 圖5係實施形態1中之時脈偏差算出的流程圖。 圖6係實施形態1中之時脈偏差R NW_GM(=CD a)與各時刻的關係圖。 圖7係實施形態1中之鏈結延遲算出的流程圖。 圖8係實施形態1中之時刻對準的流程圖。 圖9係實施形態1中之追加訊息傳送(5G)的流程圖。 圖10係實施形態1中之追加訊息傳送(TSN)的流程圖。 圖11係實施形態1中之追加訊息傳送(TSN)的流程圖。 圖12係顯示實施形態1中之追加訊息Follow_Up(NW-TT→DS-TT)之訊框格式(frame format)的表。 圖13係顯示實施形態1中之追加訊息Follow_Up(NW-TT→TSN)之訊框格式(frame format)的表。 圖14係顯示實施形態1中設定在各PTP(Precision Time Protocol,精準時間協定)之訊息中之時脈偏差R的圖。 圖15係實施形態1中之轉換器300之硬體構成的補充圖。 FIG. 1 is a diagram showing the configuration of a time synchronization network system 100 in the first embodiment. FIG. 2 is a hardware configuration diagram of the converter 300 in the first embodiment. FIG. 3 is a functional configuration diagram of the network converter 210 in the first embodiment. FIG. 4 is a functional configuration diagram of the device converter 220 in the first embodiment. FIG. 5 is a flowchart of clock offset calculation in Embodiment 1. FIG. FIG. 6 is a diagram showing the relationship between the clock deviation R NW_GM (=CD a ) and each time in the first embodiment. FIG. 7 is a flowchart of link delay calculation in Embodiment 1. FIG. FIG. 8 is a flowchart of time alignment in Embodiment 1. FIG. FIG. 9 is a flowchart of additional message transmission (5G) in Embodiment 1. FIG. FIG. 10 is a flowchart of additional message transmission (TSN) in Embodiment 1. FIG. FIG. 11 is a flowchart of additional message transmission (TSN) in Embodiment 1. FIG. FIG. 12 is a table showing the frame format of the additional message Follow_Up (NW-TT→DS-TT) in the first embodiment. FIG. 13 is a table showing the frame format of the additional message Follow_Up (NW-TT→TSN) in the first embodiment. FIG. 14 is a diagram showing the clock offset R set in each PTP (Precision Time Protocol, Precision Time Protocol) message in the first embodiment. FIG. 15 is a supplementary diagram of the hardware configuration of the converter 300 in the first embodiment.

100:時刻同步網路系統 100: Time synchronization network system

101:TSN主站(GM) 101:TSN Master (GM)

102:第一橋接器(S1) 102: First bridge (S1)

110:5G網路 110:5G network

111:5G時刻來源(5G-TS) 111: 5G time source (5G-TS)

121:TSN從屬站(SLAVE) 121:TSN slave station (SLAVE)

122:第M橋接器(SM) 122: M-th Bridge (SM)

210:網路轉換器(NW-TT) 210: Network Converter (NW-TT)

220:設備轉換器(DS-TT) 220: Device Converter (DS-TT)

Claims (6)

一種網路轉換器,係在設於時刻同步網路系統的上游與前述時刻同步網路系統的下游之間的行動通信系統中使用者, 前述時刻同步網路系統的上游係具有屬於成為前述時刻同步網路系統之時刻來源之機器的主站, 前述行動通信系統係具有成為前述行動通信系統之時刻來源的時間伺服器、及設備轉換器, 前述設備轉換器係使用前述主站與前述時間伺服器的時脈偏差、及前述時間伺服器與前述設備轉換器的時脈偏差而算出前述主站與前述設備轉換器的時脈偏差,且設定所算出的前述時脈偏差而產生訊息,且將所產生的訊息傳送至前述時刻同步網路系統之下游的轉換器, 前述網路轉換器係具備: 時脈偏差算出部,係算出前述主站與前述時間伺服器的前述時脈偏差;及 區間內通信部,係設定前述主站與前述時間伺服器的前述時脈偏差而產生訊息,且將所產生的訊息傳送至前述設備轉換器。 A network converter is used in a mobile communication system provided between the upstream of a time synchronization network system and the downstream of the aforementioned time synchronization network system, The upstream of the aforementioned time synchronization network system has a master station belonging to the machine that becomes the time source of the aforementioned time synchronization network system, The aforementioned mobile communication system includes a time server and a device converter that serve as the time source of the aforementioned mobile communication system, The device converter uses the clock deviation between the master station and the time server and the clock deviation between the time server and the device converter to calculate the clock deviation between the master station and the device converter, and set The calculated clock offset generates a message, and transmits the generated message to the converter downstream of the time synchronization network system, The aforementioned network converter is equipped with: a clock offset calculation unit for calculating the clock offset between the master station and the time server; and The intra-interval communication unit generates a message by setting the clock deviation between the master station and the time server, and transmits the generated message to the device converter. 如請求項1所述之網路轉換器,其中前述網路轉換器係具備: 延遲測量部,係算出前述主站與前述網路轉換器的時脈偏差;及 區間內通信部,係算出前述網路轉換器與前述時間伺服器的時脈偏差; 前述時脈偏差算出部係使用前述主站與前述網路轉換器的前述時脈偏差及前述網路轉換器與前述時間伺服器的前述時脈偏差而算出前述主站與前述時間伺服器的前述時脈偏差。 The network converter of claim 1, wherein the network converter is provided with: a delay measurement unit for calculating the clock deviation between the master station and the network converter; and The intra-interval communication unit calculates the clock deviation between the network converter and the time server; The clock offset calculation unit calculates the clock offset between the master station and the time server using the clock offset between the master station and the network converter and the clock offset between the network switch and the time server. clock skew. 如請求項1或請求項2所述之網路轉換器,其中從前述網路轉換器傳送至前述設備轉換器的前述訊息及從前述設備轉換器傳送至前述時刻同步網路系統之下游的前述訊息之各者,係Precision Time Protocol(精準時間協定)的追加訊息。A network switch as claimed in claim 1 or claim 2, wherein said message is transmitted from said network switch to said device switch and said information is transmitted from said device switch to said time synchronization network system downstream Each of the messages is an additional message of the Precision Time Protocol. 一種設備轉換器,係在設於時刻同步網路系統的上游與前述時刻同步網路系統的下游之間的行動通信系統中使用者, 前述時刻同步網路系統的上游係具有屬於成為前述時刻同步網路系統之時刻來源之機器的主站, 前述行動通信系統係具有成為前述行動通信系統之時刻來源的時間伺服器、及網路轉換器, 前述網路轉換器係使用前述主站與前述網路轉換器的時脈偏差、及前述網路轉換器與前述時間伺服器的時脈偏差而算出前述主站與前述時間伺服器的時脈偏差,且設定所算出的時脈偏差而產生訊息,且將所產生之訊息進行傳送的轉換器, 前述設備轉換器係具備: 區間內通信部,係接收來自前述網路轉換器的前述訊息,且從所接收的前述訊息抽出前述主站與前述時間伺服器的前述時脈偏差; 時脈偏差算出部,係使用前述主站與前述時間伺服器的前述時脈偏差而算出前述主站與前述設備轉換器的時脈偏差;及 區間外通信部,係設定前述主站與前述設備轉換器的前述時脈偏差而產生訊息,且將所產生的訊息傳送至前述時刻同步網路系統的下游。 A device converter is used in a mobile communication system provided between the upstream of the time synchronization network system and the downstream of the aforementioned time synchronization network system, The upstream of the aforementioned time synchronization network system has a master station belonging to the machine that becomes the time source of the aforementioned time synchronization network system, The above-mentioned mobile communication system has a time server and a network converter that become the time source of the above-mentioned mobile communication system, The network converter uses the clock offset between the master station and the network switch, and the clock offset between the network switch and the time server to calculate the clock offset between the master station and the time server , and set the calculated clock deviation to generate a message, and a converter that transmits the generated message, The aforementioned equipment converter is equipped with: The intra-interval communication unit receives the message from the network switch, and extracts the clock offset between the master station and the time server from the received message; a clock offset calculation unit for calculating the clock offset between the master station and the device converter using the clock offset between the master station and the time server; and The out-of-area communication unit generates a message by setting the clock deviation between the master station and the device converter, and transmits the generated message to the downstream of the time synchronization network system. 如請求項4所述之設備轉換器,其中前述區間外通信部係算出前述時間伺服器與前述設備轉換器的時脈偏差,且使用前述主站與前述時間伺服器的前述時脈偏差、及前述時間伺服器與前述設備轉換器的前述時脈偏差而算出前述主站與前述設備轉換器的前述時脈偏差。The device converter of claim 4, wherein the out-of-region communication unit calculates a clock offset between the time server and the device switch, and uses the clock offset between the master station and the time server, and The clock deviation between the master station and the device converter is calculated by calculating the clock deviation between the time server and the device converter. 如請求項4或請求項5所述之網路轉換器,其中從前述網路轉換器傳送至前述設備轉換器的前述訊息及從前述設備轉換器傳送至前述時刻同步網路系統之下游的前述訊息之各者,係Precision Time Protocol(精準時間協定)的追加訊息。A network switch as claimed in claim 4 or claim 5, wherein said message transmitted from said network switch to said equipment switch and said information transmitted from said equipment switch to said time synchronization network system downstream Each of the messages is an additional message of the Precision Time Protocol.
TW110118981A 2021-02-16 2021-05-26 Network translator and device translator TW202234920A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/005744 WO2022176026A1 (en) 2021-02-16 2021-02-16 Network translator and device translator
WOPCT/JP2021/005744 2021-02-16

Publications (1)

Publication Number Publication Date
TW202234920A true TW202234920A (en) 2022-09-01

Family

ID=82931236

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110118981A TW202234920A (en) 2021-02-16 2021-05-26 Network translator and device translator

Country Status (4)

Country Link
JP (1) JP7258261B2 (en)
KR (1) KR102628183B1 (en)
TW (1) TW202234920A (en)
WO (1) WO2022176026A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020165979A1 (en) 2019-02-13 2020-08-20 株式会社Nttドコモ Radio base station and user equipment
KR20200104217A (en) * 2019-02-26 2020-09-03 한국전자통신연구원 Packet managing method in network and network element performing the same
US20220216932A1 (en) 2019-05-02 2022-07-07 Telefonaktiebolaget Lm Ericsson (Publ) 5g system signaling methods to convey tsn synchronization information

Also Published As

Publication number Publication date
JP7258261B2 (en) 2023-04-14
KR20230121934A (en) 2023-08-21
JPWO2022176026A1 (en) 2022-08-25
KR102628183B1 (en) 2024-01-23
WO2022176026A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
US10237008B2 (en) Synchronization with different clock transport protocols
CN101951312B (en) E1 link-based bidirectional time-frequency synchronous transmission method and master-slave device
EP2801162B1 (en) Method and apparatus for communicating time information between time-aware devices
WO2017133478A1 (en) Method and clock for time synchronization
WO2009071029A1 (en) Synchronization system and method of time information and related equipment
US8861668B2 (en) Transmission device, transmission method and computer program
EP2448168A1 (en) Method and system for bearing time synchronization protocol in optical transport network
WO2016004644A1 (en) Method and apparatus for monitoring ethernet clock synchronization
EP3664375A1 (en) Packet processing method and network device
JP6351889B1 (en) Communication system and slave device
JP5373185B2 (en) Add and drop elements for NTP on-path support and interoperability method between NTP domain and IEEE-1588 protocol domain
JP2009182659A (en) Timing synchronizing method, synchronization device, synchronization system, and synchronization program
WO2015125439A1 (en) Communication system, wireless communication apparatus, and wireless communication method
WO2013155944A1 (en) Boundary clock, transparent clock, and method for clock transmission
JP2013098788A (en) Time synchronization system and time synchronization method
TW202234920A (en) Network translator and device translator
TWM605565U (en) Distributed synchronization system
TWI618432B (en) Frequency calibration apparatus and method
US20170117980A1 (en) Time synchronization for network device
WO2021103806A1 (en) Time synchronization method, device, and system, and storage medium
US20230300068A1 (en) Synchronization in Distributed Communication Systems
TWM612938U (en) Distributed synchronization system
CN107769879B (en) System and method for clock synchronization in computer networks
WO2022237238A1 (en) Packet transmission method and apparatus, device, and storage medium
TWI795678B (en) Synchronization device and synchronization method