WO2020217539A1 - User device - Google Patents

User device Download PDF

Info

Publication number
WO2020217539A1
WO2020217539A1 PCT/JP2019/018161 JP2019018161W WO2020217539A1 WO 2020217539 A1 WO2020217539 A1 WO 2020217539A1 JP 2019018161 W JP2019018161 W JP 2019018161W WO 2020217539 A1 WO2020217539 A1 WO 2020217539A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
measurement
active bwp
user device
network
Prior art date
Application number
PCT/JP2019/018161
Other languages
French (fr)
Japanese (ja)
Inventor
英和 下平
祐輝 松村
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/018161 priority Critical patent/WO2020217539A1/en
Publication of WO2020217539A1 publication Critical patent/WO2020217539A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a user device that performs position measurement.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • 5G New Radio NR
  • the NR stipulates that Numerology, which defines the subcarrier spacing, and Bandwidth Parts (BWP), which defines the operating bandwidth, can be set for each cell (see Non-Patent Document 1).
  • the user device measures the position of the UE using a plurality of downlink / positioning reference signals (DL PRS) transmitted from the serving cell and at least two adjacent cells.
  • DL PRS downlink / positioning reference signals
  • the Numerology or BWP set for transmitting DL PRS may differ in multiple cells.
  • the UE may not be able to receive the DL PRS transmitted from the adjacent cell. In this case, the UE cannot measure the position of the UE.
  • the present invention has been made in view of such a situation, and position measurement can be performed in a plurality of cells even when the subcarrier spacing or the operating bandwidth set for transmitting the positioning reference signal is different. It is an object of the present invention to provide a user device that can be implemented.
  • the user device (10) is changed to a control unit (15) that changes the operating bandwidth of the user device (10) at the timing of measuring the position of the user device (10).
  • a receiving unit (13) for receiving a positioning reference signal (DL PRS) used for measuring the position of the user device (10) in the operating bandwidth of the user device (10) is provided.
  • DL PRS positioning reference signal
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 1.
  • FIG. 2 is a diagram illustrating an example of DL PRS BWP and UE10 active BWP.
  • FIG. 3 is a functional block configuration diagram of UE10.
  • FIG. 4 is a diagram showing an example of a sequence of positioning procedures by the UE 10 and the location server 50.
  • FIG. 5 is a diagram showing an operation flow of the position measurement process by the UE 10.
  • FIG. 6 is a diagram illustrating a measurement method 1 in the position measurement process.
  • FIG. 7 is a diagram illustrating a measurement method 2 in the position measurement process.
  • FIG. 8 is a diagram illustrating a measurement method 3 in the position measurement process.
  • FIG. 9 is a diagram illustrating a measurement method 4 in the position measurement process.
  • FIG. 10 is a diagram illustrating a measurement method 5 in the position measurement process.
  • FIG. 11 is a diagram illustrating a measurement method 6 in the position measurement process.
  • FIG. 12 is a
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 1 according to the embodiment.
  • Wireless communication system 1 includes UE10, radio base stations (gNB) 20, 20a, 20b, core network 40, and location server 50.
  • gNB radio base stations
  • UE10 is in the serving cell 30 under gNB20.
  • UE10 executes wireless communication according to NR between UE10 and gNB20 and core network 40.
  • UE10 has an active BWP, which is the operating bandwidth of UE10.
  • UE10 can receive various signals transmitted by BWP within the range of active BWP.
  • the gNB20, 20a, 20b executes wireless communication according to NR between the gNB20, 20a, 20b and the core network 40.
  • the gNB 20 controls the serving cell 30.
  • gNB20a and 20b control adjacent cells 30a and 30b.
  • GNB20, 20a, 20b transmit DL PRS # x, DL PRS # y, DL PRS # z at a predetermined timing.
  • DL PRS # x, DL PRS # y, DL PRS # z are used to measure the position of UE10.
  • gNB20, 20a, 20b can set the BWP for transmitting DL PRS # x, DL PRS # y, DL PRS # z independently of the active BWP set in UE10. In this case, UE10 is notified of these set BWPs.
  • FIG. 2 is a diagram illustrating an example of DL PRS BWP and UE10 active BWP.
  • Active BWP represents the BWP set in the current communication among the BWP supported by UE10.
  • DL PRS #x is mapped within the range of the active BWP of UE10
  • DL PRS #y is mapped outside the range of UE10's active BWP, so UE10 cannot receive DL PRS # y.
  • UE10 receives DL PRS # z because some of the resources in DL PRS # z are only within the active BWP of UE10 and the rest are outside the active BWP of UE10. Can not do it.
  • Core network 40 communicates with UE10 via gNB20.
  • the node group belonging to the core network 40 or the core network 40 including the location server 50 receives various settings of DL PRS # x, DL PRS # y, DL PRS # z from gNB20, 20a, 20b.
  • the UE 10 attaches to the core network 40 or receives a Capability request from the core network 40, the UE 10 notifies the core network 40 of the capability of the UE 10.
  • the location server 50 is provided in the core network 40.
  • the location server 50 performs a positioning procedure between the UE 10 and the location server 50, as will be described later.
  • the UE10 measures the position of the UE10 by the instruction from the position server 50, the serving cell 30 under the gNB20 and the adjacent cells 30a, 30b under the gNB20a, 20b, DL PRS # x, DL PRS # y, DL PRS # Need to receive z.
  • the position of UE10 is estimated by using the reception time difference of DL PRS # x, DL PRS # y, DL PRX # z.
  • the measurement results such as the reception time difference of DL PRS # x, DL PRS # y, DL PRS # z are measured via gNB20.
  • the UE 10 may estimate the position of the UE 10 based on the measurement result and transmit the estimated position information to the position server 50.
  • FIG. 3 is a functional block configuration diagram of UE10. The hardware configuration of UE10 will be described later. As shown in FIG. 3, the UE 10 includes a transmission unit 11, a reception unit 13, and a control unit 15.
  • the transmission unit 11 transmits Capability information including BWP that UE10 can support to the network (for example, core network 40 and location server 50).
  • the transmission unit 11 transmits the measurement result to the location server 50.
  • the receiving unit 13 receives DL PRS # x from the serving cell 30 under the gNB 20.
  • the receiving unit 13 receives DL PRS # y and DL PRS # z from the adjacent cells 30a and 30b under gNB20a and 20b.
  • the receiving unit 13 receives the setting information regarding the newly set active BWP of the UE 10 from the network (for example, the core network 40, the location server 50).
  • Control unit 15 changes the active BWP of UE10.
  • the control unit 15 measures the position based on the received DL PRS # x, DL PRS # y, DL PRS # z.
  • FIG. 4 is a diagram showing an example of a sequence of positioning procedures by the UE 10 and the location server 50.
  • Location server 50 sends a Capability request message to UE10 (S1).
  • the UE10 receives the Capability request message, it sends the Capability information to the location server 50 (S3).
  • the Capability information may include Numerology that can be received by UE10.
  • the subcarrier interval is specified. Specifically, Numerology defines subcarrier intervals of 15kHz, 30kHz, 60kHz, and 120kHz.
  • the location server 50 When the location server 50 receives the Capability information from UE10, it transmits the Assistance data to UE10 (S5) and then sends the location information request message to UE10.
  • the Assistance data contains information about adjacent cells 30a, 30b.
  • the Assistance data may include Numerology set in adjacent cells 30a and 30b.
  • UE10 measures the position when it receives the position information request message from the position server 50 (S9). After performing the position measurement, UE10 transmits the measurement result to the position server 50 (S11).
  • FIG. 5 is a diagram showing an operation flow of position measurement processing by UE10.
  • the UE10 receives the location information request message from the location server 50, it determines whether or not it is the measurement timing (S12).
  • the UE 10 receives DL PRS # x, DL PRS # y, DL PRS # z from the serving cell 30 and the adjacent cells 30a and 30b (S13).
  • UE10 waits for the measurement timing to be reached.
  • UE10 When UE10 receives DL PRS # x, DL PRS # y, DL PRS # z, it measures the reception time difference of DL PRS # x, DL PRS # y, DL PRX # z (S15).
  • FIG. 6 is a diagram illustrating the measurement method 1.
  • the UE10 measures the position of the UE10 within the measurement gap period, which is a period for measuring different frequencies or the same frequency. The measurement gap period is notified from the upper layer.
  • the active BWP of UE10 is not set within the measurement gap period. Therefore, the UE 10 can receive various signals over the entire channel bandwidth CBW. Therefore, the UE 10 can receive DL PRS # x, DL PRS # y, DL PRS # z from the serving cell 30 and the adjacent cells 30a and 30b.
  • the active BWP of UE10 is set as shown in FIG. Therefore, when the position of UE10 is measured outside the measurement gap period, UE10 receives only DL PRS # x transmitted from the serving cell 30.
  • FIG. 7 is a diagram illustrating the measurement method 2.
  • the UE10 measures the position of the UE10 outside the measurement gap period.
  • the setting of Numerology in the adjacent cells 30a and 30b is the same as the setting of Numerology in the serving cell 30.
  • DL PRS #x, DL PRS #y, and DL PRS # z are included in the range of active BWP of UE10 outside the measurement timing.
  • the UE10 can receive the DL PRS # x, DL PRS # y, DL PRS # z from the serving cell 30 and the adjacent cells 30a, 30b without changing the active BWP of the UE10 at the measurement timing. ..
  • FIG. 8 is a diagram illustrating the measurement method 3.
  • the UE10 measures the position of the UE10 outside the measurement gap period.
  • the setting of Numerology in the adjacent cells 30a and 30b is the same as the setting of Numerology in the serving cell 30.
  • only PRS #x is included in the range of the active BWP of UE10 (see FIG. 2).
  • the UE10 when the measurement timing is entered, the UE10 is notified of the newly set active BWP of the UE10 from the network (for example, core network 40, location server 50). When UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
  • the network for example, core network 40, location server 50.
  • the newly set range of UE10's active BWP includes DL PRS # x, DL PRS # y, and DL PRS # z. Therefore, at the measurement timing, the UE 10 can receive DL PRS # x, DL PRS # y, DL PRS # z from the serving cell 30 and the adjacent cells 30a, 30b.
  • the UE10 performs position measurement based on the received DL PRS # x, DL PRS # y, DL PRS # z, and when the measurement result is transmitted to the network, the current active BWP of UE10 is set to the measurement timing from the network. You will be instructed to return to the UE10 active BWP (default BWP) before entering. As a result, only PRS # x is included in the range of active BWP of UE10 (see FIG. 2).
  • UE10 may change the current active BWP of UE10 to the default BWP when the timer that starts in UE10 expires.
  • FIG. 9 is a diagram illustrating the measurement method 4.
  • the UE10 measures the position of the UE10 outside the measurement gap period.
  • the setting of Numerology in the adjacent cells 30a and 30b is the same as the setting of Numerology in the serving cell 30.
  • only PRS #x is included in the range of the active BWP of UE10 (see FIG. 2).
  • the UE10 first receives DL PRS # x from the serving cell 30 (first measurement).
  • the UE10 is notified of the newly set active BWP of the UE10 from the network (for example, core network 40, location server 50).
  • the network for example, core network 40, location server 50.
  • UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
  • the newly set range of UE10's active BWP includes only DL PRS # y out of DL PRS # x, DL PRS # y, and DL PRS # z. Therefore, UE10 can receive DLPRS #y from the adjacent cell 30a (second measurement).
  • the UE10 is notified of the newly set active BWP of the UE10 from the network.
  • the UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
  • the newly set range of UE10's active BWP includes only DL PRS # z among DL PRS # x, DL PRS # y, and DL PRS # z. Therefore, at the measurement timing, the UE 10 can receive DL PRS # z from the adjacent cell 30b (third measurement).
  • the UE10 performs position measurement based on the received DL PRS # x, DL PRS # y, DL PRS # z, and when the measurement result is transmitted to the network, the current active BWP of UE10 is set to the measurement timing from the network. You will be instructed to return to the UE10 active BWP (default BWP) before entering. As a result, only PRS # x is included in the range of active BWP of UE10 (see FIG. 2).
  • UE10 may change the current active BWP of UE10 to the default BWP when the timer that starts in UE10 expires.
  • the UE10 may change the active BWP based on a predetermined rule after receiving the first notification from the network. For example, the entire channel bandwidth may be divided into four, and the active BWP may be autonomously changed in a predetermined order from the first measurement.
  • UE10 receives Assistance data including DL PRS # y and DL PRS # z in adjacent cells 30a and 30b in S5 of the positioning procedure.
  • the change instruction is periodically arranged in a predetermined part of the frame as a frame configuration, and when the UE10 reads the update instruction from the frame, the active BWP is in a predetermined order. May be changed autonomously.
  • FIG. 10 is a diagram illustrating the measurement method 5.
  • the UE10 measures the position of the UE10 outside the measurement gap period.
  • the setting of Numerology in the adjacent cells 30a and 30b is the same as the setting of Numerology in the serving cell 30.
  • only PRS #x is included in the range of the active BWP of UE10 (see FIG. 2).
  • the UE10 first receives DL PRS #x from the serving cell 30 (first measurement).
  • the UE10 is notified of the newly set active BWP of the UE10 from the network (for example, the core network 40 or the location server 50).
  • the network for example, the core network 40 or the location server 50.
  • UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
  • the newly set range of UE10's active BWP includes DL PRS # x, DL PRS # y, and DL PRS # z among DL PRS # x and DL PRS # y. Therefore, the UE 10 can receive DL PRS # x and DL PRS # y from the serving cell 30 and the adjacent cell 30a (second measurement).
  • the UE10 is notified of the newly set active BWP of the UE10 from the network.
  • the UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
  • the newly set range of UE10's active BWP includes DL PRS # x, DL PRS # y, and DL PRS # z among DL PRS # x and DL PRS # z. Therefore, at the measurement timing, the UE 10 can receive DL PRS # x and DL PRS # z from the adjacent cell 30b (third measurement).
  • the UE10 performs position measurement based on the received DL PRS # x, DL PRS # y, DL PRS # z, and when the measurement result is transmitted to the network, the current active BWP of UE10 is set to the measurement timing from the network. You will be instructed to return to the UE10 active BWP (default BWP) before entering. As a result, only PRS # x is included in the range of active BWP of UE10 (see FIG. 2).
  • UE10 may change the current active BWP of UE10 to the default BWP when the timer that starts in UE10 expires.
  • the UE10 receives DL PRS # x multiple times at the measurement timing, but it may be received only once.
  • UE10 is the latest DL PRS # x, DL PRS # x with the best reception quality, and one DL selected from multiple DL PRS # x.
  • Position measurement may be performed using PRX # x or the like. Further, the UE 10 may calculate the average value of the reception qualities of a plurality of DL PRS # x and use the calculated average value for the position measurement.
  • FIG. 11 is a diagram illustrating the measurement method 6.
  • the UE10 measures the position of the UE10 outside the measurement gap period.
  • the setting of Numerology in the adjacent cells 30a and 30b is different from the setting of Numerology in the serving cell 30.
  • only PRS #x is included in the range of the active BWP of UE10 (see FIG. 2).
  • the UE10 first receives DL PRS #x from the serving cell 30 (first measurement).
  • the UE10 is notified of the newly set active BWP of the UE10 from the network (for example, the core network 40 or the location server 50).
  • the network for example, the core network 40 or the location server 50.
  • UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
  • the newly set range of UE10's active BWP includes only DL PRS # y out of DL PRS # x, DL PRS # y, and DL PRS # z.
  • the newly set Numerology of UE10's active BWP will be the same as DL PRS # y. Therefore, UE10 can receive DLPRS #y from the adjacent cell 30a (second measurement).
  • the UE10 is notified of the newly set active BWP of the UE10 from the network.
  • the UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
  • the newly set range of UE10's active BWP includes only DL PRS # z among DL PRS # x, DL PRS # y, and DL PRS # z.
  • the newly set Numerology of UE10's active BWP will be the same as DL PRS # z. Therefore, UE10 can receive DLPRS # z from the adjacent cell 30b (third measurement).
  • the UE10 performs position measurement based on the received DL PRS # x, DL PRS # y, DL PRS # z, and when the measurement result is transmitted to the network, the current active BWP of UE10 is set to the measurement timing from the network. You will be instructed to return to the UE10 active BWP (default BWP) before entering. As a result, only PRS # x is included in the range of active BWP of UE10 (see FIG. 2).
  • UE10 may change the current active BWP of UE10 to the default BWP when the timer that starts in UE10 expires.
  • UE10 cannot perform position measurement unless it has the same Numerology and the same BWP, the network applies only the measurement method 2 described above to UE10, and the other measurement methods to UE10. Is not required.
  • the one with a longer delay should be applied by comparing the case of measuring within the measurement gap period and the case of measuring outside the measurement gap period. Is stipulated.
  • the measurement gap period for position measurement is not limited to this.
  • the UE 10 has a control unit 15 that changes the active BWP of the UE 10 at the timing of measuring the position of the UE 10, and the position of the UE 10 in the changed active BWP of the UE 10. It includes a receiver 13 that receives the DL PRS used for making measurements.
  • UE10 can change the active BWP of UE10 so that DL PRS # y and DL PRS # z are included in the range of active BWP.
  • Numerology or BWP set to transmit DL PRS # y, DL PRS # z in adjacent cells 30a and 30b is set to transmit DL PRS # x in serving cell 30. Positioning can be performed even if it differs from Numerology or BWP.
  • the receiving unit 13 receives the change instruction from the network, and the control unit 15 changes the active BWP of the UE 10 based on the change instruction.
  • UE10 can change the active BWP of UE10 so that DL PRS # y and DL PRS # z are included in the range of active BWP without increasing the load.
  • the UE 10 further includes a transmission unit 11 that transmits a BWP compatible with the UE 10 to the network.
  • UE10 can perform position measurements without increasing the load.
  • control unit 15 includes at least one BWP among the BWPs set to transmit the DL PRS # y, DL PRS # z in the adjacent cells 30a and 30b. Change the active BWP for UE10.
  • UE10 can change the active BWP of UE10 so that DL PRS # y and DL PRS # z are surely included in the range of active BWP.
  • the active BWP of UE10 when the active BWP of UE10 includes all of the BWPs set to transmit DL PRS # y, DL PRS # z in the adjacent cells 30a and 30b. Maintains UE10's active BWP.
  • UE10 maintains the active BWP when DL PRS # y and DL PRS # z are included in the range of the active BWP. Therefore, UE10 can perform position measurements without increasing the load.
  • the block configuration diagram (FIG. 3) used in the description of the above-described embodiment shows a block of functional units.
  • These functional blocks are realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, deemed, and notification (There are, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. ..
  • a functional block that makes transmission function is called a transmitting unit or a transmitter.
  • the method of realizing each is not particularly limited.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs the calculation, controls the communication by the communication device 1004, and the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), RandomAccessMemory (RAM), and the like. May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a photomagnetic disk (for example, a compact disk, a digital versatile disk, a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information can be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the function of the base station.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side").
  • the uplink, downlink, and the like may be read as side channels.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • position measurement can be performed even when the subcarrier interval or the operating bandwidth set for transmitting the positioning reference signal is different in a plurality of cells.
  • Wireless communication system 10 UE 11 Transmitter 13 Receiver 15 Control unit 20, 20a, 20b gNB 30 serving cell 30a, 30b adjacent cells 40 core network 50 location server 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Abstract

UE (10) that comprises: a control unit (15) that modifies the operating bandwidth of the UE (10) at timing at which the position of the UE (10) is measured; and a reception unit (13) that, over the modified operating bandwidth of the UE (10), receives a downlink positioning reference signal (DL PRS) that is used to measure the position of the UE (10).

Description

ユーザ装置User device
 本発明は、位置測定を行うユーザ装置に関する。 The present invention relates to a user device that performs position measurement.
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)を仕様化している。また、3GPPでは、さらに、5G New Radio(NR)などと呼ばれるLTEの後継システムの仕様が検討されている。 The 3rd Generation Partnership Project (3GPP) has specified Long Term Evolution (LTE), and has specified LTE-Advanced (hereinafter referred to as LTE including LTE-Advanced) for the purpose of further speeding up LTE. In addition, 3GPP is also considering the specifications of LTE successor systems such as 5G New Radio (NR).
 NRでは、セル毎に、サブキャリア間隔を規定するNumerology及び、動作帯域幅を規定するBandwidth Parts(BWP)を設定可能であることが規定されている(非特許文献1参照)。 The NR stipulates that Numerology, which defines the subcarrier spacing, and Bandwidth Parts (BWP), which defines the operating bandwidth, can be set for each cell (see Non-Patent Document 1).
 NRにおいて、ユーザ装置(UE)は、サービングセル及び少なくとも2つの隣接セルから送信された複数の下りリンク・測位参照信号(DL PRS)を用いて、当該UEの位置測定を行う。 In the NR, the user device (UE) measures the position of the UE using a plurality of downlink / positioning reference signals (DL PRS) transmitted from the serving cell and at least two adjacent cells.
 しかしながら、NRでは、複数のセルにおいて、DL PRSを送信するために設定されたNumerology又はBWPが異なる場合がある。 However, in NR, the Numerology or BWP set for transmitting DL PRS may differ in multiple cells.
 このため、UEは、隣接セルから送信されているDL PRSを受信できない可能性がある。この場合、UEは、当該UEの位置測定を行うことができない。 Therefore, the UE may not be able to receive the DL PRS transmitted from the adjacent cell. In this case, the UE cannot measure the position of the UE.
 そこで、本発明は、このような状況に鑑みてなされたものであり、複数のセルにおいて、測位参照信号を送信するために設定されたサブキャリア間隔又は動作帯域幅が異なる場合でも、位置測定を実施し得るユーザ装置を提供することを目的とする。 Therefore, the present invention has been made in view of such a situation, and position measurement can be performed in a plurality of cells even when the subcarrier spacing or the operating bandwidth set for transmitting the positioning reference signal is different. It is an object of the present invention to provide a user device that can be implemented.
 本発明の一態様に係るユーザ装置(10)は、前記ユーザ装置(10)の位置測定を行うタイミングにおいて、前記ユーザ装置(10)の動作帯域幅を変更する制御部(15)と、変更された前記ユーザ装置(10)の動作帯域幅において、前記ユーザ装置(10)の位置測定を行うために使用される測位参照信号(DL PRS)を受信する受信部(13)と、を備える。 The user device (10) according to one aspect of the present invention is changed to a control unit (15) that changes the operating bandwidth of the user device (10) at the timing of measuring the position of the user device (10). A receiving unit (13) for receiving a positioning reference signal (DL PRS) used for measuring the position of the user device (10) in the operating bandwidth of the user device (10) is provided.
図1は、無線通信システム1の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 1. 図2は、DL PRSのBWP及びUE10のアクティブBWPの一例を説明する図である。FIG. 2 is a diagram illustrating an example of DL PRS BWP and UE10 active BWP. 図3は、UE10の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of UE10. 図4は、UE10及び位置サーバ50による測位手続のシーケンスの一例を示す図である。FIG. 4 is a diagram showing an example of a sequence of positioning procedures by the UE 10 and the location server 50. 図5は、UE10による位置測定処理の動作フローを示す図である。FIG. 5 is a diagram showing an operation flow of the position measurement process by the UE 10. 図6は、位置測定処理における測定方法1を説明する図である。FIG. 6 is a diagram illustrating a measurement method 1 in the position measurement process. 図7は、位置測定処理における測定方法2を説明する図である。FIG. 7 is a diagram illustrating a measurement method 2 in the position measurement process. 図8は、位置測定処理における測定方法3を説明する図である。FIG. 8 is a diagram illustrating a measurement method 3 in the position measurement process. 図9は、位置測定処理における測定方法4を説明する図である。FIG. 9 is a diagram illustrating a measurement method 4 in the position measurement process. 図10は、位置測定処理における測定方法5を説明する図である。FIG. 10 is a diagram illustrating a measurement method 5 in the position measurement process. 図11は、位置測定処理における測定方法6を説明する図である。FIG. 11 is a diagram illustrating a measurement method 6 in the position measurement process. 図12は、UE10のハードウェア構成の一例を示す図である。FIG. 12 is a diagram showing an example of the hardware configuration of UE10.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム1の全体概略構成図である。
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 1 according to the embodiment.
 無線通信システム1は、UE10と、無線基地局(gNB)20, 20a, 20bと、コアネットワーク40と、位置サーバ50とを含む。 Wireless communication system 1 includes UE10, radio base stations (gNB) 20, 20a, 20b, core network 40, and location server 50.
 UE10は、gNB20配下のサービングセル30に在圏している。UE10は、UE10とgNB20及びコアネットワーク40との間においてNRに従った無線通信を実行する。UE10には、UE10の動作帯域幅であるアクティブBWPが設定されている。UE10は、アクティブBWPの範囲内のBWPで送信されている各種信号を受信することができる。 UE10 is in the serving cell 30 under gNB20. UE10 executes wireless communication according to NR between UE10 and gNB20 and core network 40. UE10 has an active BWP, which is the operating bandwidth of UE10. UE10 can receive various signals transmitted by BWP within the range of active BWP.
 gNB20, 20a, 20bは、gNB20, 20a, 20bとコアネットワーク40との間においてNRに従った無線通信を実行する。gNB20は、サービングセル30を制御する。gNB20a, 20bは、隣接セル30a, 30bを制御する。 The gNB20, 20a, 20b executes wireless communication according to NR between the gNB20, 20a, 20b and the core network 40. The gNB 20 controls the serving cell 30. gNB20a and 20b control adjacent cells 30a and 30b.
 gNB20, 20a, 20bは、所定のタイミングで、DL PRS #x, DL PRS #y, DL PRS #zを送信する。DL PRS #x, DL PRS #y, DL PRS #zは、UE10の位置を測定するために使用される。gNB20, 20a, 20bは、UE10に設定されているアクティブBWPとは独立して、DL PRS #x, DL PRS #y, DL PRS #zを送信するためのBWPを設定することができる。この場合、UE10には、これらの設定されたBWPが通知される。 GNB20, 20a, 20b transmit DL PRS # x, DL PRS # y, DL PRS # z at a predetermined timing. DL PRS # x, DL PRS # y, DL PRS # z are used to measure the position of UE10. gNB20, 20a, 20b can set the BWP for transmitting DL PRS # x, DL PRS # y, DL PRS # z independently of the active BWP set in UE10. In this case, UE10 is notified of these set BWPs.
 図2は、DL PRSのBWP、及びUE10のアクティブBWPの一例を説明する図である。アクティブBWPは、UE10が対応可能なBWPのうち、現在の通信で設定されているBWPを表している、
 図2に示す例では、DL PRS #xは、UE10のアクティブBWPの範囲内にマッピングされているため、UE10は、DL PRS #xを受信することができる。一方、DL PRS #yは、UE10のアクティブBWPの範囲外にマッピングされているため、UE10は、DL PRS #yを受信することができない。また、DL PRS #zのリソースの一部が、UE10のアクティブBWPの範囲内にあるだけで、残りの部分は、UE10のアクティブBWPの範囲外にあるため、UE10は、DL PRS #zを受信することができない。
FIG. 2 is a diagram illustrating an example of DL PRS BWP and UE10 active BWP. Active BWP represents the BWP set in the current communication among the BWP supported by UE10.
In the example shown in FIG. 2, since DL PRS #x is mapped within the range of the active BWP of UE10, UE10 can receive DL PRS #x. On the other hand, DL PRS #y is mapped outside the range of UE10's active BWP, so UE10 cannot receive DL PRS # y. Also, UE10 receives DL PRS # z because some of the resources in DL PRS # z are only within the active BWP of UE10 and the rest are outside the active BWP of UE10. Can not do it.
 コアネットワーク40は、gNB20を介して、UE10と通信する。コアネットワーク40、又は位置サーバ50を含むコアネットワーク40に属するノード群は、gNB20, 20a, 20bから、DL PRS #x, DL PRS #y, DL PRS #zの各種設定を受信する。UE10は、コアネットワーク40にアタッチするとき、又はCapability要求をコアネットワーク40から受信する場合、当該UE10の能力をコアネットワーク40に通知する。 Core network 40 communicates with UE10 via gNB20. The node group belonging to the core network 40 or the core network 40 including the location server 50 receives various settings of DL PRS # x, DL PRS # y, DL PRS # z from gNB20, 20a, 20b. When the UE 10 attaches to the core network 40 or receives a Capability request from the core network 40, the UE 10 notifies the core network 40 of the capability of the UE 10.
 コアネットワーク40には、位置サーバ50が設けられている。位置サーバ50は、後述するように、UE10と位置サーバ50との間において測位手続を行う。UE10は、位置サーバ50からの指示で、UE10の位置測定を行う場合、gNB20配下のサービングセル30及びgNB20a, 20b配下の隣接セル30a, 30bから、DL PRS #x, DL PRS #y, DL PRS #zを受信する必要がある。DL PRS #x, DL PRS #y, DL PRX#zの受信時間差などを用いることにより、UE10の位置が推定される。 The location server 50 is provided in the core network 40. The location server 50 performs a positioning procedure between the UE 10 and the location server 50, as will be described later. When the UE10 measures the position of the UE10 by the instruction from the position server 50, the serving cell 30 under the gNB20 and the adjacent cells 30a, 30b under the gNB20a, 20b, DL PRS # x, DL PRS # y, DL PRS # Need to receive z. The position of UE10 is estimated by using the reception time difference of DL PRS # x, DL PRS # y, DL PRX # z.
 UE10は、DL PRS #x, DL PRS #y, DL PRS #zを受信する場合、DL PRS #x, DL PRS #y, DL PRS#zの受信時間差などの測定結果を、gNB20を介して、位置サーバ50に送信する。なお、UE10は、当該測定結果に基づいて、当該UE10の位置を推定し、推定した位置情報を位置サーバ50に送信してもよい。 When UE10 receives DL PRS # x, DL PRS # y, DL PRS # z, the measurement results such as the reception time difference of DL PRS # x, DL PRS # y, DL PRS # z are measured via gNB20. Send to location server 50. The UE 10 may estimate the position of the UE 10 based on the measurement result and transmit the estimated position information to the position server 50.
 (2)UEの機能ブロック構成
 次に、UE10の機能ブロック構成について説明する。以下、本実施形態における特徴に関連する部分についてのみ説明する。したがって、当該UE10は、本実施形態における特徴に直接関係しない他の機能ブロックを備えることは勿論である。
(2) UE Functional Block Configuration Next, the UE 10 functional block configuration will be described. Hereinafter, only the parts related to the features in the present embodiment will be described. Therefore, it goes without saying that the UE 10 includes other functional blocks that are not directly related to the features of the present embodiment.
 図3は、UE10の機能ブロック構成図である。なお、UE10のハードウェア構成については後述する。図3に示すように、UE10は、送信部11と、受信部13と、制御部15とを備える。 FIG. 3 is a functional block configuration diagram of UE10. The hardware configuration of UE10 will be described later. As shown in FIG. 3, the UE 10 includes a transmission unit 11, a reception unit 13, and a control unit 15.
 送信部11は、UE10が対応可能なBWPを含むCapability情報をネットワーク(例えば、コアネットワーク40及び位置サーバ50)に送信する。送信部11は、測定結果を位置サーバ50に送信する。 The transmission unit 11 transmits Capability information including BWP that UE10 can support to the network (for example, core network 40 and location server 50). The transmission unit 11 transmits the measurement result to the location server 50.
 受信部13は、gNB20配下のサービングセル30からDL PRS #xを受信する。受信部13は、gNB20a, 20b配下の隣接セル30a, 30bから、DL PRS #y, DL PRS #zを受信する。受信部13は、ネットワーク(例えば、コアネットワーク40、位置サーバ50)から、新たに設定されたUE10のアクティブBWPに関する設定情報を受信する。 The receiving unit 13 receives DL PRS # x from the serving cell 30 under the gNB 20. The receiving unit 13 receives DL PRS # y and DL PRS # z from the adjacent cells 30a and 30b under gNB20a and 20b. The receiving unit 13 receives the setting information regarding the newly set active BWP of the UE 10 from the network (for example, the core network 40, the location server 50).
 制御部15は、UE10のアクティブBWPの変更を行う。制御部15は、受信したDL PRS #x, DL PRS #y, DL PRS #zに基づいて位置測定を行う。 Control unit 15 changes the active BWP of UE10. The control unit 15 measures the position based on the received DL PRS # x, DL PRS # y, DL PRS # z.
 (3)無線通信システムの動作
 次に、無線通信システム1の動作について説明する。
(3) Operation of wireless communication system Next, the operation of wireless communication system 1 will be described.
 (3.1)測位手続
 最初に、UE10と位置サーバ50との間で行われる測位手続について説明する。なお、測位手順は、LTE Positioning Protocol(LPP)又はNRで規定される新たな制御手順などに従って、gNB20を介して、UE10と位置サーバ50との間で行われる。
(3.1) Positioning procedure First, the positioning procedure performed between the UE 10 and the location server 50 will be described. The positioning procedure is performed between the UE 10 and the position server 50 via the gNB 20 in accordance with a new control procedure defined by the LTE Positioning Protocol (LPP) or NR.
 図4は、UE10及び位置サーバ50による測位手続のシーケンスの一例を示す図である。位置サーバ50は、Capability要求メッセージをUE10に送信する(S1)。UE10は、Capability要求メッセージを受信する場合、Capability情報を位置サーバ50に送信する(S3)。 FIG. 4 is a diagram showing an example of a sequence of positioning procedures by the UE 10 and the location server 50. Location server 50 sends a Capability request message to UE10 (S1). When the UE10 receives the Capability request message, it sends the Capability information to the location server 50 (S3).
 Capability情報には、UE10が受信可能なNumerologyが含まれていてもよい。なお、Numerologyには、サブキャリア間隔が規定されている。具体的には、Numerologyには、15kHz, 30kHz, 60kHz, 120kHzのサブキャリア間隔が規定されている。 The Capability information may include Numerology that can be received by UE10. In Numerology, the subcarrier interval is specified. Specifically, Numerology defines subcarrier intervals of 15kHz, 30kHz, 60kHz, and 120kHz.
 位置サーバ50は、UE10からCapability情報を受信する場合、AssistanceデータをUE10に送信した後(S5)、位置情報要求メッセージをUE10に送信する。Assistanceデータには、隣接セル30a, 30bに関する情報が含まれている。なお、Assistanceデータには、隣接セル30a, 30bで設定されているNumerologyが含まれていてもよい。 When the location server 50 receives the Capability information from UE10, it transmits the Assistance data to UE10 (S5) and then sends the location information request message to UE10. The Assistance data contains information about adjacent cells 30a, 30b. The Assistance data may include Numerology set in adjacent cells 30a and 30b.
 UE10は、位置サーバ50から位置情報要求メッセージを受信する場合、位置測定を行う(S9)。UE10は、位置測定を行った後、測定結果を位置サーバ50に送信する(S11)。 UE10 measures the position when it receives the position information request message from the position server 50 (S9). After performing the position measurement, UE10 transmits the measurement result to the position server 50 (S11).
 (3.2)位置測定処理
 次に、測位手続のS9で行われるUE10による位置測定処理について説明する。
(3.2) Position measurement processing Next, the position measurement processing by UE10 performed in S9 of the positioning procedure will be described.
 図5は、UE10による位置測定処理の動作フローを示す図である。UE10は、位置サーバ50から位置情報要求メッセージを受信する場合、測定タイミングであるか否かを決定する(S12)。測定タイミングである場合、UE10は、サービングセル30及び隣接セル30a, 30bから、DL PRS #x, DL PRS #y, DL PRS #zを受信する(S13)。一方、測定タイミングではない場合、UE10は、測定タイミングに達するのを待つ。 FIG. 5 is a diagram showing an operation flow of position measurement processing by UE10. When the UE10 receives the location information request message from the location server 50, it determines whether or not it is the measurement timing (S12). When the measurement timing is reached, the UE 10 receives DL PRS # x, DL PRS # y, DL PRS # z from the serving cell 30 and the adjacent cells 30a and 30b (S13). On the other hand, if it is not the measurement timing, UE10 waits for the measurement timing to be reached.
 UE10は、DL PRS #x, DL PRS #y, DL PRS #zを受信する場合、DL PRS #x, DL PRS #y, DL PRX#zの受信時間差などの測定を実行する(S15)。 When UE10 receives DL PRS # x, DL PRS # y, DL PRS # z, it measures the reception time difference of DL PRS # x, DL PRS # y, DL PRX # z (S15).
 以下に、位置測定処理における測定方法1~6及びその他を説明する。 The measurement methods 1 to 6 and others in the position measurement process will be described below.
 (3.2.1)測定方法1
 図6は、測定方法1を説明する図である。本測定方法では、UE10は、異周波もしくは同周波測定のための期間である測定ギャップ期間内で、UE10の位置測定を行う。なお、測定ギャップ期間は、上位レイヤから通知される。
(3.2.1) Measurement method 1
FIG. 6 is a diagram illustrating the measurement method 1. In this measurement method, the UE10 measures the position of the UE10 within the measurement gap period, which is a period for measuring different frequencies or the same frequency. The measurement gap period is notified from the upper layer.
 測定ギャップ期間内では、UE10のアクティブBWPは設定されない。このため、UE10は、チャネル帯域幅CBW全体で、各種信号を受信することができる。したがって、UE10は、サービングセル30及び隣接セル30a, 30bから、DL PRS #x, DL PRS #y, DL PRS #zを受信することができる。 The active BWP of UE10 is not set within the measurement gap period. Therefore, the UE 10 can receive various signals over the entire channel bandwidth CBW. Therefore, the UE 10 can receive DL PRS # x, DL PRS # y, DL PRS # z from the serving cell 30 and the adjacent cells 30a and 30b.
 一方、測定ギャップ期間外では、UE10のアクティブBWPは、図2に示すように設定されている。このため、測定ギャップ期間外で、UE10の位置測定を行った場合、UE10は、サービングセル30から送信されるDL PRS #xのみ受信する。 On the other hand, outside the measurement gap period, the active BWP of UE10 is set as shown in FIG. Therefore, when the position of UE10 is measured outside the measurement gap period, UE10 receives only DL PRS # x transmitted from the serving cell 30.
 (3.2.2)測定方法2
 図7は、測定方法2を説明する図である。本測定方法では、UE10は、測定ギャップ期間外で、UE10の位置測定を行う。ここで、隣接セル30a, 30bにおけるNumerologyの設定は、サービングセル30におけるNumerologyの設定と同一である。また、測定タイミング外において、UE10のアクティブBWPの範囲内に、DL PRS #x、DL PRS #y、DL PRS #zが含まれている。
(3.2.2) Measurement method 2
FIG. 7 is a diagram illustrating the measurement method 2. In this measurement method, the UE10 measures the position of the UE10 outside the measurement gap period. Here, the setting of Numerology in the adjacent cells 30a and 30b is the same as the setting of Numerology in the serving cell 30. In addition, DL PRS #x, DL PRS #y, and DL PRS # z are included in the range of active BWP of UE10 outside the measurement timing.
 このため、UE10は、測定タイミングにおいて、UE10のアクティブBWPを変更せずに、サービングセル30及び隣接セル30a, 30bから、DL PRS #x, DL PRS #y, DL PRS #zを受信することができる。 Therefore, the UE10 can receive the DL PRS # x, DL PRS # y, DL PRS # z from the serving cell 30 and the adjacent cells 30a, 30b without changing the active BWP of the UE10 at the measurement timing. ..
 (3.2.3)測定方法3
 図8は、測定方法3を説明する図である。本測定方法では、UE10は、測定ギャップ期間外で、UE10の位置測定を行う。ここで、隣接セル30a, 30bにおけるNumerologyの設定は、サービングセル30におけるNumerologyの設定と同一である。また、測定タイミング外において、UE10のアクティブBWPの範囲内には、PRS #xのみが含まれている(図2参照)。
(3.2.3) Measurement method 3
FIG. 8 is a diagram illustrating the measurement method 3. In this measurement method, the UE10 measures the position of the UE10 outside the measurement gap period. Here, the setting of Numerology in the adjacent cells 30a and 30b is the same as the setting of Numerology in the serving cell 30. In addition, outside the measurement timing, only PRS #x is included in the range of the active BWP of UE10 (see FIG. 2).
 このため、測定タイミングに入ると、UE10には、ネットワーク(例えば、コアネットワーク40、位置サーバ50)から、新たに設定されたUE10のアクティブBWPが通知される。UE10は、当該通知を受信する場合、現在のUE10のアクティブBWPを、新たに設定されたUE10のアクティブBWPに変更する。 Therefore, when the measurement timing is entered, the UE10 is notified of the newly set active BWP of the UE10 from the network (for example, core network 40, location server 50). When UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
 具体的には、新たに設定されたUE10のアクティブBWPの範囲内には、DL PRS #x、DL PRS #y、DL PRS #zが含まれる。したがって、測定タイミングにおいて、UE10は、サービングセル30及び隣接セル30a, 30bから、DL PRS #x, DL PRS #y, DL PRS #zを受信することができる。 Specifically, the newly set range of UE10's active BWP includes DL PRS # x, DL PRS # y, and DL PRS # z. Therefore, at the measurement timing, the UE 10 can receive DL PRS # x, DL PRS # y, DL PRS # z from the serving cell 30 and the adjacent cells 30a, 30b.
 UE10は、受信したDL PRS #x, DL PRS #y, DL PRS #zに基づいて位置測定を行い、測定結果をネットワークに送信すると、当該ネットワークから、現在のUE10のアクティブBWPを、測定タイミングに入る前のUE10のアクティブBWP(デフォルトBWP)に戻すように指示を受ける。これにより、UE10のアクティブBWPの範囲内には、PRS #xのみが含まれる(図2参照)。 UE10 performs position measurement based on the received DL PRS # x, DL PRS # y, DL PRS # z, and when the measurement result is transmitted to the network, the current active BWP of UE10 is set to the measurement timing from the network. You will be instructed to return to the UE10 active BWP (default BWP) before entering. As a result, only PRS # x is included in the range of active BWP of UE10 (see FIG. 2).
 なおUE10は、UE10内で起動するタイマが満了する場合、現在のUE10のアクティブBWPをデフォルトBWPに変更してもよい。 Note that UE10 may change the current active BWP of UE10 to the default BWP when the timer that starts in UE10 expires.
 (3.2.4)測定方法4
 図9は、測定方法4を説明する図である。本測定方法では、UE10は、測定ギャップ期間外で、UE10の位置測定を行う。ここで、隣接セル30a, 30bにおけるNumerologyの設定は、サービングセル30におけるNumerologyの設定と同一である。また、測定タイミング外において、UE10のアクティブBWPの範囲内には、PRS #xのみが含まれている(図2参照)。
(3.2.4) Measurement method 4
FIG. 9 is a diagram illustrating the measurement method 4. In this measurement method, the UE10 measures the position of the UE10 outside the measurement gap period. Here, the setting of Numerology in the adjacent cells 30a and 30b is the same as the setting of Numerology in the serving cell 30. In addition, outside the measurement timing, only PRS #x is included in the range of the active BWP of UE10 (see FIG. 2).
 このため、測定タイミングに入ると、UE10は、最初に、サービングセル30からDL PRS #xを受信する(1回目の測定)。 Therefore, when the measurement timing is entered, the UE10 first receives DL PRS # x from the serving cell 30 (first measurement).
 測定タイミング中に、1回目の測定から所定期間経過すると、UE10には、ネットワーク(例えば、コアネットワーク40、位置サーバ50)から、新たに設定されたUE10のアクティブBWPが通知される。UE10は、当該通知を受信する場合、現在のUE10のアクティブBWPを、新たに設定されたUE10のアクティブBWPに変更する。 During the measurement timing, when a predetermined period has elapsed from the first measurement, the UE10 is notified of the newly set active BWP of the UE10 from the network (for example, core network 40, location server 50). When UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
 具体的には、新たに設定されたUE10のアクティブBWPの範囲内には、DL PRS #x、DL PRS #y、DL PRS #zのうち、DL PRS #yのみが含まれる。したがって、UE10は、隣接セル30aから、DL PRS #yを受信することができる(2回目の測定)。 Specifically, the newly set range of UE10's active BWP includes only DL PRS # y out of DL PRS # x, DL PRS # y, and DL PRS # z. Therefore, UE10 can receive DLPRS #y from the adjacent cell 30a (second measurement).
 測定タイミング中に、2回目の測定から所定期間経過すると、UE10には、ネットワークから、新たに設定されたUE10のアクティブBWPが通知される。UE10は、当該通知を受信する場合、現在のUE10のアクティブBWPを、新たに設定されたUE10のアクティブBWPに変更する。 During the measurement timing, when a predetermined period has passed from the second measurement, the UE10 is notified of the newly set active BWP of the UE10 from the network. When UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
 具体的には、新たに設定されたUE10のアクティブBWPの範囲内には、DL PRS #x、DL PRS #y、DL PRS #zのうち、DL PRS #zのみが含まれる。したがって、測定タイミングにおいて、UE10は、隣接セル30bから、DL PRS #zを受信することができる(3回目の測定)。 Specifically, the newly set range of UE10's active BWP includes only DL PRS # z among DL PRS # x, DL PRS # y, and DL PRS # z. Therefore, at the measurement timing, the UE 10 can receive DL PRS # z from the adjacent cell 30b (third measurement).
 UE10は、受信したDL PRS #x, DL PRS #y, DL PRS #zに基づいて位置測定を行い、測定結果をネットワークに送信すると、当該ネットワークから、現在のUE10のアクティブBWPを、測定タイミングに入る前のUE10のアクティブBWP(デフォルトBWP)に戻すように指示を受ける。これにより、UE10のアクティブBWPの範囲内には、PRS #xのみが含まれる(図2参照)。 UE10 performs position measurement based on the received DL PRS # x, DL PRS # y, DL PRS # z, and when the measurement result is transmitted to the network, the current active BWP of UE10 is set to the measurement timing from the network. You will be instructed to return to the UE10 active BWP (default BWP) before entering. As a result, only PRS # x is included in the range of active BWP of UE10 (see FIG. 2).
 なおUE10は、UE10内で起動するタイマが満了する場合に、現在のUE10のアクティブBWPをデフォルトBWPに変更してもよい。 Note that UE10 may change the current active BWP of UE10 to the default BWP when the timer that starts in UE10 expires.
 測定タイミング中のアクティブBWPの変更について、UE10は、ネットワークからの1回目の通知を受信した後、所定のルールに基づいて、アクティブBWPを変更してもよい。例えば、チャネル帯域幅全体を4分割して、1回目の測定から、所定の順番で、順次アクティブBWPを自律的に変更してもよい。 Regarding the change of the active BWP during the measurement timing, the UE10 may change the active BWP based on a predetermined rule after receiving the first notification from the network. For example, the entire channel bandwidth may be divided into four, and the active BWP may be autonomously changed in a predetermined order from the first measurement.
 この場合、例えば、UE10は、測位手続のS5にて、隣接セル30a, 30bにおけるDL PRS #y, DL PRS #zを含むAssistanceデータを受信する。 In this case, for example, UE10 receives Assistance data including DL PRS # y and DL PRS # z in adjacent cells 30a and 30b in S5 of the positioning procedure.
 また、測定タイミング中のアクティブBWPの変更について、フレーム構成として、フレームの所定部分に変更指示が周期的に配置されており、UE10は、フレームから更新指示を読み取ると、所定の順番で、アクティブBWPを自律的に変更してもよい。 Further, regarding the change of the active BWP during the measurement timing, the change instruction is periodically arranged in a predetermined part of the frame as a frame configuration, and when the UE10 reads the update instruction from the frame, the active BWP is in a predetermined order. May be changed autonomously.
 (3.2.5)測定方法5
 図10は、測定方法5を説明する図である。本測定方法では、UE10は、測定ギャップ期間外で、UE10の位置測定を行う。ここで、隣接セル30a, 30bにおけるNumerologyの設定は、サービングセル30におけるNumerologyの設定と同一である。また、測定タイミング外において、UE10のアクティブBWPの範囲内には、PRS #xのみが含まれている(図2参照)。
(3.2.5) Measurement method 5
FIG. 10 is a diagram illustrating the measurement method 5. In this measurement method, the UE10 measures the position of the UE10 outside the measurement gap period. Here, the setting of Numerology in the adjacent cells 30a and 30b is the same as the setting of Numerology in the serving cell 30. In addition, outside the measurement timing, only PRS #x is included in the range of the active BWP of UE10 (see FIG. 2).
 このため、測定タイミングに入ると、UE10は、最初に、サービングセル30からDL PRS #xを受信する(1回目の測定)。 Therefore, when the measurement timing is entered, the UE10 first receives DL PRS #x from the serving cell 30 (first measurement).
 測定タイミング中に、1回目の測定から所定期間経過すると、UE10には、ネットワーク(例えば、コアネットワーク40又は位置サーバ50)から、新たに設定されたUE10のアクティブBWPが通知される。UE10は、当該通知を受信する場合、現在のUE10のアクティブBWPを、新たに設定されたUE10のアクティブBWPに変更する。 During the measurement timing, when a predetermined period elapses from the first measurement, the UE10 is notified of the newly set active BWP of the UE10 from the network (for example, the core network 40 or the location server 50). When UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
 具体的には、新たに設定されたUE10のアクティブBWPの範囲内には、DL PRS #x、DL PRS #y、DL PRS #zのうち、DL PRS #x, DL PRS #yが含まれる。したがって、UE10は、サービングセル30及び隣接セル30aから、DL PRS #x, DL PRS #yを受信することができる(2回目の測定)。 Specifically, the newly set range of UE10's active BWP includes DL PRS # x, DL PRS # y, and DL PRS # z among DL PRS # x and DL PRS # y. Therefore, the UE 10 can receive DL PRS # x and DL PRS # y from the serving cell 30 and the adjacent cell 30a (second measurement).
 測定タイミング中に、2回目の測定から所定期間経過すると、UE10には、ネットワークから、新たに設定されたUE10のアクティブBWPが通知される。UE10は、当該通知を受信する場合、現在のUE10のアクティブBWPを、新たに設定されたUE10のアクティブBWPに変更する。 During the measurement timing, when a predetermined period has passed from the second measurement, the UE10 is notified of the newly set active BWP of the UE10 from the network. When UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
 具体的には、新たに設定されたUE10のアクティブBWPの範囲内には、DL PRS #x、DL PRS #y、DL PRS #zのうち、DL PRS #x, DL PRS #zが含まれる。したがって、測定タイミングにおいて、UE10は、隣接セル30bから、DL PRS #x, DL PRS #zを受信することができる(3回目の測定)。 Specifically, the newly set range of UE10's active BWP includes DL PRS # x, DL PRS # y, and DL PRS # z among DL PRS # x and DL PRS # z. Therefore, at the measurement timing, the UE 10 can receive DL PRS # x and DL PRS # z from the adjacent cell 30b (third measurement).
 UE10は、受信したDL PRS #x, DL PRS #y, DL PRS #zに基づいて位置測定を行い、測定結果をネットワークに送信すると、当該ネットワークから、現在のUE10のアクティブBWPを、測定タイミングに入る前のUE10のアクティブBWP(デフォルトBWP)に戻すように指示を受ける。これにより、UE10のアクティブBWPの範囲内には、PRS #xのみが含まれる(図2参照)。 UE10 performs position measurement based on the received DL PRS # x, DL PRS # y, DL PRS # z, and when the measurement result is transmitted to the network, the current active BWP of UE10 is set to the measurement timing from the network. You will be instructed to return to the UE10 active BWP (default BWP) before entering. As a result, only PRS # x is included in the range of active BWP of UE10 (see FIG. 2).
 なおUE10は、UE10内で起動するタイマが満了する場合に、現在のUE10のアクティブBWPをデフォルトBWPに変更してもよい。 Note that UE10 may change the current active BWP of UE10 to the default BWP when the timer that starts in UE10 expires.
 本測定方法では、測定タイミングにおいて、UE10は、DL PRS #xを複数回受信するが、1回だけ受信してもよい。また、DL PRS #xを複数回受信する場合には、UE10は、最新のDL PRS #x、受信品質が最も良いDL PRS #x、複数のDL PRS #xの中から選択された1つのDL PRX #xなどを用いて、位置測定を行ってもよい。さらに、UE10は、複数のDL PRS #xの受信品質の平均値を算出して、算出された平均値を位置測定に利用してもよい。 In this measurement method, the UE10 receives DL PRS # x multiple times at the measurement timing, but it may be received only once. In addition, when receiving DL PRS # x multiple times, UE10 is the latest DL PRS # x, DL PRS # x with the best reception quality, and one DL selected from multiple DL PRS # x. Position measurement may be performed using PRX # x or the like. Further, the UE 10 may calculate the average value of the reception qualities of a plurality of DL PRS # x and use the calculated average value for the position measurement.
 (3.2.6)測定方法6
 図11は、測定方法6を説明する図である。本測定方法では、UE10は、測定ギャップ期間外で、UE10の位置測定を行う。ここで、隣接セル30a, 30bにおけるNumerologyの設定は、サービングセル30におけるNumerologyの設定と異なる。また、測定タイミング外において、UE10のアクティブBWPの範囲内には、PRS #xのみが含まれている(図2参照)。
(3.2.6) Measurement method 6
FIG. 11 is a diagram illustrating the measurement method 6. In this measurement method, the UE10 measures the position of the UE10 outside the measurement gap period. Here, the setting of Numerology in the adjacent cells 30a and 30b is different from the setting of Numerology in the serving cell 30. In addition, outside the measurement timing, only PRS #x is included in the range of the active BWP of UE10 (see FIG. 2).
 このため、測定タイミングに入ると、UE10は、最初に、サービングセル30からDL PRS #xを受信する(1回目の測定)。 Therefore, when the measurement timing is entered, the UE10 first receives DL PRS #x from the serving cell 30 (first measurement).
 測定タイミング中に、1回目の測定から所定期間経過すると、UE10には、ネットワーク(例えば、コアネットワーク40又は位置サーバ50)から、新たに設定されたUE10のアクティブBWPが通知される。UE10は、当該通知を受信する場合、現在のUE10のアクティブBWPを、新たに設定されたUE10のアクティブBWPに変更する。 During the measurement timing, when a predetermined period elapses from the first measurement, the UE10 is notified of the newly set active BWP of the UE10 from the network (for example, the core network 40 or the location server 50). When UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
 具体的には、新たに設定されたUE10のアクティブBWPの範囲内には、DL PRS #x、DL PRS #y、DL PRS #zのうち、DL PRS #yのみが含まれる。なお、新たに設定されたUE10のアクティブBWPのNumerologyはDL PRS #yと同一となる。したがって、UE10は、隣接セル30aから、DL PRS #yを受信することができる(2回目の測定)。 Specifically, the newly set range of UE10's active BWP includes only DL PRS # y out of DL PRS # x, DL PRS # y, and DL PRS # z. The newly set Numerology of UE10's active BWP will be the same as DL PRS # y. Therefore, UE10 can receive DLPRS #y from the adjacent cell 30a (second measurement).
 測定タイミング中に、2回目の測定から所定期間経過すると、UE10には、ネットワークから、新たに設定されたUE10のアクティブBWPが通知される。UE10は、当該通知を受信する場合、現在のUE10のアクティブBWPを、新たに設定されたUE10のアクティブBWPに変更する。 During the measurement timing, when a predetermined period has passed from the second measurement, the UE10 is notified of the newly set active BWP of the UE10 from the network. When UE10 receives the notification, it changes the current active BWP of UE10 to the newly set active BWP of UE10.
 具体的には、新たに設定されたUE10のアクティブBWPの範囲内には、DL PRS #x、DL PRS #y、DL PRS #zのうち、DL PRS #zのみが含まれる。なお、新たに設定されたUE10のアクティブBWPのNumerologyはDL PRS #zと同一となる。したがって、UE10は、隣接セル30bから、DL PRS #zを受信することができる(3回目の測定)。 Specifically, the newly set range of UE10's active BWP includes only DL PRS # z among DL PRS # x, DL PRS # y, and DL PRS # z. The newly set Numerology of UE10's active BWP will be the same as DL PRS # z. Therefore, UE10 can receive DLPRS # z from the adjacent cell 30b (third measurement).
 UE10は、受信したDL PRS #x, DL PRS #y, DL PRS #zに基づいて位置測定を行い、測定結果をネットワークに送信すると、当該ネットワークから、現在のUE10のアクティブBWPを、測定タイミングに入る前のUE10のアクティブBWP(デフォルトBWP)に戻すように指示を受ける。これにより、UE10のアクティブBWPの範囲内には、PRS #xのみが含まれる(図2参照)。 UE10 performs position measurement based on the received DL PRS # x, DL PRS # y, DL PRS # z, and when the measurement result is transmitted to the network, the current active BWP of UE10 is set to the measurement timing from the network. You will be instructed to return to the UE10 active BWP (default BWP) before entering. As a result, only PRS # x is included in the range of active BWP of UE10 (see FIG. 2).
 なおUE10は、UE10内で起動するタイマが満了する場合に、現在のUE10のアクティブBWPをデフォルトBWPに変更してもよい。 Note that UE10 may change the current active BWP of UE10 to the default BWP when the timer that starts in UE10 expires.
 (3.2.7)その他
 ネットワーク(例えば、コアネットワーク40又は位置サーバ50)は、UE10から通知されたUE10の能力に基づいて、上述した測定方法1~6のうち、UE10が対応可能な測定方法のみを適用する。これにより、UE10が対応可能な測定方法以外の測定方法はUE10には要求されない。
(3.2.7) Other networks (for example, core network 40 or location server 50) are measured by UE10 among the above-mentioned measurement methods 1 to 6 based on the ability of UE10 notified from UE10. Apply only the method. As a result, no measurement method other than the measurement method supported by UE10 is required for UE10.
 例えば、UE10が、同一のNumerology及び同一のBWPでなければ、位置測定を行うことができない場合、ネットワークは、UE10に対して、上述した測定方法2のみを適用し、その他の測定方法はUE10には要求されない。 For example, if UE10 cannot perform position measurement unless it has the same Numerology and the same BWP, the network applies only the measurement method 2 described above to UE10, and the other measurement methods to UE10. Is not required.
 なお、Rel-15のRadio Resource Management(RRM)の要求仕様では、測定ギャップ期間内で測定する場合と測定ギャップ期間外で測定する場合とを比較して,より長い遅延となる方を適用することが規定されている。しかしながら、位置測定にかかる測定ギャップ期間については、これに限定されない。 In addition, in the requirement specifications of Radio Resource Management (RRM) of Rel-15, the one with a longer delay should be applied by comparing the case of measuring within the measurement gap period and the case of measuring outside the measurement gap period. Is stipulated. However, the measurement gap period for position measurement is not limited to this.
(5)作用・効果
 上述した実施形態によれば、UE10は、UE10の位置測定を行うタイミングにおいて、UE10のアクティブBWPを変更する制御部15と、変更されたUE10のアクティブBWPにおいて、UE10の位置測定を行うために使用されるDL PRSを受信する受信部13と、を備える。
(5) Action / Effect According to the above-described embodiment, the UE 10 has a control unit 15 that changes the active BWP of the UE 10 at the timing of measuring the position of the UE 10, and the position of the UE 10 in the changed active BWP of the UE 10. It includes a receiver 13 that receives the DL PRS used for making measurements.
 このような構成により、UE10は、アクティブBWPの範囲内に、DL PRS #y, DL PRS #zが含まれるように、UE10のアクティブBWPを変更することができる。 With such a configuration, UE10 can change the active BWP of UE10 so that DL PRS # y and DL PRS # z are included in the range of active BWP.
 したがって、UE10は、隣接セル30a, 30bにおいて、DL PRS #y, DL PRS #zを送信するために設定されたNumerology又はBWPが、サービングセル30において、DL PRS #xを送信するために設定されたNumerology又はBWPと異なる場合でも、位置測定を実施し得る。 Therefore, in UE10, Numerology or BWP set to transmit DL PRS # y, DL PRS # z in adjacent cells 30a and 30b is set to transmit DL PRS # x in serving cell 30. Positioning can be performed even if it differs from Numerology or BWP.
 上述した実施形態によれば、受信部13は、ネットワークから変更指示を受信し、制御部15は、変更指示に基づいて、UE10のアクティブBWPを変更する。 According to the above-described embodiment, the receiving unit 13 receives the change instruction from the network, and the control unit 15 changes the active BWP of the UE 10 based on the change instruction.
 このような構成により、UE10は、負荷を増加させずに、アクティブBWPの範囲内に、DL PRS #y, DL PRS #zが含まれるように、UE10のアクティブBWPを変更することができる。 With such a configuration, UE10 can change the active BWP of UE10 so that DL PRS # y and DL PRS # z are included in the range of active BWP without increasing the load.
 上述した実施形態によれば、UE10は、UE10が対応可能なBWPを、ネットワークに送信する送信部11を更に備える。 According to the above-described embodiment, the UE 10 further includes a transmission unit 11 that transmits a BWP compatible with the UE 10 to the network.
 このような構成により、UE10の能力を超えるアクティブBWPの設定が、ネットワークから要求されないようにすることができる。したがって、UE10は、負荷を増加させずに、位置測定を実施し得る。 With such a configuration, it is possible to prevent the network from requesting the setting of active BWP that exceeds the capacity of UE10. Therefore, UE10 can perform position measurements without increasing the load.
 上述した実施形態によれば、制御部15は、隣接セル30a, 30bにおいて、DL PRS #y, DL PRS #zを送信するために設定されたBWPのうち、少なくとも1つのBWPを含むように、UE10のアクティブBWPを変更する。 According to the above-described embodiment, the control unit 15 includes at least one BWP among the BWPs set to transmit the DL PRS # y, DL PRS # z in the adjacent cells 30a and 30b. Change the active BWP for UE10.
 このような構成により、UE10は、アクティブBWPの範囲内に、DL PRS #y, DL PRS #zが確実に含まれるように、UE10のアクティブBWPを変更することができる。 With such a configuration, UE10 can change the active BWP of UE10 so that DL PRS # y and DL PRS # z are surely included in the range of active BWP.
 上述した実施形態によれば、制御部15は、UE10のアクティブBWPが、隣接セル30a, 30bにおいて、DL PRS #y, DL PRS #zを送信するために設定されたBWPの全てを含む場合には、UE10のアクティブBWPを維持する。 According to the above-described embodiment, when the active BWP of UE10 includes all of the BWPs set to transmit DL PRS # y, DL PRS # z in the adjacent cells 30a and 30b. Maintains UE10's active BWP.
 このような構成により、UE10は、アクティブBWPの範囲内に、DL PRS #y, DL PRS #zが含まれている場合には、アクティブBWPを維持する。したがって、UE10は、負荷を増加させずに、位置測定を実施し得る。 With such a configuration, UE10 maintains the active BWP when DL PRS # y and DL PRS # z are included in the range of the active BWP. Therefore, UE10 can perform position measurements without increasing the load.
 (6)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(6) Other Embodiments Although the contents of the present invention have been described above according to the embodiments, the present invention is not limited to these descriptions, and various modifications and improvements are possible. It is obvious to the trader.
 上述した実施形態の説明に用いたブロック構成図(図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagram (FIG. 3) used in the description of the above-described embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, deemed, and notification ( There are, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. .. For example, a functional block (constituent unit) that makes transmission function is called a transmitting unit or a transmitter. As described above, the method of realizing each is not particularly limited.
 さらに、上述したUE10は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、当該装置のハードウェア構成の一例を示す図である。図12に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the UE 10 described above may function as a computer that processes the wireless communication method of the present disclosure. FIG. 12 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 12, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロックは、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Further, for each function in the device, by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, the processor 1001 performs the calculation, controls the communication by the communication device 1004, and the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), RandomAccessMemory (RAM), and the like. May be done. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a photomagnetic disk (for example, a compact disk, a digital versatile disk, a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間毎に異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobile Broadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. The input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (eg PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group" Terms such as "carrier" and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the function of the base station. In addition, words such as "up" and "down" may be read as words corresponding to inter-terminal communication (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. , Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc., can be considered to be "connected" or "coupled" to each other.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration only and does not have any restrictive meaning to this disclosure.
 上述したユーザ装置によれば、複数のセルにおいて、測位参照信号を送信するために設定されたサブキャリア間隔又は動作帯域幅が異なる場合でも、位置測定を実施し得るため、有用である。 According to the user device described above, it is useful because position measurement can be performed even when the subcarrier interval or the operating bandwidth set for transmitting the positioning reference signal is different in a plurality of cells.
1 無線通信システム
10 UE
11 送信部
13 受信部
15 制御部
20, 20a, 20b gNB
30 サービングセル
30a, 30b 隣接セル
40 コアネットワーク
50 位置サーバ
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス
1 Wireless communication system
10 UE
11 Transmitter
13 Receiver
15 Control unit
20, 20a, 20b gNB
30 serving cell
30a, 30b adjacent cells
40 core network
50 location server
1001 processor
1002 memory
1003 storage
1004 communication device
1005 input device
1006 output device
1007 bus

Claims (5)

  1.  ユーザ装置であって、
     前記ユーザ装置の位置測定を行うタイミングにおいて、前記ユーザ装置の動作帯域幅を変更する制御部と、
     変更された前記ユーザ装置の動作帯域幅において、前記ユーザ装置の位置測定を行うために使用される測位参照信号を受信する受信部と、
    を備えるユーザ装置。
    It is a user device
    A control unit that changes the operating bandwidth of the user device at the timing of measuring the position of the user device.
    A receiver that receives a positioning reference signal used to measure the position of the user device in the modified operating bandwidth of the user device.
    A user device comprising.
  2.  前記受信部は、ネットワークから変更指示を受信し、
     前記制御部は、前記変更指示に基づいて、前記ユーザ装置の動作帯域幅を変更する請求項1に記載のユーザ装置。
    The receiver receives the change instruction from the network and receives the change instruction.
    The user device according to claim 1, wherein the control unit changes the operating bandwidth of the user device based on the change instruction.
  3.  前記ユーザ装置が対応可能な動作帯域幅を、前記ネットワークに送信する送信部を更に備える請求項2に記載のユーザ装置。 The user device according to claim 2, further comprising a transmission unit that transmits an operating bandwidth that the user device can handle to the network.
  4.  前記制御部は、複数の隣接セルにおいて、前記測位参照信号を送信するために設定された動作帯域幅のうち、少なくとも1つの動作帯域幅を含むように、前記ユーザ装置の動作帯域幅を変更する請求項1に記載のユーザ装置。 The control unit changes the operating bandwidth of the user apparatus so as to include at least one operating bandwidth among the operating bandwidths set for transmitting the positioning reference signal in a plurality of adjacent cells. The user device according to claim 1.
  5.  前記制御部は、前記ユーザ装置の動作帯域幅が、複数の隣接セルにおいて、前記測位参照信号を送信するために設定された動作帯域幅の全てを含む場合には、前記ユーザ装置の動作帯域幅を維持する請求項1に記載のユーザ装置。
     
    When the operating bandwidth of the user apparatus includes all of the operating bandwidths set for transmitting the positioning reference signal in a plurality of adjacent cells, the control unit determines the operating bandwidth of the user apparatus. The user device according to claim 1.
PCT/JP2019/018161 2019-04-26 2019-04-26 User device WO2020217539A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018161 WO2020217539A1 (en) 2019-04-26 2019-04-26 User device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018161 WO2020217539A1 (en) 2019-04-26 2019-04-26 User device

Publications (1)

Publication Number Publication Date
WO2020217539A1 true WO2020217539A1 (en) 2020-10-29

Family

ID=72941419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018161 WO2020217539A1 (en) 2019-04-26 2019-04-26 User device

Country Status (1)

Country Link
WO (1) WO2020217539A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220201676A1 (en) * 2020-12-17 2022-06-23 Qualcomm Incorporated User equipment (ue) centric position techniques in 5g new radio with multiple bandwidth parts
WO2023070608A1 (en) * 2021-10-29 2023-05-04 华为技术有限公司 Signal processing method, apparatus and system
WO2023148931A1 (en) * 2022-02-04 2023-08-10 株式会社Nttドコモ Terminal, base station, and communication method
WO2023148930A1 (en) * 2022-02-04 2023-08-10 株式会社Nttドコモ Terminal, base station, and communication method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525724A (en) * 2009-04-27 2012-10-22 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus in a wireless communication system
US20180217228A1 (en) * 2017-02-02 2018-08-02 Qualcomm Incorporated Method and/or system for acquisition of a positioning signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525724A (en) * 2009-04-27 2012-10-22 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus in a wireless communication system
US20180217228A1 (en) * 2017-02-02 2018-08-02 Qualcomm Incorporated Method and/or system for acquisition of a positioning signal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on NR positioning support (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 38.855, no. V16.0.0, March 2019 (2019-03-01), pages 1,78, XP051723185 *
INTEL CORPORATION: "Summary for NR-Positioning AI -7. 2. 10. 1. 1 DL only Based Positioning", 3GPP TSG RAN WG1 MEETING #96 RL-1903394, 25 February 2019 (2019-02-25), pages 4,5, XP051601069 *
OPPO: "SPS operations for BWP switching", 3GPP TSG RAN WG2 #99BIS R2-1710134, 9 October 2017 (2017-10-09), XP051354215 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220201676A1 (en) * 2020-12-17 2022-06-23 Qualcomm Incorporated User equipment (ue) centric position techniques in 5g new radio with multiple bandwidth parts
WO2023070608A1 (en) * 2021-10-29 2023-05-04 华为技术有限公司 Signal processing method, apparatus and system
WO2023148931A1 (en) * 2022-02-04 2023-08-10 株式会社Nttドコモ Terminal, base station, and communication method
WO2023148930A1 (en) * 2022-02-04 2023-08-10 株式会社Nttドコモ Terminal, base station, and communication method

Similar Documents

Publication Publication Date Title
WO2020217539A1 (en) User device
WO2018037837A1 (en) User device and transmission method
WO2020090098A1 (en) User device and base station device
JP7356465B2 (en) user equipment
WO2020217534A1 (en) Wireless communication node
WO2020222271A1 (en) User device and communication method
WO2020166020A1 (en) User device and base station device
WO2020166021A1 (en) User device and base station device
WO2020174549A1 (en) User device and communication method
JP7219340B2 (en) terminal
JP7186806B2 (en) Terminal, communication method and wireless communication system
WO2020202582A1 (en) User equipment and wireless base station
WO2020031328A1 (en) Slice operation device, communication system, and slice operation method
CN113906803A (en) Terminal device
JP7312837B2 (en) terminal
WO2022201475A1 (en) Base station, system, information notification method
JP7273861B2 (en) Terminal, communication method, and wireless communication system
JP7440538B2 (en) Terminal and measurement report sending method
WO2022201476A1 (en) Base station, and system
WO2022137554A1 (en) Wireless base station
WO2023276010A1 (en) Terminal and communication method
WO2022039189A1 (en) Terminal and wireless communication system
US20240129818A1 (en) Radio base station and terminal
WO2022085094A1 (en) Terminal and communication method
WO2022153462A1 (en) Terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP