WO2020164309A1 - 一种进行随机接入的方法及设备 - Google Patents

一种进行随机接入的方法及设备 Download PDF

Info

Publication number
WO2020164309A1
WO2020164309A1 PCT/CN2019/126707 CN2019126707W WO2020164309A1 WO 2020164309 A1 WO2020164309 A1 WO 2020164309A1 CN 2019126707 W CN2019126707 W CN 2019126707W WO 2020164309 A1 WO2020164309 A1 WO 2020164309A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
delay
uplink
cell
random access
Prior art date
Application number
PCT/CN2019/126707
Other languages
English (en)
French (fr)
Inventor
任斌
缪德山
孙韶辉
康绍莉
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020217028670A priority Critical patent/KR20210119531A/ko
Priority to JP2021547507A priority patent/JP7234390B2/ja
Priority to US17/430,538 priority patent/US20220132593A1/en
Priority to EP19915234.9A priority patent/EP3927034A4/en
Publication of WO2020164309A1 publication Critical patent/WO2020164309A1/zh
Priority to JP2023026707A priority patent/JP7504249B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/008Timing of allocation once only, on installation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/006Synchronisation arrangements determining timing error of reception due to propagation delay using known positions of transmitter and receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to the technical field of non-terrestrial networks (NTN), and in particular to a method and equipment for random access.
  • NTN non-terrestrial networks
  • Non-terrestrial networks includes satellite communication systems, which have a cell radius much larger than that of conventional cellular communication systems, and introduce extremely large propagation delays. There are two types of specific downlink beams for satellite communication systems covering a cell The synchronization delay of random access is as follows:
  • the terminal 1 receives the GPS (Global Positioning System) signal of the satellite 3 and performs accurate positioning. According to the satellite's star in the same beam, the terminal closest to the satellite is located 1
  • the minimum link delay T1 and the feeder link delay T2 are twice the time, that is, the public transmission delay is 2 (T1+T2), and the feeder link delay T2 is the time from the satellite to the gateway 2 Feeder link delay between
  • the other is relative transmission delay.
  • the delay corresponding to the propagation distance difference d3 between the user link propagation path of the terminal and the smallest link delay path closest to the satellite 1 T3 is the relative transmission delay.
  • the physical layer random access channel random access preamble PRACH Preamble is mainly used for the uplink synchronization process of initial access. Therefore, the time domain structure of cyclic prefix CP+PRACH Preamble sequence + guard time GT is adopted as the design starting point.
  • CP uses To offset the relative round-trip transmission delay between terminal-satellite-base station 2 ⁇ T3 and multipath transmission delay, avoid other uplink signal interference to PRACH Preamble sequence, GT is used to offset the relative round-trip transmission between terminal-satellite-base station The transmission delay is 2 ⁇ T3 to avoid the interference of the PRACH Preamble sequence to other uplink signals, which will increase the CP overhead of the PRACH channel and cause the transmission efficiency of the NTN system to decrease.
  • the terminal obtains the minimum link delay T1 and the feeder link T2 in the beam area where the terminal is located from the closest position of the satellite according to the system message Calculate the corresponding random access response RAR time window, and send PRACH Preamble on the appropriate PRACH channel. Since the terminal cannot obtain accurate position information through the GPS signal, the user link propagation path of the terminal and the nearest position to the satellite cannot be obtained. The propagation distance difference of the minimum link delay path is, as shown in d3 in Figure 2, that is, the relative transmission delay T3 cannot be obtained. Therefore, the CP length contained in the PRACH Preamble format is greater than the relative transmission delay 2 ⁇ T3.
  • the current NR-based closed-loop random access process and NR's PRACH Preamble format cannot meet the needs of satellite communication systems.
  • the NR-based closed-loop random access process is reused, it will increase the overhead of the PRACH channel and cause the NTN system to suffer Transmission efficiency decreases;
  • the PRACH Preamble format of 5G NR cannot be reused, for example: the largest CP supported by the long PRACH Preamble sequence supported by 5G NR The length is 0.684ms. For all situations where T3 is greater than 0.684 ms in the satellite system, a new PRACH Preamble format needs to be designed. Therefore, there is currently no good solution for the NTN system.
  • the present application provides a method and equipment for random access to solve the problem that there is no random access process that can meet the requirements of a satellite communication system.
  • an embodiment of the present application provides a method for a terminal to perform random access, and the method includes:
  • the PRACH Preamble sequence is sent on the time-frequency resource corresponding to the uplink sending timing position.
  • determining the uplink transmission timing position according to the cell public delay information includes:
  • the uplink transmission timing position is determined according to the receiving position and the timing advance of the configuration message.
  • determining the timing advance of the uplink transmission timing position relative to the configuration message receiving position according to the cell public delay information includes:
  • the cell public delay information determine the cell-level timing advance of the deviation between the cell public delay and the integer timeslot
  • the timing advance is determined according to the relative transmission delay and the cell-level timing advance.
  • the estimated relative transmission delay includes:
  • the satellite estimate the propagation distance difference between the user link propagation path of the terminal and the smallest link delay path closest to the satellite;
  • determining the timing advance according to the relative transmission delay and the cell-level timing advance includes:
  • the method further includes:
  • Detecting a feedback RAR message within a random access response RAR time window where the RAR message includes an uplink timing advance adjustment amount and an uplink scheduling permission, and the RAR time window starts from the receiving position of the configuration message;
  • the feedback RAR message obtain the uplink synchronization and send the radio resource control RRC message;
  • the configuration message further includes a PRACH Preamble format.
  • the PRACH Preamble format includes multiple cyclic prefix CPs, Preamble sequences, and guard time GT, and the total duration of the multiple CPs is greater than the transmission introduced by the movement distance of the satellite during the random access of the terminal.
  • the total duration of the guard time GT is greater than the sum of the transmission delay introduced by the movement distance of the satellite during the random access process of the terminal, the delay introduced by the GPS positioning error, and the delay introduced by the timing estimation error during the initial downlink synchronization process.
  • the subcarrier interval occupied by the PRACH Preamble sequence is determined according to the Doppler frequency offset range supported by the terminal.
  • the subcarrier interval occupied by the PRACH Preamble sequence is based on the Doppler frequency offset range corresponding to the terminal at different moving speeds, and/or the residual frequency offset existing after the terminal is initially synchronized with The sum of Doppler frequency deviations caused by satellite movement during the sending of the configuration message is determined.
  • the method before sending the PRACH Preamble sequence on the time-frequency resource corresponding to the uplink sending timing position, the method further includes:
  • performing frequency offset pre-compensation on the generated PRACH Preamble sequence based on the estimated downlink frequency offset includes:
  • the terminal performs downlink cell search according to the periodic position of the frame structure of the downlink synchronization signal and/or reference signal predefined by the protocol, including downlink timing synchronization position estimation and downlink frequency offset estimation operations, to obtain the downlink synchronization signal and/or reference signal;
  • S′ PRACH (t) S PRACH (t) ⁇ exp(-j ⁇ 2 ⁇ f delta );
  • S PRACH (t) is the time domain signal of the PRACH Preamble sequence.
  • an embodiment of the present application provides a method for a network side device to perform random access, and the method includes:
  • the PRACH Preamble sequence sent by the terminal is detected.
  • determining the uplink receiving timing position according to the cell public delay information includes:
  • determining the offset of the uplink receiving timing position relative to the sending position of the configuration message according to the cell public delay information includes:
  • the cell public delay information determine the cell-level timing advance of the deviation between the cell public delay and the integer timeslot
  • the offset of the uplink receiving timing position relative to the sending position of the configuration message is determined.
  • determining the offset of the uplink receiving timing position relative to the configuration message sending position according to the cell public delay information and the cell-level timing advance includes:
  • it further includes:
  • the terminal After detecting the PRACH Preamble sequence sent by the terminal, sending a random access response RAR message to the terminal, where the RAR message includes the uplink timing advance adjustment amount and the uplink scheduling permission;
  • the configuration message further includes a PRACH Preamble format.
  • the PRACH Preamble format includes multiple cyclic prefix CPs, preamble sequences, and guard time GT, and the duration of the multiple CPs is greater than the transmission time introduced by the movement distance of the satellite during random access of the terminal.
  • the total duration of the guard time GT is greater than the sum of the transmission delay introduced by the movement distance of the satellite during the random access process of the terminal, the delay introduced by the GPS positioning error, and the delay introduced by the timing estimation error during the initial downlink synchronization process.
  • the subcarrier interval occupied by the PRACH Preamble sequence is determined according to the Doppler frequency offset range supported by the terminal.
  • determining the subcarrier interval occupied by the PRACH Preamble sequence according to the Doppler frequency offset range supported by the terminal includes:
  • an embodiment of the present application provides a terminal for random access, which includes a processor and a memory, where the processor is configured to read a program in the memory and execute the following process:
  • the PRACH Preamble sequence is sent on the time-frequency resource corresponding to the uplink sending timing position.
  • the processor is specifically configured to:
  • the uplink transmission timing position is determined according to the receiving position and the timing advance of the configuration message.
  • the processor is specifically configured to:
  • the cell public delay information determine the cell-level timing advance of the deviation between the cell public delay and the integer timeslot
  • the timing advance is determined according to the relative transmission delay and the cell-level timing advance.
  • the processor is specifically configured to:
  • the satellite estimate the propagation distance difference between the user link propagation path of the terminal and the smallest link delay path closest to the satellite;
  • the processor is specifically configured to:
  • the processor is specifically further configured to:
  • Detecting a feedback RAR message within a random access response RAR time window where the RAR message includes an uplink timing advance adjustment amount and an uplink scheduling permission, and the RAR time window starts from the receiving position of the configuration message;
  • the feedback RAR message obtain the uplink synchronization and send the radio resource control RRC message;
  • the configuration message further includes a PRACH Preamble format.
  • the PRACH Preamble format includes multiple cyclic prefix CPs, preamble sequences, and guard time GT, and the duration of the multiple CPs is greater than the transmission time introduced by the movement distance of the satellite during random access of the terminal.
  • the total duration of the guard time GT is greater than the sum of the transmission delay introduced by the movement distance of the satellite during the random access process of the terminal, the delay introduced by the GPS positioning error, and the delay introduced by the timing estimation error during the initial downlink synchronization process.
  • the subcarrier interval occupied by the PRACH Preamble sequence is determined according to the Doppler frequency offset range supported by the terminal.
  • the subcarrier interval occupied by the PRACH Preamble sequence is based on the Doppler frequency offset range corresponding to the terminal at different moving speeds, and/or the residual frequency offset existing after the terminal is initially synchronized with The sum of Doppler frequency deviations caused by satellite movement during the sending of the configuration message is determined.
  • the processor is specifically further configured to:
  • the processor is specifically configured to:
  • the terminal performs downlink cell search according to the periodic position of the frame structure of the downlink synchronization signal and/or reference signal predefined by the protocol, including downlink timing synchronization position estimation and downlink frequency offset estimation operations to obtain the downlink synchronization signal and/or reference signal;
  • S′ PRACH (t) S PRACH (t) ⁇ exp(-j ⁇ 2 ⁇ f delta );
  • S PRACH (t) is the time domain signal of the PRACH Preamble sequence.
  • an embodiment of the present application provides a network-side device for random access.
  • the network-side device includes a processor and a memory, where the processor is configured to read a program in the memory and execute the following process:
  • the PRACH Preamble sequence sent by the terminal is detected.
  • the network side device is specifically configured to:
  • the network side device is specifically configured to:
  • the cell public delay information determine the cell-level timing advance of the deviation between the cell public delay and the integer timeslot
  • the offset of the uplink receiving timing position relative to the sending position of the configuration message is determined.
  • the network side device is specifically configured to:
  • the cell-level timing advance is subtracted from the cell common delay to obtain the offset of the uplink receiving timing position relative to the configuration message sending position.
  • the network side device is specifically further configured to:
  • the terminal After detecting the PRACH Preamble sequence sent by the terminal, sending a random access response RAR message to the terminal, where the RAR message includes the uplink timing advance adjustment amount and the uplink scheduling permission;
  • the configuration message further includes a PRACH Preamble format.
  • the PRACH Preamble format includes multiple cyclic prefix CPs, preamble sequences, and guard time GT, and the duration of the multiple CPs is greater than the transmission time introduced by the movement distance of the satellite during random access of the terminal.
  • the total duration of the guard time GT is greater than the sum of the transmission delay introduced by the movement distance of the satellite during the random access process of the terminal, the delay introduced by the GPS positioning error, and the delay introduced by the timing estimation error during the initial downlink synchronization process.
  • the subcarrier interval occupied by the PRACH Preamble sequence is determined according to the Doppler frequency offset range supported by the terminal.
  • the network side device is specifically configured to:
  • a computer storage medium provided by an embodiment of the present application has a computer program stored thereon, and when the program is executed by a processor, it implements any one of the solutions of the first aspect.
  • an embodiment of the present application provides a computer storage medium having a computer program stored thereon, and when the program is executed by a processor, it implements any of the solutions of the second aspect.
  • the embodiment of the application proposes an open-loop random access process based on the satellite communication system NTN.
  • the terminal compensates for the relative transmission between the terminal-satellite-base station according to the determined uplink transmission timing position
  • Delay and common transmission delay can support a small CP length in the PRACH Preamble sequence.
  • the form of sending the PRACH Preamble sequence in advance at a certain transmission timing position is used to compensate for the relative transmission delay and common transmission delay, thereby reducing The overhead of the small PRACH channel.
  • FIG. 1 is a schematic diagram of the public transmission delay of a satellite communication system provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the relative transmission delay of the satellite communication system provided by the embodiment of the application.
  • Figure 3 is a schematic diagram of a random access process in a 5G NR system provided by an embodiment of this application;
  • FIG. 4 is a schematic diagram of a random access process system provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a sequence of a random access process provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a PRACH Preamble format provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a random access terminal provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of a random access network side device according to an embodiment of the application.
  • FIG. 9 is a flowchart of a method for random access of a terminal according to an embodiment of the application.
  • FIG. 10 is a flowchart of a method for random access of a network side device according to an embodiment of this application.
  • FIG. 11 is a schematic diagram of another random access terminal provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of another random access network side device provided by an embodiment of the present application.
  • the terminal is a device with wireless communication function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (For example, airplanes, balloons, satellites, etc.).
  • the terminal may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial control (industrial control) Wireless terminals in, self-driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, Wireless terminals in a smart city (smart city), wireless terminals in a smart home (smart home), etc.; it can also be various forms of UE, mobile station (MS), and terminal device (terminal device).
  • the network side device can be a gateway station, a device that provides wireless communication functions for the terminal, including but not limited to: base station, gNB in 5G, radio network controller (RNC), node B (node B) , NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BaseBand Unit, BBU) ), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • the base station in this application may also be a device that provides wireless communication functions for terminals in other communication systems that may appear in the future.
  • the random access process in the 5G NR system is shown in Figure 3. It mainly includes the following processes:
  • Step 0 The base station sends configuration message 1, and the UE receives configuration message 1, and obtains related parameters in configuration message 1.
  • the base station Before performing the random access procedure, the base station sends the above-mentioned related parameters to the UE through the system information block SIB1 message.
  • the related parameters include the set of SSB indexes, PRACH time-frequency resources, PRACH Preamble format, and PRACH Preamble sequence set parameters.
  • the UE obtains the SSB index set, PRACH time-frequency resource, PRACH Preamble format, and PRACH Preamble sequence set parameters through the SIB1 message.
  • Step 1 The UE sends message 1 to the base station
  • the UE generates the PRACH Preamble sequence according to the obtained related parameters of the configuration message 1, and sends the PRACH Preamble sequence on the selected PRACH time-frequency resource.
  • the PRACH time-frequency resource candidate set is notified by the SIB1 message, and the UE randomly selects a resource with medium probability from the PRACH time-frequency resource candidate set notified by the SIB1 message.
  • Step 2 The base station sends message 2 to the UE, and the UE receives message 2;
  • the base station detects the Preamble sequence on all candidate PRACH time-frequency resources. If the base station detects the Preamble sequence, it will feed back the corresponding random access response RAR information on the PDCCH/PDSCH.
  • the RAR information contains the uplink timing advance adjustment amount of the UE and the uplink scheduling permission for scheduling the message 3 transmission of the UE.
  • the UE After sending the Preamble sequence, the UE detects the RAR message fed back by the downlink PDCCH/PDSCH channel within a RAR time window. If the corresponding RAR message is detected, it means that the random access preamble sequence sent by the UE is detected by the base station.
  • Step 3 The UE sends message 3 to the base station
  • the UE obtains uplink synchronization according to the uplink timing advance adjustment amount in the RAR message, and sends message 3 on the PUSCH channel according to the uplink scheduling permission (for example, carrying the RRC connection request message of the upper layer).
  • Step 4 The base station sends message 4 to the UE;
  • the base station After the base station receives and analyzes the UE identity contained in the message 3, it sends the message 4 on the PDSCH channel.
  • the UE receives and decodes the contention resolution message contained in the message 4 on the PDSCH channel, and completes the 4-step random access process after the contention resolution is successful.
  • the reference point for the uplink timing of the UE to send the uplink PRACH is the downlink reception timing of the UE's configuration message.
  • the radio propagation delay between the downlink transmission timing and the uplink reception timing of the base station is 2 Times the cumulative sum of the maximum unidirectional transmission delay and the maximum multipath delay, so the CP length of the PRACH is required to be no less than the cumulative sum of the common transmission delay and the relative transmission delay.
  • the uplink or downlink channel of the next time slot of the PRACH time slot contains CP to combat the relative transmission delay. Therefore, the GT length of the PRACH is required to be no less than the public transmission delay.
  • the CP length contained in the Preamble format is required to be greater than the relative transmission delay 2*T3. Avoid interference of PRACH preamble sequence to other uplink signals. This will increase the CP overhead of the PRACH channel and cause the transmission efficiency of the NTN system to decrease.
  • This application proposes a random access process applied to the NTN system of a non-terrestrial network, which is different from the closed-loop random access process of the existing 5G new air interface NR system.
  • This application uses an open-loop random access process, and the terminal is performing random access Before the process, determine the uplink transmission timing position according to the cell public delay information in the received configuration message to adjust the uplink transmission time, which is equivalent to sending the PRACH Preamble sequence in advance, and the time of advance transmission is the determined uplink transmission timing position
  • the uplink transmission timing position is determined according to the cell’s public time delay information, and the uplink transmission timing position can compensate for the distance between the terminals at different positions from the satellite in a cell covered by the satellite beam and the terminal at the closest position to the satellite.
  • the generated relative transmission delay ensures that the uplink transmission timing position of all terminals in all cells is the same. At the same time, there is no need to offset the common transmission time between the terminal-satellite-base station through the guard time GT in the RACH Preamble sequence sent in the uplink.
  • the total length of the CP in the PRACH Preamble sequence that can be supported is small, which reduces the overhead of the PRACH channel and improves the transmission efficiency of the NTN system.
  • the system for random access in this embodiment of the application includes:
  • the terminal 400 is configured to receive and obtain related parameters in a configuration message, where the related parameters include cell public delay information;
  • the PRACH Preamble sequence is sent on the time-frequency resource corresponding to the uplink sending timing position.
  • the network side device 401 is configured to send a configuration message carrying related parameters to the terminal.
  • the related parameters include cell public delay information; determine the uplink receiving timing position according to the cell public delay information; On the candidate physical layer random access channel PRACH time-frequency resources, detection is performed on the PRACH Preamble sequence sent by the terminal.
  • the network side device Before performing the random access process, the network side device can send a configuration message carrying relevant parameters to the terminal through a System Information Block (SIB1) message; the terminal receives the configuration message through the SIB1 message and obtains the relevant parameters in the configuration message.
  • SIB1 System Information Block
  • the above-mentioned related parameters include cell public time delay information, synchronization signal block SSB (Synchronization Signal Block) index set, PRACH time-frequency resources, PRACH Preamble format, and PRACH Preamble sequence set parameters.
  • SSB Synchronization Signal Block
  • the cell public delay information in the embodiment of the application refers to the random access synchronization delay that exists when the NTN system covers a specific downlink beam area of a cell, and the cell public delay information is based on the system broadcast message Obtain the public transmission delay of the beam area where the terminal is located, where the system broadcast message may be a broadcast message transmitted through a satellite or a broadcast message transmitted through a network side device.
  • the method for the network side device to determine the public delay information of the cell is as follows:
  • the network-side equipment According to the satellite’s satellite in the same beam, the network-side equipment, the minimum link delay T1 generated by the terminal closest to the satellite and satellite communication, and the feeder link delay T2 between the satellite and the network-side equipment, Obtain the public time delay of the broadcast cell, and the public time delay of the broadcast cell is 2 (T1+T2).
  • the minimum link delay T1 corresponds to the user link T1 in FIG. 1
  • the feeder link delay T2 corresponds to the feeder link T2 in FIG. 1.
  • the network-side equipment in Figure 1 is the gateway station 2, but the network-side equipment in Figure 1 is only a specific embodiment.
  • the network-side equipment in the embodiment of this application includes gateway stations, base stations but not limited to gateway stations, base stations .
  • the embodiment of the present application is based on the fact that there are two types of random access synchronization delays when the NTN system covers a specific downlink beam area of a cell, and the uplink transmission timing position is determined.
  • one type of random access synchronization delay is that the terminal determines the common transmission delay that exists when the NTN system covers a specific downlink beam area of a cell by receiving the cell public delay information; the other type
  • the random access synchronization delay is the delay corresponding to the propagation distance difference between the user link propagation path of the terminal and the smallest link delay path in the same coverage cell from the nearest geographic location to the satellite, where the propagation distance difference Corresponds to d3 in Figure 2.
  • the terminal determines the uplink transmission timing position according to the following two parts of information:
  • One part is the cell public time delay information in the relevant parameters sent by the network side device received by the terminal;
  • the other part is the relative transmission delay estimated by the terminal based on its own positioning information and satellite operating parameters.
  • the terminal determines the timing advance of the uplink sending timing position relative to the configuration message receiving position according to the cell public delay information and the relative transmission delay.
  • the embodiment of the application adjusts the timing position of the terminal uplink transmission according to the common transmission delay and relative transmission delay existing in the NTN system, therefore, compared to the random access process in the NR system, there is no need to design to meet the above requirements.
  • the GP+CP length of the sum of the public transmission delay and the relative transmission delay only needs to advance the uplink transmission time. Compared with the NR system, the CP length is smaller, the PRACH channel overhead is smaller, and the transmission efficiency of the NTN system is improved.
  • the terminal uses the cell-level timing advance of the deviation between the cell public delay and an integer timeslot based on the cell public delay information; on the other hand, the terminal estimates the user link propagation path based on its own positioning information The relative transmission delay corresponding to the propagation distance difference of the smallest link delay path from the closest position to the satellite. The terminal determines the timing advance according to the relative transmission delay and the cell-level timing advance.
  • the terminal determines the timing advance in the following manner:
  • the terminal determines the positioning information of the terminal according to the global navigation satellite system GNSS signal, and obtains the operating parameter information of the satellite through the ephemeris; according to the positioning information and the operating parameter information of the satellite, the user of the terminal is estimated The propagation distance difference between the link propagation path and the smallest link delay path at the closest position to the satellite; determining the relative transmission delay corresponding to the estimated propagation distance difference.
  • T offset 2(T1+T2)-floor(2(T1+T2)/T SF ) ⁇ T SF
  • 2(T1+T2) represents cell public time delay information
  • T SF represents the time length of the time slot
  • floor(.) represents the round-down operation
  • T offset is Ts
  • N TA 2*T3+T offset ;
  • N TA is the timing advance
  • T3 is the relative transmission delay
  • the embodiment of this application uses the above method to determine the uplink transmission timing position of the PRACH Preamble sequence to be sent.
  • the terminal sends the PRACH Preamble sequence on the time-frequency resource corresponding to the uplink transmission timing position.
  • Also includes:
  • the terminal performs downlink cell search according to the periodic position of the frame structure of the downlink synchronization signal and/or reference signal predefined by the protocol, including downlink timing synchronization position estimation and downlink frequency offset estimation operations, to obtain downlink synchronization signals and /Or reference signal;
  • the downlink frequency offset f delta can be estimated according to the periodic downlink synchronization signal and/or reference signal
  • S′ PRACH (t) S PRACH (t) ⁇ exp(-j ⁇ 2 ⁇ f delta );
  • S PRACH (t) is the time domain signal of the PRACH Preamble sequence.
  • the terminal transmits the PRACH Preamble sequence on the time-frequency resource corresponding to the uplink timing position by adjusting the uplink transmission time of the PRACH Preamble sequence and performing frequency offset precompensation for the PRACH Preamble sequence to be sent.
  • the terminal sends the PRACH Preamble sequence on the time-frequency resource corresponding to the uplink timing position;
  • the terminal obtains the time-frequency resource candidate set of the PRACH Preamble sequence according to the received SIB1 message, and the terminal randomly selects a time-frequency resource from the time-frequency resource candidate set with medium probability as the corresponding uplink timing position
  • the time-frequency resource, and the PRACH Preamble sequence is sent to the network side device on the corresponding time-frequency resource.
  • the network side device Before receiving the PRACH Preamble sequence sent in the uplink, the network side device determines the uplink reception timing position according to the cell public time delay information, and at the determined uplink reception timing position, for all candidate physical layer random access channel PRACH time-frequency resources, Detect the PRACH Preamble sequence sent by the terminal.
  • determining the uplink receiving timing position according to the cell public time delay information includes:
  • the formula is as follows:
  • T offset 2(T1+T2)-floor(2(T1+T2)/T SF ) ⁇ T SF ;
  • 2(T1+T2) represents cell public time delay information
  • T SF represents the time length of the time slot
  • floor(.) represents the round-down operation
  • T offset is Ts
  • the offset B TA of the uplink receiving timing position relative to the sending position of the configuration message is determined.
  • the cell-level timing advance T offset is subtracted from the public time delay of the broadcast cell to obtain the offset B TA of the uplink receiving timing position relative to the configuration message sending position.
  • the network side device After determining the uplink receiving timing position, the network side device detects the PRACH Preamble sequence sent by the terminal for all candidate physical layer random access channel PRACH time-frequency resources. Specifically, the process in which the network side device detects the PRACH Preamble sequence sent by the terminal is a process of removing the CP in the PRACH Preamble sequence.
  • the CP length in the PRACH Preamble sequence does not need to be used for To offset the common transmission delay, the CP length in the embodiment of this application is different from the CP length determined according to the prior art. Therefore, the CP removal operation in the embodiment of this application is based on the CP length in the Preamble format in this embodiment. CP operation.
  • the timing relationship between the sending and receiving of the terminal and the network side device in the random access process based on the NTN system is shown in FIG. 5.
  • the specific functions of the cell common delay 2 (T1+T2), the relative transmission delay T3, and the cell-level timing advance T offset will be described with reference to FIG. 5.
  • the received downlink index including the index of the frame, subframe, and time slot, is used as the current subframe index index; when the terminal obtains the frame synchronization of the uplink signal for the first time in the random access process, it supplements the relative transmission delay After that, it is consistent with the public time delay of the cell, that is, based on the shortest common distance between the cell and the satellite's uplink transmission timing position, the time for all terminals in the cell to reach the network side equipment is based on the cell public distance. At this time, all terminals in a cell The index of the uplink subframe is the same.
  • the random access system based on the NTN system in this embodiment includes: a gateway BS, a terminal UE1, and a terminal UE2.
  • the terminal UE2 is the terminal with the shortest distance from the gateway BS in the cell, and UE1 is any UE in the cell.
  • the timing relationship between the UE and the BS side is as follows:
  • T A gateway standing time to transmit a downlink synchronization channel / signal, the relevant parameters in the configuration message to the terminal;
  • the downlink synchronization channel/signal may be a SIB1 message.
  • T A terminal UE2 with respect to the gateway station transmits a time delay of T 1 + T 2, where T 1 is the minimum distance of the satellite link delay nearest position, T 2 is the feeder link delay.
  • T A terminal UE1 with respect to the gateway station transmits a time delay of T 1 + T 2 + T 3 .
  • the terminal UE1 sends the PRACH Preamble at time T D , and the time advance relative to time T C is N TA .
  • T offset is the cell-level timing advance.
  • the specific calculation method is as described above, and will not be repeated here.
  • T D -T C (T1 + T2) + T3;
  • T E propagation delay time T A with respect to time is:
  • the base station After detecting the PRACH Preamble sequence sent by the terminal, the base station sends a random access response RAR message to the terminal, where the RAR message includes the uplink timing advance adjustment amount and the uplink scheduling permission;
  • the downlink subframe and the uplink subframe of the network side device maintain the same subframe index value index
  • the terminal After sending the PRACH Preamble sequence, the terminal detects the feedback RAR message within the random access response RAR time window.
  • the RAR message includes the uplink timing advance adjustment amount and the uplink scheduling permission; according to the feedback RAR message, the uplink synchronization is obtained and the radio is sent.
  • the RAR time window takes the receiving position of the configuration message as the starting point, and the starting point position is determined according to the cell public delay information received by the terminal.
  • the network side device receives the radio resource control RRC message sent after the terminal obtains the uplink synchronization; and sends a contention resolution message to the terminal.
  • the terminal receives the feedback contention resolution message and decodes it.
  • the downlink of the terminal uses the received downlink frame index, subframe index, and time slot index as the current subframe index index; when the terminal obtains uplink signal frame synchronization for the first time in the random access process, by supplementing the relative transmission delay, It is consistent with the public time delay of the cell, that is, based on the shortest public distance uplink transmission timing position of the cell from the satellite, and the time for all terminals in the cell to reach the network side equipment is based on the public distance of the cell; the method provided in the embodiments of this application can guarantee one The uplink subframe indexes of all terminals in the satellite beam coverage cell remain consistent.
  • the PRACH Preamble format in the configuration message sent by the network side device in the embodiment of this application is different from the PRACH Preamble format in the prior art.
  • Table 1 and Table 2 respectively show the CP length of the PRACH sequence corresponding to the long PRACH sequence and the short PRACH sequence supported by 5G NR. It can be seen from Table 4 and Table 5 that the maximum CP length is 0.684 ms.
  • the PRACH Preamble format of 5G NR can be reused. For all situations where T3 is greater than 0.684 ms in the satellite system, a new PRACH format needs to be designed.
  • the length of CP and GT is not required to be greater than twice the cumulative sum of the maximum unidirectional transmission delay and the maximum multipath transmission delay, and the length of GT is not required to be greater than 2 times the maximum one-way transmission delay. Reduce the length of the CP and reduce the overhead of the PRACH channel.
  • the PRACH Preamble format includes multiple cyclic prefix CPs, preamble sequences, and guard time GT.
  • the duration of the multiple CPs is greater than the transmission delay and GPS positioning error introduced by the movement distance of the satellite during the random access process of the terminal.
  • the total duration of the guard time GT is greater than the sum of the transmission delay introduced by the movement distance of the satellite during the random access process of the terminal, the delay introduced by the GPS positioning error, and the delay introduced by the timing estimation error during the initial downlink synchronization process.
  • the subcarrier interval occupied by the PRACH Preamble sequence is determined according to the Doppler frequency offset range supported by the terminal.
  • the subcarrier interval occupied by the PRACH Preamble sequence is based on the Doppler frequency offset range corresponding to the terminal at different moving speeds, and/or the residual frequency offset existing after the terminal is initially synchronized and the satellite in the process of sending the configuration message The sum of Doppler frequency deviation caused by movement is determined.
  • the length of the CP and the length of the GT need to be greater than the sum of the three kinds of delays.
  • the three kinds of delays are the transmission delay introduced by the moving distance of the satellite during the random access process, the delay introduced by the GPS positioning error and The time delay introduced by the timing estimation error during the initial downlink synchronization;
  • the sub-carrier spacing SCS is based on the limited set TypeA of Zadoff-chu sequence, which must meet the maximum Doppler deviation greater than the NTN system;
  • the length of the Preamble sequence depends on the PRACH detection and link budget performance.
  • the PRACH Preamble format in the embodiment of the present application can support a terminal moving speed equal to or higher than 1000km/h.
  • the terminal user's moving speed can reach 1000km/h when using it in an airplane.
  • the terminal of the above speed can get a Doppler deviation of +/-27khz under the typical carrier frequency
  • the Doppler frequency deviation caused by satellite movement during the transmission of the PRACH Preamble of the terminal is about 0.4khz;
  • the subcarrier spacing can tolerate the Doppler frequency offset range: [-SCS, +SCS].
  • the PRACH Preamble sequence is generated by the Zadoff-chu sequence being cyclically biased.
  • the PRACH Preamble sequence used in the embodiment of this application is a Zadoff-chu sequence with a length of 839, which supports unrestricted sets and restricted Set TypeA, so the PRACH Preamble sequence designed in the embodiment of this application can tolerate a Doppler frequency offset range of [-30, +30], which can tolerate +/-27khz caused by the terminal at a speed of 1000km/h
  • the length of the cyclic prefix CP occupied in the PRACH Preamble format is determined based on the following factors:
  • FIG. 6 A specific PRACH Preamble format provided by an embodiment of the application is shown in FIG. 6.
  • a terminal for random access includes: a processor 700, a memory 701, and a transceiver 702.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 701 can store data used by the processor 700 when performing operations.
  • the transceiver 702 is used to receive and transmit data under the control of the processor 700.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 700 and various circuits of the memory represented by the memory 701 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 701 can store data used by the processor 700 when performing operations.
  • the process disclosed in the embodiment of the present application may be applied to the processor 700 or implemented by the processor 700.
  • each step of the signal processing flow can be completed by hardware integrated logic circuits in the processor 700 or instructions in the form of software.
  • the processor 700 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the embodiments of the present application The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 701, and the processor 700 reads the information in the memory 701 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 700 is configured to read a program in the memory 701 and execute the following process:
  • the PRACH Preamble sequence is sent on the time-frequency resource corresponding to the uplink sending timing position.
  • the processor is specifically configured to:
  • the uplink transmission timing position is determined according to the receiving position and the timing advance of the configuration message.
  • the processor is specifically configured to:
  • the cell public delay information determine the cell-level timing advance of the deviation between the cell public delay and the integer timeslot
  • the timing advance is determined according to the relative transmission delay and the cell-level timing advance.
  • the processor is specifically configured to:
  • the satellite estimate the propagation distance difference between the user link propagation path of the terminal and the smallest link delay path closest to the satellite;
  • the processor is specifically configured to:
  • the processor is specifically further configured to:
  • Detecting a feedback RAR message within a random access response RAR time window where the RAR message includes an uplink timing advance adjustment amount and an uplink scheduling permission, and the RAR time window starts from the receiving position of the configuration message;
  • the feedback RAR message obtain the uplink synchronization and send the radio resource control RRC message;
  • the configuration message further includes a PRACH Preamble format.
  • the PRACH Preamble format includes multiple cyclic prefix CPs, preamble sequences, and guard time GT, and the duration of the multiple CPs is greater than the transmission time introduced by the movement distance of the satellite during random access of the terminal.
  • the total duration of the guard time GT is greater than the sum of the transmission delay introduced by the movement distance of the satellite during the random access process of the terminal, the delay introduced by the GPS positioning error, and the delay introduced by the timing estimation error during the initial downlink synchronization process.
  • the subcarrier interval occupied by the PRACH Preamble sequence is determined according to the Doppler frequency offset range supported by the terminal.
  • the subcarrier interval occupied by the PRACH Preamble sequence is based on the Doppler frequency offset range corresponding to the terminal at different moving speeds, and/or the residual frequency offset existing after the terminal is initially synchronized with The sum of Doppler frequency deviations caused by satellite movement during the sending of the configuration message is determined.
  • the processor is specifically further configured to:
  • the processor is specifically configured to:
  • the terminal performs downlink cell search according to the periodic position of the frame structure of the downlink synchronization signal and/or reference signal predefined by the protocol, including downlink timing synchronization position estimation and downlink frequency offset estimation operations to obtain the downlink synchronization signal and/or reference signal;
  • S′ PRACH (t) S PRACH (t) ⁇ exp(-j ⁇ 2 ⁇ f delta );
  • S PRACH (t) is the time domain signal of the PRACH Preamble sequence.
  • a network-side device for random access includes: a processor 800, a memory 801, and a transceiver 802.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 801 can store data used by the processor 800 when performing operations.
  • the transceiver 802 is used to receive and send data under the control of the processor 800.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 800 and various circuits of the memory represented by the memory 801 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 801 can store data used by the processor 800 when performing operations.
  • the process disclosed in the embodiment of the present application may be applied to the processor 800 or implemented by the processor 800.
  • each step of the signal processing flow can be completed by hardware integrated logic circuits in the processor 800 or instructions in the form of software.
  • the processor 800 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the embodiments of the present application The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 801, and the processor 800 reads the information in the memory 801 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 800 is configured to read the program in the memory 801 and execute the following process:
  • the PRACH Preamble sequence sent by the terminal is detected.
  • the network side device is specifically configured to:
  • the network side device is specifically configured to:
  • the cell public delay information determine the cell-level timing advance of the deviation between the cell public delay and the integer timeslot
  • the offset of the uplink receiving timing position relative to the sending position of the configuration message is determined.
  • the network side device is specifically configured to:
  • the cell-level timing advance is subtracted from the cell common delay to obtain the offset of the uplink receiving timing position relative to the configuration message sending position.
  • the network side device is specifically further configured to:
  • the terminal After detecting the PRACH Preamble sequence sent by the terminal, sending a random access response RAR message to the terminal, where the RAR message includes the uplink timing advance adjustment amount and the uplink scheduling permission;
  • the configuration message further includes a PRACH Preamble format.
  • the PRACH Preamble format includes multiple cyclic prefix CPs, preamble sequences, and guard time GT, and the duration of the multiple CPs is greater than the transmission time introduced by the movement distance of the satellite in the random access process of the terminal.
  • the total duration of the guard time GT is greater than the sum of the transmission delay introduced by the movement distance of the satellite during the random access process of the terminal, the delay introduced by the GPS positioning error, and the delay introduced by the timing estimation error during the initial downlink synchronization process.
  • the subcarrier interval occupied by the PRACH Preamble sequence is determined according to the Doppler frequency offset range supported by the terminal.
  • the network side device is specifically configured to:
  • an embodiment of the present application also provides another terminal for random access, including:
  • the receiving module 110 is configured to receive and obtain related parameters in the configuration message, where the related parameters include cell public delay information;
  • the timing position determining module 111 is configured to generate a physical layer random access channel random access preamble PRACH Preamble sequence, and determine the uplink transmission timing position according to the cell public delay information;
  • the sending module 112 is configured to send the PRACH Preamble sequence on the time-frequency resource corresponding to the uplink sending timing position.
  • the determining timing position module is specifically configured to:
  • the uplink transmission timing position is determined according to the receiving position and the timing advance of the configuration message.
  • the determining timing position module is specifically configured to:
  • the cell public delay information determine the cell-level timing advance of the deviation between the cell public delay and the integer timeslot
  • the timing advance is determined according to the relative transmission delay and the cell-level timing advance.
  • the determining timing position module is specifically configured to:
  • the satellite estimate the propagation distance difference between the user link propagation path of the terminal and the smallest link delay path closest to the satellite;
  • the determining timing position module is specifically configured to:
  • the determining timing position module is specifically further configured to:
  • Detecting a feedback RAR message within a random access response RAR time window where the RAR message includes an uplink timing advance adjustment amount and an uplink scheduling permission, and the RAR time window starts from the receiving position of the configuration message;
  • the feedback RAR message obtain the uplink synchronization and send the radio resource control RRC message;
  • the configuration message further includes a PRACH Preamble format.
  • the PRACH Preamble format includes multiple cyclic prefix CPs, Preamble sequences, and guard time GT, and the total duration of the multiple CPs is greater than the transmission introduced by the movement distance of the satellite during the random access of the terminal.
  • the total duration of the guard time GT is greater than the sum of the transmission delay introduced by the movement distance of the satellite during the random access process of the terminal, the delay introduced by the GPS positioning error, and the delay introduced by the timing estimation error during the initial downlink synchronization process.
  • the subcarrier interval occupied by the PRACH Preamble sequence is determined according to the Doppler frequency offset range supported by the terminal.
  • the subcarrier interval occupied by the PRACH Preamble sequence is based on the Doppler frequency offset range corresponding to the terminal at different moving speeds, and/or the residual frequency offset existing after the terminal is initially synchronized with The sum of Doppler frequency deviations caused by satellite movement during the sending of the configuration message is determined.
  • the determining timing position module is specifically further configured to:
  • the determining timing position module is specifically configured to:
  • the terminal performs downlink cell search according to the periodic position of the frame structure of the downlink synchronization signal and/or reference signal predefined by the protocol, including downlink timing synchronization position estimation and downlink frequency offset estimation operations to obtain the downlink synchronization signal and/or reference signal;
  • S′ PRACH (t) S PRACH (t) ⁇ exp(-j ⁇ 2 ⁇ f delta );
  • S PRACH (t) is the time domain signal of the PRACH Preamble sequence.
  • an embodiment of the present application also provides another network-side device for random access, including:
  • the sending module 121 is configured to send a configuration message carrying related parameters to the terminal, where the related parameters include cell public delay information;
  • the timing position determining module 122 is configured to determine the uplink receiving timing position according to the cell public delay information
  • the detection module 123 is configured to detect the PRACH Preamble sequence sent by the terminal on all the candidate physical layer random access channel PRACH time-frequency resources according to the uplink receiving timing position.
  • the determining timing position module is specifically configured to:
  • the determining timing position module is specifically configured to:
  • the cell public delay information determine the cell-level timing advance of the deviation between the cell public delay and the integer timeslot
  • the offset of the uplink receiving timing position relative to the sending position of the configuration message is determined.
  • the determining timing position module is specifically configured to:
  • the cell-level timing advance is subtracted from the cell common delay to obtain the offset of the uplink receiving timing position relative to the configuration message sending position.
  • the terminal After detecting the PRACH Preamble sequence sent by the terminal, sending a random access response RAR message to the terminal, where the RAR message includes the uplink timing advance adjustment amount and the uplink scheduling permission;
  • the configuration message further includes a PRACH Preamble format.
  • the PRACH Preamble sequence includes multiple cyclic prefixes CP, Preamble sequence, and guard time GT, and the duration of the multiple CPs is greater than the transmission time introduced by the movement distance of the satellite during random access of the terminal.
  • the total duration of the guard time GT is greater than the sum of the transmission delay introduced by the movement distance of the satellite during the random access process of the terminal, the delay introduced by the GPS positioning error, and the delay introduced by the timing estimation error during the initial downlink synchronization process.
  • the subcarrier interval occupied by the PRACH Preamble sequence is determined according to the Doppler frequency offset range supported by the terminal.
  • the determining timing position module is specifically configured to:
  • the embodiment of the present application provides a readable storage medium, the readable storage medium is a non-volatile storage medium, the readable storage medium is a non-volatile readable storage medium, and includes program code, when the program code When running on a computing device, the program code is used to make the computing device execute the following steps:
  • the PRACH Preamble sequence is sent on the time-frequency resource corresponding to the uplink sending timing position.
  • the embodiment of the present application provides a readable storage medium, the readable storage medium is a non-volatile storage medium, the readable storage medium is a non-volatile readable storage medium, and includes program code, when the program code When running on a computing device, the program code is used to make the computing device execute the following steps:
  • the PRACH Preamble sequence sent by the terminal is detected.
  • an embodiment of the application also provides a method for random access by a terminal. Because the terminal corresponding to this method is the terminal in the random access system of the embodiment of the application, and the principle of the method to solve the problem is the same The terminal is similar, so the implementation of this method can refer to the implementation of the system, and the repetition will not be repeated.
  • a method for a terminal to perform random access in an embodiment of the present application includes:
  • Step 901 Receive and obtain related parameters in the configuration message, where the related parameters include cell public delay information;
  • Step 902 Generate a physical layer random access channel random access preamble PRACH Preamble sequence, and determine the uplink transmission timing position according to the cell public delay information;
  • Step 903 Send the PRACH Preamble sequence on the time-frequency resource corresponding to the uplink sending timing position.
  • determining the uplink transmission timing position according to the cell public delay information includes:
  • the uplink transmission timing position is determined according to the receiving position and the timing advance of the configuration message.
  • determining the timing advance of the uplink transmission timing position relative to the configuration message receiving position according to the cell public delay information includes:
  • the cell public delay information determine the cell-level timing advance of the deviation between the cell public delay and the integer timeslot
  • the timing advance is determined according to the relative transmission delay and the cell-level timing advance.
  • the estimated relative transmission delay includes:
  • the satellite estimate the propagation distance difference between the user link propagation path of the terminal and the smallest link delay path closest to the satellite;
  • determining the timing advance according to the relative transmission delay and the cell-level timing advance includes:
  • the method further includes:
  • Detecting a feedback RAR message within a random access response RAR time window where the RAR message includes an uplink timing advance adjustment amount and an uplink scheduling permission, and the RAR time window starts from the receiving position of the configuration message;
  • the feedback RAR message obtain the uplink synchronization and send the radio resource control RRC message;
  • the configuration message further includes a PRACH Preamble format.
  • the PRACH Preamble format includes multiple cyclic prefix CPs, preamble sequences, and guard interval GT, and the total duration of the multiple CPs and the length of GT are greater than the movement of the satellite in the random access process of the terminal The sum of the transmission delay introduced by the distance, the delay introduced by the GPS positioning error, and the delay introduced by the timing estimation error during the initial downlink synchronization.
  • the subcarrier interval occupied by the PRACH Preamble sequence is determined according to the Doppler frequency offset range supported by the terminal.
  • the subcarrier interval occupied by the PRACH Preamble sequence is based on the Doppler frequency offset range corresponding to the terminal at different moving speeds, and/or the residual frequency offset existing after the terminal is initially synchronized with The sum of Doppler frequency deviations caused by satellite movement during the sending of the configuration message is determined.
  • the method before sending the PRACH Preamble sequence on the time-frequency resource corresponding to the uplink sending timing position, the method further includes:
  • performing frequency offset pre-compensation on the generated PRACH Preamble sequence based on the estimated downlink frequency offset includes:
  • the terminal performs downlink cell search according to the periodic position of the frame structure of the downlink synchronization signal and/or reference signal predefined by the protocol, including downlink timing synchronization position estimation and downlink frequency offset estimation operations to obtain the downlink synchronization signal and/or reference signal;
  • S′ PRACH (t) S PRACH (t) ⁇ exp(-j ⁇ 2 ⁇ f delta );
  • S PRACH (t) is the time domain signal of the PRACH Preamble sequence.
  • an embodiment of the application also provides a method for a network side device to perform random access, because the network side device corresponding to this method is the network side device in the random access system in the embodiment of the application, and
  • the principle of the method to solve the problem is similar to that of the device, so the implementation of the method can refer to the implementation of the system, and the repetition will not be repeated.
  • a method for a network side device to perform random access includes:
  • Step 1001 Send a configuration message carrying related parameters to a terminal, where the related parameters include cell public delay information;
  • Step 1002 Determine the uplink receiving timing position according to the cell public delay information
  • Step 1003 According to the uplink receiving timing position, on all candidate physical layer random access channel PRACH time-frequency resources, detect the PRACH Preamble sequence sent by the terminal.
  • determining the uplink receiving timing position according to the cell public delay information includes:
  • determining the offset of the uplink receiving timing position relative to the sending position of the configuration message according to the cell public delay information includes:
  • the cell public delay information determine the cell-level timing advance of the deviation between the cell public delay and the integer timeslot
  • the offset of the uplink receiving timing position relative to the sending position of the configuration message is determined.
  • determining the offset of the uplink receiving timing position relative to the configuration message sending position according to the cell public delay information and the cell-level timing advance includes:
  • the cell-level timing advance is subtracted from the cell common delay to obtain the offset of the uplink receiving timing position relative to the configuration message sending position.
  • it further includes:
  • the terminal After detecting the PRACH Preamble sequence sent by the terminal, sending a random access response RAR message to the terminal, where the RAR message includes the uplink timing advance adjustment amount and the uplink scheduling permission;
  • the configuration message further includes a PRACH Preamble format.
  • the PRACH Preamble format includes multiple cyclic prefix CPs, preamble sequences, and guard intervals GT, and the duration of the multiple CPs and the duration of GT are greater than the moving distance of the satellite during random access of the terminal.
  • the subcarrier interval occupied by the PRACH Preamble sequence is determined according to the Doppler frequency offset range supported by the terminal.
  • determining the subcarrier interval occupied by the PRACH Preamble sequence according to the Doppler frequency offset range supported by the terminal includes:
  • this application may take the form of a computer program product on a computer-usable or computer-readable storage medium, which has a computer-usable or computer-readable program code implemented in the medium to be used by the instruction execution system or Used in conjunction with the instruction execution system.
  • a computer-usable or computer-readable medium can be any medium that can contain, store, communicate, transmit, or transmit a program for use by an instruction execution system, device, or device, or in combination with an instruction execution system, Device or equipment use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及一种进行随机接入的方法及设备,用以解决目前没有一种随机接入过程能够满足卫星通信系统需求的问题。本申请实施例所述的方法包括:接收并获取配置消息中的相关参数,所述相关参数包括小区公共时延信息;生成物理层随机接入信道随机接入前导码PRACH Preamble序列,并根据所述小区公共时延信息确定上行发送定时位置;在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列。根据确定的上行发送定时位置,补偿终端-卫星-基站之间的相对传输时延和多径信道时延,减小PRACH信道的开销。

Description

一种进行随机接入的方法及设备
相关申请的交叉引用
本申请要求在2019年02月14日提交中国专利局、申请号为201910115043.7、申请名称为“一种进行随机接入的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及非地面网络NTN(Non-terrestrial networks)技术领域,特别涉及一种进行随机接入的方法及设备。
背景技术
非地面网络NTN(Non-terrestrial networks)包括卫星通信系统,具有远大于常规蜂窝通信系统的小区半径,引入了超大的传播时延,针对卫星通信系统覆盖一个小区的特定下行波束,存在两种类型的随机接入同步时延,如下所示:
一种是公共传输时延,如图1所示,终端1接收卫星3全球定位系统GPS(Global Positioning System)信号并进行准确定位,根据卫星的星在同一个波束中,距离卫星最近位置的终端1最小链路时延T1与馈电链路时延T2的两倍时间,即公共传输时延为2(T1+T2),所述馈电链路时延T2为卫星到信关站2之间的馈电链路时延;
另一种是相对传输时延,如图2所示,在同一个波束中,终端的用户链路传播路径与距离卫星1最近位置的最小链路时延路径的传播距离差d3对应的时延T3为相对传输时延。
物理层随机接入信道随机接入前导码PRACH Preamble主要用于初始接入的上行同步过程,因此,采用循环前缀CP+PRACH Preamble序列+保护时间GT的时域结构作为设计出发点,其中,CP用于抵消终端-卫星-基站之间 的相对往返传输时延2×T3和多径传输时延,避免其它上行信号针对PRACH Preamble序列的干扰,GT用于抵消终端-卫星-基站之间的相对往返传输时延2×T3,避免PRACH Preamble序列对其它上行信号的干扰,这将增加PRACH信道的CP开销,导致NTN系统的传输效率下降。
NTN系统如果采用基于NR(New Radio,新空口)系统中的闭环随机接入,终端根据系统消息获得终端所在波束区域的距离卫星最近位置的最小链路时延T1和馈电链路T2的值,计算对应的随机接入响应RAR时间窗口,并在合适的PRACH信道上发送PRACH Preamble,由于终端无法通过GPS信号获得准确的位置信息,从而无法获得终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差,如图2所示的d3,即无法获得相对传输时延T3,因此PRACH Preamble格式包含的CP长度要大于相对传输时延2×T3。
综上,基于当前NR的闭环随机接入过程和NR的PRACH Preamble格式无法满足卫星通信系统需求,一方面,如果重用基于NR的闭环随机接入过程,将增加PRACH信道的开销,导致NTN系统的传输效率下降;另一方面,如果相对传输时延T3大于PRACH Preamble的循环前缀CP的大小,则无法重用5G NR的PRACH Preamble格式,例如:5G NR支持的长PRACH Preamble序列所支持的最大的CP长度为0.684ms。针对卫星系统中T3大于0.684ms的所有情况,需要设计新的PRACH Preamble格式。因此,目前针对NTN系统没有好的解决方案。
发明内容
本申请提供一种进行随机接入的方法及设备,用以解决目前还没有一种随机接入过程能够满足卫星通信系统需求的问题。
第一方面,本申请实施例提供的一种终端进行随机接入的方法,该方法包括:
接收并获取配置消息中的相关参数,所述相关参数包括小区公共时延信 息;
生成物理层随机接入信道随机接入前导码PRACH Preamble序列,并根据所述小区公共时延信息确定上行发送定时位置;
在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列。
作为一种可选的实施方式,根据所述小区公共时延信息确定上行发送定时位置,包括:
根据所述小区公共时延信息,确定上行发送定时位置相对于配置消息接收位置的定时提前量;
根据所述配置消息的接收位置及定时提前量确定上行发送定时位置。
作为一种可选的实施方式,根据所述小区公共时延信息,确定上行发送定时位置相对于配置消息接收位置的定时提前量,包括:
预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差对应的相对传输时延;
根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
根据所述相对传输时延和小区级定时提前量确定定时提前量。
作为一种可选的实施方式,所述预估相对传输时延,包括:
根据全球导航卫星系统GNSS信号,确定所述终端的定位信息,通过星历获得卫星的运行参数信息;
根据所述定位信息和卫星的运行参数信息,预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差;
确定所述预估的传播距离差对应的相对传输时延。
作为一种可选的实施方式,根据所述相对传输时延和小区级定时提前量确定定时提前量,包括:
将两倍的相对传输时延与小区级定时提前量求和,得到定时提前量。
作为一种可选的实施方式,在与所述上行发送定时位置对应的时频资源 上发送PRACH Preamble序列之后,还包括:
在随机接入响应RAR时间窗口内检测反馈的RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可,RAR时间窗口以所述配置消息的接收位置为起点;
根据反馈的RAR消息,获得上行同步并发送无线资源控制RRC消息;
接收反馈的竞争解决消息并解码。
作为一种可选的实施方式,所述配置消息还包括PRACH Preamble格式。
作为一种可选的实施方式,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔,根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和确定。
作为一种可选的实施方式,在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列之前,还包括:
基于预估的下行频偏对生成的PRACH Preamble序列进行频偏预补偿。
作为一种可选的实施方式,基于预估的下行频偏对生成的PRACH Preamble序列进行频偏预补偿,包括:
终端根据协议预先定义的下行同步信号和/或参考信号所在的帧结构的周期性位置来进行下行小区搜索,包括下行定时同步位置估计和下行频偏估计 操作,以获取下行同步信号和/或参考信号;
根据周期性的下行同步信号和/或参考信号预估下行频偏f delta
按照如下公式对生成的PRACH Preamble序列进行频偏预补偿:
S′ PRACH(t)=S PRACH(t)×exp(-j×2π×f delta);
其中,S PRACH(t)为PRACH Preamble序列的时域信号。
第二方面,本申请实施例提供的一种网络侧设备进行随机接入的方法,该方法包括:
向终端发送携带相关参数的配置消息,所述相关参数包括小区公共时延信息;
根据所述小区公共时延信息确定上行接收定时位置;
根据上行接收定时位置,在所有候选的物理层随机接入信道PRACH时频资源上,针对所述终端发送的PRACH Preamble序列进行检测。
作为一种可选的实施方式,根据所述小区公共时延信息确定上行接收定时位置,包括:
根据所述小区公共时延信息,确定上行接收定时位置相对于配置消息发送位置的偏移量;
根据所述上行接收定时位置相对于配置消息发送位置的偏移量以及所述配置消息的发送位置确定上行接收定时位置。
作为一种可选的实施方式,根据所述小区公共时延信息,确定上行接收定时位置相对于配置消息发送位置的偏移量,包括:
根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
根据小区公共时延信息和小区级定时提前量,确定上行接收定时位置相对于配置消息发送位置的偏移量。
作为一种可选的实施方式,根据所述小区公共时延信息和小区级定时提前量,确定上行接收定时位置相对于配置消息发送位置的偏移量,包括:
将所述小区公共时延减去小区级定时提前量,得到上行接收定时位置相 对于配置消息发送位置的偏移量。
作为一种可选的实施方式,还包括:
检测到终端发送的PRACH Preamble序列之后,向所述终端发送随机接入响应RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可;
接收终端获得上行同步后发送的无线资源控制RRC消息;
向所述终端发送竞争解决消息。
作为一种可选的实施方式,所述配置消息还包括PRACH Preamble格式。
作为一种可选的实施方式,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
作为一种可选的实施方式,根据终端所支持的多普勒频偏范围确定PRACH Preamble序列占用的子载波间隔,包括:
根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和,确定PRACH Preamble序列占用的子载波间隔。
第三方面,本申请实施例提供的一种进行随机接入的终端,该终端包括:处理器和存储器,其中,处理器,用于读取存储器中的程序并执行下列过程:
接收并获取配置消息中的相关参数,所述相关参数包括小区公共时延信息;
生成物理层随机接入信道随机接入前导码PRACH Preamble序列,并根据所述小区公共时延信息确定上行发送定时位置;
在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列。
作为一种可选的实施方式,所述处理器具体用于:
根据所述小区公共时延信息,确定上行发送定时位置相对于配置消息接收位置的定时提前量;
根据所述配置消息的接收位置及定时提前量确定上行发送定时位置。
作为一种可选的实施方式,所述处理器具体用于:
预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差对应的相对传输时延;
根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
根据所述相对传输时延和小区级定时提前量确定定时提前量。
作为一种可选的实施方式,所述处理器具体用于:
根据全球导航卫星系统GNSS信号,确定所述终端的定位信息,通过星历获得卫星的运行参数信息;
根据所述定位信息和卫星的运行参数信息,预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差;
确定所述预估的传播距离差对应的相对传输时延。
作为一种可选的实施方式,所述处理器具体用于:
将两倍的相对传输时延与小区级定时提前量求和,得到定时提前量。
作为一种可选的实施方式,所述处理器具体还用于:
在随机接入响应RAR时间窗口内检测反馈的RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可,RAR时间窗口以所述配置消息的接收位置为起点;
根据反馈的RAR消息,获得上行同步并发送无线资源控制RRC消息;
接收反馈的竞争解决消息并解码。
作为一种可选的实施方式,所述配置消息还包括PRACH Preamble格式。
作为一种可选的实施方式,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔,根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和确定。
作为一种可选的实施方式,所述处理器具体还用于:
基于预估的下行频偏对生成的PRACH Preamble序列进行频偏预补偿。
作为一种可选的实施方式,所述处理器具体用于:
终端根据协议预先定义的下行同步信号和/或参考信号所在的帧结构的周期性位置来进行下行小区搜索,包括下行定时同步位置估计和下行频偏估计操作,以获取下行同步信号和/或参考信号;
根据周期性的下行同步信号和/或参考信号预估下行频偏f delta
按照如下公式对生成的PRACH Preamble序列进行频偏预补偿:
S′ PRACH(t)=S PRACH(t)×exp(-j×2π×f delta);
其中,S PRACH(t)为PRACH Preamble序列的时域信号。
第四方面,本申请实施例提供的一种进行随机接入的网络侧设备,该网络侧设备包括:处理器和存储器,其中,处理器,用于读取存储器中的程序并执行下列过程:
向终端发送携带相关参数的配置消息,所述相关参数包括小区公共时延 信息;
根据所述小区公共时延信息确定上行接收定时位置;
根据上行接收定时位置,在所有候选的物理层随机接入信道PRACH时频资源上,针对所述终端发送的PRACH Preamble序列进行检测。
作为一种可选的实施方式,所述网络侧设备具体用于:
根据所述小区公共时延信息,确定上行接收定时位置相对于配置消息发送位置的偏移量;
根据所述上行接收定时位置相对于配置消息发送位置的偏移量以及所述配置消息的发送位置确定上行接收定时位置。
作为一种可选的实施方式,所述网络侧设备具体用于:
根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
根据小区公共时延信息和小区级定时提前量,确定上行接收定时位置相对于配置消息发送位置的偏移量。
作为一种可选的实施方式,所述网络侧设备具体用于:
将所述小区公共时延减去小区级定时提前量,得到上行接收定时位置相对于配置消息发送位置的偏移量。
作为一种可选的实施方式,所述网络侧设备具体还用于:
检测到终端发送的PRACH Preamble序列之后,向所述终端发送随机接入响应RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可;
接收终端获得上行同步后发送的无线资源控制RRC消息;
向所述终端发送竞争解决消息。
作为一种可选的实施方式,所述配置消息还包括PRACH Preamble格式。
作为一种可选的实施方式,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
作为一种可选的实施方式,所述网络侧设备具体用于:
根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和,确定PRACH Preamble序列占用的子载波间隔。
第五方面,本申请实施例提供的一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述第一方面任一的方案。
第六方面,本申请实施例提供的一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述第二方面任一的方案。
本申请实施例提出了卫星通信系统NTN的基于开环的随机接入过程,在开环的随机接入过程中,终端根据确定的上行发送定时位置,补偿终端-卫星-基站之间的相对传输时延和公共传输时延,能够支持较小的PRACH Preamble序列中的CP长度,利用在确定的发送定时位置处提前发送PRACH Preamble序列的形式,补偿相对传输时延和公共传输时延,从而减小PRACH信道的开销。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的卫星通信系统的公共传输时延示意图;
图2为本申请实施例提供的卫星通信系统的相对传输时延示意图;
图3为本申请实施例提供的5G NR系统中的随机接入过程示意图;
图4为本申请实施例提供的一种随机接入过程系统示意图;
图5为本申请实施例提供的随机接入过程时序示意图;
图6为本申请实施例提供的一种PRACH Preamble格式示意图;
图7为本申请实施例提供的一种随机接入的终端示意图;
图8为本申请实施例提供的一种随机接入的网络侧设备示意图;
图9为本申请实施例提供的一种终端随机接入的方法流程图;
图10为本申请实施例提供的一种网络侧设备随机接入的方法流程图;
图11为本申请实施例提供的另一种随机接入的终端示意图;
图12本申请实施例提供的另一种随机接入的网络侧设备示意图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
本申请实施例中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例中,终端,是一种具有无线通信功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等;还可以是各种形式的UE,移动台(mobile station,MS),终端设备(terminal device)。
网络侧设备可以是信关站,是一种为终端提供无线通信功能的设备,包括但不限于:基站、5G中的gNB、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(BaseBand Unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。本申请中的基站还可以是未来可能出现的其他通信系统中为终端提供无线通信功能的设备。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部份实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
5G NR系统中的随机接入过程如图3所示,主要包括以下过程:
步骤0,基站发送配置消息1,UE接收配置消息1,并获取配置消息1中的相关参数;
在进行随机接入过程之前,基站通过系统信息块SIB1消息向UE发送上述相关参数,该相关参数包括SSB索引的集合、PRACH时频资源、PRACH Preamble格式和PRACH Preamble序列集合的参数。
UE通过SIB1消息获得SSB索引的集合、PRACH时频资源、PRACH Preamble格式和PRACH Preamble序列集合的参数。
步骤1,UE向基站发送消息1;
UE根据所获得的配置消息1的相关参数,生成PRACH Preamble序列,并在选定的PRACH时频资源上发送PRACH Preamble序列。其中,PRACH时频资源候选集合由SIB1消息通知,UE在SIB1消息通知的PRACH时频资源候选集合中等概率地随机选择出一个资源。
步骤2,基站向UE发送消息2,UE接收消息2;
基站在所有候选的PRACH时频资源上针对Preamble序列进行检测。如果基站检测到Preamble序列,则在PDCCH/PDSCH上反馈相应的随机接入响应RAR信息。RAR信息中包含了该UE的上行定时提前调整量和调度该UE的消息3传输的上行调度许可。
UE在发送了Preamble序列之后,在一个RAR时间窗口内检测下行PDCCH/PDSCH信道反馈的RAR消息。如果检测到了相应的RAR消息,则说明该UE发送的随机接入Preamble序列被基站检测到。
步骤3,UE向基站发送消息3;
该UE根据RAR消息中的上行定时提前调整量获得上行同步,并根据上行调度许可在PUSCH信道上发送消息3(例如,承载高层的RRC连接请求消息)。
步骤4,基站向UE发送消息4;
基站接收并解析消息3包含的UE标识之后,在PDSCH信道发送消息4。UE在PDSCH信道接收消息4包含的竞争解决消息并解码,在竞争解决成功之后完成4步随机接入过程。
5G NR系统中的随机接入过程中,UE发送上行PRACH的上行定时的参考点是UE的配置消息的下行接收定时,可知基站的下行发送定时与上行接收定时之间的无线传播时延为2倍最大单向传输时延和最大多径时延的累加和,所以要求PRACH的CP长度不小于公共传输时延和相对传输时延的累加和。PRACH所在时隙的下一个时隙的上行或者下行信道包含了CP来对抗相对传输时延,因此,要求PRACH的GT长度不小于公共传输时延。
NTN如果采用基于NR闭环随机接入:要求Preamble格式包含的CP长度要大于相对传输时延2*T3。避免PRACH前导码序列对其它上行信号的干扰。这将增加PRACH信道的CP开销,导致NTN系统的传输效率下降。
本申请提出了应用于非地面网络NTN系统的随机接入过程,与现有5G新空口NR系统的闭环随机接入过程不同,本申请采用开环的随机接入过程,终端在进行随机接入过程之前,根据接收到的配置消息中的小区公共时延信 息,确定上行发送定时位置,以调整上行发送时刻,相当于将PRACH Preamble序列提前发送,而提前发送的时刻即确定的上行发送定时位置,所述上行发送定时位置是根据小区公共时延信息确定的,并且,该上行发送定时位置能够补偿由于卫星波束覆盖的一个小区中距离卫星不同位置的终端相对于距离卫星最近位置的终端之间产生的相对传输时延,保证所有小区内的终端上行发送定时位置是一样的,同时,不需要通过上行发送的RACH Preamble序列中的保护时间GT来抵消终端-卫星-基站之间的公共传输时延,能够支持的PRACH Preamble序列中CP的总长度较小,减小PRACH信道的开销,提高NTN系统的传输效率。
如图4所述,本申请实施例进行随机接入的系统包括:
终端400,用于接收并获取配置消息中的相关参数,所述相关参数包括小区公共时延信息;
生成物理层随机接入信道随机接入前导码PRACH Preamble序列,并根据所述小区公共时延信息确定上行发送定时位置;
在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列。
网络侧设备401,用于向终端发送携带相关参数的配置消息,所述相关参数包括小区公共时延信息;根据所述小区公共时延信息确定上行接收定时位置;根据上行接收定时位置,在所有候选的物理层随机接入信道PRACH时频资源上,针对所述终端发送的PRACH Preamble序列进行检测。
在进行随机接入过程之前,网络侧设备可以通过系统信息块SIB1(System Information Block)消息向终端发送携带相关参数的配置消息;终端通过SIB1消息接收配置消息并获取配置消息中的相关参数。
上述相关参数包括小区公共时延信息、同步信号块SSB(Synchronization signal Block)索引的集合、PRACH时频资源、PRACH Preamble格式、PRACH Preamble序列集合的参数。
其中,本申请实施例中的小区公共时延信息,是针对NTN系统覆盖一个 小区的特定下行波束区域时,会存在的随机接入同步时延,所述小区公共时延信息是根据系统广播消息获得的终端所在波束区域的公共传输时延,其中,该系统广播消息可以是通过卫星传输的广播消息,也可以是通过网络侧设备传输的广播消息。
网络侧设备确定所述小区公共时延信息的方法如下:
网络侧设备根据卫星的星在同一个波束中,距离卫星最近地理位置的终端与卫星通信产生的最小链路时延T1,及卫星至网络侧设备之间产生的馈电链路时延T2,得到广播小区公共时延,所述广播小区公共时延为2(T1+T2)。所述最小链路时延T1对应图1中的用户链路T1,馈电链路时延T2对应图1中的馈电链路T2。图1中网络侧设备为信关站2,但图1中的网络侧设备只是一个具体的实施例,本申请实施例中的网络侧设备包括信关站、基站但不限于信关站、基站。
本申请实施例基于NTN系统覆盖一个小区的特定下行波束区域时,存在两种类型的随机接入同步时延,确定上行发送定时位置。其中,一种类型的随机接入同步时延是,终端通过接收所述小区公共时延信息,确定NTN系统覆盖一个小区的特定下行波束区域时,所存在的公共传输时延;另一种类型的随机接入同步时延是,终端的用户链路传播路径与同一覆盖小区内的距离卫星最近地理位置的最小链路时延路径的传播距离差对应的时延,其中,所述传播距离差对应图2中的d3。
具体的,终端根据以下两部分信息,确定上行发送定时位置:
一部分是,终端接收的网络侧设备发送的相关参数中的小区公共时延信息;
另一部分是,终端根据自身的定位信息以及卫星的运行参数,预估的相对传输时延。
因此,终端根据所述小区公共时延信息以及所述相对传输时延,确定上行发送定时位置相对于配置消息接收位置的定时提前量。鉴于本申请实施例根据NTN系统中存在的公共传输时延和相对传输时延,对终端上行发送的定 时位置进行调整,因此,相对于采用NR系统中的随机接入过程,不需要设计满足上述公共传输时延和相对传输时延之和的GP+CP长度,只需要将上行发送时刻提前,相对于NR系统而言,CP长度更小,PRACH信道开销更小,NTN系统传输效率提高。
一方面,终端根据所述小区公共时延信息,小区公共时延与整数倍时隙之间偏差的小区级定时提前量;另一方面,终端根据自身定位信息,预估出用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差对应的相对传输时延。终端根据所述相对传输时延和小区级定时提前量确定定时提前量。
具体的,终端采用以下方式确定定时提前量:
1)预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差对应的相对传输时延;
本申请实施例中,终端根据全球导航卫星系统GNSS信号,确定所述终端的定位信息,通过星历获得卫星的运行参数信息;根据所述定位信息和卫星的运行参数信息,预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差;确定所述预估的传播距离差对应的相对传输时延。
2)根据小区公共时延信息,确定广播小区公共时延与整数倍时隙之间偏差的小区级定时提前量T offset,公式如下:
T offset=2(T1+T2)-floor(2(T1+T2)/T SF)×T SF
其中,2(T1+T2)表示小区公共时延信息,T SF表示时隙的时间长度,floor(.)表示向下取整操作,T offset的基本单位为Ts;
T s=1/(Δf ref·N f,ref),Δf ref=15×10 3Hz,N f,ref=2048。
3)根据所述相对传输时延和小区级定时提前量确定定时提前量。
具体的,将两倍的相对传输时延与小区级定时提前量求和,得到定时提前量,公式如下所示:
N TA=2*T3+T offset
其中,N TA为定时提前量,T3为相对传输时延。
本申请实施例利用上述方法,确定了即将发送的PRACH Preamble序列的上行发送定时位置,同时,本申请实施例中,终端在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列之前,还包括:
基于预估的下行频偏对生成的PRACH Preamble序列进行频偏预补偿。
具体的,终端根据协议预先定义的下行同步信号和/或参考信号所在的帧结构的周期性位置来进行下行小区搜索,包括下行定时同步位置估计和下行频偏估计操作,以获取下行同步信号和/或参考信号;
考虑到终端的运动方向会持续一段时间,根据周期性的下行同步信号和/或参考信号可以预估下行频偏f delta
按照如下公式对生成的PRACH Preamble序列进行频偏预补偿:
S′ PRACH(t)=S PRACH(t)×exp(-j×2π×f delta);
其中,S PRACH(t)为PRACH Preamble序列的时域信号。
综上,终端通过调整PRACH Preamble序列的上行发送时刻,以及对即将发送的PRACH Preamble序列进行频偏预补偿后,在所述上行定时位置对应的时频资源上发送PRACH Preamble序列。
终端在所述上行定时位置对应的时频资源上发送PRACH Preamble序列;
具体的,终端根据接收的所述SIB1消息获得PRACH Preamble序列的时频资源候选集合,并且,终端在所述时频资源候选集合中等概率地随机选择一个时频资源,作为与上述上行定时位置对应的时频资源,在该对应的时频资源上向网络侧设备发送PRACH Preamble序列。
网络侧设备在接收上行发送的PRACH Preamble序列之前,根据所述小区公共时延信息确定上行接收定时位置,在确定的上行接收定时位置,针对所有候选的物理层随机接入信道PRACH时频资源,对所述终端发送的PRACH Preamble序列进行检测。
具体的,根据所述小区公共时延信息确定上行接收定时位置,包括:
1)根据所述小区公共时延信息,确定上行接收定时位置相对于配置消息 发送位置的偏移量B TA
根据小区公共时延信息,确定广播小区公共时延与整数倍时隙之间偏差的小区级定时提前量T offset,公式如下:
T offset=2(T1+T2)-floor(2(T1+T2)/T SF)×T SF
其中,2(T1+T2)表示小区公共时延信息,T SF表示时隙的时间长度,floor(.)表示向下取整操作,T offset的基本单位为Ts;
T s=1/(Δf ref·N f,ref),Δf ref=15×10 3Hz,N f,ref=2048。
根据小区公共时延信息和小区级定时提前量,确定上行接收定时位置相对于配置消息发送位置的偏移量B TA
具体的,将所述广播小区公共时延减去小区级定时提前量T offset,得到上行接收定时位置相对于配置消息发送位置的偏移量B TA。公式如下所示:
B TA=2(T1+T2)-T offset
2)根据所述配置消息的发送位置及定时提前量确定上行发送定时位置。
网络侧设备在确定了上行接收定时位置后,针对所有候选的物理层随机接入信道PRACH时频资源,对所述终端发送的PRACH Preamble序列进行检测。具体的,网络侧设备对终端发送的PRACH Preamble序列进行检测的过程,是对PRACH Preamble序列中的CP进行去CP操作的过程,本申请实施例中,PRACH Preamble序列中的CP长度不需要用于抵消公共传输时延,因此本申请实施例中CP长度与根据现有技术确定的CP长度不同,因此,本申请实施例中的去CP操作基于本实施例中的Preamble格式中的CP长度进行去CP操作。
本申请实施例中基于NTN系统随机接入过程中终端和网络侧设备的发送接收的时序关系如图5所示。下面,结合图5对小区公共时延2(T1+T2)、相对传输时延T3和小区级定时提前量T offset的具体作用进行说明。
首先给出NTN系统终端和网络侧设备的定时提前量建立的基本原则:
终端的下行以接收到的下行索引,包括帧、子帧和时隙的索引,作为当前的子帧索引index;终端在随机接入过程中初次获得上行信号帧同步时,通 过补充相对传输时延后,与小区的公共时延一致,即以小区距离卫星最短公共距离上行发送定时位置为基准,小区内所有终端到达网络侧设备时间以小区公共距离为基准,此时,一个小区内的所有终端的上行子帧索引保持一致。
本实施例中基于NTN系统随机接入系统包括:信关站BS,终端UE1,终端UE2,其中终端UE2是小区中与信关站BS距离最短的终端,UE1为小区中的任意一个UE。UE和BS侧的时序关系如下:
1)信关站在T A时刻发送下行同步信道/信号,将配置消息中的相关参数发送给终端;
具体地,该下行同步信道/信号可以是SIB1消息。
2)小区中距离BS最近的终端UE2在T B时刻接收到所述配置消息,(T B-T A)=(T 1+T 2),终端UE1在T C时刻接收到所述配置消息,(T C-T A)=(T 1+T 2)+T 3
即终端UE2相对于信关站发送的T A时刻延时了T 1+T 2,其中T 1为距离卫星最近位置的最小链路时延,T 2为馈电链路时延。终端UE1相对于信关站发送的T A时刻延时了T 1+T 2+T 3
3)终端UE1在T D时刻发送PRACH Preamble,相对于T C时刻的时间提前量为N TA
4)信关站BS在T E时刻检测到PRACH Preamble,T E时刻相对于T D时刻的传播时延为(T E-T D)=(T 1+T 2)+T 3,T E时刻相对于T A时刻的传播时延为(T E-T A)=2(T 1+T 2)-T offset
其中,T offset是小区级定时提前量,具体计算方式如前所述,这里不再重述。
则T D时刻相对于T C时刻的时延为:
(T D-T C)=-N TA=-(2T 3+T offset),其中,负号表示PRACH Preamble在T D时刻是定时提前发送。BS在T E时刻检测到PRACH Preamble,T E时刻相对于T D时刻的传播时延为:T E-T D=(T1+T2)+T3;
基于上述各时刻之间的关系可得,T E时刻相对于T A时刻的传播时延为:
(T E-T A)=2(T 1+T 2)-T offset
当基站检测到终端发送的PRACH Preamble序列之后,向所述终端发送随机接入响应RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可;
其中,网络侧设备的下行子帧和上行子帧维持相同的子帧索引值index;
网络侧设备的参考上行子帧索引和实际接收到的上行子帧索引存在一个公共偏移量B TA,如上述公式所示的B TA=2(T1+T2)-T offset
终端在发送PRACH Preamble序列之后,在随机接入响应RAR时间窗口内检测反馈的RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可;根据反馈的RAR消息,获得上行同步并发送无线资源控制RRC消息;
其中,RAR时间窗口以所述配置消息的接收位置为起点,该起点位置的确定是根据终端接收的小区公共时延信息确定的。
网络侧设备接收终端获得上行同步后发送的无线资源控制RRC消息;向所述终端发送竞争解决消息。
终端接收反馈的竞争解决消息并解码。
综上所述,通过本申请实施例的上述方法,完成了随机接入系统中的终端和网络侧设备的之间的随机接入过程的建立。终端的下行以接收到的下行帧索引、子帧索引和时隙索引,作为当前的子帧索引index;终端在随机接入过程中初次获得上行信号帧同步时,通过补充相对传输时延后,与小区的公共时延一致,即以小区距离卫星最短公共距离上行发送定时位置为基准,小区内所有终端到达网络侧设备时间以小区公共距离为基准;本申请实施例提供的方法,能够保证一个卫星波束覆盖小区内的所有终端的上行子帧索引保持一致。
同时,本申请实施例中网络侧设备发送的配置消息中的PRACH Preamble格式不同于现有技术中PRACH Preamble格式。
目前Rel-15NR支持两种长度的PRACH Preamble格式。
下面表1和表2分别给出了5G NR支持的长PRACH序列和短PRACH序 列对应的PRACH序列的CP长度。由表4和表5可知,最大的CP长度为0.684ms。
表1:长PRACH序列对应的PRACH CP长度
Figure PCTCN2019126707-appb-000001
表2:短PRACH序列对应的PRACH CP长度
Figure PCTCN2019126707-appb-000002
如图2所示,当d1=35786km、固定小区半径S max/2=200km时,最大的相对距离差d3=d2–d1和相对传输时延T3的取值如表3所示。
表3:相对距离差d3、相对传输时延T3以及卫星俯仰角α 2
Figure PCTCN2019126707-appb-000003
Figure PCTCN2019126707-appb-000004
如果表1所示的相对传输时延T3小于PRACH的循环前缀CP的大小,则可以重用5G NR的PRACH Preamble格式,针对卫星系统中T3大于0.684ms的所有情况,需要设计新的PRACH格式。
但本申请中不需要利用CP以及GT的长度来抵消上述时延,不要求CP的长度大于2倍最大单向传输时延和最大多径传输时延的累加和,同时不要求GT的长度大于2倍的最大单向传输时延。减小CP的长度,减小PRACH信道的开销。
具体的,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
同时,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。例如,所述PRACH Preamble序列占用的子载波间隔,根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和确定。
本申请实施例中PRACH Preamble格式的设计思路如下:
其中,CP的长度以及GT的长度均需要大于三种时延之和,三种时延分别是在随机接入过程中卫星的移动距离所引入的传输时延,GPS定位误差引入的时延和下行初始同步过程中定时估计误差引入的时延;
子载波间隔SCS基于Zadoff-chu序列的受限集合TypeA,要满足大于NTN 系统的最大多普勒频偏;
Preamble序列长度取决于PRACH检测和链路预算性能。
本申请实施例中的PRACH Preamble格式,能够支持终端移动速度等于或高于1000km/h如终端用户在飞机中使用时终端的移动速度可达1000km/h。
以1000km/h的移动速度为例,基于以下因素,确定PRACH Preamble格式中占用的子载波间隔SCS的大小:
1)上述速度的终端在典型载波频率下可得+/-27khz的多普勒频偏;
2)终端在随机接入过程中获得初始信号同步后会存在+/1khz残余频偏;
3)终端在PRACH Preamble的发送过程中由于卫星移动造成的多普勒频偏约0.4khz;
4)该子载波间隔在Zadoff-chu序列受限集合TypeA条件下,能够容忍的多普勒频偏范围是:[-SCS,+SCS]。
其中,PRACH Preamble序列是由Zadoff-chu序列进行循环偏置而生成的,基于上述因素,本申请实施例中采用的PRACH Preamble序列长为839的Zadoff-chu序列,支持非受限集合和受限集合TypeA,因此本申请实施例中设计的PRACH Preamble序列,能够容忍的多普勒频偏范围是[-30,+30],能够容忍由于终端在1000km/h速度下引起的+/-27khz的多普勒频偏,以及获得初始信号同步后引起的+/1khz残余频偏,以及由于卫星移动造成的多普勒频偏约0.4khz。因此,本申请实施例中子载波间隔为30khz,占用20个物理资源块PRB,即子载波间隔占用的时长为T_OFDM=1/30KHz=33.33us。
同时,基于以下因素,确定PRACH Preamble格式中占用的循环前缀CP的长度:
1)终端随机接入过程中卫星的移动距离引入的传输时延;
2)GPS定位误差引入的时延;
3)终端下行初始同步过程中定时估计误差引入的时延;
4)在发送PRACH Preamble时对PRACH Preamble进行频偏预补偿引起的时延。
本申请实施中,设计的CP=5×T_OFDM=166.7us,该CP能够容忍随机接入过程中卫星移动距离最大6km引起20us的时延。
本申请实施例提供的一种具体的PRACH Preamble格式如图6所示。
子载波间隔30khz,CP=5×T_OFDM=166.7us;
Preamble序列长度=5×T_OFDM=166.7us;
保护时长GT=5×T_OFDM=166.7us;
总的PRACH长度=166.7us+166.7us+166.7us=500us=0.5ms。
如图7所示,本申请实施例提供的一种进行随机接入的终端包括:处理器700、存储器701和收发机702。
处理器700负责管理总线架构和通常的处理,存储器701可以存储处理器700在执行操作时所使用的数据。收发机702用于在处理器700的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器701代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器700负责管理总线架构和通常的处理,存储器701可以存储处理器700在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器700中,或者由处理器700实现。在实现过程中,信号处理流程的各步骤可以通过处理器700中的硬件的集成逻辑电路或者软件形式的指令完成。处理器700可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者 电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器701,处理器700读取存储器701中的信息,结合其硬件完成信号处理流程的步骤。
其中,处理器700,用于读取存储器701中的程序并执行下列过程:
接收并获取配置消息中的相关参数,所述相关参数包括小区公共时延信息;
生成物理层随机接入信道随机接入前导码PRACH Preamble序列,并根据所述小区公共时延信息确定上行发送定时位置;
在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列。
作为一种可选的实施方式,所述处理器具体用于:
根据所述小区公共时延信息,确定上行发送定时位置相对于配置消息接收位置的定时提前量;
根据所述配置消息的接收位置及定时提前量确定上行发送定时位置。
作为一种可选的实施方式,所述处理器具体用于:
预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差对应的相对传输时延;
根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
根据所述相对传输时延和小区级定时提前量确定定时提前量。
作为一种可选的实施方式,所述处理器具体用于:
根据全球导航卫星系统GNSS信号,确定所述终端的定位信息,通过星历获得卫星的运行参数信息;
根据所述定位信息和卫星的运行参数信息,预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差;
确定所述预估的传播距离差对应的相对传输时延。
作为一种可选的实施方式,所述处理器具体用于:
将两倍的相对传输时延与小区级定时提前量求和,得到定时提前量。
作为一种可选的实施方式,所述处理器具体还用于:
在随机接入响应RAR时间窗口内检测反馈的RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可,RAR时间窗口以所述配置消息的接收位置为起点;
根据反馈的RAR消息,获得上行同步并发送无线资源控制RRC消息;
接收反馈的竞争解决消息并解码。
作为一种可选的实施方式,所述配置消息还包括PRACH Preamble格式。
作为一种可选的实施方式,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔,根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和确定。
作为一种可选的实施方式,所述处理器具体还用于:
基于预估的下行频偏对生成的PRACH Preamble序列进行频偏预补偿。
作为一种可选的实施方式,所述处理器具体用于:
终端根据协议预先定义的下行同步信号和/或参考信号所在的帧结构的周期性位置来进行下行小区搜索,包括下行定时同步位置估计和下行频偏估计操作,以获取下行同步信号和/或参考信号;
根据周期性的下行同步信号和/或参考信号预估下行频偏f delta
按照如下公式对生成的PRACH Preamble序列进行频偏预补偿:
S′ PRACH(t)=S PRACH(t)×exp(-j×2π×f delta);
其中,S PRACH(t)为PRACH Preamble序列的时域信号。
如图8所示,本申请实施例提供的一种进行随机接入的网络侧设备,包括:处理器800、存储器801和收发机802。
处理器800负责管理总线架构和通常的处理,存储器801可以存储处理器800在执行操作时所使用的数据。收发机802用于在处理器800的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器801代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器800负责管理总线架构和通常的处理,存储器801可以存储处理器800在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器800中,或者由处理器800实现。在实现过程中,信号处理流程的各步骤可以通过处理器800中的硬件的集成逻辑电路或者软件形式的指令完成。处理器800可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器801,处理器800读取存储器801中的信息,结合其硬件完成信号处理流程的步骤。
其中,处理器800,用于读取存储器801中的程序并执行下列过程:
向终端发送携带相关参数的配置消息,所述相关参数包括小区公共时延信息;
根据所述小区公共时延信息确定上行接收定时位置;
根据上行接收定时位置,在所有候选的物理层随机接入信道PRACH时频资源上,针对所述终端发送的PRACH Preamble序列进行检测。
作为一种可选的实施方式,所述网络侧设备具体用于:
根据所述小区公共时延信息,确定上行接收定时位置相对于配置消息发送位置的偏移量;
根据所述上行接收定时位置相对于配置消息发送位置的偏移量以及所述配置消息的发送位置确定上行接收定时位置。
作为一种可选的实施方式,所述网络侧设备具体用于:
根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
根据小区公共时延信息和小区级定时提前量,确定上行接收定时位置相对于配置消息发送位置的偏移量。
作为一种可选的实施方式,所述网络侧设备具体用于:
将所述小区公共时延减去小区级定时提前量,得到上行接收定时位置相对于配置消息发送位置的偏移量。
作为一种可选的实施方式,所述网络侧设备具体还用于:
检测到终端发送的PRACH Preamble序列之后,向所述终端发送随机接入响应RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可;
接收终端获得上行同步后发送的无线资源控制RRC消息;
向所述终端发送竞争解决消息。
作为一种可选的实施方式,所述配置消息还包括PRACH Preamble格式。
作为一种可选的实施方式,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的时长大于终端随机接入过 程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
作为一种可选的实施方式,所述网络侧设备具体用于:
根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和,确定PRACH Preamble序列占用的子载波间隔。
如图11所示,本申请实施例还提供另一种进行随机接入的终端包括:
接收模块110,用于接收并获取配置消息中的相关参数,所述相关参数包括小区公共时延信息;
确定定时位置模块111,用于生成物理层随机接入信道随机接入前导码PRACH Preamble序列,并根据所述小区公共时延信息确定上行发送定时位置;
发送模块112,用于在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列。
作为一种可选的实施方式,所述确定定时位置模块具体用于:
根据所述小区公共时延信息,确定上行发送定时位置相对于配置消息接收位置的定时提前量;
根据所述配置消息的接收位置及定时提前量确定上行发送定时位置。
作为一种可选的实施方式,所述确定定时位置模块具体用于:
预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差对应的相对传输时延;
根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
根据所述相对传输时延和小区级定时提前量确定定时提前量。
作为一种可选的实施方式,所述确定定时位置模块具体用于:
根据全球导航卫星系统GNSS信号,确定所述终端的定位信息,通过星历获得卫星的运行参数信息;
根据所述定位信息和卫星的运行参数信息,预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差;
确定所述预估的传播距离差对应的相对传输时延。
作为一种可选的实施方式,所述确定定时位置模块具体用于:
将两倍的相对传输时延与小区级定时提前量求和,得到定时提前量。
作为一种可选的实施方式,所述确定定时位置模块具体还用于:
在随机接入响应RAR时间窗口内检测反馈的RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可,RAR时间窗口以所述配置消息的接收位置为起点;
根据反馈的RAR消息,获得上行同步并发送无线资源控制RRC消息;
接收反馈的竞争解决消息并解码。
作为一种可选的实施方式,所述配置消息还包括PRACH Preamble格式。
作为一种可选的实施方式,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔,根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后 存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和确定。
作为一种可选的实施方式,所述确定定时位置模块具体还用于:
基于预估的下行频偏对生成的PRACH Preamble序列进行频偏预补偿。
作为一种可选的实施方式,所述确定定时位置模块具体用于:
终端根据协议预先定义的下行同步信号和/或参考信号所在的帧结构的周期性位置来进行下行小区搜索,包括下行定时同步位置估计和下行频偏估计操作,以获取下行同步信号和/或参考信号;
根据周期性的下行同步信号和/或参考信号预估下行频偏f delta
按照如下公式对生成的PRACH Preamble序列进行频偏预补偿:
S′ PRACH(t)=S PRACH(t)×exp(-j×2π×f delta);
其中,S PRACH(t)为PRACH Preamble序列的时域信号。
如图12所示,本申请实施例还提供另一种进行随机接入的网络侧设备包括:
发送模块121,用于向终端发送携带相关参数的配置消息,所述相关参数包括小区公共时延信息;
确定定时位置模块122,用于根据所述小区公共时延信息确定上行接收定时位置;
检测模块123,用于根据上行接收定时位置,在所有候选的物理层随机接入信道PRACH时频资源上,针对所述终端发送的PRACH Preamble序列进行检测。
作为一种可选的实施方式,所述确定定时位置模块具体用于:
根据所述小区公共时延信息,确定上行接收定时位置相对于配置消息发送位置的偏移量;
根据所述上行接收定时位置相对于配置消息发送位置的偏移量以及所述配置消息的发送位置确定上行接收定时位置。
作为一种可选的实施方式,所述确定定时位置模块具体用于:
根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
根据小区公共时延信息和小区级定时提前量,确定上行接收定时位置相对于配置消息发送位置的偏移量。
作为一种可选的实施方式,所述确定定时位置模块具体用于:
将所述小区公共时延减去小区级定时提前量,得到上行接收定时位置相对于配置消息发送位置的偏移量。
作为一种可选的实施方式,还用于:
检测到终端发送的PRACH Preamble序列之后,向所述终端发送随机接入响应RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可;
接收终端获得上行同步后发送的无线资源控制RRC消息;
向所述终端发送竞争解决消息。
作为一种可选的实施方式,所述配置消息还包括PRACH Preamble格式。
作为一种可选的实施方式,所述PRACH Preamble序列包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
作为一种可选的实施方式,所述确定定时位置模块具体用于:
根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和,确定PRACH Preamble序列占用的子载波间隔。
本申请实施例提供一种可读存储介质,该可读存储介质为非易失性存储 介质,所述可读存储介质为非易失性可读存储介质,包括程序代码,当所述程序代码在计算设备上运行时,所述程序代码用于使所述计算设备执行如下步骤:
接收并获取配置消息中的相关参数,所述相关参数包括小区公共时延信息;
生成物理层随机接入信道随机接入前导码PRACH Preamble序列,并根据所述小区公共时延信息确定上行发送定时位置;
在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列。
本申请实施例提供一种可读存储介质,该可读存储介质为非易失性存储介质,所述可读存储介质为非易失性可读存储介质,包括程序代码,当所述程序代码在计算设备上运行时,所述程序代码用于使所述计算设备执行如下步骤:
向终端发送携带相关参数的配置消息,所述相关参数包括小区公共时延信息;
根据所述小区公共时延信息确定上行接收定时位置;
根据上行接收定时位置,在所有候选的物理层随机接入信道PRACH时频资源上,针对所述终端发送的PRACH Preamble序列进行检测。
基于同一发明构思,本申请实施例中还提供了一种终端进行随机接入的方法,由于该方法对应的终端是本申请实施例随机接入系统中的终端,并且该方法解决问题的原理与该终端相似,因此该方法的实施可以参见系统的实施,重复之处不再赘述。
如图9所示,本申请实施例一种终端进行随机接入的方法包括:
步骤901:接收并获取配置消息中的相关参数,所述相关参数包括小区公共时延信息;
步骤902:生成物理层随机接入信道随机接入前导码PRACH Preamble序列,并根据所述小区公共时延信息确定上行发送定时位置;
步骤903:在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列。
作为一种可选的实施方式,根据所述小区公共时延信息确定上行发送定时位置,包括:
根据所述小区公共时延信息,确定上行发送定时位置相对于配置消息接收位置的定时提前量;
根据所述配置消息的接收位置及定时提前量确定上行发送定时位置。
作为一种可选的实施方式,根据所述小区公共时延信息,确定上行发送定时位置相对于配置消息接收位置的定时提前量,包括:
预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差对应的相对传输时延;
根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
根据所述相对传输时延和小区级定时提前量确定定时提前量。
作为一种可选的实施方式,所述预估相对传输时延,包括:
根据全球导航卫星系统GNSS信号,确定所述终端的定位信息,通过星历获得卫星的运行参数信息;
根据所述定位信息和卫星的运行参数信息,预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差;
确定所述预估的传播距离差对应的相对传输时延。
作为一种可选的实施方式,根据所述相对传输时延和小区级定时提前量确定定时提前量,包括:
将两倍的相对传输时延与小区级定时提前量求和,得到定时提前量。
作为一种可选的实施方式,在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列之后,还包括:
在随机接入响应RAR时间窗口内检测反馈的RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可,RAR时间窗口以所述配置消息的 接收位置为起点;
根据反馈的RAR消息,获得上行同步并发送无线资源控制RRC消息;
接收反馈的竞争解决消息并解码。
作为一种可选的实施方式,所述配置消息还包括PRACH Preamble格式。
作为一种可选的实施方式,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护间隔GT,所述多个CP的总时长和GT的长度大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔,根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和确定。
作为一种可选的实施方式,在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列之前,还包括:
基于预估的下行频偏对生成的PRACH Preamble序列进行频偏预补偿。
作为一种可选的实施方式,基于预估的下行频偏对生成的PRACH Preamble序列进行频偏预补偿,包括:
终端根据协议预先定义的下行同步信号和/或参考信号所在的帧结构的周期性位置来进行下行小区搜索,包括下行定时同步位置估计和下行频偏估计操作,以获取下行同步信号和/或参考信号;
根据周期性的下行同步信号和/或参考信号预估下行频偏f delta
按照如下公式对生成的PRACH Preamble序列进行频偏预补偿:
S′ PRACH(t)=S PRACH(t)×exp(-j×2π×f delta);
其中,S PRACH(t)为PRACH Preamble序列的时域信号。
基于同一发明构思,本申请实施例中还提供了一种网络侧设备进行随机 接入的方法,由于该方法对应的网络侧设备是本申请实施例随机接入系统中的网络侧设备,并且该方法解决问题的原理与该设备相似,因此该方法的实施可以参见系统的实施,重复之处不再赘述。
如图10所示,本申请实施例提供的一种网络侧设备进行随机接入的方法,该方法包括:
步骤1001:向终端发送携带相关参数的配置消息,所述相关参数包括小区公共时延信息;
步骤1002:根据所述小区公共时延信息确定上行接收定时位置;
步骤1003:根据上行接收定时位置,在所有候选的物理层随机接入信道PRACH时频资源上,针对所述终端发送的PRACH Preamble序列进行检测。
作为一种可选的实施方式,根据所述小区公共时延信息确定上行接收定时位置,包括:
根据所述小区公共时延信息,确定上行接收定时位置相对于配置消息发送位置的偏移量;
根据所述上行接收定时位置相对于配置消息发送位置的偏移量以及所述配置消息的发送位置确定上行接收定时位置。
作为一种可选的实施方式,根据所述小区公共时延信息,确定上行接收定时位置相对于配置消息发送位置的偏移量,包括:
根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
根据小区公共时延信息和小区级定时提前量,确定上行接收定时位置相对于配置消息发送位置的偏移量。
作为一种可选的实施方式,根据所述小区公共时延信息和小区级定时提前量,确定上行接收定时位置相对于配置消息发送位置的偏移量,包括:
将所述小区公共时延减去小区级定时提前量,得到上行接收定时位置相对于配置消息发送位置的偏移量。
作为一种可选的实施方式,还包括:
检测到终端发送的PRACH Preamble序列之后,向所述终端发送随机接入响应RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可;
接收终端获得上行同步后发送的无线资源控制RRC消息;
向所述终端发送竞争解决消息。
作为一种可选的实施方式,所述配置消息还包括PRACH Preamble格式。
作为一种可选的实施方式,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护间隔GT,所述多个CP的时长和GT的时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
作为一种可选的实施方式,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
作为一种可选的实施方式,根据终端所支持的多普勒频偏范围确定PRACH Preamble序列占用的子载波间隔,包括:
根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和,确定PRACH Preamble序列占用的子载波间隔。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在 本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (43)

  1. 一种终端进行随机接入的方法,其特征在于,该方法包括:
    接收并获取配置消息中的相关参数,所述相关参数包括小区公共时延信息;
    生成物理层随机接入信道随机接入前导码PRACH Preamble序列,并根据所述小区公共时延信息确定上行发送定时位置;
    在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列。
  2. 根据权利要求1所述的方法,其特征在于,根据所述小区公共时延信息确定上行发送定时位置,包括:
    根据所述小区公共时延信息,确定上行发送定时位置相对于配置消息接收位置的定时提前量;
    根据所述配置消息的接收位置及定时提前量确定上行发送定时位置。
  3. 根据权利要求2所述的方法,其特征在于,根据所述小区公共时延信息,确定上行发送定时位置相对于配置消息接收位置的定时提前量,包括:
    预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差对应的相对传输时延;
    根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
    根据所述相对传输时延和小区级定时提前量确定定时提前量。
  4. 根据权利要求3所述的方法,其特征在于,所述预估相对传输时延,包括:
    根据全球导航卫星系统GNSS信号,确定所述终端的定位信息,通过星历获得卫星的运行参数信息;
    根据所述定位信息和卫星的运行参数信息,预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差;
    确定所述预估的传播距离差对应的相对传输时延。
  5. 根据权利要求3所述的方法,其特征在于,根据所述相对传输时延和小区级定时提前量确定定时提前量,包括:
    将两倍的相对传输时延与小区级定时提前量求和,得到定时提前量。
  6. 根据权利要求1所述的方法,其特征在于,在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列之后,还包括:
    在随机接入响应RAR时间窗口内检测反馈的RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可,RAR时间窗口以所述配置消息的接收位置为起点;
    根据反馈的RAR消息,获得上行同步并发送无线资源控制RRC消息;
    接收反馈的竞争解决消息并解码。
  7. 根据权利要求1所述的方法,其特征在于,所述配置消息还包括PRACH Preamble格式。
  8. 根据权利要求7所述的方法,其特征在于,
    所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
    所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
  9. 根据权利要求8所述的方法,其特征在于,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
  10. 根据权利要求9所述的方法,其特征在于,所述PRACH Preamble序列占用的子载波间隔,根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和确定。
  11. 根据权利要求1所述的方法,其特征在于,在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列之前,还包括:
    基于预估的下行频偏对生成的PRACH Preamble序列进行频偏预补偿。
  12. 根据权利要求11所述的方法,其特征在于,基于预估的下行频偏对生成的PRACH Preamble序列进行频偏预补偿,包括:
    根据周期性的下行同步信号和/或参考信号预估下行频偏f delta
    按照如下公式对生成的PRACH Preamble序列进行频偏预补偿:
    S′ PRACH(t)=S PRACH(t)×exp(-j×2π×f delta);
    其中,S PRACH(t)为PRACH Preamble序列的时域信号。
  13. 一种网络侧设备进行随机接入的方法,其特征在于,该方法包括:
    向终端发送携带相关参数的配置消息,所述相关参数包括小区公共时延信息;
    根据所述小区公共时延信息确定上行接收定时位置;
    根据上行接收定时位置,在所有候选的物理层随机接入信道PRACH时频资源上,针对所述终端发送的PRACH Preamble序列进行检测。
  14. 根据权利要求13所述的方法,其特征在于,根据所述小区公共时延信息确定上行接收定时位置,包括:
    根据所述小区公共时延信息,确定上行接收定时位置相对于配置消息发送位置的偏移量;
    根据所述上行接收定时位置相对于配置消息发送位置的偏移量以及所述配置消息的发送位置确定上行接收定时位置。
  15. 根据权利要求14所述的方法,其特征在于,根据所述小区公共时延信息,确定上行接收定时位置相对于配置消息发送位置的偏移量,包括:
    根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
    根据小区公共时延信息和小区级定时提前量,确定上行接收定时位置相对于配置消息发送位置的偏移量。
  16. 根据权利要求15所述的方法,其特征在于,根据所述小区公共时延信息和小区级定时提前量,确定上行接收定时位置相对于配置消息发送位置的偏移量,包括:
    将所述小区公共时延减去小区级定时提前量,得到上行接收定时位置相对于配置消息发送位置的偏移量。
  17. 根据权利要求13所述的方法,其特征在于,还包括:
    检测到终端发送的PRACH Preamble序列之后,向所述终端发送随机接入响应RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可;
    接收终端获得上行同步后发送的无线资源控制RRC消息;
    向所述终端发送竞争解决消息。
  18. 根据权利要求14所述的方法,其特征在于,所述配置消息还包括PRACH Preamble格式。
  19. 根据权利要求18所述的方法,其特征在于,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
    所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
  20. 根据权利要求19所述的方法,其特征在于,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
  21. 根据权利要求20所述的方法,其特征在于,根据终端所支持的多普勒频偏范围确定PRACH Preamble序列占用的子载波间隔,包括:
    根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和,确定PRACH Preamble序列占用的子载波间隔。
  22. 一种进行随机接入的终端,其特征在于,该终端包括:处理器和存 储器,其中,处理器,用于读取存储器中的程序并执行下列过程:
    接收并获取配置消息中的相关参数,所述相关参数包括小区公共时延信息;
    生成物理层随机接入信道随机接入前导码PRACH Preamble序列,并根据所述小区公共时延信息确定上行发送定时位置;
    在与所述上行发送定时位置对应的时频资源上发送PRACH Preamble序列。
  23. 根据权利要求22所述的终端,其特征在于,所述处理器具体用于:
    根据所述小区公共时延信息,确定上行发送定时位置相对于配置消息接收位置的定时提前量;
    根据所述配置消息的接收位置及定时提前量确定上行发送定时位置。
  24. 根据权利要求23所述的终端,其特征在于,所述处理器具体用于:
    预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差对应的相对传输时延;
    根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
    根据所述相对传输时延和小区级定时提前量确定定时提前量。
  25. 根据权利要求24所述的终端,其特征在于,所述处理器具体用于:
    根据全球导航卫星系统GNSS信号,确定所述终端的定位信息,通过星历获得卫星的运行参数信息;
    根据所述定位信息和卫星的运行参数信息,预估终端的用户链路传播路径与距离卫星最近位置的最小链路时延路径的传播距离差;
    确定所述预估的传播距离差对应的相对传输时延。
  26. 根据权利要求24所述的终端,其特征在于,所述处理器具体用于:
    将两倍的相对传输时延与小区级定时提前量求和,得到定时提前量。
  27. 根据权利要求22所述的终端,其特征在于,所述处理器具体还用于:
    在随机接入响应RAR时间窗口内检测反馈的RAR消息,所述RAR消息 包括上行定时提前调整量及上行调度许可,RAR时间窗口以所述配置消息的接收位置为起点;
    根据反馈的RAR消息,获得上行同步并发送无线资源控制RRC消息;
    接收反馈的竞争解决消息并解码。
  28. 根据权利要求22所述的终端,其特征在于,所述配置消息还包括PRACH Preamble格式。
  29. 根据权利要求28所述的终端,其特征在于,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
    所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
  30. 根据权利要求29所述的终端,其特征在于,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
  31. 根据权利要求30所述的终端,其特征在于,所述PRACH Preamble序列占用的子载波间隔,根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和确定。
  32. 根据权利要求22所述的终端,其特征在于,所述处理器具体还用于:
    基于预估的下行频偏对生成的PRACH Preamble序列进行频偏预补偿。
  33. 根据权利要求32所述的终端,其特征在于,所述处理器具体用于:
    终端根据协议预先定义的下行同步信号和/或参考信号所在的帧结构的周期性位置来进行下行小区搜索,包括下行定时同步位置估计和下行频偏估计操作,以获取下行同步信号和/或参考信号;
    根据周期性的下行同步信号和/或参考信号预估下行频偏f delta
    按照如下公式对生成的PRACH Preamble序列进行频偏预补偿:
    S′ PRACH(t)=S PRACH(t)×exp(-j×2π×f delta);
    其中,S PRACH(t)为PRACH Preamble序列的时域信号。
  34. 一种进行随机接入的网络侧设备,其特征在于,该网络侧设备包括:处理器和存储器,其中,处理器,用于读取存储器中的程序并执行下列过程:
    向终端发送携带相关参数的配置消息,所述相关参数包括小区公共时延信息;
    根据所述小区公共时延信息确定上行接收定时位置;
    根据上行接收定时位置,在所有候选的物理层随机接入信道PRACH时频资源上,针对所述终端发送的PRACH Preamble序列进行检测。
  35. 根据权利要求34所述的网络侧设备,其特征在于,所述网络侧设备具体用于:
    根据所述小区公共时延信息,确定上行接收定时位置相对于配置消息发送位置的偏移量;
    根据所述上行接收定时位置相对于配置消息发送位置的偏移量以及所述配置消息的发送位置确定上行接收定时位置。
  36. 根据权利要求35所述的网络侧设备,其特征在于,所述网络侧设备具体用于:
    根据小区公共时延信息,确定小区公共时延与整数倍时隙之间偏差的小区级定时提前量;
    根据小区公共时延信息和小区级定时提前量,确定上行接收定时位置相对于配置消息发送位置的偏移量。
  37. 根据权利要求36所述的网络侧设备,其特征在于,所述网络侧设备具体用于:
    将所述小区公共时延减去小区级定时提前量,得到上行接收定时位置相对于配置消息发送位置的偏移量。
  38. 根据权利要求34所述的网络侧设备,其特征在于,所述网络侧设备具体还用于:
    检测到终端发送的PRACH Preamble序列之后,向所述终端发送随机接入响应RAR消息,所述RAR消息包括上行定时提前调整量及上行调度许可;
    接收终端获得上行同步后发送的无线资源控制RRC消息;
    向所述终端发送竞争解决消息。
  39. 根据权利要求34所述的网络侧设备,其特征在于,所述配置消息还包括PRACH Preamble格式。
  40. 根据权利要求39所述的网络侧设备,其特征在于,所述PRACH Preamble格式包括多个循环前缀CP、Preamble序列和保护时间GT,所述多个CP的时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和;
    所述保护时间GT的总时长大于终端随机接入过程中卫星的移动距离引入的传输时延、GPS定位误差引入的时延及下行初始同步过程中定时估计误差引入的时延之和。
  41. 根据权利要求39所述的网络侧设备,其特征在于,所述PRACH Preamble序列占用的子载波间隔根据终端所支持的多普勒频偏范围确定。
  42. 根据权利要求41所述的网络侧设备,其特征在于,所述网络侧设备具体用于:
    根据终端在不同移动速度下对应的多普勒频偏范围,和/或,终端初始同步后存在的残余频偏与配置消息发送过程中的卫星移动造成的多普勒频偏之和,确定PRACH Preamble序列占用的子载波间隔。
  43. 一种计算机存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1~12任一所述方法的步骤或如权利要求13~21任一所述方法的步骤。
PCT/CN2019/126707 2019-02-14 2019-12-19 一种进行随机接入的方法及设备 WO2020164309A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217028670A KR20210119531A (ko) 2019-02-14 2019-12-19 랜덤 액세스를 위한 방법 및 장치
JP2021547507A JP7234390B2 (ja) 2019-02-14 2019-12-19 ランダムアクセスのための方法および装置
US17/430,538 US20220132593A1 (en) 2019-02-14 2019-12-19 Method and device for random access
EP19915234.9A EP3927034A4 (en) 2019-02-14 2019-12-19 RANDOM ACCESS METHOD AND DEVICE
JP2023026707A JP7504249B2 (ja) 2019-02-14 2023-02-22 ランダムアクセスのための方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910115043.7 2019-02-14
CN201910115043.7A CN111565448B (zh) 2019-02-14 2019-02-14 一种进行随机接入的方法及设备

Publications (1)

Publication Number Publication Date
WO2020164309A1 true WO2020164309A1 (zh) 2020-08-20

Family

ID=72045244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126707 WO2020164309A1 (zh) 2019-02-14 2019-12-19 一种进行随机接入的方法及设备

Country Status (6)

Country Link
US (1) US20220132593A1 (zh)
EP (1) EP3927034A4 (zh)
JP (2) JP7234390B2 (zh)
KR (1) KR20210119531A (zh)
CN (1) CN111565448B (zh)
WO (1) WO2020164309A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2250505A1 (en) * 2021-04-29 2022-10-30 Chengdu Coresat Tech Co Ltd Frequency Offset Estimation Method, Device, Communication Device and Storage Medium

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757457B (zh) * 2019-03-29 2022-03-29 华为技术有限公司 用于上行定时同步的方法和装置
WO2021028850A1 (en) * 2019-08-15 2021-02-18 Telefonaktiebolaget Lm Ericsson (Publ) RANDOM ACCESS IN NETWORK SUPPORTING UEs WITH DIFFERENT PRE-COMPENSATION AND/OR GNSS CAPABILITIES
CN115473618A (zh) * 2019-09-26 2022-12-13 华为技术有限公司 传输方法及装置
EP4193709A4 (en) * 2020-08-07 2024-08-07 Apple Inc APPLICATION OF TIME GAP OFFSETS FOR NON-TERRESTRIAL NETWORKS
WO2022056854A1 (zh) * 2020-09-18 2022-03-24 Oppo广东移动通信有限公司 无线通信方法和设备
KR20220049988A (ko) * 2020-10-15 2022-04-22 삼성전자주식회사 무선 통신 시스템에서 고속 이동 단말을 위한 신호 전송 방법 및 장치
CN116349379A (zh) * 2020-10-22 2023-06-27 苹果公司 非地面网络(ntn)中的定时超前(ta)维护
CN114584195A (zh) * 2020-12-02 2022-06-03 华为技术有限公司 一种信息传输方法和装置
CN114599080B (zh) * 2020-12-03 2024-02-02 海能达通信股份有限公司 上行同步方法及装置、存储介质、终端及信关站
EP4258794A4 (en) * 2020-12-08 2024-01-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. RANDOM ACCESS METHOD, ELECTRONIC DEVICE AND STORAGE MEDIUM
US11799710B2 (en) * 2020-12-10 2023-10-24 Qualcomm Incorporated Techniques for signaling a source of dominant noise at a user equipment
CN114641081A (zh) * 2020-12-15 2022-06-17 华为技术有限公司 一种无线通信的方法及装置
EP4243493A4 (en) * 2020-12-17 2024-01-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN114727420A (zh) * 2021-01-05 2022-07-08 中国移动通信有限公司研究院 随机接入过程ta同步的方法、装置、终端及基站
WO2022151272A1 (zh) * 2021-01-14 2022-07-21 Oppo广东移动通信有限公司 定时器启动方法、装置、终端及存储介质
CN114826506B (zh) * 2021-01-18 2024-05-31 大唐移动通信设备有限公司 信号传输方法、装置及存储介质
CN115413406B (zh) * 2021-03-26 2023-10-03 北京小米移动软件有限公司 物理随机接入信道prach的配置方法及其装置
CN115412950A (zh) * 2021-05-26 2022-11-29 华为技术有限公司 随机接入的方法和装置
US11848747B1 (en) * 2021-06-04 2023-12-19 Apple Inc. Multiple user access channel
CN113747472B (zh) * 2021-08-31 2024-08-20 中国电子科技集团公司第五十四研究所 一种大面积覆盖下的随机接入方法
CN116939766A (zh) * 2022-03-31 2023-10-24 华为技术有限公司 接入方法及相关装置
JP7308371B1 (ja) 2022-03-31 2023-07-13 株式会社アマダ レーザ加工機及びレーザ加工方法
CN115333674A (zh) * 2022-08-02 2022-11-11 东南大学 一种基于lte prach时域帧结构的prach格式判定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349451A (zh) * 2013-08-09 2015-02-11 电信科学技术研究院 一种进行同步的方法和设备
CN108605368A (zh) * 2016-02-04 2018-09-28 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
WO2018226026A1 (en) * 2017-06-07 2018-12-13 Samsung Electronics Co., Ltd. System and method of identifying random access response
CN109104226A (zh) * 2017-06-20 2018-12-28 索尼公司 用于无线通信系统的电子设备、方法和存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041540A1 (en) * 2000-11-17 2002-05-23 Samsung Electronics Co., Ltd Apparatus and method for measuring propagation delay in an nb-tdd cdma mobile communication system
CN101908906B (zh) * 2010-08-18 2012-11-14 西安空间无线电技术研究所 一种基于wcdma体制的用户信道星上捕获方法
CN103348746B (zh) * 2011-02-11 2017-05-24 黑莓有限公司 时间提前的随机接入信道发送
JP6211846B2 (ja) * 2013-07-31 2017-10-11 株式会社Nttドコモ 移動局
US9668102B1 (en) * 2016-03-21 2017-05-30 Google Inc. High penetration alerting for airborne LTE
CN106506061B (zh) * 2016-11-08 2019-09-20 中国电子科技集团公司第七研究所 卫星通信系统的数据传输方法和系统
CN107197517B (zh) * 2017-08-02 2020-11-06 电子科技大学 基于ta分组的lte卫星上行链路同步方法
KR102669740B1 (ko) * 2018-08-10 2024-05-28 텔레폰악티에볼라겟엘엠에릭슨(펍) 위성 통신을 위한 랜덤 액세스 절차

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349451A (zh) * 2013-08-09 2015-02-11 电信科学技术研究院 一种进行同步的方法和设备
CN108605368A (zh) * 2016-02-04 2018-09-28 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
WO2018226026A1 (en) * 2017-06-07 2018-12-13 Samsung Electronics Co., Ltd. System and method of identifying random access response
CN109104226A (zh) * 2017-06-20 2018-12-28 索尼公司 用于无线通信系统的电子设备、方法和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On Adapting HARQ Procedures for NTN", 3GPP DRAFT; R1-1811330, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 3, XP051518733 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2250505A1 (en) * 2021-04-29 2022-10-30 Chengdu Coresat Tech Co Ltd Frequency Offset Estimation Method, Device, Communication Device and Storage Medium
SE545944C2 (en) * 2021-04-29 2024-03-19 Chengdu Coresat Tech Co Ltd Frequency Offset Estimation Method, Device, Communication Device and Storage Medium

Also Published As

Publication number Publication date
JP7504249B2 (ja) 2024-06-21
EP3927034A1 (en) 2021-12-22
JP7234390B2 (ja) 2023-03-07
US20220132593A1 (en) 2022-04-28
CN111565448B (zh) 2021-05-11
JP2023054286A (ja) 2023-04-13
JP2022520626A (ja) 2022-03-31
EP3927034A4 (en) 2022-03-30
KR20210119531A (ko) 2021-10-05
CN111565448A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2020164309A1 (zh) 一种进行随机接入的方法及设备
CN111565472B (zh) 一种确定定时提前量的方法及设备
WO2020164362A1 (zh) 一种确定定时提前量的方法及设备
US12133269B2 (en) Methods, apparatuses and systems directed to network access for non-terrestrial networks
US11553527B2 (en) Method and system for handling random access procedure in non-terrestrial communication system
US10470143B2 (en) Systems and methods for timing synchronization and synchronization source selection for vehicle-to-vehicle communications
US20220408389A1 (en) Method and apparatus for updating timing offset
CN112154707A (zh) 用于非陆地网络通信的定时提前
EP3654568B1 (en) Synchronization method and apparatus for iov systems
CN116582955A (zh) 非地面网络中的随机接入
EP3598836A1 (en) Method and device for obtaining secondary timing advance
US12048018B2 (en) Control mechanism for random access procedure
CN113316956A (zh) 在无线通信中的定时提前调整方案
CN112806072A (zh) 蜂窝车联网覆盖外同步
US11882603B2 (en) Random access method, apparatus, device, and storage device
WO2021016967A1 (zh) 随机接入方法、接收方法、装置、设备及介质
US20220330350A1 (en) Random access preamble transmission method, apparatus, and storage medium
TW201838466A (zh) 處理量測間距的裝置及方法
CN114390715A (zh) 无线通信系统中的用户设备和基站及其执行的方法
WO2022205002A1 (zh) 传输定时的调整方法、确定方法和终端设备
CN114946264A (zh) 网络设备、终端设备及其中的方法
CN116546614B (zh) 一种载波聚合下辅小区的定时同步方法及装置
WO2023206355A1 (zh) 一种上行传输方法及装置、终端设备、网络设备
CN117397320A (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021547507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217028670

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019915234

Country of ref document: EP

Effective date: 20210914