WO2020158779A1 - 軌道追従システム、軌道追従方法、及び、コンピュータ可読媒体 - Google Patents

軌道追従システム、軌道追従方法、及び、コンピュータ可読媒体 Download PDF

Info

Publication number
WO2020158779A1
WO2020158779A1 PCT/JP2020/003103 JP2020003103W WO2020158779A1 WO 2020158779 A1 WO2020158779 A1 WO 2020158779A1 JP 2020003103 W JP2020003103 W JP 2020003103W WO 2020158779 A1 WO2020158779 A1 WO 2020158779A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
end effector
relative
convergence
state
Prior art date
Application number
PCT/JP2020/003103
Other languages
English (en)
French (fr)
Inventor
達也 吉本
裕志 吉田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/426,742 priority Critical patent/US20220098835A1/en
Priority to JP2020569669A priority patent/JP7120332B2/ja
Publication of WO2020158779A1 publication Critical patent/WO2020158779A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/439Automatic repositioning of the implement, e.g. automatic dumping, auto-return
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/438Memorising movements for repetition, e.g. play-back capability
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Definitions

  • the present invention relates to a trajectory following system, a trajectory following method, and a computer-readable medium.
  • Patent Document 1 discloses an automatic excavation method for a hydraulic excavator for automatically loading soil into a dump truck, a crusher, or the like. Specifically, after the operator operates the hydraulic excavator, the operation is stored in the controller by teaching, and thereafter, the controller operates the hydraulic excavator on behalf of the operator.
  • an operator may input a target trajectory of a bucket into a control device in advance, and this control device may move the bucket along the target trajectory.
  • this control device determines a plurality of target points on the target trajectory and determines that the bucket has converged in the vicinity of the i-th target point
  • the controller moves the bucket toward the (i+1)th target point so that the bucket moves toward the i+1-th target point. It is possible to repeatedly update the target state. However, there is still room for improvement in the above convergence determination.
  • the purpose of the present disclosure is to provide a technology that solves any of the problems described above.
  • a trajectory tracking system comprises: A target state updating unit that updates a target state including at least target coordinates of the end effector.
  • a target relative attitude calculation unit that calculates a target relative attitude of each of the plurality of mechanisms based on a current target state of the end effector.
  • a relative attitude control unit that controls the relative attitudes of the plurality of mechanisms so that the relative attitudes of the plurality of mechanisms approach the corresponding target relative attitudes.
  • a convergence determination unit that determines whether or not the state of the end effector has converged to the current target state.
  • the target state update unit is configured to update the target state of the end effector when the convergence determination unit determines that the state of the end effector has converged to the current target state.
  • the convergence determination unit includes a first convergence determination unit that determines whether or not the relative attitude of each mechanism converges to the corresponding target relative attitude under the first convergence condition.
  • the convergence determination unit includes a second convergence determination unit that determines whether or not the relative attitude of each mechanism converges to a corresponding target relative attitude under a second convergence condition that is tighter than the first convergence condition.
  • a trajectory following method includes the following.
  • a target state updating step of updating a target state including at least target coordinates of the end effector.
  • a target relative attitude calculation step of calculating a target relative attitude of each of the plurality of mechanisms based on a current target state of the end effector.
  • a relative attitude control step of controlling the relative attitudes of the plurality of mechanisms so that the relative attitudes of the plurality of mechanisms approach the corresponding target relative attitudes.
  • a convergence determination step of determining whether or not the state of the end effector has converged to the current target state.
  • the convergence determination step includes a first convergence determination step of determining whether or not the relative attitude of each mechanism has converged to the corresponding target relative attitude under the first convergence condition.
  • the convergence determination step includes a second convergence determination step of determining whether or not the relative attitude of each mechanism converges to a corresponding target relative attitude under a second convergence condition that is tighter than the first convergence condition.
  • the trajectory following system 100 is a system for performing follow-up control of an end effector on a target trajectory in a work device including a plurality of mechanisms including an end effector and at least one support portion that supports the end effector.
  • the plurality of mechanisms include an end effector and at least one support that supports the end effector.
  • the trajectory tracking system 100 includes a target state update unit 101, a target relative attitude calculation unit 102, a relative attitude control unit 103, and a convergence determination unit 104.
  • the target state updating unit 101 updates the target state including at least the target coordinates of the end effector.
  • the target relative attitude calculation unit 102 calculates the target relative attitudes of the plurality of mechanisms based on the current target state of the end effector.
  • the relative attitude control unit 103 controls the relative attitudes of the plurality of mechanisms so that the relative attitudes of the plurality of mechanisms approach the corresponding target relative attitudes.
  • the convergence determination unit 104 determines whether or not the state of the end effector has converged to the current target state.
  • the target state update unit 101 is configured to update the target state of the end effector when the convergence determination unit 104 determines that the state of the end effector has converged to the current target state.
  • the convergence determination unit 104 includes a first convergence determination unit 105 and a second convergence determination unit 106.
  • the first convergence determination unit 105 determines whether or not the relative attitude of each mechanism converges to the corresponding target relative attitude under the first convergence condition.
  • the second convergence determination unit 106 determines whether or not the relative attitude of each mechanism converges to the corresponding target relative attitude under the second convergence condition that is tighter than the first convergence condition.
  • the backhoe 1 is a hydraulic excavator whose bucket mainly faces the front and excavates toward the front.
  • the backhoe 1 is used, for example, when the residual soil discharged from the processing equipment by the belt conveyor and accumulated in the sediment pit is loaded on the dump truck.
  • the backhoe 1 is a specific example of work equipment.
  • the backhoe 1 is exemplified as the work equipment.
  • the work equipment is not limited to the backhoe 1, and may be, for example, a loading shovel that is a hydraulic shovel that excavates in the traveling direction, or other construction heavy equipment.
  • the work equipment is not limited to heavy construction equipment, but may be various robots having an end effector supported by at least one support portion, as represented by an industrial robot, for example.
  • the backhoe 1 shows a side view of the backhoe 1.
  • the backhoe 1 includes a lower traveling structure 2, a revolving structure 3, a boom 4, an arm 5, and a bucket 6.
  • the revolving structure 3 is mounted on the lower traveling structure 2 so that it can rotate horizontally.
  • the boom 4 is swingably supported by the swing structure 3 via the first joint 7.
  • the boom 4 is a specific example of a support portion that constitutes a mechanism.
  • the arm 5 is swingably supported by the boom 4 via the second joint 8.
  • the arm 5 is a specific example of a supporting portion that constitutes a mechanism.
  • the bucket 6 is swingably supported by the arm 5 via the third joint 9.
  • the bucket 6 is a specific example of an end effector that constitutes a mechanism.
  • the boom 4, the arm 5, and the bucket 6 are exemplified as the mechanism.
  • the mechanism is not limited to these, and the number is not limited to three.
  • the revolving structure 3, boom 4, arm 5, and bucket 6 are connected in series in this order. Therefore, the bucket 6 is swingably supported by the revolving structure 3 through the arm 5 and the boom 4 in this order of description.
  • the boom 4, the arm 5, and the bucket 6 are all examples of a mechanism, and thus may be simply referred to as “mechanism”.
  • FIG. 3 shows a functional block diagram of the backhoe 1.
  • the backhoe 1 further includes an engine 10, a hydraulic pump 11, a hydraulic control valve 12, an electronic control valve 13, a boom cylinder 14, an arm cylinder 15, and a bucket cylinder 16.
  • the backhoe 1 includes a turning hydraulic motor 17 and a traveling hydraulic motor 18.
  • the backhoe 1 also includes a boom posture sensor 19, an arm posture sensor 20, and a bucket posture sensor 21.
  • the backhoe 1 further includes a trajectory tracking control unit 22.
  • the boom cylinder 14, the arm cylinder 15, the bucket cylinder 16, the swing hydraulic motor 17, and the traveling hydraulic motor 18 all operate by receiving pressure oil from the hydraulic pump 11 driven by the engine 10 via the hydraulic control valve 12. To do.
  • the hydraulic control valve 12 receives the pilot pressure from the electronic control valve 13 and switches to supply pressure oil to the boom cylinder 14, the arm cylinder 15, the bucket cylinder 16, the swing hydraulic motor 17, and the traveling hydraulic motor 18 as appropriate.
  • the electronic control valve 13 switches in response to a control signal from the trajectory following control unit 22, and switches the hydraulic control valve 12 by supplying pilot pressure to the hydraulic control valve 12.
  • the swing hydraulic motor 17 is a hydraulic motor for swinging the swing body 3.
  • the traveling hydraulic motor 18 is a hydraulic motor for traveling the lower traveling structure 2.
  • the boom posture sensor 19 is a swing angle sensor, detects the swing angle ⁇ 1 of the boom 4 shown in FIG. 2 with respect to the revolving structure 3, and outputs the detection result to the track following control unit 22.
  • the swing angle ⁇ 1 is an angle between the line segment connecting the first joint 7 and the second joint 8 of the boom 4 and the vertical direction, as shown in FIG.
  • the swing angle ⁇ 1 means the relative posture of the boom 4.
  • the arm posture sensor 20 is a swing angle sensor, detects the swing angle ⁇ 2 of the arm 5 with respect to the boom 4, and outputs the detection result to the trajectory tracking control unit 22.
  • the swing angle ⁇ 2 is an angle between the line segment connecting the second joint 8 and the third joint 9 of the arm 5 and the line segment connecting the first joint 7 and the second joint 8 of the boom 4. Is.
  • the swing angle ⁇ 2 means the relative posture of the arm 5.
  • the bucket attitude sensor 21 is a swing angle sensor, detects the swing angle ⁇ 3 of the bucket 6 with respect to the arm 5, and outputs the detection result to the trajectory tracking control unit 22.
  • the swing angle ⁇ 3 is an angle between a line segment connecting the third joint 9 of the bucket 6 and the bucket blade edge 6a and a line segment connecting the second joint 8 and the third joint 9 of the arm 5. is there.
  • the swing angle ⁇ 3 means the relative posture of the bucket 6.
  • the boom posture sensor 19, the arm posture sensor 20, and the bucket posture sensor 21 are composed of, for example, rotary encoders.
  • the boom attitude sensor 19 may be a sensor that detects the length of the cylinder of the boom cylinder 14, and the trajectory tracking control unit 22 may be configured to calculate the swing angle ⁇ 1 based on the detection result of this sensor. ..
  • an acceleration sensor may be used as the boom attitude sensor 19, and the trajectory tracking control unit 22 may calculate the swing angle ⁇ 1 based on the detection result of the acceleration sensor. The same applies to the arm posture sensor 20 and the bucket posture sensor 21.
  • the relationship between the coordinates and absolute posture of the bucket blade edge 6a and the swing angles ⁇ 1, ⁇ 2, and ⁇ 3 will be described with reference to FIG.
  • the X coordinate of the bucket blade tip 6a is x
  • the Y coordinate is y
  • the absolute posture of the bucket blade tip 6a is ⁇
  • the absolute attitude ⁇ of the bucket blade tip 6a is the angle between the line segment connecting the third joint 9 of the bucket blade tip 6a and the bucket blade tip 6a and the horizontal.
  • the length of the line segment connecting the first joint 7 and the second joint 8 of the boom 4 is L1
  • the length of the line segment connecting the second joint 8 and the third joint 9 of the arm 5 is L2
  • the length of the bucket 6 is Let L3 be the length of the line segment connecting the three joints 9 and the bucket blade edge 6a.
  • the X coordinate x, the Y coordinate y, and the absolute attitude ⁇ of the bucket 6 are expressed by the following equations (1) to (3), respectively.
  • the origin of the X coordinate x and the Y coordinate y of the bucket 6 is the first joint 7.
  • the target X coordinate x, Y coordinate y, and absolute attitude ⁇ of the bucket 6 are discretely determined according to the target trajectory of the bucket 6. Then, the X-coordinate x, Y-coordinate y of the bucket 6 and the swing angles ⁇ 1, ⁇ 2, ⁇ 3 for realizing the absolute posture ⁇ are calculated, and the swing angles ⁇ 1, ⁇ 2, ⁇ 3 are control targets in the automatic control. ..
  • the X coordinate x, the Y coordinate y, and the absolute posture ⁇ of the bucket 6 will be referred to as the state of the bucket 6.
  • the target values of the X coordinate x, the Y coordinate y, and the absolute attitude ⁇ of the bucket 6 are described as the target X coordinate xr, the target Y coordinate yr, and the target absolute attitude ⁇ r, respectively.
  • the target values of the swing angles ⁇ 1, ⁇ 2, ⁇ 3 are described as target swing angles ⁇ r1, ⁇ r2, ⁇ r3, respectively.
  • the subscript r is an acronym for reference, which means reference.
  • trajectory tracking control unit 22 will be described in detail with reference to FIG.
  • the track following control unit 22 is a specific example of the track following system.
  • the backhoe 1 includes a trajectory tracking control unit 22.
  • the trajectory tracking control unit 22 may be provided outside the backhoe 1.
  • the trajectory tracking control unit 22 may be realized by a single device or may be realized by a plurality of devices. When the trajectory tracking control unit 22 is realized by a plurality of devices, the plurality of devices may be geographically arranged at the same place or geographically separated places.
  • the orbit tracking control unit 22 includes a CPU 22a as a central processing unit, a read/write RAM 22b, and a read-only ROM 22c. Then, the CPU 22a reads out and executes the control program stored in the ROM 22c, so that the control program causes the hardware such as the CPU 22a to function as the target trajectory storage unit 30. Similarly, the control program causes the hardware such as the CPU 22a to function as the target state update unit 31, the target relative attitude calculation unit 32, the relative attitude control unit 33, and the convergence determination unit 34.
  • the target trajectory storage unit 30 stores the target trajectory of the bucket 6.
  • FIG. 4 shows an example of the target trajectory of the bucket 6.
  • the target track of FIG. 4 is a track of the bucket 6 for excavating the residual soil accumulated in the sediment pit and storing it in the bucket 6.
  • the target trajectory of FIG. 4 is composed of a plurality of discretized target states P1 to P10 of the bucket 6.
  • Each of the target states P1 to P10 includes at least a target X coordinate xr and a target Y coordinate yr which are target coordinates of the bucket blade edge 6a of the bucket 6.
  • each of the target states P1 to P10 further includes the target absolute posture ⁇ r of the bucket blade tip 6a of the bucket 6.
  • each of the target states P1 to P10 of the bucket 6 is composed of the target X coordinate xr, the target Y coordinate yr, and the target absolute attitude ⁇ r of the bucket blade edge 6a of the bucket 6.
  • the trajectory tracking control unit 22 controls the swing angles ⁇ 1, ⁇ 2, ⁇ 3 so that the state of the bucket 6 sequentially follows the target states P1 to P10.
  • FIG. 5 shows a plurality of discretized target states P1 to P10 of the bucket 6.
  • the target X coordinate xr of the bucket blade edge 6a of the bucket 6 corresponding to the target state Pn is shown by xr(n)
  • the target Y coordinate yr is shown by yr(n)
  • the target absolute attitude ⁇ r is ⁇ r(n). It shows with.
  • n is an integer from 1 to 10.
  • the target state updating unit 31 refers to the table shown in FIG. 5 to set the target state of the bucket 6 when starting the follow-up control, and updates the target state of the bucket 6 as the follow-up control progresses.
  • the target relative attitude calculation unit 32 calculates target swing angles ⁇ r1, ⁇ r2, and ⁇ r3 based on the current target state of the bucket 6. For the specific calculation method, refer to the above equations (4) to (12).
  • the target swing angle ⁇ r1 corresponding to the target state Pn is shown by the target swing angle ⁇ r1(n).
  • the target swing angle ⁇ r2 corresponding to the target state Pn is shown by the target swing angle ⁇ r2(n).
  • the target swing angle ⁇ r3 corresponding to the target state Pn is shown by the target swing angle ⁇ r3(n).
  • the relative attitude control unit 33 controls the swing angles ⁇ 1, ⁇ 2, ⁇ 3 so that the swing angles ⁇ 1, ⁇ 2, ⁇ 3 approach the corresponding target swing angles ⁇ r1, ⁇ r2, ⁇ r3, respectively.
  • the convergence determination unit 34 determines whether or not the state of the bucket 6 has converged to the current target state.
  • the convergence determination unit 34 includes a first convergence determination unit 35 and a second convergence determination unit 36.
  • the first convergence determination unit 35 determines whether or not the swing angle corresponding to the relative posture of each mechanism has converged to the corresponding target swing angles ⁇ r1, ⁇ r2, ⁇ r3 under the first convergence condition.
  • the second convergence determination unit 36 determines whether or not the swing angle corresponding to the relative posture of each mechanism converges to the corresponding target swing angles ⁇ r1, ⁇ r2, and ⁇ r3 under the second convergence condition that is tighter than the first convergence condition. judge.
  • the relative attitude of the boom 4 is the swing angle ⁇ 1.
  • the relative attitude of the arm 5 is the swing angle ⁇ 2.
  • the relative attitude of the bucket 6 is the swing angle ⁇ 3.
  • the first constraint condition is imaged by the circles indicated by ⁇ A and ⁇ B
  • the second constraint condition is imaged by the circles indicated by ⁇ A and ⁇ B.
  • the objects of which the convergence is determined under the first convergence condition and the second convergence condition are the swing angles ⁇ 1, ⁇ 2, and ⁇ 3 of the boom 4, the arm 5, and the bucket 6.
  • the target of the convergence determination under the first constraint condition and the second constraint condition is drawn as if it is the coordinates of the bucket blade edge 6 a of the bucket 6.
  • FIG. 5 shows the first threshold value ⁇ used in the convergence determination based on the first constraint condition and the second threshold value ⁇ used in the convergence determination based on the second constraint condition.
  • the first threshold ⁇ and the second threshold ⁇ are set for each mechanism, and also set for each target state.
  • the first threshold value ⁇ 1 and the second threshold value ⁇ 1 shown in FIG. 5 are threshold values used for the convergence determination of the swing angle ⁇ 1 of the boom 4.
  • the first threshold value ⁇ 2 and the second threshold value ⁇ 2 are threshold values used for the convergence determination of the swing angle ⁇ 2 of the arm 5, and the first threshold value ⁇ 3 and the second threshold value ⁇ 3 are the swing angle ⁇ 3 of the bucket 6. It is a threshold value used for the convergence determination.
  • a single first threshold ⁇ 1(A) is adopted as the first threshold ⁇ 1 used in the target states P1 to P7.
  • a single first threshold ⁇ 2(A) is adopted as the first threshold ⁇ 2 used in the target states P1 to P7, and a single first threshold ⁇ 3 used in the target states P1 to P7 is The first threshold ⁇ 3(A) is adopted.
  • a single first threshold ⁇ 1 (B) is adopted as the first threshold ⁇ 1 used in the target states P8 to P10.
  • a single first threshold value ⁇ 2(B) is adopted as the first threshold value ⁇ 2 used in the target states P8 to P10
  • a single first threshold value ⁇ 3 used in the target states P8 to P10 is used.
  • the first threshold ⁇ 3(B) is adopted.
  • the first threshold ⁇ 1(A) is larger than the first threshold ⁇ 1(B).
  • the first threshold ⁇ 2(A) is larger than the first threshold ⁇ 2(B).
  • the first threshold ⁇ 3(A) is larger than the first threshold ⁇ 3(B).
  • the first threshold value ⁇ is a threshold value used for convergence determination, and is compared with the deviation from the target value. Therefore, if the first threshold ⁇ is large, the convergence determination condition becomes loose.
  • the first constraint condition is loosely set in the first half of the target trajectory of the bucket 6, and the first constraint condition is tightly set in the second half. This is because when the bucket 6 excavates earth and sand, high accuracy is not required for the trajectory of the bucket 6 when the bucket 6 approaches the earth and sand, while it is high for the trajectory of the bucket 6 when actually excavating the bucket 6. This is because precision is required.
  • a single second threshold value ⁇ 1(A) is adopted as the second threshold value ⁇ 1 used in the target states P1 to P7.
  • a single second threshold value ⁇ 2(A) is adopted as the second threshold value ⁇ 2 used in the target states P1 to P7, and a single second threshold value ⁇ 3 used in the target states P1 to P7 is used.
  • the second threshold ⁇ 3(A) is adopted.
  • a single second threshold ⁇ 1 (B) is used as the second threshold ⁇ 1 used in the target states P8 to P10.
  • a single second threshold value ⁇ 2(B) is adopted as the second threshold value ⁇ 2 used in the target states P8 to P10
  • a single second threshold value ⁇ 3 used in the target states P8 to P10 is used.
  • the second threshold ⁇ 3(B) is adopted.
  • the second threshold ⁇ 1(A) is larger than the second threshold ⁇ 1(B).
  • the second threshold ⁇ 2(A) is larger than the second threshold ⁇ 2(B).
  • the second threshold ⁇ 3(A) is larger than the second threshold ⁇ 3(B).
  • the second threshold value ⁇ is a threshold value used for the convergence determination, and is compared with the deviation from the target value. Therefore, if the second threshold value ⁇ is large, the convergence determination condition becomes loose.
  • the first convergence determination unit 35 determines whether or not the swing angle corresponding to the relative posture of each mechanism converges to the corresponding target swing angles ⁇ r1, ⁇ r2, and ⁇ r3 under the first convergence condition based on the following equation (13). To judge.
  • the first term on the left side is the target swing angle ⁇ ri.
  • the second term on the left side is the current swing angle ⁇ i of each mechanism.
  • the right side is the first threshold ⁇ i.
  • the subscript i is an integer from 1 to 3.
  • the second convergence determination unit 36 determines whether or not the swing angle corresponding to the relative posture of each mechanism has converged to the corresponding target swing angles ⁇ r1, ⁇ r2, and ⁇ r3 under the second convergence condition based on the following equation (14). To judge.
  • the right side is the second threshold ⁇ i.
  • the first threshold ⁇ is set larger than the second threshold ⁇ . That is, the first threshold ⁇ i(A) is larger than the second threshold ⁇ i(A), and the first threshold ⁇ i(B) is larger than the second threshold ⁇ i(B).
  • the target state update unit 31 sets the bucket 6 so that the target state of the bucket 6 becomes the next target state. Is configured to update the target state of the.
  • the target state updating unit 31 sets the target state of the bucket 6 to the target state P1.
  • the target relative attitude calculation unit 32 calculates the target swing angles ⁇ r1, ⁇ r2, and ⁇ r3 of all the mechanisms based on the current target state set by the target state update unit 31.
  • the relative attitude control unit 33 causes the swing angles ⁇ 1, ⁇ 2, ⁇ 3 of all the mechanisms to approach the corresponding target swing angles ⁇ r1, ⁇ r2, ⁇ r3, respectively.
  • the control of ⁇ 3 is started.
  • the control of the swing angle may be changing the swing angle of the mechanism.
  • the control of the swing angle may include changing the control speed for changing the swing angle.
  • the change in control speed may be deceleration or acceleration of the control speed.
  • the first convergence determination unit 35 determines whether the swing angles ⁇ 1, ⁇ 2, ⁇ 3 of all the mechanisms have converged to the corresponding target swing angles ⁇ r1, ⁇ r2, ⁇ r3 under the first convergence condition. If YES in S130, the first convergence determination unit 35 advances the process to S140. On the other hand, in the case of NO in S130, the first convergence determination unit 35 advances the processing to S200.
  • S140 The target state update unit 31 determines whether there is a next target state. In the case of NO in S140, the trajectory tracking control unit 22 ends the process. On the other hand, if YES in S140, the target state update unit 31 advances the process to S150.
  • the target state updating unit 31 updates the target state of the bucket 6 to the next target state, and returns the processing to S110.
  • S200-S250 The processing from S210 to S230 is executed independently for each mechanism i.
  • the processing in S200, S240, and S250 is a loop processing for executing the processing independently for each mechanism i.
  • the mechanism 1, the mechanism 2, and the mechanism 3 correspond to the boom 4, the arm 5, and the bucket 6, respectively.
  • the first convergence determination unit 35 determines whether or not the swing angle ⁇ i of the mechanism i has converged to the target swing angle ⁇ ri under the first convergence condition. If YES in S210, the first convergence determination unit 35 advances the process to S220. On the other hand, if NO in S210, the first convergence determination section 35 advances the process to S240.
  • the second convergence determination unit 36 determines whether or not the swing angle ⁇ i of the mechanism i has converged to the target swing angle ⁇ ri under the second convergence condition. If YES in S220, the second convergence determination section 36 advances the process to S230. On the other hand, if NO in S220, the second convergence determination section 36 advances the process to S240.
  • the relative attitude control unit 33 reduces the control speed of the swing angle ⁇ i of the mechanism i and stops the control of the swing angle ⁇ i.
  • the relative attitude control unit 33 controls as follows when the following preconditions (1) and (2) are satisfied. That is, the relative attitude control unit 33 continues the swing angle of the mechanism so that the swing angle of the mechanism that has already converged to the corresponding target swing angle under the first convergence condition further approaches the corresponding target swing angle.
  • the precondition (1) is that the swing angle of at least one of the mechanisms converges to the corresponding target swing angle under the first convergence condition.
  • the precondition (2) is that the swing angle of at least one of the other mechanisms does not converge to the corresponding target swing angle under the first convergence condition. According to the above control, the operations of the boom 4, the arm 5, and the bucket 6 of the backhoe 1 can be made smooth. The reason is as follows.
  • the timings at which the swing angles of a plurality of mechanisms converge to the corresponding target swing angles under the first convergence condition are usually different. Therefore, when the swing angle of each mechanism converges to the corresponding target swing angle under the first convergence condition, the mechanism is immediately decelerated and stopped as follows. That is, the change in the swing angle of the mechanism in which the swing angle converges to the target swing angle before the other mechanism causes the swing angles of all the other mechanisms to reach the target swing angle under the first convergence condition. It must wait for zero until it converges. That is, it is necessary to temporarily stop the change in the joint angle between the mechanisms. When the change in the joint angle between the mechanisms is temporarily stopped in this manner, the change and stop are repeated, and the operation of the boom 4, the arm 5, and the bucket 6 of the backhoe 1 becomes awkward.
  • the mechanism even if the swing angle of each mechanism converges to the corresponding target swing angle under the first convergence condition, the mechanism does not immediately decelerate and stop. That is, the angular change of the swing angle of the mechanism, which has converged to the target swing angle under the first convergence condition before the other mechanism, is maintained after the convergence. That is, it is less necessary to temporarily stop the change in the joint angle between the mechanisms. Thereby, the operations of the boom 4, the arm 5, and the bucket 6 of the backhoe 1 can be made smooth.
  • the second embodiment has been described above, but the second embodiment has the following features.
  • the trajectory tracking control unit 22 controls the bucket 6 in the backhoe 1 (work equipment) having a plurality of mechanisms so as to follow the target trajectory.
  • the plurality of mechanisms include a bucket 6 (end effector), a boom 4 and an arm 5 (at least one support portion) that supports the bucket 6.
  • the trajectory tracking control unit 22 includes a target state updating unit 31, a target relative attitude calculation unit 32, a relative attitude control unit 33, and a convergence determination unit 34.
  • the target state updating unit 31 updates the target state of the bucket 6 including at least the target coordinates.
  • the target relative attitude calculation unit 32 calculates the target swing angles (target relative attitudes) of the plurality of mechanisms based on the current target state of the bucket 6.
  • the relative posture control unit 33 controls the swing angles of the plurality of mechanisms so that the swing angles (relative postures) of the plurality of mechanisms approach the corresponding target swing angles.
  • the convergence determination unit 34 determines whether the state of the bucket 6 has converged to the current target state.
  • the target state update unit 31 is configured to update the target state of the bucket 6 when the convergence determination unit 34 determines that the state of the bucket 6 has converged to the current target state.
  • the convergence determination unit 34 includes a first convergence determination unit 35 and a second convergence determination unit 36.
  • the first convergence determination unit 35 determines whether or not the swing angle of each mechanism has converged to the corresponding target swing angle under the first convergence condition.
  • the second convergence determination unit 36 determines whether or not the swing angle of each mechanism converges to the corresponding target swing angle under the second convergence condition that is tighter than the first convergence condition. According to the above configuration, a new technique regarding convergence determination is provided. That is, flexible convergence determination can be realized.
  • the convergence determination unit 34 determines that the state of the bucket 6 has converged to the current target state when the swing angles of all the mechanisms converge to the corresponding target swing angles under the first convergence condition.
  • the relative attitude control unit 33 converges the swing angle of at least one of the mechanisms to the corresponding target swing angle under the first convergence condition, and determines that the swing angle of at least one of the other mechanisms is equal to the target swing angle. If the target swing angle does not converge to the corresponding target swing angle under the first convergence condition, the following is performed. That is, the swing angle of the mechanism is continuously controlled so that the swing angle of the mechanism that has already converged to the corresponding target swing angle under the first convergence condition further approaches the corresponding target swing angle. With the above configuration, the operation of each mechanism can be made smooth.
  • the relative attitude control unit 33 stops controlling the swing angle of the mechanism.
  • the target state of the bucket 6 further includes the target absolute attitude of the bucket 6.
  • the trajectory tracking method includes a target state update step (S150), a target relative attitude calculation step (S110), a relative attitude control step (S120), and a convergence determination step (S130, S210, S220).
  • the target state update step (S150) if it is determined in the convergence determination step (S130: YES) that the state of the bucket 6 has converged to the current target state, the target state of the bucket 6 is updated.
  • the convergence determination step (S130, S210, S220) includes a first convergence determination step (S210) and a second convergence determination step (S220). In the first convergence determination step (S210), it is determined whether or not the swing angle of each mechanism has converged to the corresponding target swing angle under the first convergence condition.
  • the second convergence determination step (S220) it is determined whether the swing angle of each mechanism converges to the corresponding target swing angle under the second convergence condition that is tighter than the first convergence condition. According to the above method, a new technique regarding convergence determination is provided. That is, flexible convergence determination can be realized.
  • Non-transitory computer-readable media include tangible storage media of various types.
  • Examples of non-transitory computer readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks).
  • Examples of the non-transitory computer-readable medium further include a CD-ROM (Read Only Memory), a CD-R, a CD-R/W, and a semiconductor memory (for example, a mask ROM. Examples further include PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)).
  • the program may be supplied to the computer by various types of transitory computer readable media.
  • Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves.
  • the transitory computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

軌道追従制御部(22)は、バケット(6)と、バケット(6)を支持するブーム(4)及びアーム(5)と、を含む複数の機構を備えたバックホウ(1)においてバケット(6)を目標軌道に追従制御する。収束判定部(34)は、バケット(6)の状態が現在の目標状態に収束したか否かを判定する。目標状態更新部(31)は、バケット(6)の状態が現在の目標状態に収束したと収束判定部(34)が判定したら、バケット(6)の目標状態を更新するように構成されている。収束判定部(34)は、第1収束判定部(35)と第2収束判定部(36)を備える。第1収束判定部(35)は、各機構の揺動角度が対応する目標揺動角度に第1収束条件で収束したか否かを判定する。第2収束判定部(36)は、各機構の揺動角度が対応する目標揺動角度に第1収束条件よりもきつい第2収束条件で収束したか否かを判定する。

Description

軌道追従システム、軌道追従方法、及び、コンピュータ可読媒体
 本発明は、軌道追従システム、軌道追従方法、及び、コンピュータ可読媒体に関する。
 特許文献1は、土砂をダンプトラックやクラッシャ等に自動的に投入するための油圧ショベルの自動掘削方法を開示している。具体的には、オペレータが油圧ショベルを作動させた後、その作動をティーチングによりコントローラに記憶させ、以後、コントローラがオペレータに代わって油圧ショベルを作動させるようになっている。
特開平10-212740号公報
 油圧ショベルを自動制御する場合、例えば、オペレータが予めバケットの目標軌道を制御装置に入力し、この制御装置が目標軌道に沿ってバケットを移動させることが考えられる。このとき、制御装置は、例えば、目標軌道上で複数の目標点を定め、i番目の目標点の近傍にバケットが収束したと判定したら、i+1番目の目標点にバケットが向かうように、バケットの目標状態を繰り返し更新することが考えられる。しかしながら、上記の収束判定に関して改善の余地が残されていた。
 本開示の目的は、上述した課題の何れかを解決する技術を提供することにある。
 本開示の第1の観点によれば、エンドエフェクタと、前記エンドエフェクタを支持する少なくとも1つの支持部と、を含む複数の機構を備えた作業機器において、前記エンドエフェクタを目標軌道に追従制御する軌道追従システムが提供される。軌道追従システムは、以下を備える。前記エンドエフェクタの少なくとも目標座標を含む目標状態を更新する目標状態更新部。前記エンドエフェクタの現在の目標状態に基づいて前記複数の機構の目標相対姿勢をそれぞれ算出する目標相対姿勢算出部。前記複数の機構の相対姿勢がそれぞれ対応する目標相対姿勢へ近づくように前記複数の機構の相対姿勢を制御する相対姿勢制御部。前記エンドエフェクタの状態が現在の目標状態に収束したか否かを判定する収束判定部。前記目標状態更新部は、前記エンドエフェクタの状態が現在の目標状態に収束したと前記収束判定部が判定したら、前記エンドエフェクタの目標状態を更新するように構成されている。前記収束判定部は、各機構の相対姿勢が対応する目標相対姿勢に第1収束条件で収束したか否かを判定する第1収束判定部を備える。前記収束判定部は、各機構の相対姿勢が対応する目標相対姿勢に前記第1収束条件よりもきつい第2収束条件で収束したか否かを判定する第2収束判定部と、を備える。
 本開示の第2の観点によれば、エンドエフェクタと、前記エンドエフェクタを支持する少なくとも1つの支持部と、を含む複数の機構を備えた作業機器において、前記エンドエフェクタを目標軌道に追従制御する軌道追従方法が提供される。軌道追従方法は、以下を含む。前記エンドエフェクタの少なくとも目標座標を含む目標状態を更新する目標状態更新ステップ。前記エンドエフェクタの現在の目標状態に基づいて前記複数の機構の目標相対姿勢をそれぞれ算出する目標相対姿勢算出ステップ。前記複数の機構の相対姿勢がそれぞれ対応する目標相対姿勢へ近づくように前記複数の機構の相対姿勢を制御する相対姿勢制御ステップ。前記エンドエフェクタの状態が現在の目標状態に収束したか否かを判定する収束判定ステップ。前記目標状態更新ステップでは、前記エンドエフェクタの状態が現在の目標状態に収束したと前記収束判定ステップで判定したら、前記エンドエフェクタの目標状態を更新する。前記収束判定ステップは、各機構の相対姿勢が対応する目標相対姿勢に第1収束条件で収束したか否かを判定する第1収束判定ステップを含む。前記収束判定ステップは、各機構の相対姿勢が対応する目標相対姿勢に前記第1収束条件よりもきつい第2収束条件で収束したか否かを判定する第2収束判定ステップと、を含む。
 本発明によれば、収束判定に関する新しい技術が提供される。
軌道追従システムの機能ブロック図である。(第1実施形態) バックホウの側面図である。(第2実施形態) バックホウの機能ブロック図である。(第2実施形態) バケットの目標軌道の一例を示す図である。(第2実施形態) 目標状態及び収束条件を示すテーブルである。(第2実施形態) バックホウの制御フローである。(第2実施形態)
(第1実施形態)
 先ず、図1を参照して、第1実施形態の軌道追従システム100を説明する。
 軌道追従システム100は、エンドエフェクタと、エンドエフェクタを支持する少なくとも1つの支持部と、を含む複数の機構を備えた作業機器において、エンドエフェクタを目標軌道に追従制御するシステムである。複数の機構は、エンドエフェクタと、エンドエフェクタを支持する少なくとも1つの支持部と、を含む。
 軌道追従システム100は、目標状態更新部101と、目標相対姿勢算出部102と、相対姿勢制御部103と、収束判定部104と、を備える。
 目標状態更新部101は、エンドエフェクタの少なくとも目標座標を含む目標状態を更新する。
 目標相対姿勢算出部102は、エンドエフェクタの現在の目標状態に基づいて複数の機構の目標相対姿勢をそれぞれ算出する。
 相対姿勢制御部103は、複数の機構の相対姿勢がそれぞれ対応する目標相対姿勢へ近づくように複数の機構の相対姿勢を制御する。
 収束判定部104は、エンドエフェクタの状態が現在の目標状態に収束したか否かを判定する。
 そして、目標状態更新部101は、エンドエフェクタの状態が現在の目標状態に収束したと収束判定部104が判定したら、エンドエフェクタの目標状態を更新するように構成されている。
 更に、収束判定部104は、第1収束判定部105と、第2収束判定部106と、を備える。
 第1収束判定部105は、各機構の相対姿勢が対応する目標相対姿勢に第1収束条件で収束したか否かを判定する。
 第2収束判定部106は、各機構の相対姿勢が対応する目標相対姿勢に第1収束条件よりもきつい第2収束条件で収束したか否かを判定する。
 以上の構成によれば、収束判定に関する新しい技術が提供される。即ち、柔軟な収束判定を実現することができる。
(第2実施形態)
 次に、図2から図6を参照して、バックホウ1について説明する。バックホウ1は、バケットが主として手前を向き、手前に向けて掘削する油圧ショベルである。バックホウ1は、例えば、処理設備からベルトコンベアで排出され、土砂ピットに蓄積された残土をダンプトラックに積み込む際に使用される。バックホウ1は、作業機器の一具体例である。
 本実施形態では、作業機器としてバックホウ1を例示する。しかしながら、作業機器としては、バックホウ1に限らず、例えば進行方向に向けて掘削する油圧ショベルであるローディングショベルや、その他の建設重機であってもよい。また、作業機器としては、建設重機に限らず、例えば産業用ロボットに代表されるように、エンドエフェクタを少なくとも1つの支持部で支持した各種ロボットであってもよい。
 図2は、バックホウ1の側面図を示している。図2に示すように、バックホウ1は、下部走行体2、旋回体3、ブーム4、アーム5、バケット6を備える。
 旋回体3は、下部走行体2に水平旋回可能に搭載されている。
 ブーム4は、第1関節7を介して旋回体3に揺動自在に支持されている。ブーム4は、機構を構成する支持部の一具体例である。
 アーム5は、第2関節8を介してブーム4に揺動自在に支持されている。アーム5は、機構を構成する支持部の一具体例である。
 バケット6は、第3関節9を介してアーム5に揺動自在に支持されている。バケット6は、機構を構成するエンドエフェクタの一具体例である。本実施形態では、機構として、ブーム4、アーム5、並びにバケット6の3つを例示している。しかし、機構はこれらに限らず、数も3つに限定されるものではない。
 旋回体3、ブーム4、アーム5、バケット6は、この記載順に直列に連結されている。従って、バケット6は、アーム5及びブーム4をこの記載順に介して旋回体3に揺動自在に支持されている。本明細書において、ブーム4及びアーム5、バケット6は、何れも機構の一具体例であるから、単に『機構』と称することがある。
 図3には、バックホウ1の機能ブロック図を示している。図3に示すように、バックホウ1は、更に、エンジン10、油圧ポンプ11、油圧制御弁12、電子制御弁13、ブームシリンダ14、アームシリンダ15、バケットシリンダ16を備えている。また、バックホウ1は、旋回油圧モータ17、走行油圧モータ18を備えている。また、バックホウ1は、ブーム姿勢センサ19、アーム姿勢センサ20、バケット姿勢センサ21を備えている。バックホウ1は、更に、軌道追従制御部22を備えている。
 ブームシリンダ14、アームシリンダ15、バケットシリンダ16、旋回油圧モータ17、走行油圧モータ18は、何れも、エンジン10により駆動される油圧ポンプ11からの圧油を油圧制御弁12を介して受けて作動する。油圧制御弁12は、電子制御弁13からのパイロット圧力を受けて切り替わり、圧油をブームシリンダ14、アームシリンダ15、バケットシリンダ16、旋回油圧モータ17、走行油圧モータ18に適宜、供給する。電子制御弁13は、軌道追従制御部22からの制御信号を受けて切り替わり、パイロット圧力を油圧制御弁12に供給することで油圧制御弁12を切り替える。
 旋回油圧モータ17は、旋回体3を旋回させるための油圧モータである。
 走行油圧モータ18は、下部走行体2を走行させるための油圧モータである。
 ブーム姿勢センサ19は、揺動角度センサであって、図2に示すブーム4の旋回体3に対する揺動角度θ1を検出し、検出結果を軌道追従制御部22に出力する。ここで、揺動角度θ1とは、図2に示すように、ブーム4の第1関節7及び第2関節8を結ぶ線分と鉛直方向の間の角度である。揺動角度θ1は、ブーム4の相対姿勢を意味している。
 アーム姿勢センサ20は、揺動角度センサであって、アーム5のブーム4に対する揺動角度θ2を検出し、検出結果を軌道追従制御部22に出力する。ここで、揺動角度θ2とは、アーム5の第2関節8及び第3関節9を結ぶ線分と、ブーム4の第1関節7及び第2関節8を結ぶ線分と、の間の角度である。揺動角度θ2は、アーム5の相対姿勢を意味している。
 バケット姿勢センサ21は、揺動角度センサであって、バケット6のアーム5に対する揺動角度θ3を検出し、検出結果を軌道追従制御部22に出力する。ここで、揺動角度θ3とは、バケット6の第3関節9とバケット刃先6aを結ぶ線分と、アーム5の第2関節8及び第3関節9を結ぶ線分と、の間の角度である。揺動角度θ3は、バケット6の相対姿勢を意味している。
 ブーム姿勢センサ19、アーム姿勢センサ20、バケット姿勢センサ21は、例えばロータリーエンコーダによって構成されている。しかしながら、ブーム姿勢センサ19は、ブームシリンダ14のシリンダの長さを検出するセンサとし、このセンサの検出結果に基づいて軌道追従制御部22が揺動角度θ1を算出するように構成してもよい。また、ブーム姿勢センサ19として加速度センサを採用し、加速度センサの検出結果に基づいて軌道追従制御部22が揺動角度θ1を算出するようにしてもよい。アーム姿勢センサ20及びバケット姿勢センサ21についても同様である。
 ここで、図2を参照して、バケット刃先6aの座標及び絶対姿勢と、各揺動角度θ1、θ2、θ3との関係を説明する。図2に示すように、バケット刃先6aのX座標をxとし、Y座標をyとし、バケット刃先6aの絶対姿勢をθとする。バケット刃先6aの絶対姿勢θは、バケット刃先6aの第3関節9とバケット刃先6aを結ぶ線分と水平との間の角度である。ブーム4の第1関節7及び第2関節8を結ぶ線分の長さをL1とし、アーム5の第2関節8及び第3関節9を結ぶ線分の長さをL2とし、バケット6の第3関節9とバケット刃先6aを結ぶ線分の長さをL3とする。すると、バケット6のX座標x、Y座標y、絶対姿勢θは、それぞれ、下記の式(1)から(3)で表現される。ただし、バケット6のX座標x、Y座標yの原点は第1関節7としている。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 従って、バケット6のX座標x、Y座標y、絶対姿勢θが所望の値となるような揺動角度θ1、θ2、θ3は、下記の式(4)から(12)で求められる。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 本実施形態におけるバックホウ1では、バケット6を自動制御するために、先ず、バケット6の目標軌道に従ってバケット6の目標とするX座標x、Y座標y、絶対姿勢θが離散的に決定される。そして、バケット6のX座標x、Y座標y、絶対姿勢θを実現するための揺動角度θ1、θ2、θ3が算出され、揺動角度θ1、θ2、θ3が自動制御における制御対象とされる。以下、バケット6のX座標x、Y座標y、絶対姿勢θをバケット6の状態と称する。また、バケット6のX座標x、Y座標y、絶対姿勢θの目標値をそれぞれ、目標X座標xr、目標Y座標yr、目標絶対姿勢θrと表記する。また、揺動角度θ1、θ2、θ3の目標値をそれぞれ、目標揺動角度θr1、θr2、θr3と表記する。添字rは、参照を意味するreferenceの頭文字である。
 次に、図3を参照して、軌道追従制御部22を詳細に説明する。
 軌道追従制御部22は、軌道追従システムの一具体例である。本実施形態では、バックホウ1が軌道追従制御部22を備えている。しかしながら、軌道追従制御部22は、バックホウ1の外部に設けてもよい。軌道追従制御部22は、単一の装置により実現されてもよいし、複数の装置により実現されてもよい。軌道追従制御部22を複数の装置により実現する場合は、複数の装置は地理的に同一の場所に配置されてもよく、地理的に離れた場所に配置されてもよい。
 軌道追従制御部22は、中央演算処理器としてのCPU22aと、読み書き自由のRAM22b、読み出し専用のROM22cを備えている。そして、CPU22aがROM22cに記憶されている制御プログラムを読み出して実行することで、制御プログラムは、CPU22aなどのハードウェアを、目標軌道記憶部30として機能させる。同様に、制御プログラムは、CPU22aなどのハードウェアを、目標状態更新部31、目標相対姿勢算出部32、相対姿勢制御部33、収束判定部34、として機能させる。
 目標軌道記憶部30は、バケット6の目標軌道を記憶する。図4には、バケット6の目標軌道の一例を示している。図4の目標軌道は、土砂ピットに蓄積された残土を掘削してバケット6に収容するためのバケット6の軌道である。図4の目標軌道は、バケット6の離散化された複数の目標状態P1~P10によって構成されている。各目標状態P1~P10は、少なくともバケット6のバケット刃先6aの目標座標である目標X座標xr及び目標Y座標yrを含む。本実施形態では、各目標状態P1~P10は、更に、バケット6のバケット刃先6aの目標絶対姿勢θrを含む。従って、本実施形態において、バケット6の各目標状態P1~P10は、バケット6のバケット刃先6aの目標X座標xr、目標Y座標yr、目標絶対姿勢θrで構成されている。軌道追従制御部22は、バケット6の状態が目標状態P1~P10を順次追従するように揺動角度θ1、θ2、θ3を制御する。
 図5には、バケット6の離散化された複数の目標状態P1~P10を示している。図5において、目標状態Pnに対応するバケット6のバケット刃先6aの目標X座標xrをxr(n)で示し、目標Y座標yrをyr(n)で示し、目標絶対姿勢θrをθr(n)で示している。ここで、nは、1から10までの整数である。
 目標状態更新部31は、図5に示すテーブルを参照して、追従制御の開始の際にはバケット6の目標状態を設定し、追従制御が進むにつれてバケット6の目標状態を更新する。
 目標相対姿勢算出部32は、バケット6の現在の目標状態に基づいて、目標揺動角度θr1、θr2、θr3をそれぞれ算出する。具体的な算出方法は、前述の式(4)から(12)を参照されたい。図5において、目標状態Pnに対応する目標揺動角度θr1を目標揺動角度θr1(n)で示す。目標状態Pnに対応する目標揺動角度θr2を目標揺動角度θr2(n)で示す。目標状態Pnに対応する目標揺動角度θr3を目標揺動角度θr3(n)で示す。
 相対姿勢制御部33は、揺動角度θ1、θ2、θ3がそれぞれ対応する目標揺動角度θr1、θr2、θr3に近づくように揺動角度θ1、θ2、θ3を制御する。
 図3に戻り、収束判定部34は、バケット6の状態が現在の目標状態に収束したか否かを判定する。収束判定部34は、第1収束判定部35と第2収束判定部36を備えている。
 第1収束判定部35は、各機構の相対姿勢に対応する揺動角度が対応する目標揺動角度θr1、θr2、θr3に第1収束条件で収束したか否かを判定する。第2収束判定部36は、各機構の相対姿勢に対応する揺動角度が対応する目標揺動角度θr1、θr2、θr3に第1収束条件よりもきつい第2収束条件で収束したか否かを判定する。
 なお、ブーム4の相対姿勢とは、揺動角度θ1である。アーム5の相対姿勢とは、揺動角度θ2である。バケット6の相対姿勢とは、揺動角度θ3である。
 図4では、第1拘束条件をδA及びδBで示す円でイメージしており、第2拘束条件をεA及びεBで示す円でイメージしている。なお、第1収束条件及び第2収束条件で収束判定される対象はあくまでブーム4及びアーム5、バケット6の揺動角度θ1、θ2、θ3である。図4では、理解促進のために、第1拘束条件及び第2拘束条件で収束判定される対象があたかもバケット6のバケット刃先6aの座標であるかのように描いていることに留意されたい。
 図5には、第1拘束条件による収束判定で用いられる第1閾値δと、第2拘束条件による収束判定で用いられる第2閾値εを示している。第1閾値δ及び第2閾値εは、機構毎に設定されており、また、目標状態毎に設定されている。図5に示す第1閾値δ1及び第2閾値ε1は、ブーム4の揺動角度θ1の収束判定に用いられる閾値である。同様に、第1閾値δ2及び第2閾値ε2は、アーム5の揺動角度θ2の収束判定に用いられる閾値であり、第1閾値δ3及び第2閾値ε3は、バケット6の揺動角度θ3の収束判定に用いられる閾値である。
 本実施形態において、目標状態P1からP7において用いられる第1閾値δ1として、単一の第1閾値δ1(A)を採用している。同様に、目標状態P1からP7において用いられる第1閾値δ2として、単一の第1閾値δ2(A)を採用しており、目標状態P1からP7において用いられる第1閾値δ3として、単一の第1閾値δ3(A)を採用している。
 目標状態P8からP10において用いられる第1閾値δ1として、単一の第1閾値δ1(B)を採用している。同様に、目標状態P8からP10において用いられる第1閾値δ2として、単一の第1閾値δ2(B)を採用しており、目標状態P8からP10において用いられる第1閾値δ3として、単一の第1閾値δ3(B)を採用している。
 そして、第1閾値δ1(A)は、第1閾値δ1(B)よりも大きい。第1閾値δ2(A)は、第1閾値δ2(B)よりも大きい。第1閾値δ3(A)は、第1閾値δ3(B)よりも大きい。第1閾値δは収束判定に用いられる閾値であって、目標値からのズレと比較される。従って、第1閾値δが大きければ、収束判定条件はゆるくなる。
 上記の通り、バケット6の目標軌道の前半では第1拘束条件をゆるく設定し、後半では第1拘束条件をきつく設定している。これは、バケット6が土砂を掘削するに際し、バケット6が土砂にアプローチする際はバケット6の軌道に高い精度が求められていない一方、バケット6を実際に掘削する際はバケット6の軌道に高い精度が求められるからである。
 図5に戻り、本実施形態において、目標状態P1からP7において用いられる第2閾値ε1として、単一の第2閾値ε1(A)を採用している。同様に、目標状態P1からP7において用いられる第2閾値ε2として、単一の第2閾値ε2(A)を採用しており、目標状態P1からP7において用いられる第2閾値ε3として、単一の第2閾値ε3(A)を採用している。
 目標状態P8からP10において用いられる第2閾値ε1として、単一の第2閾値ε1(B)を採用している。同様に、目標状態P8からP10において用いられる第2閾値ε2として、単一の第2閾値ε2(B)を採用しており、目標状態P8からP10において用いられる第2閾値ε3として、単一の第2閾値ε3(B)を採用している。
 そして、第2閾値ε1(A)は、第2閾値ε1(B)よりも大きい。第2閾値ε2(A)は、第2閾値ε2(B)よりも大きい。第2閾値ε3(A)は、第2閾値ε3(B)よりも大きい。第2閾値εは収束判定に用いられる閾値であって、目標値からのズレと比較される。従って、第2閾値εが大きければ、収束判定条件はゆるくなる。
 第1収束判定部35は、各機構の相対姿勢に対応する揺動角度が対応する目標揺動角度θr1、θr2、θr3に第1収束条件で収束したか否かを下記式(13)に基づいて判定する。
Figure JPOXMLDOC01-appb-M000013
 上記式(13)において、左辺の第1項は、目標揺動角度θriである。左辺の第2項は、各機構の現在の揺動角度θiである。右辺は、第1閾値δiである。何れにおいても、添字iは1から3までの整数である。
 第2収束判定部36は、各機構の相対姿勢に対応する揺動角度が対応する目標揺動角度θr1、θr2、θr3に第2収束条件で収束したか否かを下記式(14)に基づいて判定する。
Figure JPOXMLDOC01-appb-M000014
 上記式(14)において、右辺は、第2閾値εiである。
 そして、第1閾値δは、第2閾値εよりも大きく設定されている。即ち、第1閾値δi(A)は第2閾値εi(A)よりも大きく、第1閾値δi(B)は第2閾値εi(B)よりも大きい。
 以上の構成で、目標状態更新部31は、バケット6の状態が現在の目標状態に収束したと収束判定部34が判定したら、バケット6の目標状態が次の目標状態となるように、バケット6の目標状態を更新するように構成されている。
 次に、図6を参照して、バックホウ1の制御フローを説明する。
 S100:
 先ず、目標状態更新部31が、バケット6の目標状態を目標状態P1に設定する。
 S110:
 次に、目標相対姿勢算出部32が、目標状態更新部31によって設定された現在の目標状態に基づいて、すべての機構の目標揺動角度θr1、θr2、θr3をそれぞれ算出する。
 S120:
 次に、相対姿勢制御部33が、すべての機構の揺動角度θ1、θ2、θ3がそれぞれ対応する目標揺動角度θr1、θr2、θr3へ近づくようにすべての機構の揺動角度θ1、θ2、θ3の制御を開始する。揺動角度の制御とは、機構の揺動角度を変化させることであってもよい。揺動角度の制御は、揺動角度を変化させる制御スピードを変化させることを含んでもよい。制御スピードの変化とは、制御スピードを減速または加速させることであってもよい。相対姿勢制御部33は、第1収束条件で収束した機構の揺動角度が対応する目標揺動角度へ更に近づくように継続して当該機構の相対姿勢を制御する場合、当該機構の制御スピードを減速させてもよい。
 S130:
 次に、第1収束判定部35が、すべての機構の揺動角度θ1、θ2、θ3が対応する目標揺動角度θr1、θr2、θr3に第1収束条件で収束したか判定する。S130でYESの場合、第1収束判定部35は、処理をS140に進める。一方、S130でNOの場合、第1収束判定部35は、処理をS200に進める。
 S140:
 目標状態更新部31は、次の目標状態があるか判定する。S140でNOの場合、軌道追従制御部22は、処理を終了する。一方、S140でYESの場合、目標状態更新部31は、処理をS150に進める。
 S150:
 目標状態更新部31は、バケット6の目標状態を次の目標状態に更新し、処理をS110に戻す。
 S200-S250:
 S210からS230までの処理は、機構i毎に独立して実行される。S200、S240、S250における処理は、機構i毎に独立して処理を実行するためのループ処理である。機構1、機構2、機構3は、ブーム4、アーム5、バケット6にそれぞれ対応している。
 S210:
 第1収束判定部35は、機構iの揺動角度θiが目標揺動角度θriに第1収束条件で収束したか否かを判定する。S210においてYESの場合、第1収束判定部35は、処理をS220に進める。一方、S210においてNOの場合、第1収束判定部35は、処理をS240に進める。
 S220:
 第2収束判定部36は、機構iの揺動角度θiが目標揺動角度θriに第2収束条件で収束したか否かを判定する。S220においてYESの場合、第2収束判定部36は、処理をS230に進める。一方、S220においてNOの場合、第2収束判定部36は、処理をS240に進める。
 S230:
 相対姿勢制御部33は、機構iの揺動角度θiの制御スピードを減速させて、揺動角度θiの制御を停止させる。
 S240:
 S240において、すべての機構iについてS210からS230までの処理を実行したら、軌道追従制御部22は、処理をS130に戻す。
 S210からS230までの処理によれば、相対姿勢制御部33は、下記前提条件(1)及び(2)を満たす場合、次のように制御する。即ち、相対姿勢制御部33は、既に対応する目標揺動角度に第1収束条件で収束した機構の揺動角度が対応する目標揺動角度へ更に近づくように継続して当該機構の揺動角度を制御する。前提条件(1)は、少なくとも何れか1つの機構の揺動角度が対応する目標揺動角度に第1収束条件で収束していることである。前提条件(2)は、他の少なくとも何れか1つの機構の揺動角度が対応する目標揺動角度に第1収束条件で収束していないことである。以上の制御によれば、バックホウ1のブーム4、アーム5、バケット6の動作を滑らかにすることができる。その理由は以下の通りである。
 即ち、複数の機構の揺動角度が対応する目標揺動角度に第1収束条件で収束するタイミングは通常異なっている。従って、各機構において揺動角度が対応する目標揺動角度に第1収束条件で収束したら直ちに減速して停止させるようにすると、次の通りとなる。即ち、他の機構よりも先に揺動角度が目標揺動角度に収束した機構の揺動角度の角度変化は、他のすべての機構の揺動角度が目標揺動角度に第1収束条件で収束するまでゼロにして待機していなければならない。即ち、機構間の関節角度の変化を一時的に停止させる必要がある。このように機構間の関節角度の変化を一時的に停止させると、変化と停止を繰り返すことになり、バックホウ1のブーム4、アーム5、バケット6の動作がぎこちないものとなる。
 これに対し、本実施形態では、各機構の揺動角度が対応する目標揺動角度に第1収束条件で収束しても直ちに減速して停止させないようにしたことで、次の通りとなる。即ち、他の機構よりも先に揺動角度が目標揺動角度に第1収束条件で収束した機構の揺動角度の角度変化は、収束後も維持されることになる。即ち、機構間の関節角度の変化を一時的に停止させる必要性が低くなる。これにより、バックホウ1のブーム4、アーム5、バケット6の動作を滑らかなものにすることができる。
 以上に、第2実施形態を説明したが、上記第2実施形態は、以下の特徴を有する。
 軌道追従制御部22(軌道追従システム)は、複数の機構を備えたバックホウ1(作業機器)においてバケット6を目標軌道に追従制御する。複数の機構は、バケット6(エンドエフェクタ)と、バケット6を支持するブーム4及びアーム5(少なくとも1つの支持部)と、を含む。軌道追従制御部22は、目標状態更新部31と、目標相対姿勢算出部32と、相対姿勢制御部33と、収束判定部34と、を備える。目標状態更新部31は、バケット6の少なくとも目標座標を含む目標状態を更新する。目標相対姿勢算出部32は、バケット6の現在の目標状態に基づいて複数の機構の目標揺動角度(目標相対姿勢)をそれぞれ算出する。相対姿勢制御部33は、複数の機構の揺動角度(相対姿勢)がそれぞれ対応する目標揺動角度へ近づくように複数の機構の揺動角度を制御する。収束判定部34は、バケット6の状態が現在の目標状態に収束したか否かを判定する。目標状態更新部31は、バケット6の状態が現在の目標状態に収束したと収束判定部34が判定したら、バケット6の目標状態を更新するように構成されている。収束判定部34は、第1収束判定部35と第2収束判定部36を備える。第1収束判定部35は、各機構の揺動角度が対応する目標揺動角度に第1収束条件で収束したか否かを判定する。第2収束判定部36は、各機構の揺動角度が対応する目標揺動角度に第1収束条件よりもきつい第2収束条件で収束したか否かを判定する。以上の構成によれば、収束判定に関する新しい技術が提供される。即ち、柔軟な収束判定を実現することができる。
 また、収束判定部34は、すべての機構の揺動角度が対応する目標揺動角度に第1収束条件で収束した場合、バケット6の状態が現在の目標状態に収束したと判定する。
 また、相対姿勢制御部33は、少なくとも何れか1つの機構の揺動角度が対応する目標揺動角度に第1収束条件で収束しており、他の少なくとも何れか1つの機構の揺動角度が対応する目標揺動角度に第1収束条件で収束していない場合、以下の通りとする。即ち、既に対応する目標揺動角度に第1収束条件で収束した機構の揺動角度が対応する目標揺動角度へ更に近づくように継続して当該機構の揺動角度を制御する。以上の構成によれば、各機構の動作を滑らかにすることができる。
 また、相対姿勢制御部33は、各機構の揺動角度が対応する目標揺動角度に第2収束条件で収束したら、当該機構の揺動角度の制御を停止させる。
 また、バケット6の目標状態は、更に、バケット6の目標絶対姿勢を含む。
 また、軌道追従方法は、目標状態更新ステップ(S150)と、目標相対姿勢算出ステップ(S110)と、相対姿勢制御ステップ(S120)と、収束判定ステップ(S130,S210,S220)と、を含む。目標状態更新ステップ(S150)では、バケット6の状態が現在の目標状態に収束したと収束判定ステップ(S130:YES)で判定したら、バケット6の目標状態を更新する。収束判定ステップ(S130,S210,S220)は、第1収束判定ステップ(S210)と、第2収束判定ステップ(S220)と、を含む。第1収束判定ステップ(S210)では、各機構の揺動角度が対応する目標揺動角度に第1収束条件で収束したか否かを判定する。第2収束判定ステップ(S220)では、各機構の揺動角度が対応する目標揺動角度に第1収束条件よりもきつい第2収束条件で収束したか否かを判定する。以上の方法によれば、収束判定に関する新しい技術が提供される。即ち、柔軟な収束判定を実現することができる。
 上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)を含む。非一時的なコンピュータ可読媒体の例は、更に、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROMを含む。非一時的なコンピュータ可読媒体の例は、更に、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2019年1月30日に出願された日本出願特願2019-014687を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100 軌道追従システム
101 目標状態更新部
102 目標相対姿勢算出部
103 相対姿勢制御部
104 収束判定部
105 第1収束判定部
106 第2収束判定部

Claims (7)

  1.  エンドエフェクタと、前記エンドエフェクタを支持する少なくとも1つの支持部と、を含む複数の機構を備えた作業機器において、前記エンドエフェクタを目標軌道に追従制御する軌道追従システムであって、
     前記エンドエフェクタの少なくとも目標座標を含む目標状態を更新する目標状態更新部と、
     前記エンドエフェクタの現在の目標状態に基づいて前記複数の機構の目標相対姿勢をそれぞれ算出する目標相対姿勢算出部と、
     前記複数の機構の相対姿勢がそれぞれ対応する目標相対姿勢へ近づくように前記複数の機構の相対姿勢を制御する相対姿勢制御部と、
     前記エンドエフェクタの状態が現在の目標状態に収束したか否かを判定する収束判定部と、
     を備え、
     前記目標状態更新部は、前記エンドエフェクタの状態が現在の目標状態に収束したと前記収束判定部が判定したら、前記エンドエフェクタの目標状態を更新するように構成されており、
     前記収束判定部は、
     各機構の相対姿勢が対応する目標相対姿勢に第1収束条件で収束したか否かを判定する第1収束判定部と、
     各機構の相対姿勢が対応する目標相対姿勢に前記第1収束条件よりもきつい第2収束条件で収束したか否かを判定する第2収束判定部と、
     を備える、
     軌道追従システム。
  2.  請求項1に記載の軌道追従システムであって、
     前記収束判定部は、すべての機構の相対姿勢が対応する目標相対姿勢に前記第1収束条件で収束した場合、前記エンドエフェクタの状態が現在の目標状態に収束したと判定する、
     軌道追従システム。
  3.  請求項2に記載の軌道追従システムであって、
     前記相対姿勢制御部は、少なくとも何れか1つの機構の相対姿勢が対応する目標相対姿勢に前記第1収束条件で収束しており、他の少なくとも何れか1つの機構の相対姿勢が対応する目標相対姿勢に前記第1収束条件で収束していない場合、前記第1収束条件で収束した機構の相対姿勢が対応する目標相対姿勢へ更に近づくように継続して当該機構の相対姿勢を制御する、
     軌道追従システム。
  4.  請求項1から3までの何れか1項に記載の軌道追従システムであって、
     前記相対姿勢制御部は、各機構の相対姿勢が対応する目標相対姿勢に前記第2収束条件で収束したら、当該機構の相対姿勢制御を停止させる、
     軌道追従システム。
  5.  請求項1から4までの何れか1項に記載の軌道追従システムであって、
     前記エンドエフェクタの前記目標状態は、更に、前記エンドエフェクタの目標絶対姿勢を含む、
     軌道追従システム。
  6.  エンドエフェクタと、前記エンドエフェクタを支持する少なくとも1つの支持部と、を含む複数の機構を備えた作業機器において、前記エンドエフェクタを目標軌道に追従制御する軌道追従方法であって、
     前記エンドエフェクタの少なくとも目標座標を含む目標状態を更新する目標状態更新ステップと、
     前記エンドエフェクタの現在の目標状態に基づいて前記複数の機構の目標相対姿勢をそれぞれ算出する目標相対姿勢算出ステップと、
     前記複数の機構の相対姿勢がそれぞれ対応する目標相対姿勢へ近づくように前記複数の機構の相対姿勢を制御する相対姿勢制御ステップと、
     前記エンドエフェクタの状態が現在の目標状態に収束したか否かを判定する収束判定ステップと、
     を備え、
     前記目標状態更新ステップでは、前記エンドエフェクタの状態が現在の目標状態に収束したと前記収束判定ステップで判定したら、前記エンドエフェクタの目標状態を更新し、
     前記収束判定ステップは、
     各機構の相対姿勢が対応する目標相対姿勢に第1収束条件で収束したか否かを判定する第1収束判定ステップと、
     各機構の相対姿勢が対応する目標相対姿勢に前記第1収束条件よりもきつい第2収束条件で収束したか否かを判定する第2収束判定ステップと、
     を含む、
     軌道追従方法。
  7.  コンピュータに、請求項6に記載の軌道追従方法を実行させるためのプログラムを格納する非一時的なコンピュータ可読媒体。
PCT/JP2020/003103 2019-01-30 2020-01-29 軌道追従システム、軌道追従方法、及び、コンピュータ可読媒体 WO2020158779A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/426,742 US20220098835A1 (en) 2019-01-30 2020-01-29 Track following system, track following method, and computer readable medium
JP2020569669A JP7120332B2 (ja) 2019-01-30 2020-01-29 軌道追従システム、軌道追従方法、及び、プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019014687 2019-01-30
JP2019-014687 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020158779A1 true WO2020158779A1 (ja) 2020-08-06

Family

ID=71841777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003103 WO2020158779A1 (ja) 2019-01-30 2020-01-29 軌道追従システム、軌道追従方法、及び、コンピュータ可読媒体

Country Status (3)

Country Link
US (1) US20220098835A1 (ja)
JP (1) JP7120332B2 (ja)
WO (1) WO2020158779A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7413949B2 (ja) 2020-08-19 2024-01-16 コベルコ建機株式会社 アタッチメントの目標速度変更システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111753374B (zh) * 2020-06-26 2023-08-25 北京百度网讯科技有限公司 速度确定方法、装置、设备和计算机存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264155A (ja) * 1998-03-18 1999-09-28 Hitachi Constr Mach Co Ltd 自動運転ショベルおよび自動運転ショベルにおける自動運転方法
WO2011114974A1 (ja) * 2010-03-15 2011-09-22 株式会社小松製作所 建設車両の作業機の制御装置及び制御方法
US20120144704A1 (en) * 2010-12-14 2012-06-14 Cone Ramona D Cycle counter for wheeled tractor scraper

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644964B2 (en) * 2012-05-03 2014-02-04 Deere & Company Method and system for controlling movement of an end effector on a machine
US9464405B2 (en) * 2015-02-02 2016-10-11 Caterpillar Inc. Fine implement control system utilizing relative positioning
US9816248B2 (en) * 2015-10-30 2017-11-14 Deere & Company System and method for assisted bucket load operation
US11162241B2 (en) * 2018-03-27 2021-11-02 Deere & Company Controlling mobile machines with a robotic attachment
US10689831B2 (en) * 2018-03-27 2020-06-23 Deere & Company Converting mobile machines into high precision robots
US10844572B2 (en) * 2018-04-25 2020-11-24 Deere & Company Method of controlling movement of an intelligent boom
US11702819B2 (en) * 2019-11-25 2023-07-18 Deere & Company Electrohydraulic implement control system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264155A (ja) * 1998-03-18 1999-09-28 Hitachi Constr Mach Co Ltd 自動運転ショベルおよび自動運転ショベルにおける自動運転方法
WO2011114974A1 (ja) * 2010-03-15 2011-09-22 株式会社小松製作所 建設車両の作業機の制御装置及び制御方法
US20120144704A1 (en) * 2010-12-14 2012-06-14 Cone Ramona D Cycle counter for wheeled tractor scraper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7413949B2 (ja) 2020-08-19 2024-01-16 コベルコ建機株式会社 アタッチメントの目標速度変更システム

Also Published As

Publication number Publication date
JP7120332B2 (ja) 2022-08-17
US20220098835A1 (en) 2022-03-31
JPWO2020158779A1 (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
CN111051012B (zh) 用于末端执行器控制的机器人臂运动学
JP6564739B2 (ja) 作業機械
US20210291362A1 (en) Active damping system
WO2018051511A1 (ja) 作業機械
CN112703092A (zh) 交互系统的备份跟踪
US10975545B2 (en) Work equipment control device and work machine
WO2020158779A1 (ja) 軌道追従システム、軌道追従方法、及び、コンピュータ可読媒体
JP2016003442A (ja) 建設機械の掘削制御装置
KR102523024B1 (ko) 작업 기계
JP6674862B2 (ja) 転倒防止装置
WO2022186215A1 (ja) 作業機械
KR102602948B1 (ko) 작업 기계
WO2020045017A1 (ja) 作業機械のブレード制御装置
US20240052603A1 (en) Work control method, work control system, and target point setting apparatus
WO2023190388A1 (ja) 作業機械
US11377813B2 (en) Work machine with semi-automatic excavation and shaping
CN117738256A (zh) 一种挖掘机控制方法、装置及挖掘机
JP2000328606A (ja) 建設機械の作業機制御装置
JP2023066442A (ja) 建設機械
JP2019100111A (ja) 建設機械の制御システム
JPS60181429A (ja) 掘削機の掘削角度制御装置
JPH0213520A (ja) 連続式荷役機械
JPS59106630A (ja) 掘削機の掘削制御方法
JPH11139798A (ja) 作業機の制御装置
JPS6210339A (ja) 柔構造作業機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749593

Country of ref document: EP

Kind code of ref document: A1