WO2020158701A1 - 硬組織再生用転写材料 - Google Patents

硬組織再生用転写材料 Download PDF

Info

Publication number
WO2020158701A1
WO2020158701A1 PCT/JP2020/002888 JP2020002888W WO2020158701A1 WO 2020158701 A1 WO2020158701 A1 WO 2020158701A1 JP 2020002888 W JP2020002888 W JP 2020002888W WO 2020158701 A1 WO2020158701 A1 WO 2020158701A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard tissue
transfer material
tissue regeneration
temporary support
mouthpiece
Prior art date
Application number
PCT/JP2020/002888
Other languages
English (en)
French (fr)
Inventor
本津 茂樹
Original Assignee
学校法人近畿大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人近畿大学 filed Critical 学校法人近畿大学
Priority to JP2020569630A priority Critical patent/JPWO2020158701A1/ja
Publication of WO2020158701A1 publication Critical patent/WO2020158701A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials

Definitions

  • the present invention relates to a transfer material for hard tissue regeneration, and more particularly to a transfer material for hard tissue regeneration capable of transferring a biocompatible ceramic film for hard tissue regeneration to a patient's tooth.
  • a resin is applied to the surface of the dentin, a plastic-like film is formed on the surface of the dentin, and the dentinal tubules are blocked.
  • the law is known.
  • the above resin application method there is a problem of cracking or peeling due to a difference in material from hard tissue (inorganic and organic), an allergic reaction due to an organic component, and a problem with affinity to a living body. is there.
  • enamel or dentin can be regenerated by applying the hard tissue regenerating material to the tooth. Further, according to the technique of Patent Document 1, the dentinal tubule is blocked by sticking the hard tissue regeneration material to the tooth, which is also effective in treating hypersensitivity of dentin (paragraph [Patent Document 1]. 0051] etc.).
  • the biocompatible ceramic film as described in Patent Document 1 is difficult to handle, and it is difficult to handle the isolated thin film on a hard tissue such as a patient's tooth, a large area or a plurality of hard parts. There was a problem with how to attach it to the organization.
  • an object of the present invention is to provide a transfer material for hard tissue regeneration, which is useful for attaching a biocompatible ceramic film to a hard tissue such as a patient's tooth.
  • the transfer material for hard tissue regeneration according to the present invention comprises a temporary support having an easily peelable surface from which the biocompatible ceramic film can be easily peeled, and a biocompatible material formed on the easily peelable surface of the temporary support. And a conductive ceramic film.
  • a biocompatible ceramic film that is difficult to handle can be easily transferred to hard tissue. That is, although the biocompatible ceramic film is formed on the temporary support, the surface of the temporary support on which the biocompatible ceramic film is formed is an easily peelable surface on which the biocompatible ceramic film can be easily peeled. ing. In this case, the side on which the biocompatible ceramic film is formed is kept in contact with the hard tissue such as the patient's tooth for a certain period of time, and after the biocompatible ceramic film is integrated with the hard tissue, the temporary support is When separated from the hard tissue, the interface between the biocompatible ceramic film and the hard tissue is more strongly bonded than the interface between the easily peelable surface of the temporary support and the biocompatible ceramic film. The affinity ceramic film is transferred from the temporary support to the hard tissue.
  • 1 is a cross-sectional view showing an embodiment of a transfer material for hard tissue regeneration according to the present invention.
  • 1 is a perspective view showing an embodiment of a transfer material for hard tissue regeneration according to the present invention.
  • 1 is a cross-sectional view showing an embodiment of a transfer material for hard tissue regeneration according to the present invention.
  • 1 is a cross-sectional view showing an embodiment of a transfer material for hard tissue regeneration according to the present invention. It is sectional drawing which shows another embodiment of the transfer material for hard tissue regeneration concerning this invention. It is sectional drawing which shows another embodiment of the transfer material for hard tissue regeneration concerning this invention. It is sectional drawing which shows another embodiment of the transfer material for hard tissue regeneration concerning this invention. It is sectional drawing which shows another embodiment of the transfer material for hard tissue regeneration concerning this invention. It is sectional drawing which shows another embodiment of the transfer material for hard tissue regeneration concerning this invention. It is sectional drawing which shows another embodiment of the transfer material for hard tissue regeneration concerning this invention.
  • the transfer material for hard tissue regeneration comprises a temporary support having an easily peelable surface from which a biocompatible ceramic film can be easily peeled, and a biocompatible ceramic formed on the easily peelable surface of the temporary support. And a membrane.
  • the temporary support is a member that temporarily supports a biocompatible ceramic film that is transferred to hard tissue.
  • the temporary support preferably has a shape that matches the shape of the surface of the hard tissue, or has flexibility that follows the shape of the surface of the hard tissue.
  • a mouthpiece is suitable.
  • Examples of the latter include, for example, a sheet body made of a flexible material.
  • the temporary support has an easily peelable surface on which the biocompatible ceramic film can be easily peeled off.
  • the easily peelable surface of the temporary support may extend over the entire surface of the temporary support, or may partially exist only on the surface on which the biocompatible ceramic film is formed.
  • the easily peelable surface is not particularly limited as long as the biocompatible ceramic film can be easily peeled off.
  • the temporary support is a non-adhesive or non-adhesive material such as a fluorine resin or a silicone resin.
  • the material may be made of the above material, or may not be made of such a material, and may have an easily peelable surface formed by surface treatment or coating.
  • biocompatible ceramic film In the transfer material for hard tissue regeneration of the present invention, the biocompatible ceramic film is formed on the easily peelable surface of the temporary support.
  • apatite is a group of minerals having a composition of M 10 (ZO n ) 6 X 2 , where M is, for example, Ca, Na, Mg, Ba, K, Zn or Al, and ZO n is For example, PO 4 , SO 4 , and CO 3 , and X is, for example, OH, F, O, and CO 3 .
  • M is, for example, Ca, Na, Mg, Ba, K, Zn or Al
  • ZO n is
  • X is, for example, OH, F, O, and CO 3 .
  • hydroxyapatite and carbonate apatite are generally used, hydroxyapatite is particularly preferable because of its high biocompatibility.
  • the apatite raw material include calcium phosphate and its hydrate
  • examples of the mixture containing apatite include biological apatite collected from bones of cattle or the like.
  • the biocompatible ceramic film can be formed by a general thin film forming method.
  • the thin film forming method can be roughly classified into a gas phase method, a liquid phase method, and a solid phase method.
  • the gas phase method is generally adopted for forming a thin film having a thickness of several microns or less.
  • the vapor phase method can be preferably employed also in the case of producing a transfer material for use.
  • a laser ablation method for example, a laser ablation method, a sputtering method, a plasma method, a vacuum deposition method, an ion plating method, a thermochemical vapor deposition method, a plasma chemical vapor deposition method, or the like can be adopted.
  • the laser ablation method is preferable, but the laser ablation method is performed, for example, by the following procedure. That is, first, the temporary support is put into a laser ablation device, evacuated, and then in a vacuum or by introducing a water vapor-containing gas or a carbon dioxide-containing gas into the device, a laser generator such as an ArF excimer laser generator, a mirror. The target is irradiated with a laser beam generated from a laser light source including a lens. As a result, the target is decomposed and atoms, ions, clusters, etc. are released, and a film reflecting the composition of the target is formed on the temporary support.
  • a laser generator such as an ArF excimer laser generator
  • the steam-containing gas may be steam, oxygen-steam mixed gas, argon-steam mixed gas, helium-steam mixed gas, nitrogen-steam mixed gas, air-steam mixed gas, or the like.
  • the biocompatible ceramic film is preferably an amorphous thin film that has not undergone the heat treatment step.
  • amorphous calcium phosphate and fluorine-doped amorphous calcium phosphate thin film These can be formed by targeting hydroxyapatite and fluorapatite, respectively. Considering acid resistance and the like, a fluorine-doped amorphous calcium phosphate thin film is more preferable.
  • the mouthpiece is preferably mentioned as described above. Since the surface shape of the mouthpiece is made to match the shape of the patient's teeth, it is advantageous for transferring the biocompatible ceramic film to the patient's teeth. Further, with the mouthpiece, the biocompatible ceramic film can be easily fixed until it is integrated with the patient's teeth.
  • the mouthpiece can be manufactured by a known manufacturing method. Specifically, first, a plaster model is made from an impression taken from a patient. Next, the gypsum model is covered with a sheet that is a material of the mouthpiece and pressure-molded to obtain the mouthpiece.
  • a non-adhesive or non-adhesive material as the material of the mouthpiece, for example, a fluororesin or a silicone resin
  • a mouse having an easily peelable surface on which the biocompatible ceramic film can be easily peeled off. You can get the pieces.
  • the material of the mouthpiece is not a non-adhesive or non-adhesive material
  • After manufacturing the mouthpiece by coating or laminating the non-adhesive or non-adhesive material on its inner surface
  • An easily peelable surface can be formed. Further, an easily peelable surface can be formed on the inner surface of the mouthpiece by surface treatment.
  • FIG. 1 is an embodiment of a transfer material for hard tissue regeneration according to the present invention, and is a sectional view thereof. It should be noted that the dimensions of each part in the drawing do not accurately represent the actual dimensions. The same applies to FIGS. 2 to 10 described later.
  • the hard tissue regeneration transfer material 1 includes a temporary support (mouthpiece) 10a and a biocompatible ceramic film 20a.
  • the temporary support 10a is made of a non-adhesive or non-adhesive material, and thus the surface thereof is an easily peelable surface from which the biocompatible ceramic film 20a can be easily peeled off. Then, the biocompatible ceramic film 20a is formed on the inner surface of the temporary support 10a.
  • FIG. 2 is a perspective view showing a procedure of using the transfer material 1 for hard tissue regeneration shown in FIG. 3 is a cross-sectional view showing a state where the transfer material 1 for hard tissue regeneration shown in FIG. 1 is attached to a tooth
  • FIG. 4 is a state where the transfer material 1 for hard tissue regeneration shown in FIG. 1 is removed from a tooth. It is sectional drawing which shows.
  • a weakly acidic (for example, pH 4.0 or lower) calcium phosphate solution is applied to the inner surface side (the side where the biocompatible ceramics film 20a is formed) of the transfer material 1 for regenerating hard tissue. Then, the hard tissue regeneration transfer material 1 is attached to the tooth 30.
  • the remineralizing solution is injected.
  • decalcification and remineralization occur, and the bond between the biocompatible ceramic film 20a and the tooth 30 is strengthened.
  • the transfer material 1 for regenerating hard tissue is removed after about 1 to 2 hours, as shown in FIG. 4, the biocompatible ceramic film 20a is transferred from the temporary support 10a to the tooth 30.
  • FIG. 5 is a cross-sectional view of another embodiment of the transfer material for hard tissue regeneration according to the present invention.
  • the transfer material 2 for regenerating hard tissue includes a temporary support (mouthpiece) 10b and a biocompatible ceramic film 20b.
  • the inner surface of the temporary support 10b is provided with a non-adhesive or non-adhesive surface treatment layer 11b, which is an easily peelable surface from which the biocompatible ceramic film 20a can be easily peeled off. Then, the biocompatible ceramic film 20b is formed on the easily peelable surface.
  • 6 is a cross-sectional view showing a state in which the transfer material 2 for hard tissue regeneration shown in FIG. 5 is attached to a tooth, and FIG.
  • FIG. 7 shows a state in which the transfer material 2 for hard tissue regeneration shown in FIG. 5 is removed from a tooth.
  • FIG. Except that the easily peeled surface of the hard tissue regeneration transfer material 2 is formed by the surface treatment layer 11b, the description is omitted because it is the same as the description regarding the hard tissue regeneration transfer material shown in FIG.
  • FIG. 8 is a cross-sectional view of yet another embodiment of the transfer material for hard tissue regeneration according to the present invention.
  • the transfer material 3 for regenerating hard tissue includes a temporary support (mouthpiece) 10c and a biocompatible ceramic film 20c.
  • the inner surface of the temporary support 10c is provided with a non-adhesive or non-adhesive coating layer 11c, which is an easily peelable surface from which the biocompatible ceramic film 20c can be easily peeled off. Then, the biocompatible ceramics film 20c is formed on the easily peelable surface.
  • 9 is a cross-sectional view showing a state where the transfer material 3 for hard tissue regeneration shown in FIG. 8 is attached to a tooth, and FIG.
  • FIG. 10 shows a state where the transfer material 3 for hard tissue regeneration shown in FIG. 8 is removed from a tooth.
  • FIG. Since it is duplicated with the description of the transfer material for hard tissue regeneration shown in FIG. 1 except that the easily peelable surface of the transfer material for hard tissue regeneration 3 is formed by the non-adhesive or non-adhesive coating layer 11c, the detailed description will be omitted. I will omit the explanation.
  • Example 1 ⁇ Preparation of transfer material for hard tissue regeneration> Small holes were formed using a perforated punch on a Teflon (registered trademark) mouthpiece having a thickness of 12.5 ⁇ m prepared from a bovine tooth mold. The small holes had a diameter of 250 ⁇ m, and the small holes were arranged in a square shape with an interval of 1 mm.
  • a slit of 5 mm ⁇ 5 mm is provided in front of the condenser lens of the laser. A pre-deposition of 1000 shots was performed. The laser energy after slitting was 15 mJ.
  • the finger wearing a rubber glove was wetted with artificial saliva (pH 7.2), and the mouthpiece was pressed for 10 minutes. Then, melamine sponge impregnated with artificial saliva and a weight of 50 g were placed on the mouthpiece and allowed to stand in a constant temperature bath for 24 hours for remineralization. After 24 hours, the mouthpiece was removed, and only the ACP thin film was transferred onto the bovine tooth. The Teflon mouthpiece was separated and the surface condition after 24 hours was observed and analyzed.
  • a toothbrush SUNSTAR#211 was used to brush the surface of the bovine tooth onto which the ACP thin film was transferred, and the surface condition was brushed for 20 strokes at a load of 200 g at a speed of 90 strokes/minute. Observed and analyzed. The surface condition was analyzed by calculating the area of the transferred ACP thin film by Foxit Reader.
  • FIG. 11 A photograph showing the surface condition is shown in FIG. As shown in FIG. 11, it was confirmed that 72.3% of the ACP thin film was transferred onto the bovine tooth surface 24 hours after the Teflon mouthpiece was separated. Further, as shown in FIG. 11, it was confirmed that 69.3% of the ACP thin film remained on the bovine tooth surface after the brushing test, although part of the ACP thin film had peeled off.
  • Example 2 ⁇ Preparation of transfer material for hard tissue regeneration> First, an ACP thin film was formed on a FEP (tetrafluoroethylene-hexafluoropropylene copolymer) film having a small pore diameter of about 200 ⁇ m and a small hole interval of 1 mm and a thickness of 12.5 ⁇ m. Specifically, using a hydroxyapatite (“Cell Yard” (registered trademark), manufactured by Pentax) as a target, a PLD method (pulse laser ablation method, using a KrF excimer laser as a laser, a wavelength of 248 nm) was used to perform an FEP film (about 7 mm).
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • An ACP thin film (amorphous calcium phosphate thin film) having a film thickness of 4 ⁇ m was formed on the surface ( ⁇ 10 mm).
  • the atmosphere gas was O 2 +H 2 O, the gas pressure was 0.1 Pa, and the energy was 150 mJ.
  • a 5 mm ⁇ 5 mm slit is provided in front of the laser condensing lens. A pre-deposition of 1000 shots was performed. The laser energy after slitting was 15 mJ.
  • the FEP film after the ACP film formation was prepared from a template of a pseudo human tooth model in which three human extraction teeth were embedded using a tape (Poretape, manufactured by Kyowa Co., Ltd.) having a thickness of about 150 ⁇ m and a thickness of about 500 ⁇ m. It was attached to the inner surface of an EVA (ethylene-vinyl acetate copolymer) mouthpiece.
  • a tape Puletape, manufactured by Kyowa Co., Ltd.
  • EVA ethylene-vinyl acetate copolymer
  • the transfer material for hard tissue regeneration (EVA mouthpiece having an ACP thin film) produced above was used to transfer the ACP thin film to a human tooth of a pseudo human tooth model. Specifically, first, a human tooth was lightly polished with #2000 water-resistant abrasive paper, then the enamel was surface-treated with K etchant gel for 10 seconds, and then washed with water to obtain an enamel for ACP thin film transfer. .. With respect to the mouthpiece, UV ozone treatment was performed on the ACP thin film side for 600 seconds and then used for ACP thin film transfer.
  • the enamel was coated with a patch solution (aqueous solution of primary calcium phosphate having a pH of 2.0), covered with the mouthpiece, and pressed for 10 minutes to decalcify the enamel surface and the ACP thin film. After 10 minutes, the finger wearing a rubber glove was wetted with artificial saliva (pH 7.2), and the mouthpiece was pressed for 10 minutes. Then, it was remineralized by immersing it in artificial saliva and allowing it to stand in a constant temperature bath for 24 hours. After 24 hours, the mouthpiece was removed to transfer only the ACP thin film onto the human tooth. After 24 hours, the surface condition of the human tooth after separating the mouthpiece from the pseudo human tooth model was observed.
  • a patch solution aqueous solution of primary calcium phosphate having a pH of 2.0
  • a toothbrush SUNSTAR #211 was used to brush the surface of the human tooth on which the ACP thin film was transferred with a load of 200 g and at a speed of 90 strokes/minute for 90 strokes. I observed.
  • FIG. 12 A photograph of the surface condition is shown in FIG. As shown in FIG. 12, it was confirmed that the ACP thin film was peeled off from the FEP film and remained on the human tooth surface 24 hours after the mouthpiece was separated from the pseudo human tooth model. Further, as shown in FIG. 12, it was confirmed that the ACP thin film remained on the human tooth surface even after the brushing test.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

生体親和性セラミックス膜を患者の歯などの硬組織に貼り付けるために有用な硬組織再生用転写材料を提供する。 本発明にかかる硬組織再生用転写材料は、生体親和性セラミックス膜が容易に剥離され得る易剥離面を有する仮支持体と、前記仮支持体の易剥離面上に形成された生体親和性セラミックス膜とを備える。

Description

硬組織再生用転写材料
 本発明は、硬組織再生用転写材料に関し、詳しくは、硬組織再生のための生体親和性セラミックス膜を患者の歯に転写することができる硬組織再生用転写材料に関する。
 象牙質知覚過敏等に対する歯科治療法としては、従来技術として、例えば、象牙質表面にレジンを塗布して、象牙質の表面にプラスティック様の膜を形成して、象牙細管を封鎖する、レジン塗布法が知られている。
 しかし、上記レジン塗布法においては、硬組織との素材の相違(無機と有機)による亀裂や剥離の問題や、有機成分によるアレルギー反応のおそれがあり、また、生体への親和性にも問題がある。
 そこで、本願出願人は、上記レジン塗布法に代わる生体親和性の高い治療法として、本願に先行して、硬組織再生材料及び硬組織再生方法についての特許出願を行っている(特許文献1参照)。
国際公開第2012/014887号
 上記特許文献1の技術によれば、上記硬組織再生材料を歯に貼り付けることにより、エナメル質や象牙質の再生ができる。また、上記特許文献1の技術によれば、硬組織再生材料を歯に貼り付けることにより、象牙細管が封鎖されるので、象牙質知覚過敏の治療にも有効である(特許文献1の段落[0051]なども参照)。
 しかし、上記特許文献1に記載の如き生体親和性セラミックス膜は、その取扱いが困難で、単離した薄膜をどのように患者の歯などの硬組織に貼り付けるのか、大面積や複数部位の硬組織にどのように貼り付けるのかについては、課題があった。
 そこで、本発明は、生体親和性セラミックス膜を患者の歯などの硬組織に貼り付けるために有用な硬組織再生用転写材料を提供することを目的としている。
 本発明は、上記課題を解決するため、以下の構成を備える。
 すなわち、本発明にかかる硬組織再生用転写材料は、生体親和性セラミックス膜が容易に剥離され得る易剥離面を有する仮支持体と、前記仮支持体の易剥離面上に形成された生体親和性セラミックス膜とを備える。
 本発明の硬組織再生用転写材料によれば、取り扱いが困難な生体親和性セラミックス膜を硬組織に簡便に転写することができる。
 すなわち、仮支持体上に生体親和性セラミックス膜が形成されているが、生体親和性セラミックス膜が形成される仮支持体表面は、生体親和性セラミックス膜が容易に剥離され得る易剥離面となっている。
 この場合、生体親和性セラミックス膜が形成されている側を患者の歯などの硬組織に当てた状態で一定時間維持し、生体親和性セラミックス膜を硬組織と一体化させた後、仮支持体を硬組織から離すと、仮支持体の易剥離面と生体親和性セラミックス膜との界面よりも、生体親和性セラミックス膜と硬組織との界面のほうが、より強く接合されていることにより、生体親和性セラミックス膜が、仮支持体から硬組織へと転写される。
本発明にかかる硬組織再生用転写材料の一実施形態を示す断面図である。 本発明にかかる硬組織再生用転写材料の一実施形態を示す斜視図である。 本発明にかかる硬組織再生用転写材料の一実施形態を示す断面図である。 本発明にかかる硬組織再生用転写材料の一実施形態を示す断面図である。 本発明にかかる硬組織再生用転写材料の別の実施形態を示す断面図である。 本発明にかかる硬組織再生用転写材料の別の実施形態を示す断面図である。 本発明にかかる硬組織再生用転写材料の別の実施形態を示す断面図である。 本発明にかかる硬組織再生用転写材料のさらに別の実施形態を示す断面図である。 本発明にかかる硬組織再生用転写材料のさらに別の実施形態を示す断面図である。 本発明にかかる硬組織再生用転写材料のさらに別の実施形態を示す斜視図である。 実施例1における試験結果を示す写真である。 実施例2における試験結果を示す写真である。
 以下、本発明にかかる硬組織再生用転写材料の好ましい実施形態について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。
 本発明にかかる硬組織再生用転写材料は、生体親和性セラミックス膜が容易に剥離され得る易剥離面を有する仮支持体と、前記仮支持体の易剥離面上に形成された生体親和性セラミックス膜とを備える。
〔仮支持体〕
 仮支持体は、硬組織へと転写される生体親和性セラミックス膜を仮に支持する部材である。
 仮支持体としては、硬組織の表面の形状と適合する形状を有するか、硬組織の表面の形状に追従する柔軟性を有することが好ましい。
 前者の例としては、例えば、マウスピースが好適である。後者の例としては、例えば、柔軟性のある材料で製造したシート体などが挙げられる。
 仮支持体は、生体親和性セラミックス膜が容易に剥離され得る易剥離面を有する。仮支持体の易剥離面は、仮支持体の全面に及んでいてもよいし、生体親和性セラミックス膜が形成される面のみに部分的に存在してもよい。
 この易剥離面としては、生体親和性セラミックス膜が容易に剥離され得るものであれば特に限定されず、例えば、仮支持体が、フッ素系樹脂やシリコーン系樹脂などの非接着性ないし非粘着性の材料で製造されたものであってもよいし、そのような材料で製造されたものでなくても、表面処理やコーティングなどによって易剥離面が形成されたものであってもよい。
〔生体親和性セラミックス膜〕
 本発明の硬組織再生用転写材料においては、生体親和性セラミックス膜が、仮支持体の易剥離面上に形成される。
 ここで、生体親和性セラミックスとしては、アパタイト、その原材料及びそれを含む混合物が好ましく例示できる。ここで、アパタイトとはM10(ZOn62の組成を持った鉱物群であり、式中のMは例えばCa、Na、Mg、Ba、K、Zn、Alであり、ZOnは例えばPO4、SO4、CO3であり、Xは例えばOH、F、O、CO3である。ハイドロキシアパタイトや炭酸アパタイトが一般的ではあるが、中でも生体親和性の高さからハイドロキシアパタイトが好ましい。また、アパタイトの原材料としてはリン酸カルシウム及びその水和物が例示でき、アパタイトを含む混合物としては牛等の骨から採取した生体アパタイトが例示できる。
 生体親和性セラミックス膜の形成方法としては、一般的な薄膜形成方式によって得ることができる。
 薄膜形成方式は、気相法、液相法、固相法に大別できるが、厚さが数ミクロン以下の薄膜形成の多くは一般に気相法が採用されており、本発明の硬組織再生用転写材料を製造する場合においても、気相法が好ましく採用できる。
 気相法としては、例えば、レーザーアブレーション法、スパッタリング法、プラズマ法、真空蒸着法、イオンプレーティング法、熱化学気相成長法、プラズマ化学気相成長法などが採用できる。
 好ましくはレーザーアブレーション法であるが、このレーザーアブレーション法は、例えば、次のような手順で行なう。
 すなわち、まず、仮支持体をレーザーアブレーション装置に入れ、排気し、真空中、または、水蒸気含有ガス又は炭酸ガス含有ガスを装置内に導入して、ArFエキシマレーザー発生装置等のレーザー発生装置、ミラー、レンズ等からなるレーザー光源から発生したレーザー光線をターゲットに照射する。これによって、ターゲットが分解して原子、イオン、クラスター等が放出され、仮支持体上に、ターゲットの組成を反映した膜が形成される。
 ターゲットとしては、例えば、生体親和性セラミックスの粉末を金型で加工成形したものを使用することができる。また、水蒸気含有ガスとしては、水蒸気、酸素-水蒸気混合ガス、アルゴン-水蒸気混合ガス、ヘリウム-水蒸気混合ガス、窒素-水蒸気混合ガス、空気-水蒸気混合ガス等が、炭酸ガス含有ガスとしては、炭酸ガス、酸素-水蒸気・炭酸ガス混合ガス、アルゴン-水蒸気・炭酸ガス混合ガス、ヘリウム-水蒸気・炭酸ガス混合ガス、窒素-水蒸気・炭酸ガス混合ガス、空気-水蒸気・炭酸ガス混合ガス等を単独で又は組み合わせて使用できる。
 成膜が完了したのちに、300~1200℃の高温の水蒸気含有ガス又は炭酸含有ガス中で熱処理する熱処理工程を追加して、生体親和性セラミックス膜をより結晶化することも可能である。
 もっとも、量産化する場合、熱処理に要する時間やエネルギーコストを考慮すると、熱処理工程を追加しない方が有利である。また、熱処理工程を行う場合、耐熱性の高い仮支持体を選択する必要があるから、このような点でも、熱処理工程を追加しない方が有利である。
 従って、前記生体親和性セラミックス膜は、加熱処理工程を経ていない非晶質の薄膜であることが好ましいといえる。具体的には、非晶質リン酸カルシウムや、フッ素ドープされた非晶質リン酸カルシウム薄膜が挙げられる。これらは、それぞれ、ハイドロキシアパタイト、フッ化アパタイトをターゲットとすることで形成することができる。耐酸性などを考慮すると、フッ素ドープされた非晶質リン酸カルシウム薄膜がより好ましい。
〔硬組織再生用転写材料の具体例〕
 本発明の硬組織再生用転写材料の具体例としては、上述のとおり、マウスピースが好適に挙げられる。
 マウスピースにおいては、その表面形状が、患者の歯の形状に適合するように作製されるので、生体親和性セラミックス膜を患者の歯に転写するのに有利である。
 また、マウスピースであれば、生体親和性セラミックス膜を患者の歯と一体化するまで固定しておくことが容易にできる。
 マウスピースは、公知の製造方法により製造することができる。
 具体的には、まず、患者から採取した印象から石膏模型を作製する。次に、石膏模型に対し、マウスピースの素材となるシートを被せ、加圧成形することにより、マウスピースを得ることができる。
 この場合、マウスピースの素材として、非接着性ないし非粘着性の材料、例えば、フッ素系樹脂やシリコーン系樹脂を用いることで、生体親和性セラミックス膜が容易に剥離され得る易剥離面を有するマウスピースを得ることができる。
 また、マウスピースの素材が、非接着性ないし非粘着性の材料でなくても、マウスピースを製造したのちに、その内面に、非接着性ないし非粘着性の材料をコーティングやラミネートすることにより易剥離面を形成することができる。また、マウスピースの内面に対し、表面処理によって易剥離面を形成することもできる。
 上記の如きマウスピースを具体例として、本発明にかかる硬組織再生用転写材料の使用例を説明する。
 図1は、本発明にかかる硬組織再生用転写材料の一実施形態であり、その断面図を示すものである。なお、図中の各部寸法は実際の寸法を正確に表すものではない。後述する図2~10も同様である。
 図1に示すように、硬組織再生用転写材料1は、仮支持体(マウスピース)10aと生体親和性セラミックス膜20aとを備える。
 仮支持体10aは、非接着性ないし非粘着性の材料からなり、これにより、その表面は、生体親和性セラミックス膜20aが容易に剥離され得る易剥離面となっている。そして、仮支持体10aの内面に生体親和性セラミックス膜20aが形成されている。
 図2は、図1に示す硬組織再生用転写材料1の使用の手順を示す斜視図である。また、図3は、図1に示す硬組織再生用転写材料1を歯に装着した状態を示す断面図であり、図4は図1に示す硬組織再生用転写材料1を歯から取り外した状態を示す断面図である。
 図2,3に示すように、硬組織再生用転写材料1の内面側(生体親和性セラミックス膜20aが形成されている側)に、弱酸性(例えばpH4.0以下)のリン酸カルシウム溶液を塗布したのち、この硬組織再生用転写材料1を歯30に装着する。その後、10~15分程度経過したのち、再石灰化液を注入する。これらの操作により、脱灰及び再石灰化が起こり、生体親和性セラミックス膜20aと歯30との間の接合が強固になる。
 さらに、1~2時間程度経過後、硬組織再生用転写材料1を取り外すと、図4に示すように、生体親和性セラミックス膜20aが、仮支持体10aから歯30へと転写される。
 図5は、本発明にかかる硬組織再生用転写材料の別の実施形態であり、その断面図を示すものである。
 図5に示すように、硬組織再生用転写材料2は、仮支持体(マウスピース)10bと生体親和性セラミックス膜20bとを備える。
 仮支持体10bの内面には、非接着ないし非粘着性の表面処理層11bが施されており、生体親和性セラミックス膜20aが容易に剥離され得る易剥離面となっている。そして、この易剥離面上に生体親和性セラミックス膜20bが形成されている。
 図6は、図5に示す硬組織再生用転写材料2を歯に装着した状態を示す断面図であり、図7は図5に示す硬組織再生用転写材料2を歯から取り外した状態を示す断面図である。硬組織再生用転写材料2の易剥離面が表面処理層11bによって形成されている点以外は、図1に示す硬組織再生用転写材料に関する説明と重複するので、詳細な説明は割愛する。
 図8は、本発明にかかる硬組織再生用転写材料のさらに別の実施形態であり、その断面図を示すものである。
 図8に示すように、硬組織再生用転写材料3は、仮支持体(マウスピース)10cと生体親和性セラミックス膜20cとを備える。
 仮支持体10cの内面には、非接着ないし非粘着性のコーティング層11cが施されており、生体親和性セラミックス膜20cが容易に剥離され得る易剥離面となっている。そして、この易剥離面上に生体親和性セラミックス膜20cが形成されている。
 図9は、図8に示す硬組織再生用転写材料3を歯に装着した状態を示す断面図であり、図10は図8に示す硬組織再生用転写材料3を歯から取り外した状態を示す断面図である。硬組織再生用転写材料3の易剥離面が非接着ないし非粘着性のコーティング層11cによって形成されている点以外は、図1に示す硬組織再生用転写材料に関する説明と重複するので、詳細な説明は割愛する。
 以下、実施例を用いて、本発明にかかる硬組織再生用転写材料について説明するが、本発明はこれら実施例に限定されるものではない。
〔実施例1〕
<硬組織再生用転写材料の作製>
 牛歯の鋳型から作製した厚さ12.5μmのテフロン(登録商標)製のマウスピースに穴あきパンチを用いて、小孔を形成した。小孔は、径が250μmであり、小孔の間隔を1mmとして、正方形状に配列した。
 ハイドロキシアパタイト(「セルヤード」(登録商標)、ペンタックス製)をターゲットとして、PLD法(パルスレーザーアブレーション法、レーザーは、KrFエキシマレーザー、波長248nmを使用)により、上記テフロンのマウスピース内面(約10mm×10mm)に膜厚4μmのACP薄膜(非晶質のリン酸カルシウム(amorphous calcium phosphate)の薄膜)を成膜した。雰囲気ガスはO2+H2Oとし、ガス圧0.1Pa、エネルギー150mJとした。
 なお、成膜時の紫外線により、テフロン表面のフッ化物イオンが乖離し表面の改質が生じる可能性があるため、紫外線の暴露を低くするため、レーザーの集光レンズ前に5mm×5mmのスリットをつけて1000shotの事前成膜を行った。スリット後のレーザーエネルギーは15mJであった。
<硬組織再生用転写材料の評価>
 牛歯を#2000の耐水研磨紙で軽く研磨し、その後Kエッチャントゲルにて10秒間エナメル質の表面処理した後、水洗した。その後、純水にて1分間超音波洗浄を行ったものをシート貼付用のエナメル質とした。
 上記にて作製した硬組織再生用転写材料(ACP/テフロンマウスピース)のACP側にUVオゾン処理を600秒行った。
 貼付液にはpH2.0の第一リン酸カルシウム水溶液を用いた。エナメル質に貼付液を塗布し、ACP膜を持つACP/テフロンマウスピースを被せ、10分間指圧することでエナメル質表面とACP薄膜を脱灰させた。10分後、ゴム手袋をはめた指を人工唾液(pH7.2)で濡らし、10分間マウスピースを指圧した。
 その後、人工唾液を浸み込ませたメラミンスポンジ、50gの分銅をマウスピース上に置き24時間恒温槽で静置することで再石灰化させた。24時間後マウスピースを外し、ACP薄膜のみを牛歯上に転写した。
 テフロンマウスピースを分離して24時間経過後の表面状態を観察・分析した。
 また、固着強度を評価するため、ACP薄膜が転写された牛歯表面に対し、歯ブラシ(SUNSTAR#211)を用い、荷重200gで、90ストローク/分の速度で、20ストロークブラッシングし、表面状態を観察・分析した。
 表面状態の分析は、Foxit Readerにより、転写したACP薄膜の面積を算出することにより行った。
<結果及び考察>
 表面状態を示す写真を図11に示す。
 図11に示す通り、テフロンマウスピースを分離して24時間経過後の牛歯表面には、ACP薄膜の72.3%が転写されていることが確認できた。
 また、図11に示す通り、ブラッシング試験後の牛歯表面には、ACP薄膜の一部が剥離していたものの、ACP薄膜の69.3%が残存していることが確認できた。
〔実施例2〕
<硬組織再生用転写材料の作製>
 まず、小孔径が約200μmで小孔の間隔が1mmの小孔をもつ、厚さ12.5μmのFEP(テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体)フィルムに対し、ACP薄膜を成膜した。
 具体的には、ハイドロキシアパタイト(「セルヤード」(登録商標)、ペンタックス製)をターゲットとして、PLD法(パルスレーザーアブレーション法、レーザーは、KrFエキシマレーザー、波長248nmを使用)により、FEPフィルム(約7mm×10mm)表面に膜厚4μmのACP薄膜(非晶質のリン酸カルシウム(amorphous calcium phosphate)の薄膜)を成膜した。雰囲気ガスはO2+H2Oとし、ガス圧0.1Pa、エネルギー150mJとした。
 なお、成膜時の紫外線により、FEP表面のフッ化物イオンが乖離し表面の改質が生じる可能性があるため、紫外線の暴露を低くするため、レーザーの集光レンズ前に5mm×5mmのスリットをつけて1000shotの事前成膜を行った。スリット後のレーザーエネルギーは15mJであった。
 上記ACP成膜後のFEPフィルムを、厚さ約150μmのテープ(ポアテープ、株式会社共和製)を用いて、3本のヒト抜去歯を埋め込んだ擬似ヒト歯モデルの鋳型から作製した厚さ約500μmのEVA(エチレン―酢酸ビニル共重合体)製マウスピースの内面に貼り付けた。
〔硬組織再生用転写材料の評価〕
 次に、上記にて作製した硬組織再生用転写材料(ACP薄膜を持つEVA製マウスピース)を用い、擬似ヒト歯モデルのヒト歯へのACP薄膜の転写を行った。
 具体的には、まず、ヒト歯を#2000の耐水研磨紙で軽く研磨し、その後Kエッチャントゲルにて10秒間エナメル質を表面処理した後、水洗したものをACP薄膜転写用のエナメル質とした。
 上記マウスピースについては、そのACP薄膜側にUVオゾン処理を600秒行ってからACP薄膜転写に用いた。
 エナメル質に貼付液(pH2.0の第一リン酸カルシウム水溶液)を塗布したのち、上記マウスピースを被せ、10分間指圧することでエナメル質表面とACP薄膜を脱灰させた。10分後、ゴム手袋をはめた指を人工唾液(pH7.2)で濡らし、10分間マウスピースを指圧した。
 その後、人工唾液中に浸漬し24時間恒温槽で静置することで再石灰化させた。24時間後マウスピースを外すことで、ACP薄膜のみをヒト歯上に転写した。
 24時間経過後にマウスピースを擬似ヒト歯モデルから分離した後のヒト歯の表面状態を観察した。
 また、固着強度を評価するため、ACP薄膜が転写されたヒト歯表面に対し、歯ブラシ(SUNSTAR#211)を用い、荷重200gで、90ストローク/分の速度で、90ストロークブラッシングし、表面状態を観察した。
〔結果及び考察〕
 表面状態の写真を図12に示す。
 図12に示す通り、マウスピースを擬似ヒト歯モデルから分離して24時間経過後のヒト歯表面には、ACP薄膜がFEPフィルムから剥離して残存していることが確認できた。
 また、図12に示す通り、ブラッシング試験後においても、ヒト歯表面にACP薄膜が残存していることが確認できた。
1,2,3       硬組織再生用転写材料
10a,10b,10c 仮支持体(マウスピース)
11b         表面処理層
11c         コーティング層
20a,20b,20c 生体親和性セラミックス膜
30          歯

Claims (6)

  1.  生体親和性セラミックス膜が容易に剥離され得る易剥離面を有する仮支持体と、前記仮支持体の易剥離面上に形成された生体親和性セラミックス膜とを備える、硬組織再生用転写材料。
  2.  前記仮支持体がマウスピースである、請求項1に記載の硬組織再生用転写材料。
  3.  前記生体親和性セラミックス膜が非晶質の薄膜である、請求項1又は2に記載の硬組織再生用転写材料。
  4.  前記仮支持体がフッ素系樹脂製又はシリコーン系樹脂製である、請求項1から3までのいずれかに記載の硬組織再生用転写材料。
  5.  前記仮支持体の易剥離面が表面処理によって形成されている、請求項1から3までのいずれかに記載の硬組織再生用転写材料。
  6.  前記仮支持体の易剥離面がコーティングによって形成されている、請求項1から3までのいずれかに記載の硬組織再生用転写材料。
PCT/JP2020/002888 2019-01-29 2020-01-28 硬組織再生用転写材料 WO2020158701A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020569630A JPWO2020158701A1 (ja) 2019-01-29 2020-01-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-013200 2019-01-29
JP2019013200 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020158701A1 true WO2020158701A1 (ja) 2020-08-06

Family

ID=71840327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002888 WO2020158701A1 (ja) 2019-01-29 2020-01-28 硬組織再生用転写材料

Country Status (2)

Country Link
JP (1) JPWO2020158701A1 (ja)
WO (1) WO2020158701A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004065841A (ja) * 2002-08-09 2004-03-04 Shigeki Mototsu 医療用機器
JP2012249570A (ja) * 2011-06-02 2012-12-20 Kinki Univ 生体親和性透明シート、その製造方法、及び細胞シート
JP2015010037A (ja) * 2013-06-26 2015-01-19 学校法人近畿大学 ハイドロキシアパタイトシート及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004065841A (ja) * 2002-08-09 2004-03-04 Shigeki Mototsu 医療用機器
JP2012249570A (ja) * 2011-06-02 2012-12-20 Kinki Univ 生体親和性透明シート、その製造方法、及び細胞シート
JP2015010037A (ja) * 2013-06-26 2015-01-19 学校法人近畿大学 ハイドロキシアパタイトシート及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONTSU, S. ET AL.: "Restoration and Conservation of Dental Enamel using a Flexible Apatite Sheet", JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, vol. 47, 2011, pages 11 - 13, XP055726267 *
HONTSU, SHIGEKI ET AL.: "Direct Deposition of an Apatite Film on Dentin Using the Er:YAG Laser -Ablation Method", J. JPN. SOC. LASER DENT., vol. 26, 2015, pages 10 - 16 *

Also Published As

Publication number Publication date
JPWO2020158701A1 (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
Wen et al. Preparation of bioactive microporous titanium surface by a new two-step chemical treatment
AU2002328762B2 (en) Osteophilic implants
EP1757315A4 (en) BIOKOMPATIBLE MEMBRANE AND MANUFACTURING METHOD THEREFOR
CZ239598A3 (cs) Bioaktivní skelná kompozice a způsob ošetření používající tuto kompozici
Toledano et al. Effect of dentin deproteinization on microleakage of Class V composite restorations
Eguro et al. Adhesion of Er: YAG laser‐irradiated dentin and composite resins: Application of various treatments on irradiated surface
TW201200106A (en) Surface treatment method for dental implant with tissue integration
KR101109578B1 (ko) 알에프-스퍼터링 공정을 이용한 치과용 임플란트 픽스츄어의 표면 처리 방법
WO2020158701A1 (ja) 硬組織再生用転写材料
JP2004337549A (ja) 衝撃吸収性を有した骨結合型インプラント及びその製造方法
CN103298496B (zh) 硬组织再生材料以及硬组织再生方法
Özcan et al. Surface conditioning protocol for the adhesion of resin-based cements to base and noble alloys: How to condition and why
WO2013084817A1 (ja) 骨・組織再生誘導用メンブレン及びその製造方法
CN103409715A (zh) 一种多孔TiO2/SiO2复合涂层的制备方法
JP6377998B2 (ja) 歯科治療用シート及びその製造方法
Ishikawa et al. UV-mediated photofunctionalization of indirect restorative materials enhances bonding to a resin-based luting agent
JP2021116247A (ja) エナメル質再生シート
JP2014193249A (ja) 生体インプラント
KR101296591B1 (ko) 치과용 임플란트 표면의 ha 코팅층 후처리 장치
Ryu et al. Regeneration of a micro-scratched tooth enamel layer by nanoscale hydroxyapatite solution
Hontsu et al. Regeneration of tooth enamel by flexible hydroxyapatite sheet
Rosianu et al. Microscopic assessment of the enamel etching pattern according to different etching times using orthophosphoric acid gels
JP2020121930A (ja) 歯科治療用複合シート
JP2004168747A (ja) プラーク付着抑制フィルム
CN105943405B (zh) 缓释氟离子ppc再矿化膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749531

Country of ref document: EP

Kind code of ref document: A1