WO2020158561A1 - 空調機 - Google Patents

空調機 Download PDF

Info

Publication number
WO2020158561A1
WO2020158561A1 PCT/JP2020/002280 JP2020002280W WO2020158561A1 WO 2020158561 A1 WO2020158561 A1 WO 2020158561A1 JP 2020002280 W JP2020002280 W JP 2020002280W WO 2020158561 A1 WO2020158561 A1 WO 2020158561A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
path
water
flow path
heat exchanger
Prior art date
Application number
PCT/JP2020/002280
Other languages
English (en)
French (fr)
Inventor
雄治 坂野
吉田 茂樹
昌志 市橋
直勝 大澤
学 白井
飯島 竜太
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Priority to CN202080012080.6A priority Critical patent/CN113383199B/zh
Publication of WO2020158561A1 publication Critical patent/WO2020158561A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0323Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present invention relates to an air conditioner.
  • Patent Document 1 An evaporative cooling type air conditioner is known in which indoor air is sucked in and air cooled by lowering the ambient temperature by utilizing the heat of vaporization of water is blown out into the room (for example, Patent Document 1).
  • the air conditioner (cold air fan) of Patent Document 1 communicates the air blower arranged in the casing with the suction port and the first air outlet to guide the air flow generated by the air blower to the first air outlet.
  • a second flow path that connects the flow path, the suction opening, and the second outlet to communicate the air flow generated by the blower to the second outlet, and is disposed in the second flow path.
  • a heat exchanger provided with vaporizing means for cooling the air flowing through the two flow paths, and performing heat exchange between the air flow cooled by the vaporizing means for the second flow path and the air flow flowing through the first flow path. Has been.
  • mist-like water unevaporated sprayed water
  • vaporized water evaporated sprayed water
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an air conditioner that suppresses the discharge of unevaporated spray water to the outside of the air conditioner.
  • An air conditioner includes a sprinkling portion that sprinkles water to be vaporized, a first flow path through which first air cooled by vaporization heat of water sprinkled by the sprinkling portion flows, and an air-conditioned space.
  • the heat exchanger includes a second flow path through which the blown out second air flows, and a heat exchanger that causes heat exchange between the first air and the second air and cools the second air.
  • a first path forming at least a part of the first flow path, and a second path forming at least a part of the second flow path, wherein the first flow path contains the first air.
  • a branch portion that branches vertically is provided on the downstream side of the first path in the flow direction, and a drain pan that communicates with the branch portion is provided below the branch portion.
  • the unvaporized portion in the heat exchanger is not vaporized.
  • the sprayed water can be dripped downward from the branch portion by gravity. Since the sprayed water that has been dripped flows into the drain pan that communicates with the branch portion, it is possible to efficiently recover the non-evaporated sprayed water, and the non-evaporated sprayed water is suppressed from being discharged into the air-conditioned space, It is possible to prevent the absolute humidity of the air-conditioned space from increasing.
  • the first flow path is formed upward in front of and behind the branch portion, and is formed in a U shape.
  • the first flow path is formed in a U shape before and after the branch portion, that is, the branch portion is provided in the U-shaped arc portion. Therefore, when the air and the non-evaporated sprayed water flow in the branch portion provided in the U-shaped arc portion, the non-evaporated sprayed water having a large specific gravity is efficiently separated to the outer peripheral side by the centrifugal force. , Can be dropped downward from the branch portion.
  • the distance from the spraying section to the branch section is more than the distance from the branch section to the first outlet from which the first air is blown out. Is also short.
  • the distance from the spraying portion to the branch portion is made shorter than the distance from the branching portion to the first outlet from which the first air is blown out, thereby suppressing blow-up of the non-evaporated spray water.
  • a first fan for conveying the first air is provided in the first flow path, and the first fan is in the vicinity of the first outlet. It is provided in.
  • the first fan in the vicinity of the first outlet, the first fan can be arranged on the downstream side of the branch portion, and the distance between the spraying portion and the first fan can be increased. Short-circuit damage due to sprayed water (water droplets) from the spraying section can be reduced, and the spraying of the sprayed water can be suppressed.
  • a second fan for conveying the second air is provided in the second flow path, and the first air and the second air are provided in the heat exchanger.
  • the first path and the second path are formed so as to be a counter flow with the second air.
  • the first path and the second path are formed in the heat exchanger so that the first air and the second air are in counterflow, the first air and the second air Sensible heat can be efficiently exchanged.
  • a moisture absorbing member that covers the opening of the drain pan is provided between the branch portion and the drain pan.
  • the moisture absorbing member that covers the opening of the drain pan is provided between the branch portion and the drain pan, the sprayed water dropped downward from the branch portion is absorbed by the moisture absorbing member. Therefore, it is possible to further suppress the sprayed water dripped downward from the branch portion to be blown up and discharged to the air-conditioned space.
  • a first filter is provided on the upstream side of the spraying section, and the pressure loss value of the moisture absorbing member is the pressure of the first filter. Greater than the loss value.
  • the moisture absorbing member is provided so as to cover the opening of the drain pan, and the pressure loss value of the moisture absorbing member is set to be larger than the pressure loss value of the first filter. Therefore, even when the water that has passed through the moisture absorbing member and flowed into the drain pan is vaporized in the drain pan to become water vapor, the water vapor flows backward in the moisture absorbing member to the first flow path. The return phenomenon can be efficiently suppressed.
  • a water reservoir for accumulating spray water to be supplied to the spray unit is provided below the drain pan, and the drain pan and the water reservoir are in communication with each other.
  • the sprayed water that has not been evaporated and is collected by the drain pan is stored in the water reservoir, and the collected sprayed water is supplied to the spraying section, so that the collected sprayed water can be reused.
  • An air conditioner includes a tank that holds water supplied from the outside, a solenoid valve provided between the tank and the water reservoir, and a control unit that controls opening/closing of the solenoid valve. And a sensor that outputs information about the water level of the water in the water reservoir, and the control unit communicates the drain pan with the water reservoir based on the information about the water level output from the sensor. When it is determined that the water level is lower than the lower end portion of the communication passage, the solenoid valve is opened until the water level is higher than the lower end portion.
  • the control unit when the control unit determines that the water level in the water reservoir is lower than the lower end of the communication passage, the control unit opens the solenoid valve until the water level becomes higher than the lower end, so that the lower end of the communication passage is closed.
  • the opening and closing control of the solenoid valve is performed so that the part is located in the water. Therefore, it is possible to prevent the air in the drain pan from flowing back to the first flow path from the lower end of the communication path.
  • FIG. 1 is a schematic diagram illustrating a configuration example (exhaust side L: supply side U) of an air conditioner 1 according to the first embodiment.
  • the air conditioner 1 includes a box-shaped housing 15, and is mounted on a floor surface of an air-conditioned space such as a factory by casters 151 provided at the bottom of the housing 15.
  • the mounting state of the air conditioner 1 shown in FIG. 1 is shown in the upper, lower, left and right directions as a normal usage mode of the air conditioner 1.
  • the air conditioner 1 is provided with a sensible heat exchanger 2 and a spraying section 5, and cools the air-conditioned space by lowering the ambient temperature by using the heat of vaporization of the sprayed water sprayed from the spraying section 5, for example, indirect vaporization. It is a cooling type air conditioner 1.
  • the first flow path 3 in which the first air directly cooled by the heat of vaporization of the spray water sprayed from the spray section 5 flows and the sensible heat exchanger 2 A second flow path 4 through which the second air to be cooled flows by exchanging heat with the cooled first air to flow is provided.
  • the second air flowing through the second flow path 4 is blown into the air-conditioned space as air supply (SA: service air) and is supplied to the air-conditioned space. Therefore, the second flow path 4 functions as an air supply flow path.
  • SA service air
  • the first air flowing through the first flow path 3 is blown into the air-conditioned space as exhaust air (EA), and is discharged to the air-conditioned space. Therefore, the first flow path 3 functions as an exhaust flow path.
  • a branch portion 6 is provided in the first flow path 3 (exhaust flow path), and in the sprayed water from the spraying section 5, unevaporated sprayed water, that is, vaporized without being vaporized. At least a part of the remaining water is collected through the spray water collecting path 61 branched from the branch section 6. Therefore, it is possible to reduce the content of mist-like water that is not water vapor in the first air discharged from the first flow path 3 and increase the absolute humidity of the air-conditioned space by the discharged first air. Can be suppressed.
  • the sensible heat exchanger 2 is provided so as to straddle the first flow path 3 (exhaust flow path) and the second flow path 4 (air supply flow path).
  • a first path 21 forming at least a part of the first flow path 3 and a second path 22 forming at least a part of the second flow path 4 are formed.
  • the sensible heat exchanger 2 is provided with a box-shaped case made of metal such as aluminum or resin, and a heat insulating member is provided on the outer peripheral surface of the case, so that the first air flowing inside the sensible heat exchanger 2 is provided.
  • the heat exchange between the second air and the ambient air of the sensible heat exchanger 2 may be limited.
  • the first path 21 and the second path 22 formed in the sensible heat exchanger 2 are configured by, for example, arranging a plurality of metal plates having a hollow structure through which the first air or the second air flows in parallel. ..
  • the metal plate having the hollow structure may be constituted by a plurality of fins or a flat tube, for example.
  • the efficiency of sensible heat exchange can be improved.
  • Each of the first path 21 and the second path 22 is configured as a plurality of exhaust paths and a plurality of air supply paths by the plurality of metal plates having the hollow structure.
  • the plurality of exhaust paths forming the first path 21 and the plurality of air supply paths forming the second path 22 are laminated so as to alternate with each other in parallel to the paper surface (direction parallel to the supply/exhaust direction). In the sensible heat exchanger 2, the supply air and the exhaust air are not mixed with each other.
  • the flow of air (supply air and exhaust air) in each of the first path 21 and the second path 22 forms a counter flow in the opposite direction by the first fan 31 and the second fan 41 described later.
  • the first path 21 and the second path 22 are arranged such that the first air (exhaust gas) flowing through the first path 21 (exhaust path) and the second path 22 ( Sensible heat is exchanged with the second air (air supply) flowing through the air supply path.
  • first air exhaust gas
  • second path 22 Sensible heat
  • the first air cooled by the heat of vaporization of the sprayed water flows through the first path 21 (exhaust path).
  • the second air flowing through the second path 22 (air supply path) is cooled by exchanging sensible heat with the first air.
  • the first path 21 has a path configuration in which the upper surface side of the sensible heat exchanger 2 is a starting point (inlet) and the lower right side surface is an end point (outlet).
  • the second path 22 has a path configuration in which the lower left side surface side of the sensible heat exchanger 2 is the starting point (inlet) and the upper left side surface side is the end point (outlet), and in the cross-sectional view of the sensible heat exchanger 2, It is U-shaped. In this way, by setting the end point (exit) of the second path 22 to the upper left side surface side, it is possible to separate the distance from the spraying section 5 provided on the upper surface side of the sensible heat exchanger 2, and from the spraying section 5. The sprayed water can be prevented from entering the second path 22.
  • the spraying section 5 includes a spraying nozzle (spraying nozzle) for spraying (spraying) mist-like water, and the spraying nozzle communicates with a water reservoir section 9 described later by a pipe.
  • the distribution unit 5 is provided in the first flow path 3 (exhaust flow path), and is provided on the upstream side of the sensible heat exchanger 2 in the flow direction of the first air. Therefore, the sprayed water that has been sprayed by the spraying unit 5 and has become mist flows into the first path 21 of the sensible heat exchanger 2.
  • the tip direction of the spray nozzle which is the spray direction of the spray water, faces the downstream direction at an angle closer to parallel to the first flow path 3, the efficiency of inflow of the spray water into the first passage 21 becomes higher.
  • the first flow path 3 includes a first suction port 33 and a first blowout port 34 that are located on the upper surface side of the air conditioner 1, and is U-shaped with the first suction port 33 as a starting point and the first blowout port 34 as an ending point. It is configured in a shape.
  • the lowermost end of the first path 21 of the sensible heat exchanger 2 is located near the apex of the U-shape. Therefore, the first flow path 3 is formed so as to be folded back upward at the lowermost end of the first path 21 of the sensible heat exchanger 2, that is, at the outlet of the first path 21.
  • the first suction port 33 is provided with a first filter 32 so as to cover the first suction port 33.
  • the first filter 32 is made of, for example, polyester or olefin fiber, and collects dust in the air sucked from the first suction port 33.
  • a first fan 31 is provided in the vicinity of the first outlet 34, and conveys the first air (exhaust air) flowing in the first flow path 3 (first path 21) and functions as an exhaust fan.
  • the first air (exhaust air) is blown out (exhausted) from the first air outlet 34 to the outside of the air conditioner 1.
  • the vicinity of the first outlet 34 is the position immediately before the first outlet 34 in the first flow path 3 as shown in FIG.
  • the vicinity of the first outlet 34 may be at least a position closer to the first outlet 34 than the branching portion 6 described later.
  • the second flow path 4 includes a second suction port 43 located on the left side surface side below the air conditioner 1 and a second air outlet 44 located on the upper surface side of the air conditioner 1, and the second suction port 43 is the starting point. And is configured in a U shape with the second outlet 44 as an end point (in a normal usage state of the air conditioner 1, an inverted C shape in which the U shape is rotated 90° to the left). ..
  • the second suction port 43 is provided with a second filter 42 so as to cover the second suction port 43.
  • the second filter 42 is made of, for example, polyester or olefin fiber, and collects dust in the air sucked from the second suction port 43.
  • a second fan 41 is provided in the vicinity of the second outlet 44 and conveys the second air (air supply) flowing in the second flow path 4 (second path 22) to function as an air supply fan. To do.
  • the position where the second fan 41 is provided is not limited to the vicinity of the second outlet port 44, and is the side of the second suction port 43, that is, the second filter 42 and the inlet of the second path 22 of the sensible heat exchanger 2. It may be provided between.
  • the first air (exhaust air) conveyed by the first fan 31 flows from the upper side to the lower side in the first path 21 of the sensible heat exchanger 2.
  • the second air (air supply) conveyed by the second fan 41 flows upward from below in the second path 22 of the sensible heat exchanger 2. Therefore, in the sensible heat exchanger 2, the first air (exhaust air) flowing in the first path 21 and the second air (supply air) flowing in the second path 22 form a counterflow, and the first air (exhaust air) ) And the sensible heat exchange between the second air (supply air) can be improved.
  • the sensible heat exchange is performed between the first air (exhaust air) flowing in the first path 21 and the second air (air supply) flowing in the second flow path 4, so that the second air becomes It will be cooled by the first air.
  • the mist-like sprayed water sprinkled from the spraying section 5 also flows through the first path 21, and the sprayed water is vaporized in the first path 21, so that the evaporation heat (latent heat) causes The one air and the second air may be cooled. More specifically, as an example, a physical phenomenon in which the sprayed water attached to the wall surface of the first path 21 exchanges heat with the second air of the second path 22 to evaporate and cool the second air can be considered.
  • the second air When the second air is cooled by the sprayed water, the second air is cooled by heat exchange (sensible heat exchange) due to a temperature difference between the sprayed water and the second air as a physical phenomenon other than evaporative heat cooling. It is possible. In this case, since the cooling efficiency is higher as the temperature difference between the spray water and the second air is higher, ice water as the spray water or water having a relatively low temperature such as ground water is stored in the water reservoir 9 or the tank 14 described later. It is effective to store water.
  • the above-mentioned physical phenomenon is generated in a composite manner according to the physical state of the components related to heat exchange inside the air conditioner 1.
  • the air conditioner 1 further includes a drain pan 8, a water reservoir 9 and a tank 14.
  • the drain pan 8, the water reservoir 9 and the tank 14 are accommodated in the housing 15 and are located below the area (air chamber) where the first path 21, the second path 22 and the sensible heat exchanger 2 are provided. It is provided in.
  • the tank 14 is a container for storing water supplied from a water pipe outside the air conditioner 1.
  • the tank 14 is provided with, for example, a water supply valve (not shown), and stores the water supplied from the water pipe by opening the water supply valve by communicating the water supply valve with the water pipe. After storing a certain amount of water, the water supply valve is closed and removed from the water pipe, so that the air conditioner 1 can be moved to an arbitrary place.
  • the water reservoir 9 is a container for storing water like the tank 14, and is provided below the tank 14.
  • the water reservoir 9 and the tank 14 are connected by a solenoid valve 13. By opening the solenoid valve 13, the water in the tank 14 flows into the water reservoir 9 and the water level in the water reservoir 9 rises.
  • one or more air holes 91 are provided on the top surface of the water reservoir 9. By providing the air holes 91, it is possible to suppress an increase in the internal pressure of the water reservoir 9 when the water level of the water stored in the water reservoir 9 rises.
  • a pipe communicating with the spray nozzle of the spray unit 5 is inserted inside the water reservoir 9, and the water in the water reservoir 9 is supplied to the spray nozzle of the spray unit 5 via the pipe. ..
  • a pump 11 is connected to the pipe, and by driving the pump 11, the water is supplied to the spraying unit 5, and the supplied water is sprayed (sprayed) from a spray nozzle to become mist-like water. And flows into the first path 21 together with the first air sucked from the first suction port 33.
  • a sensor 10 for detecting the water level of the water stored in the water reservoir 9 is provided inside the water reservoir 9.
  • the sensor 10 is provided at a position where a predetermined water level is provided on the inner peripheral surface of the water reservoir 9, and a water level sensor 10 that outputs a predetermined signal when a terminal of the sensor 10 comes into contact with water or a float that floats on water.
  • the sensor 10 is provided and outputs a predetermined signal based on the height position of the float.
  • the sensor 10 is provided in accordance with the height position of the lower end portion 82 of the communication passage 81 provided in the drain pan 8 to be described later, and the water level of the water stored in the water reservoir 9 and the lower end portion 82 A predetermined signal is output based on the level relationship of.
  • the senor 10 is provided so as to detect the water level at a position higher by a predetermined amount than the height position of the lower end portion 82. Thereby, the water level of the water reservoir 9 is controlled to be always higher than the height of the lower end 82 by the control of the control unit 121 described later.
  • the first flow path 3 is provided with a branch part 6 that branches vertically on the downstream side of the first path 21 of the sensible heat exchanger 2 with reference to the flow direction of the first air (exhaust gas).
  • the branch portion 6 is provided at the outlet of the first path 21 of the sensible heat exchanger 2, and the spray water is branched downward by the branch portion 6 with respect to the first path 21.
  • a recovery path 61 is formed. That is, the sprayed water recovery passage 61 branched from the first flow path 3 by the branch portion 6 is configured downward from the branch portion 6.
  • the first flow path 3 is U-shaped, and the lowermost end of the first path 21 of the sensible heat exchanger 2 is located near the apex of the U-shape. Since the outlet of the first path 21 is located at the lowermost end of the first path 21, the branching portion 6 is located near the U-shaped apex (near the lowermost end). That is, in the height direction, the branch portion 6 and the lowermost end portion of the first path 21 are located at substantially the same position. Therefore, the first flow path 3 is formed in a U-shape by being folded back upward with the front and rear of the branch portion 6 as the lowermost end portion. As shown in FIG. 1, the branch portion 6 may be provided on the U-shaped apex of the first path 21, that is, on the downstream side of the turning point of the first air.
  • the first flow path 3 is not limited to one formed immediately after the branch portion 6, that is, immediately upstream of the branch portion 6 on the downstream side.
  • the first flow path 3 is formed at a predetermined distance downstream of the branch portion 6 in the lateral direction (the right side on the paper surface, the direction substantially perpendicular to the gravity direction), and thereafter formed upward. It may be one.
  • the branch part 6 is not limited to a part of the first path 21 and may be configured as a branch chamber having a predetermined capacity. That is, in FIG. 1, the space immediately after the outlet of the first path 21 is the branch portion 6 (branch chamber), and the first path 21 (U-shaped) formed upward on the downstream side of the branch chamber. (Corresponding to the straight line portion on the right side of) and a sprayed water recovery path 61 formed downward.
  • the branch part 6 is provided after the outlet of the first path 21, that is, on the downstream side of the sensible heat exchanger 2, but the invention is not limited to this.
  • the branch portion 6 may be provided on the outlet side (downstream side) of the first path 21, that is, in the middle of the first path 21 (inside the sensible heat exchanger 2).
  • the branching portion 6 may be provided on the downstream side of the first path 21 and at a portion of the first path 21 after the sensible heat exchange by the counterflow with the second air.
  • the spray water collecting path 61 is configured with the branch portion 6 as a starting point, and communicates with the drain pan 8 located below the branch portion 6.
  • the spray water collecting passage 61 is provided with a partition plate 62 provided between the lower portion of the outlet of the first passage 21 of the sensible heat exchanger 2 and the opening of the drain pan 8, and the inner peripheral surface of the housing 15 of the air conditioner 1. Is formed between and and is formed downward with respect to the branch portion 6.
  • the drain pan 8 is, for example, a dish-shaped container having an opening on the upper surface.
  • a communication passage 81 for communicating with the water reservoir 9 is provided on the bottom surface of the drain pan 8.
  • the communication passage 81 is provided so as to extend toward the water reservoir 9 located below, with the bottom surface of the drain pan 8 as a base end, and the lower end portion 82 of the communication passage 81 is located inside the drain pan 8.
  • the moisture absorbent member 7 is provided at the opening provided on the upper surface of the drain pan 8 so as to cover the opening.
  • the moisture absorbing member 7 is made of a hydrophilic material such as PET, polyolefin, olefin, rayon, polyester, or modacrylic, and absorbs unevaporated sprayed water, and the absorbed sprayed water is dropped toward the drain pan 8. By doing so, the non-evaporated sprayed water is recovered.
  • the moisture absorbing member 7 By configuring the moisture absorbing member 7 with a hydrophilic material, the sprayed water can be efficiently absorbed and dropped toward the drain pan 8.
  • the moisture absorbing member 7 also functions as a filter, and can collect the dust even when the sprayed water flowing down from the partition plate 62 contains the dust.
  • the value of the pressure loss of the moisture absorbing member 7 is made larger than the value of the pressure loss of the first filter 32. Since the first fan 31 is provided at the first outlet 34 (the outlet of the first flow path 3) of the first flow path 3, the first flow path 3 becomes an environment of negative pressure lower than atmospheric pressure. .. On the other hand, since the value of the pressure loss of the moisture absorbing member 7 is larger than the value of the pressure loss of the first filter 32, it is possible to prevent the air in the drain pan 8 from flowing back to the first flow path 3. ..
  • the air in the drain pan 8 has a relatively high absolute humidity due to the water stored in the drain pan 8 or in the water reservoir 9. On the other hand, by suppressing the air in the drain pan 8 from flowing back to the first flow path 3, the absolute humidity of the first air flowing through the first flow path 3 and discharged from the first outlet 34 is reduced. It is possible to suppress the improvement.
  • the mist-like sprayed water sprayed from the sprayer 5 is mixed with the first air sucked from the first suction port 33, and the periphery of the sprayer 5 is mixed. And, in the first path 21 of the sensible heat exchanger 2, it is vaporized into water vapor. The first air cooled by the heat of vaporization and the non-evaporated mist-like sprayed water that does not vaporize flow downward in the first path 21 of the sensible heat exchanger 2.
  • a part of the atomized spray water that has not vaporized and has not evaporated is turned into water droplets on the inner wall surface of the first path 21 of the sensible heat exchanger 2, and the water droplets are separated by gravity due to the inner wall surface of the first path 21 and the partition wall. It flows down the plate 62, is absorbed by the moisture absorbing member 7, and is collected by the drain pan 8. Part of the unevaporated mist-like sprayed water that does not form water droplets on the inner wall surface of the first path 21 and flows together with the first air absorbs moisture through the sprayed water recovery path 61 that branches downward from the branch portion 6. It is absorbed by the member 7 and collected by the drain pan 8. By collecting the non-evaporated mist-like sprayed water that has not been vaporized in the drain pan 8 through the sprayed water recovery passage 61, the absolute humidity of the first air discharged from the first outlet 34 increases. Can be suppressed.
  • the branch portion 6 be provided on the U-shaped apex, that is, on the downstream side of the turning point of the first air.
  • a centrifugal force is generated when the first air is folded back (changes from the downward flow direction to the upward flow direction) in the U-shaped curved portion. Since the non-evaporated sprayed water that flows together with the first air has a larger specific gravity than air, it is separated from the first air (gas-liquid separation) by being biased toward the outer peripheral side of the curved portion by centrifugal force. Therefore, the non-evaporated sprayed water can be efficiently collected through the partition plate 62 located on the outer peripheral side of the curved portion.
  • the flow passage cross-sectional area of the upstream first flow passage 3 (first passage 21) in the U-shaped curved portion is larger than the flow passage cross-sectional area of the downstream first flow passage 3 in the U-shaped curved portion. , May be small.
  • the first path 21 is configured by a plurality of exhaust paths stacked as described above, and the flow path cross-sectional area of the first path 21 is the total value of the flow path cross-sectional areas of each of the plurality of exhaust paths.
  • the flow velocity of the first air in the upstream first flow passage 3 can be made faster than the flow velocity of the first air in the downstream first flow passage 3.
  • the centrifugal force generated in the curved portion is increased, and the unevaporated sprayed water that flows together with the first air is efficiently perimeter of the curved portion. It can be separated toward the side and the efficiency of collecting the unevaporated spray water can be improved.
  • the flow velocity of the first air in the first flow path 3 on the downstream side it is possible to prevent unsprayed sprayed water that has passed through the branch portion 6 from being blown up and discharged from the first outlet 34. You can
  • the distance L1 in the height direction from the spraying section 5 to the branch section 6 is shorter than the distance L2 in the height direction from the branch section 6 to the first outlet 34.
  • the distance L1 in the height direction from the spraying section 5 to the branch section 6 is shorter than the distance L2 in the height direction from the branch section 6 to the first outlet 34.
  • the distance L1 from the spraying section 5 to the branching section 6 and the distance L2 from the branching section 6 to the first outlet 34 are higher than the distance from the spreading section 5 to the lowermost end section (moisture absorbing member 7) of the branching section 6.
  • the distance in the height direction may be L1
  • the distance in the height direction from the lowermost end (moisture absorbent member 7) of the branching portion 6 to the first outlet 34 may be L2.
  • the first fan 31 is provided in the vicinity of the first outlet 34, so that the first fan 31 can be arranged above the branch portion 6 and on the downstream side. Further, it is possible to increase the distance to the spraying section 5 provided near the first suction port 33, and the sprayed water of the spraying section 5 affects the electric parts such as the motor included in the first fan 31. Can be reduced.
  • the distance in the height direction from the distribution portion 5 to the branch portion 6 is preferably shorter than the distance in the height direction from the branch portion 6 to the first fan 31. It is possible to further suppress the non-evaporated sprayed water that has passed through the branch portion 6 from blowing up.
  • the first flow path 3 takes in air from above and the second flow path 4 from below. Is configured to be captured. Therefore, it is possible to further cool and supply the air below the air-conditioned space having a relatively low temperature in the air-conditioned space. As a result, the cooling efficiency is higher than that when warm air is sucked in through the second suction port 43.
  • the drain pan 8 and the water reservoir 9 are communicated with each other by a communication passage 81 provided on the bottom surface of the drain pan 8. Therefore, the non-evaporated sprayed water collected in the drain pan 8 flows into the water reservoir 9 through the communication passage 81 and is stored in the water reservoir 9.
  • the water stored in the water reservoir 9 is sprinkled by the sprinkling unit 5. Therefore, by reusing the recovered non-evaporated sprayed water, the water consumption can be suppressed.
  • the moisture absorbing member 7 that exhibits a filter function is provided at the opening of the drain pan 8, even if dust is mixed in the spray water that has not evaporated, the moisture absorbing member 7 collects the dust. be able to. Therefore, the non-evaporated spray water from which the dust has been removed can be reused, and the spray nozzle of the spray unit 5 can be prevented from being clogged.
  • FIG. 2 is a block diagram showing a configuration of the controller 12.
  • the air conditioner 1 includes a controller 12 including, for example, a microcomputer.
  • the controller 12 includes a control unit 121, a storage unit 122, and an input/output I/F 123. For example, on/off control or rotation speed control of the first fan 31 and the second fan 41, and spray water spray from the spray unit 5.
  • the pump 11 that supplies the water in the water reservoir 9 to the spraying unit 5 is driven, stopped, or capacity controlled.
  • the control unit 121 is configured by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or the like, and performs various control processes and calculations by reading and executing programs and data stored in advance in the storage unit 122. Processing is performed.
  • a CPU Central Processing Unit
  • MPU Micro Processing Unit
  • the storage unit 122 is configured by a volatile memory element such as a RAM (Random Access Memory) or a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable ROM), or a nonvolatile memory element such as a flash memory, A control program and data to be referred to during processing are stored in advance.
  • a volatile memory element such as a RAM (Random Access Memory) or a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable ROM), or a nonvolatile memory element such as a flash memory
  • the input/output I/F 123 is an interface group for connecting the first fan 31, the second fan 41, the pump 11, the solenoid valve 13 and the serial cable from the sensor 10, and the like, via an internal bus in the controller 12.
  • the control unit 121 and the solenoid valve 13 and the sensor 10 are communicably connected.
  • FIG. 3 is a flowchart showing a processing procedure of the control unit 121 of the controller 12.
  • the controller 121 of the controller 12 periodically or steadily executes the following processing when the air conditioner 1 is in operation.
  • the control unit 121 acquires information on the water level of the water reservoir 9 (S10).
  • the control unit 121 acquires information about the water level of the water stored in the water storage unit 9 from the sensor 10 connected via the input/output I/F 123.
  • the control unit 121 determines whether the water level in the water reservoir 9 is lower than the lower end 82 of the communication passage 81 (S11). The control unit 121 determines, based on the signal output from the sensor 10, whether the water level in the water reservoir 9 is lower than the lower end 82 of the communication passage 81. For example, the sensor 10 outputs a high signal when the water level in the water reservoir 9 is higher than the lower end 82, and outputs a low signal when the water level in the water reservoir 9 is lower than the lower end 82. The control unit 121 determines whether or not the water level of the water reservoir 9 is lower than that of the lower end portion 82 of the communication passage 81 based on the signal output by the sensor 10.
  • control unit 121 determines that the water level of the water reservoir 9 is higher than the lower end 82 of the communication passage 81 (S11: NO), that is, when the water level is equal to or higher than the height of the lower end 82 of the communication passage 81.
  • the control unit 121 performs a loop process to execute the process of S10 again.
  • the controller 121 determines that the water level in the water reservoir 9 is lower than the lower end 82 of the communication passage 81 (S11: YES)
  • the controller 121 outputs a signal to open the solenoid valve 13 (S12). ..
  • the solenoid valve 13 is provided between the tank 14 and the water reservoir 9, and the tank 14 and the water reservoir 9 communicate with each other via the solenoid valve 13.
  • the solenoid valve 13 is opened based on the signal from the control unit 121 to open, the water in the tank 14 flows into the water reservoir 9 through the solenoid valve 13, and the water level in the water reservoir 9 rises.
  • the control unit 121 acquires information about the water level of the water reservoir 9 as in the process of S10 (S13).
  • the control unit 121 determines whether the water level in the water reservoir 9 is higher than the lower end 82 of the communication passage 81 (S14). The control unit 121 determines whether the water level of the water reservoir 9 is higher than that of the lower end portion 82 of the communication passage 81 based on the signal output from the sensor 10, similarly to the processing of S11. The control unit 121 may determine whether or not the water level of the water reservoir 9 is higher than the lower end 82 by a predetermined value or more in order to prevent chattering of the solenoid valve 13.
  • control unit 121 determines that the water level in the water reservoir 9 is lower than the lower end 82 of the communication passage 81 (S14: NO)
  • the control unit 121 performs the loop process to execute the S13 process again. That is, the state in which the water in the tank 14 is supplied to the water reservoir 9 via the electromagnetic valve 13 is continued.
  • the controller 121 determines that the water level in the water reservoir 9 is higher than the lower end 82 of the communication passage 81 (S14: YES)
  • the controller 121 outputs a signal to close the solenoid valve 13 (S15). ..
  • the electromagnetic valve 13 is closed based on the signal from the control unit 121 to be closed, and the water supply from the tank 14 to the water reservoir 9 is stopped.
  • the control unit 121 determines that the water level in the water reservoir 9 is lower than the lower end portion 82 of the communication passage 81, the control unit 121 opens the solenoid valve 13 until the water level becomes higher than the lower end portion 82.
  • the opening/closing control of the solenoid valve 13 is performed so that the lower end 82 of the solenoid valve is positioned in the water. Therefore, it is possible to prevent the air in the water reservoir 9 and the drain pan 8 from flowing back into the first flow path 3 from the lower end portion 82 of the communication passage 81.
  • the control unit 121 has been described as performing the process of S10 or S13 by the loop process to obtain the information about the water level (output value of the sensor 10) periodically or periodically, but the present invention is not limited to this. ..
  • the sensor 10 outputs a signal only when the water level becomes lower than the lower end portion 82 of the communication passage 81, and the control unit 121 outputs a signal for opening the solenoid valve 13 when the signal is acquired. It may be.
  • the control unit 121 closes the solenoid valve 13 when the water level becomes higher than that of the lower end portion 82 of the communication passage 81 and the sensor 10 stops outputting the signal, and thus the signal is not acquired. It may output a signal.
  • FIG. 4 is a schematic diagram showing a configuration of the sensible heat exchanger 2 according to Modification 1 (exhaust side L: supply side L).
  • the sensible heat exchanger 2 of the modified example 1 is provided with a first path 21 (a plurality of exhaust paths) and a second path 22 (a plurality of air supply paths), like the sensible heat exchanger 2 of the first embodiment. Therefore, the first air flowing through the first path 21 and the second air flowing through the second path 22 form a counterflow.
  • the first path 21 has a path configuration in which the upper surface side of the sensible heat exchanger 2 is the starting point (inlet) and the lower right side surface is the end point (outlet). It has an L shape when viewed in cross section.
  • the second path 22 has a path configuration in which the lower surface side of the sensible heat exchanger 2 is the starting point (inlet) and the upper left side surface is the end point (outlet). Make a state.
  • both the first path 21 and the second path 22 L-shaped, the number of bends (the number of bent portions) in the first path 21 and the second path 22 is reduced, and the flow path resistance (pressure loss) is reduced. Can be reduced. By reducing the flow path resistance, the efficiency of the first fan 31 and the second fan 41 can be improved.
  • FIG. 5 is a schematic diagram which shows one structure of the sensible heat exchanger 2 which concerns on the modification 2 (exhaust side L: supply side Z). Similar to the sensible heat exchanger 2 of the first embodiment, the sensible heat exchanger 2 of Modification 2 is provided with a first path 21 (a plurality of exhaust paths) and a second path 22 (a plurality of air supply paths). Therefore, the first air flowing through the first path 21 and the second air flowing through the second path 22 form a counterflow.
  • a first path 21 a plurality of exhaust paths
  • second path 22 a plurality of air supply paths
  • the first path 21 has a path configuration in which the upper surface side of the sensible heat exchanger 2 is the starting point (inlet) and the lower right side surface is the end point (outlet). It has an L shape when viewed in cross section.
  • the second path 22 has a path configuration in which the lower left side surface side of the sensible heat exchanger 2 is the starting point (inlet) and the upper right side surface side is the end point (outlet), and in the cross-sectional view of the sensible heat exchanger 2, It has a Z shape.
  • the second path 22 has a Z shape, and a portion near the end point (outlet) of the second path 22 and the starting point (inlet) of the first path 21 are overlapped with each other in a cross-sectional view of the sensible heat exchanger 2. By doing so, the heat exchange rate can be improved.
  • the modification 2 shown in FIG. 5 does not show that the first flow path 3 and the second flow path 4 communicate with each other, and is provided as independent flow paths as in the first embodiment. There is.
  • FIG. 6 is a schematic diagram showing a configuration of the sensible heat exchanger 2 according to Modification 3 (exhaust side I: supply side U). Similar to the sensible heat exchanger 2 of the first embodiment, the sensible heat exchanger 2 of Modification 3 is provided with a first path 21 (a plurality of exhaust paths) and a second path 22 (a plurality of air supply paths). Therefore, the first air flowing through the first path 21 and the second air flowing through the second path 22 form a counterflow.
  • a first path 21 a plurality of exhaust paths
  • a second path 22 a plurality of air supply paths
  • the first path 21 has a path configuration in which the upper surface side of the sensible heat exchanger 2 is a starting point (inlet) and the lower surface side is an end point (outlet), and has an I shape in a cross-sectional view of the sensible heat exchanger 2.
  • the second path 22 has a path configuration in which the lower left side surface side of the sensible heat exchanger 2 is the starting point (inlet) and the upper left side surface side is the end point (outlet). In a sectional view of the container 2, it has a U-shape.
  • the number of bends (the number of bent portions) in the first path 21 can be reduced, and the flow path resistance (pressure loss) can be reduced.
  • the efficiency of the first fan 31 can be improved.
  • the partition plate 62 is provided so as to cover the outlet of the first path 21 from below, and the end portion of the partition plate 62 on the sensible heat exchanger 2 side is closer to the second path 22 than the outlet of the first path 21. It is provided at the side position.
  • the branch part 6 is located below the exit of the first route 21.
  • the branch portion 6 is provided after passing between the lower surface of the sensible heat exchanger 2 and the partition plate 62 on the downstream side of the outlet of the first path 21, and is branched from the first path 21 by the branch portion 6.
  • a sprayed water recovery passage 61 is formed.
  • the partition plate 62 forms a curved portion including the U-shaped apex of the first path 21 (the turning point of the first air).
  • the non-evaporated sprayed water separated on the outer peripheral side of the curved portion by the centrifugal force can be efficiently made into water droplets by the partition plate 62.
  • the partition plate 62 forms the sprayed water recovery passage 61 by inclining downward from the outlet side of the first path 21 toward the moisture absorbent member 7 side, so that the non-evaporated sprayed water droplets are efficiently formed. Then, it can be guided to the moisture absorbent member 7 (drain pan 8) and collected.
  • FIG. 7 is a schematic diagram which shows one structure of the sensible heat exchanger 2 which concerns on the modification 4 (exhaust side I: supply side Z). Similar to the sensible heat exchanger 2 of the first embodiment, the sensible heat exchanger 2 of Modification 4 is provided with a first path 21 (a plurality of exhaust paths) and a second path 22 (a plurality of air supply paths). Therefore, the first air flowing through the first path 21 and the second air flowing through the second path 22 form a counterflow.
  • the first path 21 has a path configuration in which the upper surface side of the sensible heat exchanger 2 is the starting point (inlet) and the lower surface side is the end point (outlet) as in the modified example 3, and in the cross-sectional view of the sensible heat exchanger 2, It has an I-shape and has the same effect as that of the third modification.
  • the second path 22 has a path configuration in which the lower left side surface side of the sensible heat exchanger 2 is the starting point (inlet) and the upper right side surface side is the end point (exit) as in the second modification.
  • it In a cross-sectional view of No. 2, it has a Z shape, and has the same effect as that of the second modification.
  • the modification 4 shown in FIG. 7 does not show that the first flow path 3 and the second flow path 4 communicate with each other, and like the modification 2, the modification 4 is provided as an independent flow path.
  • the partition plate 62 is provided so as to cover the outlet of the first path 21 from below similarly to the modified example 3, and the end portion of the partition plate 62 on the sensible heat exchanger 2 side is located below the outlet of the first path 21. Is also provided at a position on the second path 22 side, and has the same effect as that of Modification 3.
  • FIG. 8 is a schematic diagram which shows one structure of the sensible heat exchanger 2 which concerns on the modification 5 (exhaust side Z: supply side Z). Similar to the sensible heat exchanger 2 of the first embodiment, the sensible heat exchanger 2 of Modification 5 is provided with a first path 21 (a plurality of exhaust paths) and a second path 22 (a plurality of air supply paths). Therefore, the first air flowing through the first path 21 and the second air flowing through the second path 22 form a counterflow.
  • a first path 21 a plurality of exhaust paths
  • a second path 22 a plurality of air supply paths
  • the sensible heat exchanger 2 has a hexagonal shape in cross section.
  • the first path 21 has a path configuration in which the upper left side surface side of the sensible heat exchanger 2 is the starting point (inlet) and the lower right side surface side is the end point (outlet), and in the cross-sectional view of the sensible heat exchanger 2, It has a Z shape.
  • the second path 22 has a path configuration in which the lower left side surface side of the sensible heat exchanger 2 is the starting point (inlet) and the upper right side surface side is the end point (outlet), and in the cross-sectional view of the sensible heat exchanger 2, It has a Z shape.
  • the first path 21 and the second path 22 are both Z-shaped, and the first path 21 and the second path 22 are overlapped at the central portion of the sensible heat exchanger 2 in a cross-sectional view of the sensible heat exchanger 2. With this, the heat exchange rate can be improved. In addition, it is possible to prevent unsprayed sprayed water from remaining in the sensible heat exchanger 2 due to gravity. As a result, it is possible to suppress the propagation of various bacteria caused by the sprayed water remaining in the first route 21.
  • the first path 21 is formed from the upper left to the lower right, and the second path 22 is formed from the lower left to the upper right.
  • the same effect can be obtained even when the first path 21 (not shown) is formed from the upper right to the lower right and the second path 22 is formed from the lower left to the upper left. included.
  • Air conditioner 2 Sensible heat exchanger (heat exchanger) 21 1st path 22 2nd path 3 1st flow path (exhaust flow path) 31 1st fan (exhaust fan) 32 1st filter 33 1st suction port 34 1st air outlet 4 2nd flow path (air supply flow path) 41 2nd fan (air supply fan) 42 Second filter 43 Second suction port 44 Second outlet 5 Dispersion part 6 Branch part 61 Dispersed water recovery path 62 Partition plate 7 Moisture absorbing member 8 Drain pan 81 Communication path 82 Lower end part 9 Water reservoir 91 Air hole 10 Sensor 11 Pump 12 controller 121 control unit 122 storage unit 123 input/output I/F 13 solenoid valve 14 tank 15 casing 151 caster

Abstract

空調機の外部に未蒸発の散布水が排出されることを抑制する空調機を提供する。空調機は、気化させる水を散布する散布部と、前記散布部が散布した水の気化熱により冷却される第1空気が流れる第1流路と、被空調空間に吹き出される第2空気が流れる第2流路と、前記第1空気と前記第2空気との間で熱交換させ、前記第2空気を冷却する熱交換器とを備え、前記熱交換器は、前記第1流路の少なくとも一部を形成する第1経路と、前記第2流路の少なくとも一部を形成する第2経路とを含み、前記第1流路には、前記第1空気の流れ方向において前記第1経路の下流側にて上下に向かって分岐する分岐部が設けられており、前記分岐部の下方には、前記分岐部と連通するドレンパンが設けられている。

Description

空調機
 本発明は、空調機に関する。
 室内の空気を吸い込み、水の気化熱を利用し雰囲気温度を低下させて冷却した空気を、室内に吹き出す気化冷却式の空調機が知られている(例えば特許文献1)。特許文献1の空調機(冷風扇)は、ケーシング内に配置された送風手段と、吸込口と第1吹出口とを連通し、送風手段によって発生した空気流を第1吹出口に導く第1流路と、吸込口と第2吹出口とを連通し、送風手段によって発生した空気流を第2吹出口に導く第2流路と、第2流路に配置され、水の気化熱により第2流路を流れる空気を冷却する気化手段とを備え、第2流路の気化手段によって冷却された空気流と第1流路を流れる空気流との間で熱交換を行う熱交換器が設けられている。
 気化手段が備えられている第2流路において、気化手段の下流側には、気化手段によって散布された霧状の水(未蒸発の散布水)及び、気化した水(蒸発した散布水)により絶対湿度が増加した空気が流れるものとなる。この湿度が増加した空気は、第2流路の出口となる第2吹出口から、室内に吹き出されるものとなる。
特開2014-092338号公報
 特許文献1の空調機(冷風扇)は、気化手段により散布された霧状の水(未蒸発の散布水)が、被空調空間である室内に吹き出されるものとなるため、当該室内の絶対湿度が更に増加するという問題点がある。
 本発明は斯かる事情に鑑みてなされたものであり、空調機の外部に未蒸発の散布水が排出されることを抑制する空調機を提供することを目的とする。
 本開示の一態様に係る空調機は、気化させる水を散布する散布部と、前記散布部が散布した水の気化熱により冷却される第1空気が流れる第1流路と、被空調空間に吹き出される第2空気が流れる第2流路と、前記第1空気と前記第2空気との間で熱交換させ、前記第2空気を冷却する熱交換器とを備え、前記熱交換器は、前記第1流路の少なくとも一部を形成する第1経路と、前記第2流路の少なくとも一部を形成する第2経路とを含み、前記第1流路には、前記第1空気の流れ方向において前記第1経路の下流側にて上下に向かって分岐する分岐部が設けられており、前記分岐部の下方には、前記分岐部と連通するドレンパンが設けられている。
 本態様にあたっては、第1流路には、第1空気の流れ方向において第1経路の下流側に、上下に向かって分岐する分岐部が設けられているため、熱交換器内において未蒸発の散布水を、重力により当該分岐部から下方に向かって滴下させることができる。滴下した散布水は、分岐部と連通するドレンパンに流れ込むため、未蒸発の散布水を効率的に回収することができ、当該未蒸発の散布水が、被空調空間に排出されことを抑制し、被空調空間の絶対湿度が増加することを抑制することができる。
 本開示の一態様に係る空調機は、前記第1流路は、前記分岐部の前後において上方に向かって形成され、U字状に形成されている。
 本態様にあたっては、第1流路は、分岐部の前後においてU字状に形成されており、すなわち分岐部は、U字の円弧の部分に設けられている。従って、U字の円弧の部分に設けられた分岐部において、空気と、未蒸発の散布水とが流れる際、遠心力により比重の大きい未蒸発の散布水を、効率的に外周側に分離し、当該分岐部から下方に向かって滴下させることができる。
 本開示の一態様に係る空調機は、前記第1流路において、前記散布部から前記分岐部までの距離は、前記分岐部から前記第1空気が吹き出される第1吹出口までの距離よりも短い。
 本態様にあたっては、散布部から分岐部までの距離を、分岐部から前記第1空気が吹き出される第1吹出口までの距離よりも短くすることにより、未蒸発の散布水の吹き上がりを抑制し、第1経路の出口から室内に排出される未蒸発の散布水の量を減少させ、室内における絶対湿度が増加することを抑制することができる。
 本開示の一態様に係る空調機は、前記第1流路には、前記第1空気を搬送するための第1ファンが設けられており、前記第1ファンは、前記第1吹出口の近傍に設けられている。
 本態様にあたっては、第1ファンを第1吹出口の近傍に設けることにより、第1ファンを分岐部の下流側に配置すると共に、散布部と第1ファンとの距離を長くすることができ、散布部からの散布水(水滴)によるショート破損を低減し、当該散布水の吹き上がりを抑制することができる。
 本開示の一態様に係る空調機は、前記第2流路には、前記第2空気を搬送するための第2ファンが設けられており、前記熱交換器内において、前記第1空気と前記第2空気とは対向流となるように、前記第1経路及び前記第2経路が形成されている。
 本態様にあたっては、第1空気と第2空気とは対向流となるように、熱交換器内にて第1経路及び第2経路が形成されているため、第1空気と第2空気との顕熱交換を効率的に行うことができる。
 本開示の一態様に係る空調機は、前記分岐部と前記ドレンパンの間には、前記ドレンパンの開口部を覆う吸湿部材が設けられている。
 本態様にあたっては、分岐部とドレンパンの間には、ドレンパンの開口部を覆う吸湿部材が設けられているため、分岐部から下方に滴下した散布水は、吸湿部材に吸収される。従って、分岐部から下方に滴下した散布水が、吹き上げられ、被空調空間に排出されることを更に抑制することができる。
 本開示の一態様に係る空調機は、前記第1流路において、前記散布部の上流側には第1フィルタが設けられており、前記吸湿部材の圧力損失値は、前記第1フィルタの圧力損失値よりも大きい。
 本態様にあたっては、吸湿部材は、ドレンパンの開口部を覆うように設けられており、吸湿部材の圧力損失値は、第1フィルタの圧力損失値よりも大きくしてある。従って、吸湿部材を通過してドレンパン内に流れ込んだ水が、ドレンパン内にて気化して水蒸気となった場合であっても、当該水蒸気が、吸湿部材内を逆流して、第1流路に戻る現象を効率的に抑制することができる。
 本開示の一態様に係る空調機は、前記ドレンパンの下方には、前記散布部へ供給する散布水を溜める水溜部が設けられており、前記ドレンパン及び前記水溜部は、連通している。
 本態様にあたっては、ドレンパンにより回収した未蒸発の散布水を水溜部に溜め、回収した散布水を散布部へ供給することにより、当該回収した散布水を再利用することができる。
 本開示の一態様に係る空調機は、外部から供給される水を保持するタンクと、前記タンクと前記水溜部との間に設けられた電磁弁と、前記電磁弁の開閉を制御する制御部と、前記水溜部内の水の水位に関する情報を出力するセンサとを備え、前記制御部は、前記センサから出力された水位に関する情報に基づき、前記水位が、前記ドレンパンと前記水溜部とを連通する連通路の下方端部よりも低くなったと判定した場合、前記水位が前記下方端部よりも高くなるまで前記電磁弁を開く。
 本態様にあたっては、制御部は、水溜部内の水位が連通路の下方端部よりも低くなったと判定した場合、水位が下方端部よりも高くなるまで電磁弁を開くため、連通路の下方端部が水中に位置するように電磁弁の開閉制御を行う。従って、連通路の下方端部からドレンパン内の空気が、第1流路に逆流することを抑制することができる。
 空調機の外部に未蒸発の散布水が排出されることを抑制する空調機を提供することができる。
実施形態1に係る空調機の一構成例(排気側L:給気側U)を示す模式図である。 コントローラの一構成を示すブロック図である。 コントローラの制御部の処理手順を示すフローチャートである。 変形例1(排気側L:給気側L)に係る顕熱交換器の一構成を示す模式図である。 変形例2(排気側L:給気側Z)に係る顕熱交換器の一構成を示す模式図である。 変形例3(排気側I:給気側U)に係る顕熱交換器の一構成を示す模式図である。 変形例4(排気側I:給気側Z)に係る顕熱交換器の一構成を示す模式図である。 変形例5(排気側Z:給気側Z)に係る顕熱交換器の一構成を示す模式図である。
(実施形態1)
 以下、実施の形態について、図面に基づいて説明する。図1は、実施形態1に係る空調機1の一構成例(排気側L:給気側U)を示す模式図である。空調機1は、箱状の筐体15を備え、当該筐体15の底部に設けられたキャスター151によって、例えば工場等の被空調空間の床面に載置される。図1に示す空調機1の載置状態を、当該空調機1の通常の使用態様として上下左右を示す。空調機1は、顕熱交換器2及び散布部5を備え、散布部5から散布した散布水の気化熱を用いて雰囲気温度を低下させ、被空調空間を冷却するものであり、例えば間接気化冷却式の空調機1である。
 空調機1には、散布部5から散布される散布水の気化熱により直接的に冷却される第1空気が流れる第1流路3と、顕熱交換器2によって、第1流路3に流れる冷却された第1空気と熱交換することにより、冷却される第2空気が流れる第2流路4とが、設けられている。
 第2流路4を流れる第2空気が、給気(SA:service air)として被空調空間に吹き出され、当該被空調空間に供給される。従って、第2流路4は、給気流路として機能する。第1流路3を流れる第1空気は、排気(EA:exhaust air)として被空調空間に吹き出され、当該被空調空間に排出される。従って、第1流路3は、排気流路として機能する。
 詳細は後述するが、第1流路3(排気流路)には分岐部6が設けられており、散布部5からの散布水において、未蒸発の散布水、すなわち気化せず、水蒸気となっていない水の少なくとも一部は、当該分岐部6から分岐された散布水回収路61を通じて回収するようにしてある。従って、第1流路3から排出される第1空気における、水蒸気となっていない霧状の水の含有量を低減させ、排出される第1空気によって被空調空間の絶対湿度が増加することを抑制することができる。
 顕熱交換器2は、第1流路3(排気流路)及び第2流路4(給気流路)に跨るように設けられている。顕熱交換器2には、第1流路3の少なくとも一部を形成する第1経路21と、第2流路4の少なくとも一部を形成する第2経路22とが、形成されている。顕熱交換器2は、例えばアルミニウム等の金属製又は樹脂製の箱状のケースを備え、当該ケースの外周面には断熱部材を設けることにより、顕熱交換器2の内部に流れる第1空気又は第2空気と、顕熱交換器2の周辺空気との間の熱交換を制限するものであってもよい。
 顕熱交換器2に形成されている第1経路21及び第2経路22は、例えば、第1空気又は第2空気が流れる中空構造を有する金属プレートを複数個、並列に設けることにより構成される。当該中空構造を有する金属プレートは、例えば複数枚のフィンにより構成されるもの又は、扁平管であってもよい。当該プレートは、伝熱性の良い金属製(例えばアルミニウム、銅等又は、これらを主成分とする合金)とすることで、顕熱交換の効率を向上させることができる。第1経路21及び第2経路22夫々は、これら中空構造を有する複数の金属プレート夫々により、複数の排気パス及び、複数の給気パスとして構成される。
 第1経路21を構成する複数の排気パスと、第2経路22を構成する複数の給気パスとは、紙面に対し平行(給排気の方向に対し平行方向)に互いに交互となるように積層されて設けられ、顕熱交換器2内において、給気と排気とが、混合しないようにしてある。第1経路21及び第2経路22夫々における空気(給気及び排気)の流れは、後述する第1ファン31及び第2ファン41によって、逆方向となる対向流を形成している。
 第1経路21と第2経路22とは、互いに交互となるように積層されている部位間等において、第1経路21(排気パス)に流れる第1空気(排気)と、第2経路22(給気パス)に流れる第2空気(給気)との間で、顕熱が交換される。上述のごとく、第1経路21(排気パス)には、散布水の気化熱により冷却された第1空気が流れる。第2経路22(給気パス)に流れる第2空気は、当該第1空気との間で顕熱を交換することにより、冷却される。
 第1経路21は、顕熱交換器2の上面側を起点(入口)とし、下方の右側面側を終点(出口)する経路構成としており、顕熱交換器2の断面視において、L字状をなす。第2経路22は、顕熱交換器2の下方の左側面側を起点(入口)とし、上方の左側面側を終点(出口)する経路構成としており、顕熱交換器2の断面視において、U字状をなす。このように、第2経路22の終点(出口)を上方の左側面側とすることで、顕熱交換器2の上面側に設けられる散布部5と距離を離すことができ、散布部5からの散布水が第2経路22に入り込むことを防止することができる。
 散布部5は、霧状の水を散布(噴霧)する散布ノズル(噴霧ノズル)を含み、当該散布ノズルは、後述する水溜部9と、配管によって連通している。散布部5は、第1流路3(排気流路)に設けられており、第1空気の流れ方向において、顕熱交換器2の上流側に設けられている。従って、散布部5により散布され、霧状となった散布水は、顕熱交換器2の第1経路21に流れ込む。この時、散布水の散布方向である散布ノズルの先端方向は第1流路3により平行に近い角度で下流方向を向いているほど、第1経路21への散布水の流入効率が高くなる。
 第1流路3は、空調機1の上面側に位置する第1吸込口33及び第1吹出口34を含み、第1吸込口33を起点とし、第1吹出口34を終点としたU字状に構成されている。顕熱交換器2の第1経路21の最下端部は、U字状における頂点の近傍に位置する。従って、第1流路3は、顕熱交換器2の第1経路21の最下端部、すなわち第1経路21の出口にて、上方に向かって折り返すように形成されている。
 第1吸込口33には、第1吸込口33を覆うように第1フィルタ32が設けられている。第1フィルタ32は、例えばポリエステル又はオレフィン系繊維により形成されており、第1吸込口33から吸い込む空気内の塵埃を捕集する。
 第1吹出口34の近傍には、第1ファン31が設けられており、第1流路3(第1経路21)に流れる第1空気(排気)を搬送して、排気ファンとして機能する。第1空気(排気)は、第1吹出口34から空調機1の外に吹き出される(排出される)。実施形態1において第1吹出口34の近傍とは、図1に示されるように第1流路3における第1吹出口34の直前の位置のことである。また他の例では、第1吹出口34の近傍とは、少なくとも後述の分岐部6よりも第1吹出口34に近い位置であればよい。
 第2流路4は、空調機1の下方の左側面側に位置する第2吸込口43及び、空調機1の上面側に位置する第2吹出口44を含み、第2吸込口43を起点とし、第2吹出口44を終点としたU字状(空調機1の通常の使用状態においては、当該U字状を左に90°回転
した状態となる逆C字状)に構成されている。
 第2吸込口43には、第2吸込口43を覆うように第2フィルタ42が設けられている。第2フィルタ42は、例えばポリエステル又はオレフィン系繊維により形成されており、第2吸込口43から吸い込む空気内の塵埃を捕集する。
 第2吹出口44の近傍には、第2ファン41が設けられており、第2流路4(第2経路22)に流れる第2空気(給気)を搬送して、給気ファンとして機能する。なお、第2ファン41が設けられる位置は、第2吹出口44の近傍に限定されず、第2吸込口43側、すなわち第2フィルタ42と顕熱交換器2の第2経路22の入口との間に設けられるものであってもよい。
 第1ファン31によって搬送される第1空気(排気)は、顕熱交換器2の第1経路21において、上方から下方に流れるものとなる。第2ファン41によって搬送される第2空気(給気)は、顕熱交換器2の第2経路22において、下方から上方に流れるものとなる。従って、顕熱交換器2において、第1経路21に流れる第1空気(排気)と、第2経路22に流れる第2空気(給気)とは、対向流を形成し、第1空気(排気)及び第2空気(給気)との間の顕熱交換の熱交換率を向上させることができる。
 上述のごとく、第1経路21に流れる第1空気(排気)と、第2流路4に流れる第2空気(給気)との間において、顕熱交換がされることにより、第2空気は第1空気により冷却されるものとなる。又、第1経路21には、散布部5から散水された霧状の散布水も流れるものとなり、当該散布水が第1経路21内において気化することにより、当該気化熱(潜熱)によって、第1空気及び第2空気が冷却されるものであってもよい。より具体的には、一例として第1経路21の壁面に付着した散布水が第2経路22の第2空気と熱交換することで第2空気を気化冷却する物理現象が考えられる。また、散布水によって第2空気が冷却される場合においては、気化熱冷却以外の物理現象として散布水と第2空気との温度差による熱交換(顕熱交換)により第2空気が冷却されることが考えられる。この場合においては、散布水と第2空気との温度差が大きいほど冷却効率が高いため、散布水として氷水、または、地下水等の比較的温度の低い水を後述の水溜部9またはタンク14に貯水するのが効果的である。上述した物理現象は、空調機1内部の熱交換に関わる構成部の物理状態に応じて複合して発生するものである。
 空調機1は、更にドレンパン8、水溜部9及びタンク14を備える。これらドレンパン8、水溜部9及びタンク14は、筐体15内に収容されており、第1経路21、第2経路22及び顕熱交換器2が設けられた領域(空気室)よりも、下方に設けられている。
 タンク14は、空調機1の外部の水道管から供給された水を貯水する容器である。タンク14には、例えば給水弁(図示せず)が設けられており、当該給水弁と水道管を連通させ給水弁を開くことにより、水道管から給水される水を貯水する。一定量の水を貯水した後、給水弁を閉め、水道管から外すことにより、空調機1を任意の場所に移動させることができる。
 水溜部9は、タンク14と同様に水を貯水する容器であり、タンク14の下方に設けられている。水溜部9及びタンク14は、電磁弁13により連通してある。電磁弁13を開くことにより、タンク14内の水は、水溜部9に流れ込み、水溜部9に溜められた水の水位は、上昇する。
 水溜部9の上面には、一つ以上の空気孔91が設けられている。空気孔91を設けることにより、水溜部9に溜められた水の水位が上昇した場合に、水溜部9の内圧が増加することを抑制することができる。
 水溜部9の内部には、散布部5の散布ノズルと連通している配管が挿入されており、当該配管を介して、水溜部9内の水は、散布部5の散布ノズルに供給される。配管にはポンプ11が接続されており、当該ポンプ11が駆動することにより、水を散布部5に供給し、供給された水は、散布ノズルから散布(噴霧)されて霧状の水となって、第1吸込口33から吸い込んだ第1空気と共に第1経路21に流れる。
 水溜部9の内部には、水溜部9に溜められた水の水位を検知するためのセンサ10が設けられている。当該センサ10は、水溜部9の内周面の所定の水位となる位置に設けられ、センサ10の端子が水に接触することにより所定の信号を出力する水位センサ10、又は水に浮かぶフロートを備え、当該フロートの高さ位置に基づき所定の信号を出力するセンサ10である。センサ10は、後述するドレンパン8に設けられた連通路81の下方端部82の高さ位置に合わせて設けられており、水溜部9に溜められた水の水位と、当該下方端部82との高低関係に基づき、所定の信号を出力する。一例として、センサ10は、下方端部82の高さ位置よりも所定量高い位置で水位を検知するように備えられる。これにより、後述の制御部121の制御により水溜部9の水位が下方端部82の高さよりも常に高い位置にあるように制御される。
 第1流路3には、第1空気(排気)の流れ方向を基準として、顕熱交換器2の第1経路21の下流側にて、上下に分岐する分岐部6が設けられている。図1に示すごとく、分岐部6は、顕熱交換器2の第1経路21の出口に設けられており、分岐部6によって、第1経路21に対し、下方に向かって分岐される散布水回収路61が形成される。すなわち、分岐部6によって第1流路3から分岐された散布水回収路61は、分岐部6から下方に向かって構成される。
 分岐部6の下流側、すなわち第1経路21の出口の下流側となる第1流路3は、顕熱交換器2のケースの外周面と、空調機1の筐体15の内周面との間に形成されており、分岐部6に対し上方に向かって構成される。
 上述のごとく、第1流路3はU字状に構成されており、顕熱交換器2の第1経路21の最下端部は、U字状における頂点の近傍に位置する。第1経路21の出口は第1経路21の最下端部に位置しているため、分岐部6は、U字状の頂点の近傍(最下端部の近傍)に位置するものとなる。すなわち、高さ方向において、分岐部6と第1経路21の最下端部とは、略同じに位置するものとなる。従って、第1流路3は、分岐部6の前後を最下端部として上方に向かって折り返すことにより、U字状に形成される。図1に示すように、分岐部6は、第1経路21のU字状の頂点、すなわち第1空気の折り返し地点よりも下流側に設けられるものであってもよい。
 第1流路3は、分岐部6の直後、すなわち分岐部6の下流側において即座に上方に向かって形成されるものに限定されない。第1流路3は、分岐部6の下流側において所定距離にて横方向(紙面上、右方向であり、重力方向に対し略垂直方向)に形成され、これ以降に上方向に形成されるものであってもよい。
 分岐部6は、第1経路21における一部位にて限定されるものでなく、所定の容量を備えた分岐室として構成されるものであってもよい。すなわち、図1においては、第1経路21の出口の直後の空間を分岐部6(分岐室)とし、当該分岐室の下流側において、上方に向かって形成される第1経路21(U字状の右側の直線部に相当)と、下方に向かって形成される散布水回収路61とに分岐される。
 分岐部6は、第1経路21の出口以降、すなわち顕熱交換器2よりも下流側に設けられるとしたが、これに限定されない。分岐部6は、第1経路21における出口側(下流側)、すなわち第1経路21の途中(顕熱交換器2の内部)に設けられるものであってもよい。例えば、分岐部6を、第1経路21における下流側であって、第2空気との対向流により顕熱交換した以降の第1経路21の部位に設けるものであってもよい。
 散布水回収路61は、分岐部6を起点として構成されており、分岐部6よりも下方に位置するドレンパン8に連通している。散布水回収路61は、顕熱交換器2の第1経路21の出口の下部とドレンパン8の開口部との間に設けられた仕切り板62と、空調機1の筐体15の内周面との間に形成され、分岐部6に対し下方に向かって構成される。
 ドレンパン8は、上面に開口部を備えた例えば皿状の容器である。ドレンパン8の底面には、水溜部9と連通するための連通路81が設けられている。
 連通路81は、ドレンパン8の底面を基端として、下方に位置する水溜部9に向かって伸びて設けられており、連通路81の下方端部82は、ドレンパン8の内部に位置する。
 ドレンパン8の上面に設けられた開口部には、当該開口部を覆うように吸湿部材7が設けられている。吸湿部材7は、例えば、PET、ポリオレフィン、オレフィン、レーヨン、ポリエステル又はモダアクリル等の親水性の素材で構成されており、未蒸発の散布水を吸収し、吸収した散布水をドレンパン8に向けて滴下することにより、未蒸発の散布水を回収する。親水性の素材で吸湿部材7を構成することにより、効率的に散布水を吸収し、ドレンパン8に向けて滴下することができる。吸湿部材7は、フィルタとしても機能するものであり、仕切り板62から流れ落ちてきた散布水に塵埃が含まれる場合であっても、当該塵埃を捕集することができる。
 吸湿部材7の圧力損失の値は、第1フィルタ32の圧力損失の値よりも、大きくしてある。第1ファン31は第1流路3の第1吹出口34(第1流路3の出口)に設けられているため、第1流路3は、大気圧よりも低い負圧の環境となる。これに対し、吸湿部材7の圧力損失の値は、第1フィルタ32の圧力損失の値よりも大きいため、ドレンパン8内の空気が、第1流路3に逆流することを抑制することができる。ドレンパン8内の空気は、ドレンパン8内又は水溜部9に溜められた水によって絶対湿度が比較的に高いものとなる。これに対し、当該ドレンパン8内の空気が第1流路3に逆流することを抑制することにより、第1流路3を流れ、第1吹出口34から排出される第1空気の絶対湿度が向上することを抑制することができる。
 上記のように構成された第1流路3によると、散布部5から散布された霧状の散布水は、第1吸込口33から吸い込まれた第1空気と混合され、散布部5の周辺及び顕熱交換器2の第1経路21内において、気化して水蒸気となる。この気化熱により冷却された第1空気と、気化せず未蒸発の霧状の散布水は、顕熱交換器2の第1経路21を下方に向かって流れる。
 気化せず未蒸発の霧状の散布水の一部は、顕熱交換器2の第1経路21の内壁面にて水滴化し、当該水滴は、重力によって、第1経路21の内壁面及び仕切り板62を伝って流れ落ち、吸湿部材7に吸収され、ドレンパン8に回収される。第1経路21の内壁面にて水滴化せず、第1空気と共に流れる未蒸発の霧状の散布水の一部は、分岐部6から下方に分岐した散布水回収路61を介して、吸湿部材7に吸収され、ドレンパン8に回収される。このように気化せず未蒸発の霧状の散布水を、散布水回収路61を介してドレンパン8に回収することにより、第1吹出口34から排出される第1空気の絶対湿度が増加することを抑制することができる。
 図1に示すごとく、分岐部6は、U字状の頂点、すなわち第1空気の折り返し地点よりも下流側に設けられていることが望ましい。U字状における湾曲部において、第1空気が折り返し(下方への流れ方向から、上方への流れ方向に変化)されるにあたり、遠心力が発生する。第1空気と共に流れる未蒸発の散布水は、空気よりも比重が大きいため、遠心力により湾曲部の外周側に偏ることにより、第1空気から分離(気液分離)される。従って、湾曲部の外周側に位置する仕切り板62を介して、未蒸発の散布水を効率的に回収することができる。
 U字状の湾曲部における上流側の第1流路3(第1経路21)の流路断面積は、U字状の湾曲部における下流側の第1流路3の流路断面積よりも、小さいものであってもよい。なお、第1経路21は上述のごとく積層される複数の排気パスにより構成されるものであり、第1経路21の流路断面積は、これら複数の排気パス夫々の流路断面積の合計値であることは、言うまでもない。U字状の湾曲部の上流側の第1流路3の流路断面積を、U字状の湾曲部の下流側の第1流路3の流路断面積よりも、小さくすることにより、当該上流側の第1流路3における第1空気の流速を、当該下流側の第1流路3における第1空気の流速よりも、速くすることができる。当該上流側の第1流路3における第1空気の流速を上げることにより、湾曲部にて発生する遠心力を増加させ、第1空気と共に流れる未蒸発の散布水を効率的に湾曲部の外周側に偏らせて分離させることができ、未蒸発の散布水の回収効率を向上させることができる。また、当該下流側の第1流路3における第1空気の流速を下げることにより、分岐部6を通過した未蒸発の散布水が吹き上がり第1吹出口34から排出されることを抑制することができる。
 第1経路21において、散布部5から分岐部6までの高さ方向における距離L1は、分岐部6から第1吹出口34までの高さ方向における距離L2よりも、短い。散布部5から分岐部6までの高さ方向における距離L1を、分岐部6から第1吹出口34までの高さ方向における距離L2よりも短くすることにより、分岐部6を通過した未蒸発の散布水が吹き上がることを抑制することができる。実施形態1において分岐部6は、最下端部の近傍であるため、最下端部から散布部5までの距離を距離L1、最下端部から第1吹出口34までの距離を距離L2としている。さらに、散布部5から分岐部6までの距離L1と、分岐部6から第1吹出口34までの距離L2とは、散布部5から分岐部6の最下端部(吸湿部材7)との高さ方向の距離を距離L1、分岐部6の最下端部(吸湿部材7)から第1吹出口34までの高さ方向の距離を距離L2としてもよい。
 第1経路21において、第1ファン31は、第1吹出口34の近傍に設けてあるため、第1ファン31を分岐部6の上方かつ下流側に配置することができる。更に、第1吸込口33の近傍に設けてある散布部5との距離を長くすることができ、散布部5の散布水により、第1ファン31に含まれるモータ等の電気部品への影響を低減させることができる。散布部5から分岐部6までの高さ方向における距離は、分岐部6から第1ファン31までの高さ方向における距離よりも、短いことが望ましい。分岐部6を通過した未蒸発の散布水が吹き上がることを、更に抑制することができる。また、実施形態1では顕熱交換器2内部において第1空気と第2空気とが対向流となるために、第1流路3が上方から空気を取り込み、第2流路4が下方から空気を取り込む構成としている。そのため、被空調空間において相対的に温度の低い被空調空間下方の空気をさらに冷却して給気可能である。これにより暖かい空気を第2吸込口43から吸い込んだ場合よりも冷却効率は高くなる。
 ドレンパン8と水溜部9とは、ドレンパン8の底面に設けられた連通路81によって、連通してある。従って、ドレンパン8に回収された未蒸発の散布水は、連通路81を介して水溜部9に流れ込み、当該水溜部9に溜められる。水溜部9に溜められた水は、散布部5により散水されるものであり、従って、回収した未蒸発の散布水を再利用することにより、水の消費量を抑制することができる。
 ドレンパン8の開口部には、フィルタ機能を発揮する吸湿部材7が設けられているため、当該未蒸発の散布水に塵埃が混在した場合であっても、吸湿部材7によって当該塵埃を捕集することができる。従って、当該塵埃が除去された未蒸発の散布水を再利用することができ、散布部5の散布ノズルが詰まることを防止することができる。
 図2は、コントローラ12の一構成を示すブロック図である。空調機1は、例えばマイクロコンピュータ等により構成されるコントローラ12を備える。コントローラ12は、制御部121、記憶部122及び入出力I/F123を含み、例えば、第1ファン31及び第2ファン41のオン、オフ制御又は回転数制御、散布部5から散布水を散布するにあたり水溜部9の水を散布部5に供給するポンプ11の駆動、停止又は能力制御を行う。
 制御部121は、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)等により構成してあり、記憶部122に予め記憶されたプログラム及びデータを読み出して実行することにより、種々の制御処理及び演算処理等を行うようにしてある。
 記憶部122は、RAM(Random Access Memory)等の揮発性のメモリ素子又は、ROM(Read Only Memory)、EEPROM(Electrically Erasable Programmable ROM)若しくはフラッシュメモリ等の不揮発性のメモリ素子により構成してあり、制御プログラム及び処理時に参照するデータがあらかじめ記憶してある。
 入出力I/F123は、第1ファン31、第2ファン41、ポンプ11、電磁弁13及びセンサ10からのシリアルケーブル等を接続するためのインターフェイス群であり、コントローラ12内の内部バスを介して制御部121と、電磁弁13等及びセンサ10とを通信可能に接続する。
 図3は、コントローラ12の制御部121の処理手順を示すフローチャートである。コントローラ12の制御部121は、空調機1の運転時において、周期的又は定常的に以下の処理を実行する。
 制御部121は、水溜部9の水位に関する情報を取得する(S10)。制御部121は、入出力I/F123を介して接続されたセンサ10から、水溜部9に溜められた水の水位に関する情報を取得する。
 制御部121は、水溜部9の水位が連通路81の下方端部82よりも低いか否かを判定する(S11)。制御部121は、センサ10から出力された信号に基づき、水溜部9の水位が連通路81の下方端部82よりも低いか否かを判定する。例えば、センサ10は、水溜部9の水位が下方端部82よりも高い場合にハイの信号を出力し、水溜部9の水位が下方端部82よりも低い場合にローの信号を出力する。制御部121は、センサ10が出力する信号に基づき、水溜部9の水位が連通路81の下方端部82よりも低いか否かを判定する。
 水溜部9の水位が連通路81の下方端部82よりも高いと制御部121により判定された場合(S11:NO)、すなわち水位が連通路81の下方端部82の高さ以上である場合、制御部121は再度S10の処理を実行すべく、ループ処理を行う。
 水溜部9の水位が連通路81の下方端部82よりも低いと制御部121により判断された場合(S11:YES)、制御部121は電磁弁13を開にする信号を出力する(S12)。電磁弁13はタンク14と水溜部9との間に設けられており、電磁弁13を介してタンク14及び水溜部9が、連通している。制御部121からの開にする信号に基づき、電磁弁13は開となり、タンク14内の水が、電磁弁13を介して水溜部9に流れ込み、水溜部9の水の水位が、上昇する。
 制御部121は、S10の処理と同様に水溜部9の水位に関する情報を取得する(S13)。
 制御部121は、水溜部9の水位が連通路81の下方端部82よりも高いか否かを判定する(S14)。制御部121は、S11の処理と同様に、センサ10から出力された信号に基づき、水溜部9の水位が連通路81の下方端部82よりも高いか否かを判定する。制御部121は、電磁弁13のチャタリングを防止するため、水溜部9の水位が、下方端部82よりも所定値以上高いか否かを判定するものであってもよい。
 水溜部9の水位が連通路81の下方端部82よりも低いと制御部121により判断された場合(S14:NO)、制御部121は、再度S13処理を実行すべく、ループ処理を行う。つまり、タンク14内の水が、電磁弁13を介して水溜部9に給水される状態が継続される。
 水溜部9の水位が連通路81の下方端部82よりも高いと制御部121により判断された場合(S14:YES)、制御部121は電磁弁13を閉にする信号を出力する(S15)。制御部121からの閉にする信号に基づき、電磁弁13は閉となり、タンク14から水溜部9への給水は、停止する。
 制御部121は、水溜部9内の水位が連通路81の下方端部82よりも低くなったと判定した場合、水位が下方端部82よりも高くなるまで電磁弁13を開くため、連通路81の下方端部82が水中に位置するように電磁弁13の開閉制御を行う。従って、連通路81の下方端部82から、水溜部9及びドレンパン8内の空気が、第1流路3に逆流することを抑制することができる。
 実施形態1において、制御部121は、ループ処理によりS10又はS13の処理である水位に関する情報(センサ10の出力値)の取得を定期的又は周期的に行うものとして説明したが、これに限定されない。センサ10は、水位が連通路81の下方端部82よりも低くなった場合のみ信号を出力し、制御部121は当該信号を取得した場合、電磁弁13を開にする信号を出力するものであってもよい。そして、制御部121は、水位が連通路81の下方端部82よりも高くなり、センサ10が信号の出力を停止することにより、当該信号を取得しなくなった場合、電磁弁13を閉にする信号を出力するものであってもよい。
(変形例1)
 図4は、変形例1(排気側L:給気側L)に係る顕熱交換器2の一構成を示す模式図である。変形例1の顕熱交換器2は、実施形態1の顕熱交換器2と同様に、第1経路21(複数の排気パス)及び第2経路22(複数の給気パス)が設けられており、当該第1経路21に流れる第1空気と、第2経路22に流れる第2空気とは、対向流を形成する。
 第1経路21は、実施形態1と同様に、顕熱交換器2の上面側を起点(入口)とし、下方の右側面側を終点(出口)する経路構成としており、顕熱交換器2の断面視において、L字状をなす。
 第2経路22は、顕熱交換器2の下面側を起点(入口)とし、上方の左側面側を終点(出口)する経路構成としており、顕熱交換器2の断面視において、逆L字状をなす。
 第1経路21及び第2経路22を共にL字状とすることで、第1経路21及び第2経路22における曲げ数(屈曲部の個数)を少なくして、流路抵抗(圧力損失)を減少させることができる。流路抵抗を減少させることにより、第1ファン31及び第2ファン41の効率を向上させることができる。
(変形例2)
 図5は、変形例2(排気側L:給気側Z)に係る顕熱交換器2の一構成を示す模式図である。変形例2の顕熱交換器2は、実施形態1の顕熱交換器2と同様に、第1経路21(複数の排気パス)及び第2経路22(複数の給気パス)が設けられており、当該第1経路21に流れる第1空気と、第2経路22に流れる第2空気とは、対向流を形成する。
 第1経路21は、実施形態1と同様に、顕熱交換器2の上面側を起点(入口)とし、下方の右側面側を終点(出口)する経路構成としており、顕熱交換器2の断面視において、L字状をなす。
 第2経路22は、顕熱交換器2の下方の左側面側を起点(入口)とし、上方の右側面側を終点(出口)する経路構成としており、顕熱交換器2の断面視において、Z字状をなす。
 第2経路22をZ字状にし、第2経路22の終点(出口)の近傍の部位と、第1経路21の起点(入口)とを、顕熱交換器2の断面視において重なり合わせる構成とすることにより、熱交換率を向上させることができる。ただし、図5に示される変形例2は第1流路3と第2流路4とが連通していることを示すものではなく、実施形態1と同様にそれぞれ独立した流路として備えられている。
(変形例3)
 図6は、変形例3(排気側I:給気側U)に係る顕熱交換器2の一構成を示す模式図である。変形例3の顕熱交換器2は、実施形態1の顕熱交換器2と同様に、第1経路21(複数の排気パス)及び第2経路22(複数の給気パス)が設けられており、当該第1経路21に流れる第1空気と、第2経路22に流れる第2空気とは、対向流を形成する。
 第1経路21は、顕熱交換器2の上面側を起点(入口)とし、下面側を終点(出口)する経路構成としており、顕熱交換器2の断面視において、I字状をなす。
 第2経路22は、実施形態1と同様に、顕熱交換器2の下方の左側面側を起点(入口)とし、上方の左側面側を終点(出口)する経路構成としており、顕熱交換器2の断面視において、U字状をなす。
 第1経路21をI字状とすることで、第1経路21における曲げ数(屈曲部の個数)を少なくして、流路抵抗(圧力損失)を減少させることができる。流路抵抗を減少させることにより、第1ファン31の効率を向上させることができる。また、重力により 顕熱交換器2内に未蒸発の散布水が残ることを防止することができる。これにより、第1経路21に残留した散布水が原因となる雑菌の繁殖も抑制できる。
 仕切り板62は、第1経路21の出口を下方より覆うように設けられており、仕切り板62の顕熱交換器2側の端部は、第1経路21の出口よりも、第2経路22側となる位置に設けられている。
 分岐部6は、第1経路21の出口よりも下方に位置する。第1経路21の出口の下流側において顕熱交換器2の下面と仕切り板62との間を通過した以降に分岐部6は設けられており、当該分岐部6によって第1経路21から分岐された散布水回収路61が形成される。
 仕切り板62により、第1経路21のU字状の頂点(第1空気の折り返し地点)を含む湾曲部が、形成される。当該湾曲部において、遠心力により湾曲部の外周側に分離させた未蒸発の散布水を、仕切り板62にて効率的に水滴化させることができる。仕切り板62は、第1経路21の出口側から吸湿部材7側に向かって下方に傾斜することにより、散布水回収路61を形成しているため、水滴化した未蒸発の散布水を効率的に吸湿部材7(ドレンパン8)に導き、回収することができる。
(変形例4)
 図7は、変形例4(排気側I:給気側Z)に係る顕熱交換器2の一構成を示す模式図である。変形例4の顕熱交換器2は、実施形態1の顕熱交換器2と同様に、第1経路21(複数の排気パス)及び第2経路22(複数の給気パス)が設けられており、当該第1経路21に流れる第1空気と、第2経路22に流れる第2空気とは、対向流を形成する。
 第1経路21は、変形例3と同様に顕熱交換器2の上面側を起点(入口)とし、下面側を終点(出口)する経路構成としており、顕熱交換器2の断面視において、I字状をなし、変形例3と同様の効果を奏する。
 第2経路22は、変形例2と同様に顕熱交換器2の下方の左側面側を起点(入口)とし、上方の右側面側を終点(出口)する経路構成としており、顕熱交換器2の断面視において、Z字状をなし、変形例2と同様の効果を奏する。図7に示される変形例4は第1流路3と第2流路4とが連通していることを示すものではなく、変形例2と同様にそれぞれ独立した流路として備えられている。
 仕切り板62は、変形例3と同様に第1経路21の出口を下方より覆うように設けられており、仕切り板62の顕熱交換器2側の端部は、第1経路21の出口よりも、第2経路22側となる位置に設けられており、変形例3と同様の効果を奏する。
(変形例5)
 図8は、変形例5(排気側Z:給気側Z)に係る顕熱交換器2の一構成を示す模式図である。変形例5の顕熱交換器2は、実施形態1の顕熱交換器2と同様に、第1経路21(複数の排気パス)及び第2経路22(複数の給気パス)が設けられており、当該第1経路21に流れる第1空気と、第2経路22に流れる第2空気とは、対向流を形成する。
 顕熱交換器2は、断面視にて六角形をなす。
 第1経路21は、顕熱交換器2の上方の左側面側を起点(入口)とし、下方の右側面側を終点(出口)する経路構成としており、顕熱交換器2の断面視において、Z字状をなす。
 第2経路22は、顕熱交換器2の下方の左側面側を起点(入口)とし、上方の右側面側を終点(出口)する経路構成としており、顕熱交換器2の断面視において、Z字状をなす。
 第1経路21及び第2経路22を共にZ字状とし、顕熱交換器2の断面視において、当該顕熱交換器2の中央部において、第1経路21及び第2経路22を重なり合わせる構成とすることにより、熱交換率を向上させることができる。また、重力により顕熱交換器2内に未蒸発の散布水が残るのを防止することができる。これにより、第1経路21に残留した散布水が原因となる雑菌の繁殖も抑制できる。変形例5に対応する図8においては、第1経路21が左上方より右下方に向かって形成され、第2経路22が左下方から右上方に向かって形成されている。ただし、変形例5には不図示の第1経路21が右上方から右下方に向かって形成され、第2経路22左下方から左上方に向かって形成される場合も同様の効果を奏するものとして含まれる。
 今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 空調機
 2 顕熱交換器(熱交換器)
 21 第1経路
 22 第2経路
 3 第1流路(排気流路)
 31 第1ファン(排気ファン)
 32 第1フィルタ
 33 第1吸込口
 34 第1吹出口
 4 第2流路(給気流路)
 41 第2ファン(給気ファン)
 42 第2フィルタ
 43 第2吸込口
 44 第2吹出口
 5 散布部
 6 分岐部
 61 散布水回収路
 62 仕切り板
 7 吸湿部材
 8 ドレンパン
 81 連通路
 82 下方端部
 9 水溜部
 91 空気孔
 10 センサ
 11 ポンプ
 12 コントローラ
 121 制御部
 122 記憶部
 123 入出力I/F
 13 電磁弁
 14 タンク
 15 筐体
 151 キャスター

Claims (9)

  1.  気化させる水を散布する散布部と、
     前記散布部が散布した水の気化熱により冷却される第1空気が流れる第1流路と、 被空調空間に吹き出される第2空気が流れる第2流路と、
     前記第1空気と前記第2空気との間で熱交換させ、前記第2空気を冷却する熱交換器とを備え、
     前記熱交換器は、前記第1流路の少なくとも一部を形成する第1経路と、前記第2流路の少なくとも一部を形成する第2経路とを含み、
     前記第1流路には、前記第1空気の流れ方向において前記第1経路の下流側にて上下に向かって分岐する分岐部が設けられており、
     前記分岐部の下方には、前記分岐部と連通するドレンパンが設けられている
     ことを特徴とする空調機。
  2.  前記第1流路は、前記分岐部の前後において上方に向かって形成され、U字状に形成されている 
     ことを特徴とする請求項1に記載の空調機。
  3.  前記第1流路において、前記散布部から前記分岐部までの距離は、前記分岐部から前記第1空気が吹き出される第1吹出口までの距離よりも短い
     ことを特徴とする請求項1又は請求項2に記載の空調機。
  4.  前記第1流路には、前記第1空気を搬送するための第1ファンが設けられており、 前記第1ファンは、前記第1吹出口の近傍に設けられている
     ことを特徴とする請求項3に記載の空調機。
  5.  前記第2流路には、前記第2空気を搬送するための第2ファンが設けられており、 前記熱交換器内において、前記第1空気と前記第2空気とは対向流となるように、前記第1経路及び前記第2経路が積層して形成されている
     ことを特徴とする請求項1から請求項4のいずれか一つに記載の空調機。
  6.  前記分岐部と前記ドレンパンの間には、前記ドレンパンの開口部を覆う吸湿部材が設けられている
     ことを特徴とする請求項1から請求項5のいずれか一つに記載の空調機。
  7.  前記第1流路において、前記散布部の上流側には第1フィルタが設けられており、 前記吸湿部材の圧力損失値は、前記第1フィルタの圧力損失値よりも大きい
     ことを特徴とする請求項6に記載の空調機。
  8.  前記ドレンパンの下方には、前記散布部へ供給する散布水を溜める水溜部が設けられており、
     前記ドレンパン及び前記水溜部は、連通している
     ことを特徴とする請求項1から請求項7のいずれか一つに記載の空調機。
  9.  外部から供給される水を保持するタンクと、
     前記タンクと前記水溜部との間に設けられた電磁弁と、
     前記電磁弁の開閉を制御する制御部と、
     前記水溜部内の水の水位に関する情報を出力するセンサとを備え、
     前記制御部は、前記センサから出力された水位に関する情報に基づき、前記水位が、前記ドレンパンと前記水溜部とを連通する連通路の下方端部よりも低くなったと判定した場合、前記水位が前記下方端部よりも高くなるまで前記電磁弁を開く
     ことを特徴とする請求項8に記載の空調機。
PCT/JP2020/002280 2019-01-30 2020-01-23 空調機 WO2020158561A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080012080.6A CN113383199B (zh) 2019-01-30 2020-01-23 空调机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-014515 2019-01-30
JP2019014515A JP6835108B2 (ja) 2019-01-30 2019-01-30 空調機

Publications (1)

Publication Number Publication Date
WO2020158561A1 true WO2020158561A1 (ja) 2020-08-06

Family

ID=71840427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002280 WO2020158561A1 (ja) 2019-01-30 2020-01-23 空調機

Country Status (3)

Country Link
JP (1) JP6835108B2 (ja)
CN (1) CN113383199B (ja)
WO (1) WO2020158561A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110883A (en) * 1980-02-06 1981-09-02 Kawamoto Kogyo Kk Cooling method
JPH09292187A (ja) * 1995-11-07 1997-11-11 Seibu Giken:Kk 流体の冷却および気体の除湿冷却の方法および装置
JP2004093017A (ja) * 2002-08-30 2004-03-25 Seibu Giken Co Ltd 除湿空調装置
CN201277817Y (zh) * 2008-09-12 2009-07-22 黄荣锋 一种板式蒸发冷却器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534604B (zh) * 2015-01-23 2017-05-31 天津大学 外置分流结构的逆流板式露点间接蒸发冷却器及通道隔板
CN204746036U (zh) * 2015-05-13 2015-11-11 常娟 室内除湿器
CA2945255C (en) * 2015-10-15 2023-08-22 Energy & Environmental Research Center Foundation Heat dissipation systems with hygroscopic working fluid
CN105222260B (zh) * 2015-11-10 2017-12-26 上海理工大学 干湿通道结合的单元式蒸发冷却装置
CN207422472U (zh) * 2017-11-23 2018-05-29 宁波感微知著机器人科技有限公司 一种具备回流功能的室内空气净化器
CN207922445U (zh) * 2018-01-23 2018-09-28 嘉兴新国浩喷织有限公司 一种纺织车间生产用降温装置
CN208238308U (zh) * 2018-04-16 2018-12-14 天津大学建筑设计研究院 间接蒸发冷却器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110883A (en) * 1980-02-06 1981-09-02 Kawamoto Kogyo Kk Cooling method
JPH09292187A (ja) * 1995-11-07 1997-11-11 Seibu Giken:Kk 流体の冷却および気体の除湿冷却の方法および装置
JP2004093017A (ja) * 2002-08-30 2004-03-25 Seibu Giken Co Ltd 除湿空調装置
CN201277817Y (zh) * 2008-09-12 2009-07-22 黄荣锋 一种板式蒸发冷却器

Also Published As

Publication number Publication date
CN113383199A (zh) 2021-09-10
JP6835108B2 (ja) 2021-02-24
CN113383199B (zh) 2023-04-25
JP2020122614A (ja) 2020-08-13

Similar Documents

Publication Publication Date Title
KR20110110428A (ko) 냉매응축장치와 이를 이용한 이동식 에어컨
US20100287953A1 (en) Air Conditioning Apparatus
KR20150001653A (ko) 제습 장치
JP5606706B2 (ja) 室外機用冷却装置
WO2020158561A1 (ja) 空調機
JP2020193754A (ja) 冷房用外気取り入れ装置
JP7302613B2 (ja) 空調機
US7942391B2 (en) Evaporative cooling tower and method
KR20110069253A (ko) 크린룸내 직접분무식 기화가습장치의 습도제어방법
US20220349614A1 (en) Air conditioner
CN112460684A (zh) 空调
WO2021009945A1 (ja) 空調機
JP6935810B2 (ja) 空調機
JP6286286B2 (ja) 鉄道車両用空調装置及びこの空調装置を備えた鉄道車両
JP2021018013A (ja) 空調機
JP2021092329A (ja) 冷却器
WO2023026974A1 (ja) 空調機
CN214665378U (zh) 蒸发式冷凝换热器
JP7399692B2 (ja) 冷却装置、および、冷却方法
CN208782336U (zh) 一种带有可除积水功能空调系统的电气柜
KR200240938Y1 (ko) 증발코일식 대용량 가습기
JP2006177591A (ja) 冷却塔
JPH03191230A (ja) 空気調和機
JPS6138791B2 (ja)
CN104136861A (zh) 空气调节机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749079

Country of ref document: EP

Kind code of ref document: A1