WO2020158330A1 - Method for manufacturing glass substrate - Google Patents

Method for manufacturing glass substrate Download PDF

Info

Publication number
WO2020158330A1
WO2020158330A1 PCT/JP2020/000511 JP2020000511W WO2020158330A1 WO 2020158330 A1 WO2020158330 A1 WO 2020158330A1 JP 2020000511 W JP2020000511 W JP 2020000511W WO 2020158330 A1 WO2020158330 A1 WO 2020158330A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
lot
defect
glass substrate
value
Prior art date
Application number
PCT/JP2020/000511
Other languages
French (fr)
Japanese (ja)
Inventor
敬一 吉野
西川 佳範
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2020158330A1 publication Critical patent/WO2020158330A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • the present invention relates to a method for manufacturing a glass substrate used in, for example, electronic equipment.
  • glass substrates are widely used in electronic devices such as flat panel displays (FPD) such as liquid crystal displays, plasma displays, and organic EL displays, organic EL lighting, touch panels, and solar cell panels.
  • FPD flat panel displays
  • LCD liquid crystal displays
  • plasma displays plasma displays
  • organic EL displays organic EL lighting, touch panels, and solar cell panels.
  • This type of glass substrate is usually manufactured by cutting out from a glass plate called mother glass (hereinafter referred to as a glass original plate) (see, for example, Patent Document 1).
  • the defects detected in the glass original plate are classified into pass defects that are determined to be pass according to a predetermined determination criterion and reject defects that are determined to be rejected according to the determination criterion, It is disclosed that the number of the passing defects is used for the pass/fail judgment of the lot formed of the glass original plate. More specifically, it is disclosed that the average number of passing defects per glass original plate is calculated for each lot, and the pass/fail of the lot is determined.
  • the number of passing defects varies in the short term (for example, several minutes to several hours) or in the long term (for example, more than several hours) due to various factors.
  • the method described in Patent Document 2 since the number of passing defects is managed in lot units, long-term fluctuations can be grasped, but short-term fluctuations are difficult to grasp. Therefore, as the number of passing defects increases in a short period of time, the average number of passing defects in the lot increases, and as a result, the quality of the product deteriorates or the lot fails.
  • the present invention is a technical object to suppress an increase in the average number of passing defects for a lot when the number of passing defects of a glass original plate used for manufacturing a glass substrate increases in a short period of time.
  • the method for manufacturing a glass substrate according to the present invention for solving the above problems is a method for manufacturing a glass substrate from a glass original plate, and a passing defect that is determined as a pass by a predetermined determination criterion existing in the glass original plate, and Defect detection step of detecting a reject defect that is determined to be rejected by the determination criteria, based on the result of the defect detection step, the original plate determination step of determining the quality of the glass original plate, and the non-defective product in the original plate determination step
  • a method for manufacturing a glass substrate comprising a lot forming step of forming a lot with the glass original plate determined to be the plurality of glass original plates determined to be non-defective in the original plate determination step, one of the passing defects It is characterized in that an average value of the numbers is calculated as a monitoring value and the judgment criterion is changed based on the monitoring value.
  • the pass defect is a defect that is unlikely to cause a fatal defect in the electronic device
  • the fail defect is a defect that is highly likely to cause a fatal defect in the electronic device (hereinafter, the same).
  • the rejected defect corresponds to a defect that is rejected by the conventional defect inspection
  • the accepted defect corresponds to a defect that is passed by the conventional defect inspection (hereinafter, the same).
  • the glass original plate having a rejected defect may be discarded or the glass substrate may be taken from a portion having no rejected defect.
  • the judgment standard of the defect detection process is changed based on the monitoring value which is the average value of the number of passing defects per sheet. For example, when the number of passed defects increases, it is possible to reduce the increased number of passed defects and set the monitoring value within a predetermined range by tightening the criterion for the defect detection process. On the other hand, when the number of passed defects decreases, the number of passed defects that have decreased can be increased and the monitoring value can be controlled within a desired range by loosening the criterion for the defect detection process. As described above, according to the method for manufacturing a glass substrate of the present invention, it is possible to stabilize the number of passing defects of the original glass plate used for manufacturing the glass substrate.
  • the glass original plate for which the monitoring value is to be calculated may have been determined to be non-defective in the original plate determination step within a predetermined time.
  • the determination criterion when the monitored value exceeds a preset upper limit value, the determination criterion is made strict, and when the monitored value is less than the preset lower limit value, the determination criterion is loosened. You may do it.
  • a distribution step of distributing the glass original plate determined to be non-defective in the original plate determining step to a plurality of ejecting devices is provided, and in the lot forming step, the plurality of ejecting devices are The lots each forming the lot, and the lots formed by the plurality of extraction devices include the lots in which the cutting patterns of the glass substrate from the glass original plate are different from each other, and in the sorting step, the glass original plate is The passing defect may be distributed to the take-out device that forms the lot having the cut-out pattern that is not located in the region that becomes the glass substrate.
  • the average value of the number of the passing defects per one glass original plate is calculated as a lot determination value for one lot, and the pass/fail of the lot is determined based on the lot determination value. Good.
  • the number of glass original plates for which one lot determination value is calculated may be larger than the number of glass original plates for which one monitoring value is calculated.
  • the criterion may be a defect size.
  • the present invention it is possible to suppress an increase in the average number of passing defects for a lot when the number of passing defects of a glass original plate used for manufacturing a glass substrate increases in the short term.
  • the method for manufacturing a glass substrate according to the present invention is a method for manufacturing by cutting out a glass substrate from a glass original plate
  • FIG. 1 shows a main part of a manufacturing line using the method for manufacturing a glass substrate according to an embodiment of the present invention. It is a schematic plan view shown.
  • the main part of this manufacturing line is inspected by a conveyance path 2 such as a conveyor that conveys a plurality of glass original plates 1, a defect inspection device 3 that inspects the glass original plate 1 on the conveyance path 2 for defects, and a defect inspection device 3.
  • a take-out device 4 for taking out the original glass plate 1 from the transport path 2 is a main component.
  • a defect inspection step S1 for inspecting a defect of the glass original plate 1 by the defect inspection apparatus 3 and a plurality of defect inspection steps S1 are performed.
  • the defect inspection device 3 detects a defect existing in the glass original plate 1.
  • This defect is, for example, a bubble, a foreign substance, or the like, and includes a pass defect that is determined to be pass according to a predetermined determination standard, and a reject defect that is determined to be fail according to the determination criterion.
  • the criterion of this embodiment is a predetermined size of the defect, a defect smaller than this size is a passing defect, and a defect larger than this size is a rejecting defect.
  • the defect size that serves as this criterion is appropriately set according to the size and application of the glass substrate to be manufactured.
  • the defect is a bubble, it is 50 ⁇ m to 1000 ⁇ m, and if the defect is a foreign substance, it is 20 ⁇ m to 500 ⁇ m. is there.
  • the defect inspection apparatus 3 for example, if it is a bubble, 10 ⁇ m or more is detected as a defect, and if it is a foreign substance, a particle of several ⁇ m or more is detected as a defect.
  • defect detection step S11 data such as the type of defect (foam, foreign matter, etc.), the number, size, position (coordinates), etc. detected by the defect inspection apparatus 3 is acquired.
  • the quality of the glass original plate 1 is determined based on the result of the defect detection step S11 (from the defect data acquired in the defect detection step S11).
  • the glass original plate 1 determined to be non-defective in the original plate determination step S12 is distributed to the take-out device 4 in a distribution step S2 described in detail later.
  • the glass original plate 1 that is determined to be a defective product in the original plate determination step S12 is not allocated to the extraction device 4 and is discarded in the allocation step S2 described in detail later.
  • the average value of the number of passing defects per sheet is monitored for a plurality of glass original plates 1 which have been determined to be non-defective in the original plate determination step S12 among the glass original plates 1 that have undergone the defect detection step S11. Calculate as a value.
  • the glass original plate 1 for which one monitoring value is to be calculated may be the glass original plate 1 determined to be non-defective in a predetermined time, or the predetermined number of glass original plates 1 determined to be non-defective. Good.
  • the predetermined time is, for example, 1 minute to 30 minutes.
  • the number is, for example, 3 to 50.
  • next upper limit value determination step S14 it is determined whether or not the monitored value exceeds a preset upper limit value. If the monitored value exceeds the preset upper limit value, the criterion for judging the pass defect and the fail defect is made strict (S15). That is, the defect size, which is the criterion, is reduced. If the monitored value is less than or equal to the preset upper limit value, the process proceeds to the lower limit value determination step S16.
  • the lower limit value determination step S16 it is determined whether or not the monitored value is less than a preset lower limit value.
  • the criterion for judging the pass defect and the fail defect is loosened (S17). That is, the defect size, which is a criterion, is increased.
  • the determination criteria for the pass defect and the fail defect are maintained as they are (S18). That is, the defect size, which is the criterion, is not changed.
  • the judgment state in which the judgment criteria for the passing defect and the failing defect are normal is A
  • the judgment state in which the judgment criterion is one step stricter than the judgment state A is B
  • the judgment condition in which the judgment criterion is one step stricter than the judgment state B is C. ..
  • the range of change of the judgment standard when shifting from the judgment state A to the judgment state B is the same as the range of change of the judgment standard when shifting from the judgment state B to the judgment state A.
  • the range of change of the judgment standard when shifting from the judgment state B to the judgment state C and the range of change of the judgment standard when shifting from the judgment state C to the judgment state B are the same.
  • the difference (change width) in the judgment criteria between the judgment states A and B may be the same as the difference (change width) in the judgment criteria between the judgment states B and C, or may be different. Good.
  • the monitoring value does not exceed the upper limit value or less than the lower limit value, and is in the state of maintaining the normal judgment standard (judgment status A). However, at time t1, the monitored value exceeds the upper limit value. Then, the judgment standard becomes stricter by one step (judgment state B). Then, at time t2, the monitoring value decreases, but since the monitoring value still exceeds the upper limit value, the criterion becomes one step more severe (determination state C). Then, at time t3, the monitoring value decreases below the upper limit value.
  • the monitoring value does not exceed the upper limit value or less than the lower limit value, but at time t4, the monitoring value becomes less than the lower limit value.
  • the judgment standard is loosened by one step (judgment state B).
  • the monitored value is once more than the lower limit value, but again at time t6, the monitored value becomes less than the lower limit value. Therefore, the determination standard is further loosened by one step (determination state A).
  • the monitored value becomes equal to or higher than the lower limit value.
  • a plurality of (three in the present embodiment) lots L are formed. As shown in FIG. 1, the lot L is formed by each of the take-out devices 4.
  • the plurality of lots have different cutting patterns of the glass substrate 5 from the glass original plate 1. Examples of the cutout pattern include those illustrated in FIGS. 5A to 5D.
  • the arrangement direction of the original glass plate 1 in FIGS. 5A to 5D corresponds to that in FIG.
  • the cutout patterns shown in FIG. 5B and FIG. 5C are the same in the shape and position of the region serving as the glass substrate 5 except that the glass original plate 1 is arranged in a different direction by 180°. Make one lot L.
  • the lot L arranged on the left side in FIG. 1 is formed by the glass master plate 1 having the cutout pattern shown in FIG. 5A, and the lot L arranged at the center in FIG. 1 is the glass master plate 1 having the cutout pattern shown in FIGS. 5B and 5C. It is assumed that the lot L formed and arranged on the right side in FIG. 1 is formed by the original glass plate 1 having the cutout pattern in FIG. 5D.
  • the glass original plate 1 determined as a non-defective product in the original plate determination step S12 of the defect inspection step S1 is distributed from the transport path 2 to a plurality of take-out devices 4.
  • the glass original plate 1 that is determined as a non-defective product in the original plate determination step S12 has a lot L having a predetermined cutting pattern even if it has a reject defect, and the take-out device 4 that forms the lot L has the defect. It is distributed.
  • the predetermined cutout pattern is a cutout pattern in which the rejected defect of the original glass plate 1 is not located in at least one of the regions to be the glass substrate 5.
  • the target for determining whether or not the rejected defect of the glass original plate 1 is located is the effective area 5a of the glass substrate 5 in the area of the glass substrate 5.
  • the effective area 5a of the glass substrate 5 is an area of the glass substrate 5 that is actually used when the glass substrate 5 is used in an electronic device or the like.
  • the defective defect is located in the effective region 5a of the glass substrate 5. To do. Therefore, in the distribution step S2, the glass original plate 1 having the defective defect at the position P is not distributed to the lot L (the one arranged on the left side in FIG. 1) having the cutout pattern shown in FIG. 5A.
  • the rejected defect is located in the effective area 5a of the glass substrate 5.
  • the reject defect is not located in the area that becomes the effective area 5a of the glass substrate 5.
  • the glass original plate 1 having the reject defect at the position P can be distributed to the lot L (the central arrangement in FIG. 1) having the cutout pattern of FIG. 5C.
  • the rejected defect is located in one of the effective regions 5a of the four glass substrates 5. However, the rejected defect is not located in three of the effective regions 5a of the four glass substrates 5.
  • the glass original plate 1 having the reject defect at the position P can be distributed to the lot L (the one arranged on the right side in FIG. 1) having the cutout pattern in FIG. 5D.
  • the number of valid areas 5a in which no reject defect is located is not limited to three as shown in FIG. 5D, and if the number is one or more, the lot L having the cutout pattern in FIG. 5D can be distributed.
  • the number of the effective areas 5a in which the reject defect is not located does not necessarily have to be the glass original plate 1 which is one or more, and is equal to or more than the predetermined threshold value.
  • the original glass plate 1 may be distributed.
  • the threshold value may be appropriately determined according to the supply and demand status of the glass substrate 5, the operating status of the manufacturing line, and the like.
  • the rejected defect when the rejected defect is located at the position P, it is possible to distribute the lot L to the central arrangement and the lot L to the right arrangement in FIG. In this way, when there are a plurality of lots L that can be distributed, the lot L of the distribution destination is selected in consideration of the supply and demand status of the glass substrate 5, the operating status of the manufacturing line, and the like.
  • the original glass plate 1 When the original glass plate 1 has no rejected defects, or when the rejected defects are not located in the effective region 5a of the glass substrate 5 of the cutout pattern of FIG. 5A, the original glass plate 1 has the cutout pattern of FIG. 5A.
  • the lot L the one arranged on the left side in FIG. 1).
  • the glass original plate 1 is defective in the original plate determination step S12 of the defect inspection step S1. Is determined. In this case, the original glass plate 1 is not taken out by the take-out device 4, is carried by the carrying path 2, and is discarded.
  • the lot determination value calculation step S4 based on the defect data acquired in the defect detection step S11, for one lot L formed in the lot formation step S3, the number of pass defects per glass original plate 1 The average value of is calculated as the lot judgment value.
  • the number of glass original plates 1 (the number of glass original plates 1 forming one lot L) for which one lot determination value is calculated is larger than the number of glass original plates 1 for which one monitoring value is calculated. ..
  • the number of original glass plates 1 forming one lot L is, for example, 100 to 500.
  • the pass/fail of the lot L is determined based on the lot determination value calculated in the lot determination value calculation step S4.
  • the lot judgment value is less than or equal to a predetermined threshold value, the lot L is judged to be acceptable and the lot L is transported to the next process. If the lot judgment value exceeds the predetermined threshold value, the lot L is judged to be unacceptable and is discarded.
  • the judgment standard based on the monitoring value, which is the average value of the number of passing defects per sheet. For example, when the number of passed defects increases, it is possible to reduce the increased number of passed defects and control the monitoring value within a desired range by tightening the criterion. On the other hand, when the number of passing defects decreases, the judgment standard can be loosened to increase the number of passing passing defects and control the monitoring value within a desired range. As described above, according to the method for manufacturing a glass substrate of the present embodiment, it is possible to stabilize the number of passing defects of the original glass plate used for manufacturing the glass substrate. Therefore, even if the number of passing defects increases in the short term, it is possible to suppress an increase in the average number of passing defects in the lot.
  • the distribution step S2 even if the original glass plate 1 has a defective defect, if there is a lot L having a predetermined cutting pattern, it is distributed to the take-out device 4 that forms the lot L. Therefore, it is possible to reduce the number of glass original plates 1 to be discarded as the glass original plates 1 having a reject defect.
  • the average value of the number of passing defects per glass original plate 1 for one lot L is calculated as a lot judgment value, and the acceptance/rejection of lot L is judged based on the lot judgment value.
  • the number of glass original plates 1 for which one lot determination value is calculated is larger than the number of glass original plates 1 for which one monitoring value is calculated.
  • the judgment standard is tightened, even if the glass original plate 1 before the judgment standard is tightened has already formed the lot L in the middle, the glass master plate 1 after the judgment standard is tightened is the same lot L. Can be formed. Therefore, it is possible to suppress the total number of passing defects in one formed lot L. Therefore, when the judgment standard is made strict based on the monitored value, the number of rejected lots L can be suppressed. Therefore, the number of lots L to be discarded can be reduced.
  • the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the technical idea thereof.
  • the glass original plate having the rejected defect is distributed to a plurality of lots having different cutting patterns, but such distribution is not necessarily required.
  • the lot acceptance/rejection is determined based on the lot determination value, but such lot determination does not necessarily have to be performed.
  • the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value determination step S16 are performed in the defect inspection step S1, but the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value are performed in the distribution step S2.
  • the determination step S16 may be performed.
  • the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value determination step S16 are performed in the defect inspection step S1 or the distribution step S2
  • the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value determination step are not always required.
  • the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value determination step S16 may be performed about once every several times.
  • the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value determination step S16 may be performed in the defect inspection step S1 or the distribution step S2 .
  • the monitoring value calculation step S13, the upper limit value determination step S14 at a predetermined time interval may be performed.
  • the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value determination step S16 may be performed so that the short-term fluctuation in the number of passed defects can be grasped.
  • the effective area 5a of the glass substrate 5 is the object for determining whether or not the reject defect of the glass original plate 1 is located, but it may be the area to be the glass substrate 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Liquid Crystal (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

This method for manufacturing a glass substrate from a mother glass sheet includes: a defect detection step S11 of detecting an acceptable defect and an unacceptable defect that are present on the mother glass sheet, the acceptable defect being determined as acceptable by a predetermined criteria and the unacceptable defect being determined as unacceptable by the predetermined criteria; and a mother glass sheet determination step S12 of determining the quality of the mother glass sheet on the basis of the results of the defect detection step S11. An average value of the number of the acceptable defects per mother glass sheet is calculated as a monitored value for a plurality of the mother glass sheets which were determined as having good quality in the mother glass sheet determination step S12, and the criteria is changed on the basis of the monitored value.

Description

ガラス基板の製造方法Glass substrate manufacturing method
 本発明は、例えば電子機器等に使用されるガラス基板の製造方法に関するものである。 The present invention relates to a method for manufacturing a glass substrate used in, for example, electronic equipment.
 周知のように、液晶ディスプレイ、プラズマディスプレイ、及び有機ELディスプレイ等のフラットパネルディスプレイ(FPD)、有機EL照明、タッチパネル、更には太陽電池のパネル等の電子機器には、ガラス基板が広く用いられている。 As is well known, glass substrates are widely used in electronic devices such as flat panel displays (FPD) such as liquid crystal displays, plasma displays, and organic EL displays, organic EL lighting, touch panels, and solar cell panels. There is.
 この種のガラス基板は、マザーガラスと呼ばれるガラス板(以下、ガラス原板と称す)から切り出されることによって製造されるのが通例である(例えば特許文献1参照)。  This type of glass substrate is usually manufactured by cutting out from a glass plate called mother glass (hereinafter referred to as a glass original plate) (see, for example, Patent Document 1).
国際公開第03/087923号International Publication No. 03/087923 国際公開第2018/116756号International Publication No. 2018/116756
 ところで、特許文献2には、ガラス原板で検出された欠陥を、所定の判定基準で合格と判定される合格欠陥と、前記判定基準で不合格と判定される不合格欠陥とに区分して、この合格欠陥の個数を、ガラス原板で形成されたロットの合否の判定に利用することが開示されている。より具体的には、ロット毎にガラス原板1枚当たりの合格欠陥の平均個数を算出し、ロットの合否を判定することが開示されている。 By the way, in Patent Document 2, the defects detected in the glass original plate are classified into pass defects that are determined to be pass according to a predetermined determination criterion and reject defects that are determined to be rejected according to the determination criterion, It is disclosed that the number of the passing defects is used for the pass/fail judgment of the lot formed of the glass original plate. More specifically, it is disclosed that the average number of passing defects per glass original plate is calculated for each lot, and the pass/fail of the lot is determined.
 この合格欠陥の個数は、種々の要因によって短期的(例えば数分~数時間)又は長期的(例えば数時間超)に変動する。特許文献2に記載の方法では、ロット単位で合格欠陥の個数を管理するため、長期的な変動は把握できるが、短期的な変動の把握が難しい。このため、合格欠陥の個数が短期的に増加するのに伴ってロットの合格欠陥の平均個数が増加し、その結果、製品の品質が低下したり、ロットが不合格となったりする。 The number of passing defects varies in the short term (for example, several minutes to several hours) or in the long term (for example, more than several hours) due to various factors. In the method described in Patent Document 2, since the number of passing defects is managed in lot units, long-term fluctuations can be grasped, but short-term fluctuations are difficult to grasp. Therefore, as the number of passing defects increases in a short period of time, the average number of passing defects in the lot increases, and as a result, the quality of the product deteriorates or the lot fails.
 本発明は、上記事情に鑑み、ガラス基板の製造に使用されるガラス原板の合格欠陥の個数が短期的に増加した場合に、ロットに対する合格欠陥の平均個数の増加を抑制することを技術的課題とする。 In view of the above circumstances, the present invention is a technical object to suppress an increase in the average number of passing defects for a lot when the number of passing defects of a glass original plate used for manufacturing a glass substrate increases in a short period of time. And
 上記課題を解決するための本発明に係るガラス基板の製造方法は、ガラス原板からガラス基板を製造する方法であって、前記ガラス原板に存在する所定の判定基準で合格と判定される合格欠陥と前記判定基準で不合格と判定される不合格欠陥とを検出する欠陥検出工程と、前記欠陥検出工程の結果に基づき、前記ガラス原板の良否を判定する原板判定工程と、前記原板判定工程で良品と判定された前記ガラス原板でロットを形成するロット形成工程とを備えるガラス基板の製造方法において、前記原板判定工程で良品と判定された複数の前記ガラス原板について、1枚当りの前記合格欠陥の個数の平均値を監視値として算出し、前記監視値に基づき、前記判定基準を変更することに特徴づけられる。 The method for manufacturing a glass substrate according to the present invention for solving the above problems is a method for manufacturing a glass substrate from a glass original plate, and a passing defect that is determined as a pass by a predetermined determination criterion existing in the glass original plate, and Defect detection step of detecting a reject defect that is determined to be rejected by the determination criteria, based on the result of the defect detection step, the original plate determination step of determining the quality of the glass original plate, and the non-defective product in the original plate determination step In a method for manufacturing a glass substrate comprising a lot forming step of forming a lot with the glass original plate determined to be the plurality of glass original plates determined to be non-defective in the original plate determination step, one of the passing defects It is characterized in that an average value of the numbers is calculated as a monitoring value and the judgment criterion is changed based on the monitoring value.
 ここで、ロットとは、複数のガラス原板の集合体であり、搬送、製造処理等を行う単位である(以下、同様)。なお、合格欠陥は、電子機器に致命的な不良を生じる可能性が低い欠陥であり、不合格欠陥は、電子機器に致命的な不良を生じる可能性が高い欠陥である(以下、同様)。また、不合格欠陥が、従来の欠陥用の検査で不合格とされる欠陥に相当し、合格欠陥が、従来の欠陥用の検査で合格とされる欠陥に相当する(以下、同様)。不合格欠陥が存在するガラス原板については、例えば、廃棄処分されたり、不合格欠陥が存在しない部分からガラス基板が採取されたりする。 Here, a lot is an assembly of a plurality of glass original plates, and is a unit for carrying, manufacturing, etc. (the same applies below). The pass defect is a defect that is unlikely to cause a fatal defect in the electronic device, and the fail defect is a defect that is highly likely to cause a fatal defect in the electronic device (hereinafter, the same). Further, the rejected defect corresponds to a defect that is rejected by the conventional defect inspection, and the accepted defect corresponds to a defect that is passed by the conventional defect inspection (hereinafter, the same). The glass original plate having a rejected defect may be discarded or the glass substrate may be taken from a portion having no rejected defect.
 上記の構成では、1枚当りの合格欠陥の個数の平均値である監視値に基づいて、欠陥検出工程の判定基準を変更する。例えば、合格欠陥の個数が増加した場合には、欠陥検出工程の判定基準を厳しくすることにより、増加した合格欠陥の個数を減少させて監視値を所定の範囲にすることが可能である。一方、合格欠陥の個数が減少した場合には、欠陥検出工程の判定基準を緩くすることにより、減少した合格欠陥の個数を増加させて監視値を所望の範囲に制御することが可能である。このように、本発明のガラス基板の製造方法によれば、ガラス基板の製造に使用されるガラス原板の合格欠陥の個数を安定化することが可能である。このため、合格欠陥の個数が短期的に増加した場合であっても、ロットにおける合格欠陥の平均個数の増加を抑制することができる。このことにより、後工程のガラス基板を用いて電子機器を製造する工程(具体的にはパターニング工程等)で断線や、膜剥がれ等の発生をなくすことができる。 In the above configuration, the judgment standard of the defect detection process is changed based on the monitoring value which is the average value of the number of passing defects per sheet. For example, when the number of passed defects increases, it is possible to reduce the increased number of passed defects and set the monitoring value within a predetermined range by tightening the criterion for the defect detection process. On the other hand, when the number of passed defects decreases, the number of passed defects that have decreased can be increased and the monitoring value can be controlled within a desired range by loosening the criterion for the defect detection process. As described above, according to the method for manufacturing a glass substrate of the present invention, it is possible to stabilize the number of passing defects of the original glass plate used for manufacturing the glass substrate. Therefore, even if the number of passing defects increases in the short term, it is possible to suppress an increase in the average number of passing defects in the lot. This makes it possible to eliminate the occurrence of wire breakage, film peeling, and the like in the subsequent step of manufacturing an electronic device using a glass substrate (specifically, a patterning step or the like).
 上記の構成において、前記監視値を算出する対象となる前記ガラス原板が、所定の時間内に前記原板判定工程で良品と判定されたものであってもよい。 In the above configuration, the glass original plate for which the monitoring value is to be calculated may have been determined to be non-defective in the original plate determination step within a predetermined time.
 上記の構成において、前記監視値が予め設定された上限値を超えている場合に、前記判定基準を厳しくし、前記監視値が予め設定された下限値未満の場合に、前記判定基準を緩くするようにしてもよい。 In the above configuration, when the monitored value exceeds a preset upper limit value, the determination criterion is made strict, and when the monitored value is less than the preset lower limit value, the determination criterion is loosened. You may do it.
 この構成であれば、監視値が上限値を超えている場合に判定基準を厳しくすることにより、合格欠陥の個数が増加しても、ロットにおける合格欠陥の平均個数が増加することを確実に抑制できる。通常、監視値を厳しくすると、不良が増加するので、製造歩留が低下するが、監視値が下限値未満である場合に判定基準を緩くするので、製造歩留の低下を最小限に留めることができる。 With this configuration, by tightening the criterion when the monitored value exceeds the upper limit, even if the number of passing defects increases, it is possible to reliably suppress the increase in the average number of passing defects in the lot. it can. Normally, if the monitored value is strict, the number of defects increases, so the manufacturing yield decreases.However, if the monitored value is less than the lower limit, the criterion is loosened, so the decrease in manufacturing yield should be minimized. You can
 上記の構成において、前記ロット形成工程の前に、前記原板判定工程で良品と判定された前記ガラス原板を複数の取出装置に振り分ける振り分け工程を備え、前記ロット形成工程で、前記複数の取出装置が前記ロットをそれぞれ形成し、前記複数の取出装置が形成する前記ロットは、前記ガラス原板からの前記ガラス基板の切り出しパターンが互いに異なる前記ロットを含み、前記振り分け工程では、前記ガラス原板が、前記不合格欠陥が前記ガラス基板となる領域に位置しない前記切り出しパターンを有する前記ロットを形成する前記取出装置に振り分けられてもよい。 In the above configuration, before the lot forming step, a distribution step of distributing the glass original plate determined to be non-defective in the original plate determining step to a plurality of ejecting devices is provided, and in the lot forming step, the plurality of ejecting devices are The lots each forming the lot, and the lots formed by the plurality of extraction devices include the lots in which the cutting patterns of the glass substrate from the glass original plate are different from each other, and in the sorting step, the glass original plate is The passing defect may be distributed to the take-out device that forms the lot having the cut-out pattern that is not located in the region that becomes the glass substrate.
 上記の構成において、1つの前記ロットに対して前記ガラス原板1枚当りの前記合格欠陥の個数の平均値をロット判定値として算出し、前記ロット判定値に基づき、前記ロットの合否を判定してもよい。 In the above configuration, the average value of the number of the passing defects per one glass original plate is calculated as a lot determination value for one lot, and the pass/fail of the lot is determined based on the lot determination value. Good.
 この構成であれば、監視値に基づいて、判定基準を厳しくすれば、不合格となるロットの数を抑制することが可能となる。 With this configuration, the number of rejected lots can be suppressed by tightening the judgment criteria based on the monitoring value.
 この構成において、1つの前記ロット判定値を算出する対象となる前記ガラス原板の数は、1つの前記監視値を算出する対象となる前記ガラス原板の数よりも多くてもよい。 In this configuration, the number of glass original plates for which one lot determination value is calculated may be larger than the number of glass original plates for which one monitoring value is calculated.
 この構成であれば、判定基準を厳しくした場合、判定基準を厳しくする前のガラス原板が、既にロットを途中まで形成していても、判定基準を厳しくした後のガラス原板が、同じロットを形成することが可能になる。そのため、形成される1つのロットの全体の合格欠陥数を抑制することができる。従って、より確実に、不合格となるロットの数を抑制することが可能となる。 With this configuration, when the judgment criteria are tightened, even if the original glass plate before the tightening criteria has already formed a lot in the middle, the glass original plate after the tightening criteria forms the same lot. It becomes possible to do. Therefore, it is possible to suppress the total number of passing defects in one formed lot. Therefore, the number of rejected lots can be suppressed more reliably.
 上記の構成において、前記判定基準が、欠陥のサイズであってもよい。 In the above configuration, the criterion may be a defect size.
 以上のように本発明によれば、ガラス基板の製造に使用されるガラス原板の合格欠陥の個数が短期的に増加した場合に、ロットに対する合格欠陥の平均個数の増加を抑制することができる。 As described above, according to the present invention, it is possible to suppress an increase in the average number of passing defects for a lot when the number of passing defects of a glass original plate used for manufacturing a glass substrate increases in the short term.
本発明の実施形態に係るガラス基板の製造方法を使用した製造ラインの要部を示す概略平面図である。It is a schematic plan view which shows the principal part of the manufacturing line which uses the manufacturing method of the glass substrate which concerns on embodiment of this invention. 本発明の実施形態に係るガラス基板の製造方法の主要な工程を示すフローチャートである。It is a flowchart which shows the main processes of the manufacturing method of the glass substrate which concerns on embodiment of this invention. 欠陥検査工程の主要な工程を示すフローチャートである。It is a flow chart which shows the main processes of a defect inspection process. 欠陥検査工程の主要な工程を説明するためのグラフである。It is a graph for explaining the main steps of the defect inspection step. ガラス原板におけるガラス基板の切り出しパターンを示す平面図である。It is a top view which shows the cutting pattern of the glass substrate in a glass original plate. ガラス原板におけるガラス基板の切り出しパターンを示す平面図である。It is a top view which shows the cutting pattern of the glass substrate in a glass original plate. ガラス原板におけるガラス基板の切り出しパターンを示す平面図である。It is a top view which shows the cutting pattern of the glass substrate in a glass original plate. ガラス原板におけるガラス基板の切り出しパターンを示す平面図である。It is a top view which shows the cutting pattern of the glass substrate in a glass original plate.
 以下、本発明を実施するための形態について図面に基づき説明する。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings.
 本発明に係るガラス基板の製造方法は、ガラス原板からガラス基板を切り出して製造する方法であり、図1は、本発明の実施形態に係るガラス基板の製造方法を使用した製造ラインの要部を示す概略平面図である。この製造ラインの要部は、複数のガラス原板1を搬送するコンベヤ等の搬送路2と、搬送路2上のガラス原板1の欠陥を検査する欠陥検査装置3と、欠陥検査装置3で検査されたガラス原板1を搬送路2上から取り出す取出装置4を主要な構成要素とする。 The method for manufacturing a glass substrate according to the present invention is a method for manufacturing by cutting out a glass substrate from a glass original plate, and FIG. 1 shows a main part of a manufacturing line using the method for manufacturing a glass substrate according to an embodiment of the present invention. It is a schematic plan view shown. The main part of this manufacturing line is inspected by a conveyance path 2 such as a conveyor that conveys a plurality of glass original plates 1, a defect inspection device 3 that inspects the glass original plate 1 on the conveyance path 2 for defects, and a defect inspection device 3. A take-out device 4 for taking out the original glass plate 1 from the transport path 2 is a main component.
 また、図2に示すように、本発明の実施形態に係るガラス基板の製造方法は、欠陥検査装置3によってガラス原板1の欠陥を検査する欠陥検査工程S1と、欠陥検査工程S1の後に、複数の取出装置4にガラス原板1を振り分ける振り分け工程S2と、振り分け工程S2の後に、取出装置4によってガラス原板1でロットLを形成するロット形成工程S3と、ロット判定値算出工程S4と、ロット判定工程S5とを備える。 Further, as shown in FIG. 2, in the glass substrate manufacturing method according to the embodiment of the present invention, a defect inspection step S1 for inspecting a defect of the glass original plate 1 by the defect inspection apparatus 3 and a plurality of defect inspection steps S1 are performed. Distribution step S2 for allocating the glass original plate 1 to the unloading device 4, and after the allocating step S2, a lot forming step S3 for forming a lot L on the glass original plate 1 by the unloading device 4, a lot determination value calculation step S4, and a lot determination. And step S5.
 次に、図3に基づき、欠陥検査工程S1で行われる工程について詳細に説明する。 Next, the steps performed in the defect inspection step S1 will be described in detail with reference to FIG.
 最初の欠陥検出工程S11では、欠陥検査装置3で、ガラス原板1に存在する欠陥を検出する。この欠陥は、例えば、泡、異物等であり、所定の判定基準で合格と判定される合格欠陥と、前記判定基準で不合格と判定される不合格欠陥から成る。本実施形態の判定基準は、欠陥の所定のサイズであり、このサイズ未満の欠陥が合格欠陥であり、このサイズ以上の欠陥が不合格欠陥である。この判定基準となる欠陥サイズは、製造されるガラス基板のサイズ・用途等に応じて適宜設定され、例えば、欠陥が泡であれば50μm~1000μmであり、欠陥が異物であれば20μm~500μmである。なお、欠陥検査装置3では、例えば、泡であれば、10数μm以上のものが欠陥として検出され、異物であれば、数μm以上のものが欠陥として検出される。 In the first defect detection step S11, the defect inspection device 3 detects a defect existing in the glass original plate 1. This defect is, for example, a bubble, a foreign substance, or the like, and includes a pass defect that is determined to be pass according to a predetermined determination standard, and a reject defect that is determined to be fail according to the determination criterion. The criterion of this embodiment is a predetermined size of the defect, a defect smaller than this size is a passing defect, and a defect larger than this size is a rejecting defect. The defect size that serves as this criterion is appropriately set according to the size and application of the glass substrate to be manufactured. For example, if the defect is a bubble, it is 50 μm to 1000 μm, and if the defect is a foreign substance, it is 20 μm to 500 μm. is there. In the defect inspection apparatus 3, for example, if it is a bubble, 10 μm or more is detected as a defect, and if it is a foreign substance, a particle of several μm or more is detected as a defect.
 また、欠陥検出工程S11では、欠陥検査装置3で検出した欠陥の種類(泡、異物等)、個数、サイズ、位置(座標)等のデータを取得する。 In the defect detection step S11, data such as the type of defect (foam, foreign matter, etc.), the number, size, position (coordinates), etc. detected by the defect inspection apparatus 3 is acquired.
 次の原板判定工程S12では、欠陥検出工程S11の結果に基づき(欠陥検出工程S11で取得された欠陥のデータから)、ガラス原板1の良否を判定する。原板判定工程S12で良品と判定されるガラス原板1は、後に詳述する振り分け工程S2で、取出装置4に振り分けられるものである。原板判定工程S12で不良品と判定されるガラス原板1は、後に詳述する振り分け工程S2で、取出装置4に振り分けられられずに、廃棄処分となるものである。 In the next original plate determination step S12, the quality of the glass original plate 1 is determined based on the result of the defect detection step S11 (from the defect data acquired in the defect detection step S11). The glass original plate 1 determined to be non-defective in the original plate determination step S12 is distributed to the take-out device 4 in a distribution step S2 described in detail later. The glass original plate 1 that is determined to be a defective product in the original plate determination step S12 is not allocated to the extraction device 4 and is discarded in the allocation step S2 described in detail later.
 次の監視値算出工程S13では、欠陥検出工程S11を経たガラス原板1のうち原板判定工程S12で良品と判定された複数のガラス原板1について、1枚当りの合格欠陥の個数の平均値を監視値として算出する。 In the next monitoring value calculation step S13, the average value of the number of passing defects per sheet is monitored for a plurality of glass original plates 1 which have been determined to be non-defective in the original plate determination step S12 among the glass original plates 1 that have undergone the defect detection step S11. Calculate as a value.
 1つの監視値を算出する対象となるガラス原板1は、所定の時間内に良品と判定されたガラス原板1であってもよいし、良品と判定された所定の枚数のガラス原板1であってもよい。1つの監視値を、所定の時間内に良品と判定されたガラス原板1に対して算出する場合は、その所定の時間は、例えば1分~30分である。1つの監視値を、良品と判定された所定の枚数のガラス原板1に対して算出する場合は、その数は、例えば3枚~50枚である。 The glass original plate 1 for which one monitoring value is to be calculated may be the glass original plate 1 determined to be non-defective in a predetermined time, or the predetermined number of glass original plates 1 determined to be non-defective. Good. When one monitor value is calculated for the glass original plate 1 that is determined to be a good product within a predetermined time, the predetermined time is, for example, 1 minute to 30 minutes. When one monitoring value is calculated for a predetermined number of glass original plates 1 determined to be non-defective, the number is, for example, 3 to 50.
 次の上限値判定工程S14では、監視値が、予め設定された上限値を超えているか否かが、判定される。監視値が予め設定された上限値を超えている場合には、合格欠陥と不合格欠陥との判定基準を厳しくする(S15)。つまり、判定基準である欠陥サイズを小さくする。監視値が予め設定された上限値以下の場合には、下限値判定工程S16に進む。 In the next upper limit value determination step S14, it is determined whether or not the monitored value exceeds a preset upper limit value. If the monitored value exceeds the preset upper limit value, the criterion for judging the pass defect and the fail defect is made strict (S15). That is, the defect size, which is the criterion, is reduced. If the monitored value is less than or equal to the preset upper limit value, the process proceeds to the lower limit value determination step S16.
 下限値判定工程S16では、監視値が、予め設定された下限値未満か否かが、判定される。監視値が予め設定された下限値未満の場合には、合格欠陥と不合格欠陥との判定基準を緩くする(S17)。つまり、判定基準である欠陥サイズを大きくする。監視値が予め設定された下限値以上の場合には、合格欠陥と不合格欠陥との判定基準を変更せずにそのまま維持する(S18)。つまり、判定基準である欠陥サイズの変更を行わない。 In the lower limit value determination step S16, it is determined whether or not the monitored value is less than a preset lower limit value. When the monitored value is less than the preset lower limit value, the criterion for judging the pass defect and the fail defect is loosened (S17). That is, the defect size, which is a criterion, is increased. When the monitored value is equal to or higher than the preset lower limit value, the determination criteria for the pass defect and the fail defect are maintained as they are (S18). That is, the defect size, which is the criterion, is not changed.
 なお、図3の原板判定工程S12以降の工程は、不図示のコンピュータにより自動で行われる。 Note that the steps subsequent to the original plate determination step S12 in FIG. 3 are automatically performed by a computer (not shown).
 次に、図4に基づき、この欠陥検査工程S1での監視値と判定基準の変化の具体例を示して説明する。 Next, based on FIG. 4, a specific example of changes in the monitoring value and the judgment standard in the defect inspection step S1 will be described.
 合格欠陥と不合格欠陥の判定基準が通常である判定状態をA、判定状態Aより判定基準が1段階厳しい判定状態をB、判定状態Bより更に、判定基準が1段階厳しい状態をCとする。判定状態Aから判定状態Bに移行する際の判定基準の変更幅と、判定状態Bから判定状態Aに移行する際の判定基準の変更幅は同一となる。また、判定状態Bから判定状態Cに移行する際の判定基準の変更幅と、判定状態Cから判定状態Bに移行する際の判定基準の変更幅は同一となる。なお、判定状態Aと判定状態Bとの判定基準の差(変更幅)は、判定状態Bと判定状態Cとの判定基準の差(変更幅)と同一であってもよいし、異なっていてもよい。 The judgment state in which the judgment criteria for the passing defect and the failing defect are normal is A, the judgment state in which the judgment criterion is one step stricter than the judgment state A is B, and the judgment condition in which the judgment criterion is one step stricter than the judgment state B is C. .. The range of change of the judgment standard when shifting from the judgment state A to the judgment state B is the same as the range of change of the judgment standard when shifting from the judgment state B to the judgment state A. Further, the range of change of the judgment standard when shifting from the judgment state B to the judgment state C and the range of change of the judgment standard when shifting from the judgment state C to the judgment state B are the same. The difference (change width) in the judgment criteria between the judgment states A and B may be the same as the difference (change width) in the judgment criteria between the judgment states B and C, or may be different. Good.
 最初、監視値は、上限値を超えることも下限値未満になることもなく、通常の判定基準を維持した状態である(判定状態A)。しかし、時間t1で、監視値は上限値を超える。すると、判定基準が1段階厳しくなる(判定状態B)。すると、時間t2で、監視値は減少するが、それでも、監視値は、上限値を超えているので、更に、判定基準は1段階厳しくなる(判定状態C)。すると、時間t3で、監視値は上限値以下に減少する。 First, the monitoring value does not exceed the upper limit value or less than the lower limit value, and is in the state of maintaining the normal judgment standard (judgment status A). However, at time t1, the monitored value exceeds the upper limit value. Then, the judgment standard becomes stricter by one step (judgment state B). Then, at time t2, the monitoring value decreases, but since the monitoring value still exceeds the upper limit value, the criterion becomes one step more severe (determination state C). Then, at time t3, the monitoring value decreases below the upper limit value.
 その後、しばらく、監視値は、上限値を超えることも下限値未満になることもないが、時間t4で、監視値は下限値未満になる。すると、判定基準が1段階緩くなる(判定状態B)。すると、時間t5で、一旦、監視値は下限値以上になるが、再び、時間t6で、監視値は下限値未満になる。従って、更に、判定基準が1段階緩くなる(判定状態A)。すると、時間t7で、監視値は下限値以上になる。 After that, for a while, the monitoring value does not exceed the upper limit value or less than the lower limit value, but at time t4, the monitoring value becomes less than the lower limit value. Then, the judgment standard is loosened by one step (judgment state B). Then, at time t5, the monitored value is once more than the lower limit value, but again at time t6, the monitored value becomes less than the lower limit value. Therefore, the determination standard is further loosened by one step (determination state A). Then, at time t7, the monitored value becomes equal to or higher than the lower limit value.
 次に欠陥検査工程S1の後の工程について説明する。 Next, the process after the defect inspection process S1 will be described.
 ロット形成工程S3では、複数(本実施形態では3個)のロットLが形成される。図1に示すように、ロットLの形成は、取出装置4のそれぞれによって行われる。複数のロットは、ガラス原板1からのガラス基板5の切り出しパターンが互いに異なる。切り出しパターンとしては、例えば、図5A~図5Dに例示するようなものが挙げられる。なお、図5A~図5Dにおけるガラス原板1の配置方向は、図1に対応するものとする。 In the lot forming step S3, a plurality of (three in the present embodiment) lots L are formed. As shown in FIG. 1, the lot L is formed by each of the take-out devices 4. The plurality of lots have different cutting patterns of the glass substrate 5 from the glass original plate 1. Examples of the cutout pattern include those illustrated in FIGS. 5A to 5D. The arrangement direction of the original glass plate 1 in FIGS. 5A to 5D corresponds to that in FIG.
 図5Bと図5Cに示す切り出しパターンは、ガラス原板1の配置方向が180°異なるだけで、ガラス基板5となる領域の形状と位置は同様であり、それぞれの切り出しパターンを有するガラス原板1は、1つのロットLにする。 The cutout patterns shown in FIG. 5B and FIG. 5C are the same in the shape and position of the region serving as the glass substrate 5 except that the glass original plate 1 is arranged in a different direction by 180°. Make one lot L.
 図1で左側に配置されたロットLが、図5Aの切り出しパターンのガラス原板1で形成され、図1で中央に配置されたロットLが、図5Bと図5Cの切り出しパターンのガラス原板1で形成され、図1で右側に配置されたロットLが、図5Dの切り出しパターンのガラス原板1で形成されるものとする。 The lot L arranged on the left side in FIG. 1 is formed by the glass master plate 1 having the cutout pattern shown in FIG. 5A, and the lot L arranged at the center in FIG. 1 is the glass master plate 1 having the cutout pattern shown in FIGS. 5B and 5C. It is assumed that the lot L formed and arranged on the right side in FIG. 1 is formed by the original glass plate 1 having the cutout pattern in FIG. 5D.
 振り分け工程S2では、欠陥検査工程S1の原板判定工程S12で良品と判定されたガラス原板1が、搬送路2上から複数の取出装置4に振り分けられる。原板判定工程S12で良品と判定されるガラス原板1は、不合格欠陥を有していても、所定の切り出しパターンを有するロットLが存在するものであり、そのロットLを形成する取出装置4に振り分けられる。所定の切り出しパターンとは、ガラス原板1の不合格欠陥が、ガラス基板5となる領域のうちの少なくとも1つに位置しない切り出しパターンである。 In the sorting step S2, the glass original plate 1 determined as a non-defective product in the original plate determination step S12 of the defect inspection step S1 is distributed from the transport path 2 to a plurality of take-out devices 4. The glass original plate 1 that is determined as a non-defective product in the original plate determination step S12 has a lot L having a predetermined cutting pattern even if it has a reject defect, and the take-out device 4 that forms the lot L has the defect. It is distributed. The predetermined cutout pattern is a cutout pattern in which the rejected defect of the original glass plate 1 is not located in at least one of the regions to be the glass substrate 5.
 本実施形態では、ガラス原板1の不合格欠陥が位置するか否かを判断される対象は、ガラス基板5となる領域のうち、ガラス基板5の有効領域5aとなる領域である。ガラス基板5の有効領域5aとは、ガラス基板5が電子機器等で使用される際に、ガラス基板5のうち実際に使用される領域のことである。 In the present embodiment, the target for determining whether or not the rejected defect of the glass original plate 1 is located is the effective area 5a of the glass substrate 5 in the area of the glass substrate 5. The effective area 5a of the glass substrate 5 is an area of the glass substrate 5 that is actually used when the glass substrate 5 is used in an electronic device or the like.
 例えば、図5A~図5Dにおいて、ガラス原板1の位置Pに不合格欠陥があると仮定した場合、図5Aの切り出しパターンでは、ガラス基板5の有効領域5aとなる領域に、不合格欠陥が位置する。従って、振り分け工程S2では、位置Pに不合格欠陥があるガラス原板1は、図5Aの切り出しパターンを有するロットL(図1で左側配置のもの)には振り分けられない。 For example, in FIGS. 5A to 5D, if it is assumed that there is a defective defect at the position P of the original glass plate 1, in the cutout pattern of FIG. 5A, the defective defect is located in the effective region 5a of the glass substrate 5. To do. Therefore, in the distribution step S2, the glass original plate 1 having the defective defect at the position P is not distributed to the lot L (the one arranged on the left side in FIG. 1) having the cutout pattern shown in FIG. 5A.
 図5Bの切り出しパターンでは、ガラス基板5の有効領域5aとなる領域に、不合格欠陥が位置する。しかし、図5Cの切り出しパターンでは、ガラス基板5の有効領域5aとなる領域に、不合格欠陥が位置しない。この場合、位置Pに不合格欠陥があるガラス原板1は、図5Cの切り出しパターンを有するロットL(図1で中央配置のもの)に振り分けることができる。 In the cutout pattern of FIG. 5B, the rejected defect is located in the effective area 5a of the glass substrate 5. However, in the cutout pattern of FIG. 5C, the reject defect is not located in the area that becomes the effective area 5a of the glass substrate 5. In this case, the glass original plate 1 having the reject defect at the position P can be distributed to the lot L (the central arrangement in FIG. 1) having the cutout pattern of FIG. 5C.
 図5Dの切り出しパターンでは、4枚のガラス基板5の有効領域5aとなる領域の1つに、不合格欠陥が位置する。しかし、4枚のガラス基板5の有効領域5aとなる領域の3つに、不合格欠陥が位置しない。この場合、位置Pに不合格欠陥があるガラス原板1は、図5Dの切り出しパターンを有するロットL(図1で右側配置のもの)に振り分けることができる。なお、不合格欠陥が位置しない有効領域5aの数は、図5Dに示すような3つに限らず、1つ以上であれば、図5Dの切り出しパターンを有するロットLに振り分け可能である。ただし、ガラス基板5の有効領域5aを複数有する切り出しパターンでは、不合格欠陥が位置しない有効領域5aの数が、1つ以上であるガラス原板1を必ず振り分ける必要はなく、所定の閾値以上であるガラス原板1を振り分け可能としてもよい。閾値は、ガラス基板5の需給状況や製造ラインの稼働状況等に応じ、適宜決定すればよい。 In the cutout pattern of FIG. 5D, the rejected defect is located in one of the effective regions 5a of the four glass substrates 5. However, the rejected defect is not located in three of the effective regions 5a of the four glass substrates 5. In this case, the glass original plate 1 having the reject defect at the position P can be distributed to the lot L (the one arranged on the right side in FIG. 1) having the cutout pattern in FIG. 5D. The number of valid areas 5a in which no reject defect is located is not limited to three as shown in FIG. 5D, and if the number is one or more, the lot L having the cutout pattern in FIG. 5D can be distributed. However, in the cutout pattern having a plurality of effective areas 5a of the glass substrate 5, the number of the effective areas 5a in which the reject defect is not located does not necessarily have to be the glass original plate 1 which is one or more, and is equal to or more than the predetermined threshold value. The original glass plate 1 may be distributed. The threshold value may be appropriately determined according to the supply and demand status of the glass substrate 5, the operating status of the manufacturing line, and the like.
 つまり、図5A~図5Dの図示例のように、不合格欠陥が位置Pにある場合、図1で中央配置のロットLと右側配置のロットLに振り分け可能である。このように、振り分け可能なロットLが複数存在する場合は、ガラス基板5の需給状況や製造ラインの稼働状況等に鑑みて、振り分け先のロットLが選択される。 That is, as in the illustrated example of FIGS. 5A to 5D, when the rejected defect is located at the position P, it is possible to distribute the lot L to the central arrangement and the lot L to the right arrangement in FIG. In this way, when there are a plurality of lots L that can be distributed, the lot L of the distribution destination is selected in consideration of the supply and demand status of the glass substrate 5, the operating status of the manufacturing line, and the like.
 ガラス原板1が不合格欠陥を有しない場合や、図5Aの切り出しパターンのガラス基板5の有効領域5aとなる領域に不合格欠陥が位置しない場合には、ガラス原板1は、図5Aの切り出しパターンを有するロットL(図1で左側配置のもの)に振り分けられる。 When the original glass plate 1 has no rejected defects, or when the rejected defects are not located in the effective region 5a of the glass substrate 5 of the cutout pattern of FIG. 5A, the original glass plate 1 has the cutout pattern of FIG. 5A. Are assigned to the lot L (the one arranged on the left side in FIG. 1).
 また、ガラス基板5の有効領域5aとなる領域に、不合格欠陥が位置しない切り出しパターンを有するロットLが存在しない場合には、そのガラス原板1は、欠陥検査工程S1の原板判定工程S12で不良と判定される。この場合、ガラス原板1は、取出装置4に取り出されず、搬送路2によって搬送され、廃棄処分となる。 If the lot L having the cutout pattern in which the rejected defect is not located does not exist in the effective area 5a of the glass substrate 5, the glass original plate 1 is defective in the original plate determination step S12 of the defect inspection step S1. Is determined. In this case, the original glass plate 1 is not taken out by the take-out device 4, is carried by the carrying path 2, and is discarded.
 ロット判定値算出工程S4では、欠陥検出工程S11で取得された欠陥のデータに基づき、ロット形成工程S3で形成された1つのロットLに対して、ガラス原板1の1枚当りの合格欠陥の個数の平均値をロット判定値として算出する。1つのロット判定値を算出する対象となるガラス原板1の数(1つのロットLを形成するガラス原板1の数)は、1つの監視値を算出する対象となるガラス原板1の数よりも多い。1つのロットLを形成するガラス原板1の数は、例えば、100~500枚である。 In the lot determination value calculation step S4, based on the defect data acquired in the defect detection step S11, for one lot L formed in the lot formation step S3, the number of pass defects per glass original plate 1 The average value of is calculated as the lot judgment value. The number of glass original plates 1 (the number of glass original plates 1 forming one lot L) for which one lot determination value is calculated is larger than the number of glass original plates 1 for which one monitoring value is calculated. .. The number of original glass plates 1 forming one lot L is, for example, 100 to 500.
 ロット判定工程S5では、ロット判定値算出工程S4で算出されたロット判定値に基づいて、ロットLの合否を判定する。 In the lot determination step S5, the pass/fail of the lot L is determined based on the lot determination value calculated in the lot determination value calculation step S4.
 具体的には、ロット判定値が所定の閾値以下であれば、ロットLが合格と判定され、このロットLは、次の工程に搬送される。ロット判定値が所定の閾値を超えれていれば、ロットLは不合格と判定され、廃棄処分となる。 Specifically, if the lot judgment value is less than or equal to a predetermined threshold value, the lot L is judged to be acceptable and the lot L is transported to the next process. If the lot judgment value exceeds the predetermined threshold value, the lot L is judged to be unacceptable and is discarded.
 以上のように構成された本実施形態のガラス基板の製造方法では、以下の効果を享受できる。 The following effects can be enjoyed by the glass substrate manufacturing method of the present embodiment configured as described above.
 1枚当りの合格欠陥の個数の平均値である監視値に基づいて、判定基準を変更する。例えば、合格欠陥の個数が増加した場合には、判定基準を厳しくすることにより、増加した合格欠陥の個数を、減少させて監視値を所望の範囲に制御することが可能である。一方、合格欠陥の個数が減少した場合には、判定基準を緩くすることにより、減少した合格欠陥の個数を増加させて監視値を所望の範囲に制御することが可能である。このように、本実施形態のガラス基板の製造方法によれば、ガラス基板の製造に使用されるガラス原板の合格欠陥の個数を安定化することが可能である。このため、合格欠陥の個数が短期的に増加した場合であっても、ロットにおける合格欠陥の平均個数の増加を抑制することができる。 Change the judgment standard based on the monitoring value, which is the average value of the number of passing defects per sheet. For example, when the number of passed defects increases, it is possible to reduce the increased number of passed defects and control the monitoring value within a desired range by tightening the criterion. On the other hand, when the number of passing defects decreases, the judgment standard can be loosened to increase the number of passing passing defects and control the monitoring value within a desired range. As described above, according to the method for manufacturing a glass substrate of the present embodiment, it is possible to stabilize the number of passing defects of the original glass plate used for manufacturing the glass substrate. Therefore, even if the number of passing defects increases in the short term, it is possible to suppress an increase in the average number of passing defects in the lot.
 また、振り分け工程S2では、ガラス原板1が不合格欠陥を有していても、所定の切り出しパターンを有するロットLが存在すれば、そのロットLを形成する取出装置4に振り分けられる。従って、不合格欠陥を有するガラス原板1として廃棄処分となるガラス原板1の枚数を低減することができる。 Further, in the distribution step S2, even if the original glass plate 1 has a defective defect, if there is a lot L having a predetermined cutting pattern, it is distributed to the take-out device 4 that forms the lot L. Therefore, it is possible to reduce the number of glass original plates 1 to be discarded as the glass original plates 1 having a reject defect.
 また、1つのロットLに対してガラス原板1の1枚当りの合格欠陥の個数の平均値をロット判定値として算出し、ロット判定値に基づき、ロットLの合否を判定している。そして、1つのロット判定値を算出する対象となるガラス原板1の枚数が、1つの監視値を算出する対象となるガラス原板1の枚数よりも多い。この場合、判定基準を厳しくした場合、判定基準を厳しくする前のガラス原板1が、既にロットLを途中まで形成していても、判定基準を厳しくした後のガラス原板1が、同じロットLを形成することが可能になる。そのため、形成される1つのロットLの全体の合格欠陥数を抑制することができる。従って、監視値に基づき、判定基準を厳しくした場合、不合格となるロットLの数を抑制可能となる。従って、廃棄処分とされるロットLの数を低減できる。 Also, the average value of the number of passing defects per glass original plate 1 for one lot L is calculated as a lot judgment value, and the acceptance/rejection of lot L is judged based on the lot judgment value. The number of glass original plates 1 for which one lot determination value is calculated is larger than the number of glass original plates 1 for which one monitoring value is calculated. In this case, when the judgment standard is tightened, even if the glass original plate 1 before the judgment standard is tightened has already formed the lot L in the middle, the glass master plate 1 after the judgment standard is tightened is the same lot L. Can be formed. Therefore, it is possible to suppress the total number of passing defects in one formed lot L. Therefore, when the judgment standard is made strict based on the monitored value, the number of rejected lots L can be suppressed. Therefore, the number of lots L to be discarded can be reduced.
 本発明は、上記実施形態に限定されるものでは無く、その技術的思想の範囲内で、様々な変形が可能である。例えば、上記実施形態では、不合格欠陥を有するガラス原板が、切り出しパターンが異なる複数のロットに振り分けられていたが、このような振り分けは必ずしも行う必要は無い。また、上記実施形態では、ロット判定値に基づき、ロットの合否を判定していたが、このようなロット判定は必ずしも行う必要は無い。 The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the technical idea thereof. For example, in the above-described embodiment, the glass original plate having the rejected defect is distributed to a plurality of lots having different cutting patterns, but such distribution is not necessarily required. In addition, in the above-described embodiment, the lot acceptance/rejection is determined based on the lot determination value, but such lot determination does not necessarily have to be performed.
 上記実施形態では、欠陥検査工程S1で監視値算出工程S13、上限値判定工程S14、下限値判定工程S16を行ったが、振り分け工程S2で監視値算出工程S13、上限値判定工程S14、下限値判定工程S16を行ってもよい。欠陥検査工程S1又は振り分け工程S2で監視値算出工程S13、上限値判定工程S14、下限値判定工程S16を行う場合、必ずしも、毎回、監視値算出工程S13、上限値判定工程S14、下限値判定工程S16を行う必要はなく、数回に1回程度の割合で監視値算出工程S13、上限値判定工程S14、下限値判定工程S16を行ってもよい。あるいは、欠陥検査工程S1又は振り分け工程S2で監視値算出工程S13、上限値判定工程S14、下限値判定工程S16を行うことなく、所定の時間間隔で監視値算出工程S13、上限値判定工程S14、下限値判定工程S16を行ってもよい。要は、合格欠陥の個数の短期的な変動を把握できるように、監視値算出工程S13、上限値判定工程S14、下限値判定工程S16を行えばよい。 In the above embodiment, the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value determination step S16 are performed in the defect inspection step S1, but the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value are performed in the distribution step S2. The determination step S16 may be performed. When the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value determination step S16 are performed in the defect inspection step S1 or the distribution step S2, the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value determination step are not always required. It is not necessary to perform S16, and the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value determination step S16 may be performed about once every several times. Alternatively, without performing the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value determination step S16 in the defect inspection step S1 or the distribution step S2, the monitoring value calculation step S13, the upper limit value determination step S14 at a predetermined time interval, The lower limit value determination step S16 may be performed. In short, the monitoring value calculation step S13, the upper limit value determination step S14, and the lower limit value determination step S16 may be performed so that the short-term fluctuation in the number of passed defects can be grasped.
 上記実施形態では、ガラス原板1の不合格欠陥が位置するか否かを判断される対象をガラス基板5の有効領域5aとしたが、ガラス基板5となる領域としてもよい。 In the above embodiment, the effective area 5a of the glass substrate 5 is the object for determining whether or not the reject defect of the glass original plate 1 is located, but it may be the area to be the glass substrate 5.
1   ガラス原板
5   ガラス基板
L   ロット
S1  欠陥検査工程
S11 欠陥検出工程
S12 原板判定工程
S13 監視値算出工程
S14 上限値判定工程
S15 判定基準を厳しくする工程
S16 下限値判定工程
S17 判定基準を緩くする工程
S18 判定基準維持工程
S2  振り分け工程
S3  ロット形成工程
S4  ロット判定値算出工程
S5  ロット判定工程
1 Glass Original Plate 5 Glass Substrate L Lot S1 Defect Inspection Step S11 Defect Detection Step S12 Original Plate Judgment Step S13 Monitoring Value Calculation Step S14 Upper Limit Value Judgment Step S15 Strict Judgment Standard S16 Lower Limit Judgment Step S17 Loosening Judgment Standard S18 Judgment standard maintenance step S2 Distribution step S3 Lot formation step S4 Lot judgment value calculation step S5 Lot judgment step

Claims (7)

  1.  ガラス原板からガラス基板を製造する方法であって、前記ガラス原板に存在する所定の判定基準で合格と判定される合格欠陥と前記判定基準で不合格と判定される不合格欠陥とを検出する欠陥検出工程と、前記欠陥検出工程の結果に基づき、前記ガラス原板の良否を判定する原板判定工程と、前記原板判定工程で良品と判定された前記ガラス原板でロットを形成するロット形成工程とを備えるガラス基板の製造方法において、
     前記原板判定工程で良品と判定された複数の前記ガラス原板について、1枚当りの前記合格欠陥の個数の平均値を監視値として算出し、前記監視値に基づき、前記判定基準を変更することを特徴とするガラス基板の製造方法。
    A method of manufacturing a glass substrate from a glass original plate, a defect that detects a pass defect that is determined to be pass according to a predetermined criterion existing in the glass plate and a fail defect that is determined to be a failure at the criterion. A detection step, based on the result of the defect detection step, a master plate determination step of determining the quality of the glass master plate, and a lot forming step of forming a lot with the glass master plate determined to be non-defective in the master plate determination step In the method of manufacturing a glass substrate,
    For the plurality of glass original plates determined to be non-defective in the original plate determination step, an average value of the number of the passing defects per sheet is calculated as a monitoring value, and the determination standard is changed based on the monitoring value. A method for manufacturing a glass substrate having a characteristic feature.
  2.  1つの前記監視値を算出する対象となる前記ガラス原板が、所定の時間内に前記原板判定工程で良品と判定されたものであることを特徴とする請求項1に記載のガラス基板の製造方法。 The method for manufacturing a glass substrate according to claim 1, wherein the glass original plate for which one of the monitoring values is to be calculated has been determined to be non-defective in the original plate determination step within a predetermined time. ..
  3.  前記監視値が予め設定された上限値を超えている場合に、前記判定基準を厳しくし、
     前記監視値が予め設定された下限値未満の場合に、前記判定基準を緩くすることを特徴とする請求項1又は2に記載のガラス基板の製造方法。
    When the monitored value exceeds a preset upper limit value, the judgment criterion is tightened,
    The method for manufacturing a glass substrate according to claim 1, wherein the determination criterion is loosened when the monitored value is less than a preset lower limit value.
  4.  前記ロット形成工程の前に、前記原板判定工程で良品と判定された前記ガラス原板を複数の取出装置に振り分ける振り分け工程を備え、
     前記ロット形成工程で、前記複数の取出装置が前記ロットをそれぞれ形成し、
     前記複数の取出装置が形成する前記ロットは、前記ガラス原板からの前記ガラス基板の切り出しパターンが互いに異なる前記ロットを含み、
     前記振り分け工程では、前記ガラス原板が、前記不合格欠陥が前記ガラス基板となる領域に位置しない前記切り出しパターンを有する前記ロットを形成する前記取出装置に振り分けられることを特徴とする請求項1~3の何れか1項に記載のガラス基板の製造方法。
    Prior to the lot forming step, a distribution step of distributing the glass original plate determined to be non-defective in the original plate determination step to a plurality of take-out devices,
    In the lot forming step, each of the plurality of take-out devices forms the lot,
    The lot formed by the plurality of take-out devices includes the lots having different cutting patterns of the glass substrate from the glass original plate,
    In the sorting step, the glass original plate is sorted into the take-out device that forms the lot having the cut-out pattern that is not located in the region where the rejected defect is the glass substrate. The method for manufacturing a glass substrate according to any one of 1.
  5.  1つの前記ロットに対して前記ガラス原板1枚当りの前記合格欠陥の個数の平均値をロット判定値として算出し、前記ロット判定値に基づき、前記ロットの合否を判定することを特徴とする請求項1~4の何れか1項に記載のガラス基板の製造方法。 An average value of the number of the passing defects per one glass original plate for one lot is calculated as a lot determination value, and the pass/fail of the lot is determined based on the lot determination value. Item 5. A method for manufacturing a glass substrate according to any one of Items 1 to 4.
  6.  1つの前記ロット判定値を算出する対象となる前記ガラス原板の数は、1つの前記監視値を算出する対象となる前記ガラス原板の数よりも多いことを特徴とする請求項5に記載のガラス基板の製造方法。 The glass according to claim 5, wherein the number of the glass original plates for which one of the lot determination values is calculated is larger than the number of the glass original plates for which one of the monitoring values is calculated. Substrate manufacturing method.
  7.  前記判定基準が、欠陥のサイズであることを特徴とする請求項1~6の何れか1項に記載のガラス基板の製造方法。 The method for manufacturing a glass substrate according to any one of claims 1 to 6, wherein the criterion is the size of a defect.
PCT/JP2020/000511 2019-01-31 2020-01-09 Method for manufacturing glass substrate WO2020158330A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-015666 2019-01-31
JP2019015666A JP2020121911A (en) 2019-01-31 2019-01-31 Method of manufacturing glass substrate

Publications (1)

Publication Number Publication Date
WO2020158330A1 true WO2020158330A1 (en) 2020-08-06

Family

ID=71842125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000511 WO2020158330A1 (en) 2019-01-31 2020-01-09 Method for manufacturing glass substrate

Country Status (2)

Country Link
JP (1) JP2020121911A (en)
WO (1) WO2020158330A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087923A1 (en) * 2002-04-03 2003-10-23 Nh Techno Glass Corporation Liquid crystal display unit-use glass substrate and method of producing mother glass and mother glass inspection device
JP2003322842A (en) * 2002-05-03 2003-11-14 Chi Mei Electronics Corp Method for sorting substrate, method for sorting the same substrate by defining working area of substrate and method for defining working area of substrate
WO2018116756A1 (en) * 2016-12-20 2018-06-28 日本電気硝子株式会社 Method for manufacturing glass substrate
WO2018123406A1 (en) * 2016-12-26 2018-07-05 日本電気硝子株式会社 Method for producing glass plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087923A1 (en) * 2002-04-03 2003-10-23 Nh Techno Glass Corporation Liquid crystal display unit-use glass substrate and method of producing mother glass and mother glass inspection device
JP2003322842A (en) * 2002-05-03 2003-11-14 Chi Mei Electronics Corp Method for sorting substrate, method for sorting the same substrate by defining working area of substrate and method for defining working area of substrate
WO2018116756A1 (en) * 2016-12-20 2018-06-28 日本電気硝子株式会社 Method for manufacturing glass substrate
WO2018123406A1 (en) * 2016-12-26 2018-07-05 日本電気硝子株式会社 Method for producing glass plate

Also Published As

Publication number Publication date
JP2020121911A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
US20160026948A1 (en) System for managing production of glass substrates and method for managing production of glass substrates
US20060128039A1 (en) Yield analysis method
JP2012104593A5 (en)
WO2020158330A1 (en) Method for manufacturing glass substrate
US20160207822A1 (en) Glass substrate production management system and glass substrate production management method
TW201921537A (en) Evaluation method and evaluation device of edge shape of silicon wafer, silicon wafer, and selection method and manufacturing method thereof
TWI802554B (en) Manufacturing method of glass substrate
JP2015004674A (en) Method for discriminating defect of optical film
CN101290901A (en) Wafer quality analysis method and device
CN111719130B (en) Temperature adjusting method in semiconductor coating equipment and semiconductor coating equipment
KR102480431B1 (en) Electrostatic monitoring system
KR101541242B1 (en) Work scheduling method for analyzing where defects occurred and for reducing occurrence of defects
WO2019013196A1 (en) Manufacturing management device, manufacturing system, and manufacturing management method
JP2008071790A (en) Method of estimating failure step, device of estimating failure step, program, and recording medium
JP7194739B2 (en) Display unit manufacturing system
JP2012073459A (en) Inspection method for common shape defect
US11726134B2 (en) Substrate inspection device and substrate inspection method
JP4946410B2 (en) Color filter production line
US12032013B2 (en) Substrate inspection device and substrate inspection method
US20200307117A1 (en) Optical film attachment system
WO2011155294A1 (en) Substrate processing apparatus, substrate transfer apparatus, and dent detecting apparatus
JP4905084B2 (en) Color filter defect inspection method and inspection apparatus
JPH04187768A (en) Method and device for controlling tray for loading material to be treated and the material conveyor
JP2024066136A (en) Glass plate manufacturing method and glass plate inspection equipment
CN117085955A (en) Wafer sorting system and wafer sorting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749069

Country of ref document: EP

Kind code of ref document: A1