WO2019013196A1 - Manufacturing management device, manufacturing system, and manufacturing management method - Google Patents

Manufacturing management device, manufacturing system, and manufacturing management method Download PDF

Info

Publication number
WO2019013196A1
WO2019013196A1 PCT/JP2018/026011 JP2018026011W WO2019013196A1 WO 2019013196 A1 WO2019013196 A1 WO 2019013196A1 JP 2018026011 W JP2018026011 W JP 2018026011W WO 2019013196 A1 WO2019013196 A1 WO 2019013196A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
contribution
components
degree
component
Prior art date
Application number
PCT/JP2018/026011
Other languages
French (fr)
Japanese (ja)
Inventor
太一 清水
博史 天野
多鹿 陽介
裕一 樋口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019013196A1 publication Critical patent/WO2019013196A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present disclosure relates to a manufacturing management apparatus, a manufacturing system including the manufacturing management apparatus, and a manufacturing management method.
  • a component mounter includes a plurality of feeders and a plurality of nozzles, and a component supplied by a single feeder selected from a plurality of feeders is suctioned by a single nozzle selected from a plurality of nozzles. Mount on a board.
  • a technique in which the positional deviation accuracy of suction is detected for each nozzle or each feeder, and used to determine the necessity of maintenance see, for example, Patent Document 1).
  • the present disclosure provides a manufacturing control apparatus, a manufacturing system, and a manufacturing control method that can support suppression of the reduction in production efficiency and quality of products.
  • a manufacturing management apparatus that manages a plurality of processes performed to manufacture a product, and each of the plurality of processes is: The method is executed using two or more components selected from a plurality of components, and the manufacturing control device corresponds to each of the plurality of processes, the two or more components used in the corresponding process, and An acquisition unit for acquiring production log information indicating the results of the processing to be performed, and a calculation unit for calculating the contribution degree of each of the plurality of components to the production of the product by statistically processing the production log information And an output unit that outputs the degree of contribution calculated by the calculation unit.
  • a manufacturing system includes the manufacturing control apparatus, and at least one of the plurality of components, and includes a manufacturing facility that manufactures the product.
  • a manufacturing control method for managing a plurality of processes performed to manufacture a product, wherein each of the plurality of processes includes a plurality of components.
  • the method is executed using two or more selected components, and the manufacturing control method includes, for each of the plurality of processes, two or more components used in the corresponding process, and the results of the corresponding process
  • the manufacturing control method includes, for each of the plurality of processes, two or more components used in the corresponding process, and the results of the corresponding process
  • one aspect of the present disclosure can be realized as a program for causing a computer to function the manufacturing control method.
  • it may be realized as a computer readable recording medium storing the program.
  • FIG. 1 is a diagram showing the configuration of a manufacturing system according to the embodiment.
  • FIG. 2 is a diagram illustrating an example of manufacturing log information acquired by the manufacturing management apparatus according to the embodiment.
  • FIG. 3 is a block diagram showing the configuration of a manufacturing control apparatus according to the embodiment.
  • FIG. 4 is a diagram showing input data of a logistic regression model by the manufacturing control apparatus according to the embodiment.
  • FIG. 5 is a diagram showing a list of contribution degrees for each component calculated by the manufacturing control apparatus according to the embodiment.
  • FIG. 6 is a flowchart showing the operation of the manufacturing control apparatus according to the embodiment.
  • FIG. 7 is a diagram showing the number of occurrences of errors per predetermined number of times calculated by the manufacturing management apparatus according to the first modification of the embodiment.
  • FIG. 8 is a diagram showing a list of contribution degrees for each component calculated by the manufacturing management apparatus according to the second modification of the embodiment.
  • FIG. 9 is a diagram showing input data of a Poisson regression model by the manufacturing control apparatus according to the third modification of the embodiment.
  • FIG. 10 is a diagram illustrating input data of a binomial logistic regression model by the manufacturing management apparatus according to the fourth modification of the embodiment.
  • a manufacturing control apparatus that manages a plurality of processes performed to manufacture an article, and each of the plurality of processes is A plurality of components selected from a plurality of components, and the manufacturing control apparatus, for each of the plurality of processes, two or more components used in corresponding processes; Calculation for calculating the contribution of each of the plurality of components to the manufacture of the product by statistically acquiring the production log information indicating the corresponding processing performance and the production log information And an output unit that outputs the degree of contribution calculated by the calculation unit.
  • the degree of contribution is calculated for each component, and therefore the necessity of maintenance can be accurately determined based on the degree of contribution.
  • components that adversely affect manufacturing can be estimated based on the degree of contribution, and maintenance of the estimated bad components can be performed quickly. Therefore, according to the manufacturing control apparatus according to this aspect, it is possible to support the suppression of the deterioration of the production efficiency and the quality of the product.
  • the calculation unit may calculate the degree of contribution by processing the manufacturing log information based on a generalized linear model.
  • the contribution of each component is the quantified effect of the corresponding component on manufacturing, and statistical processing based on the generalized linear model eliminates the effects of other components. ing. For this reason, components that adversely affect manufacturing can be accurately estimated based on the degree of contribution. As the estimation accuracy of the adversely affecting component is increased, it is not necessary for a person such as a maintenance worker or a manufacturing manager (operator) to investigate and judge the abnormal point, and to promptly cope with the bad component. Can.
  • the generalized linear model may be a logistic regression model, a Poisson regression model, or a binary logistic regression model.
  • the optimal regression model can be used according to the information classification of manufacture log information, the contribution degree with high reliability can be calculated.
  • the actual result is indicated by a flag indicating the presence or absence of an error in the corresponding processing, and the calculation unit calculates the contribution degree by processing the manufacturing log information based on a logistic regression model. It is also good.
  • the calculation unit may further calculate the number of predictions of an error that occurs when a predetermined component is used a predetermined number of times based on the degree of contribution of each of the plurality of components.
  • the output unit may be a display unit which graphically displays the degree of contribution of each of the plurality of components.
  • the degree of contribution can be presented in a display manner that can be easily understood by the maintenance worker or operator.
  • the plurality of components may be any of a plurality of manufacturing facilities for performing the plurality of processes, a plurality of component parts provided in each of the plurality of manufacturing facilities, and a plurality of components constituting the product. It may be
  • the degree of contribution can be calculated more accurately.
  • the plurality of components are classified into a plurality of component groups for each type, and each of the plurality of processes is executed using a component selected from each of the plurality of component groups.
  • a manufacturing system includes the manufacturing control apparatus, and at least one of the plurality of components, and includes a manufacturing facility that manufactures the product.
  • the manufacturing control device helps to suppress the deterioration of the production efficiency and the quality of the product. For this reason, according to the manufacturing system according to the present aspect, it is possible to suppress the deterioration of the production efficiency and the quality of the product.
  • a manufacturing control method for managing a plurality of processes performed to manufacture a product, wherein each of the plurality of processes includes a plurality of components.
  • the method is executed using two or more selected components, and the manufacturing control method includes, for each of the plurality of processes, two or more components used in the corresponding process, and the results of the corresponding process
  • the manufacturing control method includes, for each of the plurality of processes, two or more components used in the corresponding process, and the results of the corresponding process
  • a program according to an aspect of the present disclosure is a program for causing a computer to execute the manufacturing method.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
  • FIG. 1 is a diagram showing the configuration of a manufacturing system 10 according to the present embodiment.
  • the manufacturing system 10 includes a manufacturing facility 20 and a manufacturing control apparatus 100.
  • the manufacturing facility 20 manufactures the product 30, and the manufacturing control apparatus 100 manages a plurality of processes performed to manufacture the product 30 by the manufacturing facility 20. .
  • the manufacturing facility 20 manufactures the product 30 by performing a plurality of processes.
  • the manufacturing facility 20 is, for example, a component mounter.
  • the product 30 has a substrate 31 and a plurality of components 32 mounted on the substrate 31.
  • the manufacturing facility 20 mounts the plurality of components 32 on the substrate 31.
  • the manufacturing facility 20 is an example of a manufacturing apparatus disposed on a manufacturing line of the product 30, and by mounting a plurality of parts 32 on each of a plurality of substrates 31 sequentially carried in, parts can be obtained.
  • the substrate 31 with the 32 mounted thereon ie, the product 30
  • the carried-out substrate 31 (product 30) is transported to a manufacturing facility that performs the next manufacturing process (for example, a reflow process) or an inspection facility that performs an inspection of the product 30.
  • the production facility 20 includes a plurality of component groups each including a plurality of components (not shown) involved in the production of the product 30.
  • the plurality of components include a feeder for supplying the component 32, a nozzle for suctioning the component 32, a header for holding the nozzle and moving between the feeder and the substrate 31 (lane in which the substrate 31 is transported).
  • the manufacturing facility 20 includes a feeder group including a plurality of feeders, a nozzle group including a plurality of nozzles, a reel group including a plurality of reels, and a header group including a plurality of headers.
  • the product 30 is manufactured by performing a plurality of processes.
  • the plurality of processes are, for example, individual mounting processes of the plurality of components 32.
  • the plurality of processes may be performed simultaneously or sequentially.
  • Each of the plurality of processes is performed using two or more components selected from the plurality of components included in the manufacturing facility 20.
  • the plurality of components also includes a component 32 which is an object to be mounted.
  • the manufacturing control apparatus 100 is an apparatus that manages a plurality of processes performed to manufacture the product 30.
  • the manufacturing control apparatus 100 is, for example, a computer provided with a display or a computer connected to the display.
  • the manufacturing management apparatus 100 acquires manufacturing log information from the manufacturing facility 20, and manages a plurality of processes based on the acquired manufacturing log information.
  • the manufacturing log information is data indicating the results of each of the plurality of processes performed by the manufacturing facility 20.
  • FIG. 2 is a diagram showing an example of manufacturing log information acquired by the manufacturing control apparatus 100 according to the present embodiment. As shown in FIG. 2, for each of a plurality of processes, the manufacturing log information indicates the time when the corresponding process was performed, the two or more components used in the corresponding process, and the results of the corresponding process. Is shown.
  • the time when the process is performed is, for example, at least one of the start time and the end time of the process.
  • the start time and the end time are represented by, for example, a date indicated by year / month / day and a time indicated by hour: minute: second.
  • the time may be expressed in units below second, such as milliseconds.
  • the processing results are indicated by a flag (error flag) indicating the presence or absence of an error in the corresponding processing.
  • a flag error flag
  • FIG. 2 when the error flag is “1”, it indicates that an error has occurred, and when the error flag is “0”, it indicates that an error has not occurred.
  • the manufacturing facility 20 includes a unit A group, a unit B group, and a unit C group.
  • the unit A group is a feeder group including a plurality of feeders (unit A).
  • the unit B group is a nozzle group including a plurality of nozzles (unit B).
  • the unit C group is a reel group composed of a plurality of reels (units C).
  • Information indicated by an alphabet such as "A001", "B001" and "C001" and a three-digit number is an example of an identification number unique to each component. The way of assigning identification numbers is not particularly limited.
  • the process P001 is performed using a feeder A having an identification number "A001", a nozzle B having an identification number "B001”, and a reel C having an identification number "C001”.
  • feeder A 001 when “feeder A 001” is described, it means the feeder A whose identification number is “A 001”. The same applies to "nozzle B001” and "reel C001”.
  • an identification number such as "P001” is given for each process, but this is described for the sake of clarity of the explanation, and it is not included in the manufacturing log information. Good.
  • one unit is selected from each of unit A, unit B and unit C for each process, and the selected units cooperate with one another. Perform the corresponding processing.
  • FIG. 3 is a block diagram showing the configuration of the manufacturing control apparatus 100 according to the present embodiment.
  • the manufacturing management apparatus 100 includes an acquisition unit 110, a calculation unit 120, a display unit 130, and a storage unit 140.
  • the acquisition unit 110 acquires manufacturing log information from the manufacturing facility 20.
  • the acquisition unit 110 acquires the manufacturing log information illustrated in FIG. 2 and stores the acquired manufacturing log information in the storage unit 140.
  • the acquisition unit 110 is, for example, a communication interface that communicates with the manufacturing facility 20.
  • the communication may be either wireless communication or wired communication.
  • the calculation unit 120 statistically processes the manufacturing log information to calculate the contribution of each of the plurality of components to the manufacture of the product 30.
  • the contribution of a component quantifies the influence of the component on manufacturing after excluding the influence of other components. Specifically, the contribution of the component corresponds to the degree of adverse effect on production, ie, the degree of badness.
  • the calculation unit 120 calculates the degree of contribution by processing the manufacturing log information based on the generalized linear model.
  • Generalized linear models include, but are not limited to, logistic regression models, Poisson regression models or binary logistic regression models.
  • the calculation unit 120 calculates the degree of contribution by processing the manufacturing log information based on the logistic regression model. Details of the process of calculating the degree of contribution based on the logistic regression model will be described later.
  • the calculation unit 120 may calculate the degree of contribution based on information in which at least one of the start time and the end time of the corresponding process is included in the predetermined aggregation period in the manufacturing log information.
  • the aggregation period is a period during which the contribution of components used in the processing performed during the period is calculated, and is, for example, one hour to several hours, or one day to several days, etc. It is a period.
  • the aggregation period By setting the aggregation period to a short period such as one minute to several minutes or one hour to several hours, it is possible to calculate the contribution degree with high real-time property. For this reason, abnormality of the component can be determined promptly based on the calculated degree of contribution, and manufacturing processes such as maintenance work such as member replacement can be improved. That is, it is not necessary to perform periodic maintenance and the like. Therefore, the downtime of the production line can be reduced and the production efficiency can be improved.
  • the display unit 130 is an example of an output unit that outputs the degree of contribution calculated by the calculation unit 120.
  • the display unit 130 graphically displays the degree of contribution of each component.
  • the display unit 130 displays a list indicating the degree of contribution of each component.
  • the display unit 130 is, for example, a flat panel display such as a liquid crystal display (LCD) or an organic electroluminescence (EL) display, but is not limited thereto.
  • a flat panel display such as a liquid crystal display (LCD) or an organic electroluminescence (EL) display, but is not limited thereto.
  • the storage unit 140 is a memory for storing the manufacturing log information acquired from the manufacturing facility 20, the calculated contribution degree, and the like.
  • the storage unit 140 is a non-volatile memory such as a hard disk drive (HDD) or a semiconductor memory.
  • the calculation unit 120 processes the manufacturing log information based on the logistic regression model.
  • the logistic regression model is a regression model used when the dependent variable (target variable) is represented by two values. Specifically, the calculation unit 120 first generates input data of the logistic regression model based on the manufacturing log information.
  • FIG. 4 is a diagram showing input data of a logistic regression model by the manufacturing control apparatus 100 according to the present embodiment.
  • each process is disposed on the vertical axis (column direction), and on the horizontal axis (row direction), a value y indicating the presence or absence of an error, and use and non-use of each component involved in the process.
  • a value x indicating.
  • the value x is expressed as like x a1, x a2, x b1 in accordance with the identification number of the components.
  • an identification number such as "P001" is assigned to each process, but this is described to make the description easy to understand. , Not included in the input data.
  • the calculation unit 120 sets “0” or “1” to each of the value y indicating the presence or absence of an error and the value x indicating the use and non-use of all the components for each process based on the manufacturing log information. Assign a number.
  • the calculation unit 120 assigns “1” to the value y corresponding to the process in which the error has occurred, and assigns “0” to the value y corresponding to the process in which the error has not occurred. That is, in FIG. 4, when the value y is “1”, it indicates that an error occurs in the corresponding process, and when the value y is “0”, no error occurs in the corresponding process. It is shown that.
  • the calculation unit 120 assigns “1” to the value x of the used component and assigns “0” to the value x of the unused component for each process. That is, in FIG. 4, when the component value x is “1”, it indicates that the component is used for the corresponding processing, and when the value x is “0”, the corresponding processing is performed. Indicates that the component has not been used.
  • FIG. 4 shows that the feeder A 001 and the nozzle B 001 are used, the process P 001 is performed, and an error does not occur. Similarly, the feeder A 002 and the nozzle B 002 are used to perform the process P 002, indicating that an error has occurred.
  • the calculation unit 120 calculates the degree of contribution based on the logistic regression model, using the data shown in FIG. 4 as input data.
  • the error occurrence probability is represented by the following equation 1 with ⁇ .
  • Equation 1 C is a common constant term.
  • x a1 , x a2 , x b1 and x b2 are values x of the respective components shown in FIG. 4.
  • Each of a 1 , a 2 , b 1 and b 2 is a parameter (coefficient) of each component, and corresponds to the contribution of the component.
  • the calculation unit 120 substitutes the values of x and y into Equation 1 and Equation 2 for each process (row shown in FIG. 4), that is, for each combination of components, and P (y
  • FIG. 5 is a diagram showing a list of contribution degrees for each component calculated by the manufacturing control apparatus 100 according to the present embodiment.
  • the degree of contribution indicates the inferiority of the component, so a higher numerical value indicates that an error is more likely to occur when the corresponding component is used.
  • the degree of contribution of each component is arranged in descending order. This indicates that the component positioned at the top (specifically, the feeder A 004) has the highest contribution, and the need for maintenance is high.
  • the list of contribution degrees shown in FIG. 5 is displayed on the display unit 130, for example. As a result, the necessity of maintenance can be easily determined for each component by looking at the list in which the maintenance worker or operator etc. are illustrated.
  • the degrees of contribution may be arranged in ascending order. Alternatively, they may be arranged in the ascending or descending order of the identification numbers of the components.
  • FIG. 6 is a flowchart showing the operation of the manufacturing control apparatus 100 according to the present embodiment.
  • the acquisition unit 110 acquires manufacturing log information from the manufacturing facility 20 (S10). For example, the acquiring unit 110 acquires, for each predetermined period such as one hour to several hours or one day to several days, manufacturing log information on the process performed in the period. Alternatively, the acquiring unit 110 may acquire manufacturing log information on the process each time the manufacturing facility 20 performs the process. The acquisition unit 110 stores the acquired manufacturing log information in the storage unit 140.
  • the calculation unit 120 calculates the degree of contribution for each component (S20). Specifically, as described above, the calculation unit 120 calculates the contribution degree for each component based on the logistic regression model using the input data shown in FIG. 4. The calculation unit 120 calculates, for example, the degree of contribution for each predetermined period, such as one hour or one day.
  • the display unit 130 graphically displays the calculated degree of contribution (S30). For example, as shown in FIG. 5, the display unit 130 displays the degree of contribution of each component in a list.
  • the degree of contribution is calculated for each component by performing analysis based on the regression model.
  • the contribution of a component is based on the contribution because the influence of the corresponding component on manufacturing is quantified and statistical processing based on the regression model excludes the influence of other components.
  • the necessity of maintenance can be determined accurately. For example, components that adversely affect manufacturing can be estimated based on the degree of contribution, and maintenance of the estimated bad components can be performed quickly.
  • a person such as a maintenance worker or a production manager (operator) does not have to investigate and judge the abnormal part, and bad components can be dealt with promptly. Therefore, according to the manufacturing control apparatus 100 which concerns on this Embodiment, suppression of the fall of the productive efficiency of the product 30, and quality can be assisted.
  • the manufacturing management apparatus calculates the number of predicted errors that may occur for each component based on the calculated degree of contribution, and displays the calculation result.
  • the configurations of the manufacturing control apparatus 100 and the manufacturing system 10 are the same as those of the embodiment, and thus the description thereof is omitted.
  • the calculation unit 120 calculates the number of times of error that occurs when the corresponding component is used a predetermined number of times.
  • the predetermined number of times is, for example, 10000 times, but is not limited to this, and may be 1000 times or 100,000 times.
  • the calculation unit 120 uses the degree of contribution as a known value Calculate the number of errors predicted for each element. Specifically, the calculation unit 120 calculates the number of predicted errors (error occurrence probability) p when the target component is used once based on Equation 4 below.
  • the contribution of the average unit is a value obtained by averaging the contributions of one or more units that can be used in combination with the target unit.
  • the contribution of the average unit is a value obtained by averaging the contributions of all the nozzles that can be combined with the feeder A 001.
  • the calculation unit 120 calculates the number of occurrences of errors per 10000 times by multiplying the calculated p by 10000.
  • the calculation unit 120 generates, for example, a list of the number of times of errors illustrated in FIG. 7 by calculating 10000 ⁇ p for all the constituent elements.
  • FIG. 7 is a diagram showing the number of times of occurrence of an error in 10000 trials for each component calculated by the manufacturing management apparatus 100 according to the present modification.
  • the presence or absence of an error can be displayed in a more easily understandable display manner for a maintenance worker or an operator.
  • FIG. 7 shows the result of calculating the degree of contribution on a daily basis. Thereby, the temporal change of the degree of contribution can also be represented.
  • the numerical values of the degree of contribution are illustrated as a list.
  • the degree of contribution is shown graphically by means other than numerical values.
  • the configurations of the manufacturing control apparatus 100 and the manufacturing system 10 are the same as those of the embodiment, and thus the description thereof is omitted.
  • the display unit 130 may classify the degree of contribution into a plurality of ranges according to the value as shown in the list shown in FIG.
  • FIG. 8 is a view showing another example of the list of contribution degrees for each component calculated by the manufacturing management apparatus 100 according to the present embodiment.
  • the degree of contribution is classified into, for example, four ranges according to the value.
  • predetermined colors are determined in advance for each range of contribution degree. For example, the smaller the degree of contribution, the whiter, and the larger the degree of contribution, the bluer.
  • the difference in color is expressed by the difference in density of dots. Note that the density difference of dots as shown in FIG. 8 or the type of hatching may be different for each range, instead of the color.
  • the calculation unit 120 performs division and setting of the range of possible values of the degree of contribution by performing clustering with the calculated degree of contribution for each component as input data.
  • the clustering method is, for example, a Ward method or a k-means method, but is not limited thereto. Further, the number of divisions of the range may not be four, and may be two or more. In addition, the calculation unit 120 may equally divide the range of the degree of contribution.
  • the calculation unit 120 calculates the contribution degree over a plurality of periods, and the results are displayed together. Specifically, the calculation unit 120 classifies the manufacturing log information according to the day on which the process is performed based on the start date and time of the process, and calculates the degree of contribution on a daily basis. In FIG. 8, Day 1 to Day 4 indicate the days on which the process was performed.
  • the degree of contribution can be presented in a manner that can be easily understood by the maintenance worker or the operator.
  • the number of errors per predetermined number may be displayed by color coding.
  • the manufacturing log information acquired by the manufacturing management apparatus 100 is different, and along with this, the regression model used by the calculating unit 120 is different.
  • the configurations of the manufacturing control apparatus 100 and the manufacturing system 10 are the same as those of the embodiment, and thus the description thereof is omitted.
  • the calculation unit 120 processes the manufacturing log information based on the Poisson regression model.
  • the Poisson regression model is a regression model used when the dependent variable (target variable) is a number value (count data) without an upper limit number.
  • FIG. 9 is a diagram showing input data of a Poisson regression model by the manufacturing control apparatus 100 according to the present modification.
  • the combination of the used component is shown similarly to the manufacture log information shown in FIG.
  • the producible number per day is used as the actual value y, instead of the error flag.
  • the number of producible products is a count value (count data) substantially without an upper limit.
  • the calculation unit 120 calculates the degree of contribution based on the Poisson regression model, using the data shown in FIG. 9 as input data.
  • the average number of predicted production is represented by ⁇ , and is represented by the following Equation 5.
  • Equation 5 C is a common constant term.
  • x a1 , x a2 , x b1 and x b2 are values x of the respective components shown in FIG. 4.
  • Each of a 1 , a 2 , b 1 and b 2 is a parameter (coefficient) of each component, and corresponds to the contribution of the component. These are the same as in the embodiment.
  • the left side of Equation 5 may be only ⁇ instead of log ⁇ .
  • the calculation unit 120 substitutes the values of x and y into Equations 5 and 6 for each combination of components (rows shown in FIG. 9), and maximizes P (y
  • the larger the actual value y the larger the number of producible products, which is preferable as the manufacturing equipment 20. Therefore, the contribution of the component corresponds to the degree of good influence on production, ie, the degree of goodness.
  • the contribution degree for each component can be calculated even when the number value with no upper limit is used as the actual value.
  • the contribution of a component is based on the contribution because the influence of the corresponding component on manufacturing is quantified and statistical processing based on the regression model excludes the influence of other components.
  • the necessity of maintenance can be determined accurately.
  • the manufacturing log information acquired by the manufacturing management apparatus 100 is different, and accordingly, the regression model used by the calculation unit 120 is different.
  • the configurations of the manufacturing control apparatus 100 and the manufacturing system 10 are the same as those of the embodiment, and thus the description thereof is omitted.
  • the calculation unit 120 processes the manufacturing log information based on the binomial logistic regression model.
  • the binomial logistic regression model is a regression model used when the dependent variable (target variable) is an upper limit number having a number value (count data).
  • FIG. 10 is a diagram showing input data of a binomial logistic regression model by the manufacturing management apparatus 100 according to the present modification.
  • the combination of the used component is shown similarly to the manufacture log information shown in FIG.
  • the number of times of occurrence of an error y and the number of times of implementation N are used as the actual value y, instead of the error flag.
  • the number of mountings corresponds to the number of processes performed in the corresponding combination.
  • the number of occurrences of errors y does not exceed the number of implementation times N. That is, y is a count value (count data) whose upper limit is N.
  • the calculation unit 120 calculates the degree of contribution based on a binomial logistic regression model, using the data shown in FIG. 10 as input data.
  • the occurrence probability of an error is represented by the following Equation 7 as q.
  • Equation 7 C is a common constant term.
  • x a1 , x a2 , x b1 and x b2 are values x of the respective components shown in FIG. 4.
  • Each of a 1 , a 2 , b 1 and b 2 is a parameter (coefficient) of each component, and corresponds to the contribution of the component. These are the same as in the embodiment.
  • the calculation unit 120 substitutes the values of x, y and N into Equations 7 and 8 for each combination of components (rows shown in FIG. 10), and P (y
  • the contribution degree for each component can be calculated even when the upper limit value is used as the actual value.
  • the contribution of a component is based on the contribution because the influence of the corresponding component on manufacturing is quantified and statistical processing based on the regression model excludes the influence of other components.
  • the necessity of maintenance can be determined accurately.
  • the degree of contribution for each component lot or manufacturer of parts is calculated with respect to the number of failures of electronic devices such as smart phones. This makes it possible to estimate lots with high failure rates or manufacturers.
  • regression model and probability distribution shown in the above embodiment and modification are merely examples, and other regression models and probability distributions may be used.
  • normal distribution or gamma distribution may be used.
  • a list of contribution degrees is displayed, but among the calculated contribution degrees, only contribution degrees and components (specifically, constituent elements that adversely affect) that are larger than the threshold are You may display it.
  • the output unit may be an audio output unit.
  • the output unit may output a component with a high degree of contribution as audio data.
  • the output unit may print a list of contribution degrees on a medium such as paper.
  • the manufacturing equipment 20 may be a processing device for processing a raw material such as metal or resin, and a molding device for molding a processed material.
  • the component may not be any one of the manufacturing equipment, the components provided in the manufacturing equipment, and the parts constituting the product. Specifically, the components do not have to be physically present.
  • the component may be a condition relating to manufacturing, which is an element that may affect production performance.
  • the component may be the condition of equipment such as the speed of a head or a part suction method, or may be the condition of a person such as a worker in charge or a group in charge.
  • the component may be conditions of the production method such as the presence or absence of splicing, or environmental conditions such as season.
  • Each of the above-described devices may be specifically a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, and the like.
  • a computer program is stored in a RAM (Ramdom Access Memory) or a hard disk unit.
  • Each device achieves its function by the microprocessor operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions to the computer in order to achieve a predetermined function.
  • a part or all of the components constituting each of the above-described devices may be configured from one system LSI (Large Scale Integration: large scale integrated circuit).
  • the system LSI is a super-multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically includes a microprocessor, a ROM (Read Only Memory), a RAM, etc. Computer system. A computer program is stored in the RAM. The system LSI achieves its functions by the microprocessor operating according to the computer program.
  • a part or all of the components constituting each of the above-described devices may be composed of an IC card or a single module which can be detached from each device.
  • the IC card or module is a computer system including a microprocessor, a ROM, a RAM, and the like.
  • the IC card or module may include the above-described ultra-multifunctional LSI.
  • the IC card or module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may be tamper resistant.
  • the present disclosure may be the method described above.
  • it may be a computer program that realizes these methods by a computer, or may be a digital signal composed of a computer program.
  • the present disclosure relates to a computer program or a recording medium capable of reading digital signals from a computer, such as a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD (Blu-ray (registration It may be recorded on a trademark (trademark) Disc), a semiconductor memory or the like.
  • a computer such as a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD (Blu-ray (registration It may be recorded on a trademark (trademark) Disc), a semiconductor memory or the like.
  • BD Blu-ray (registration It may be recorded on a trademark (trademark) Disc), a semiconductor memory or the like.
  • digital signals recorded on these recording media may be used.
  • the present disclosure may transmit a computer program or a digital signal via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, data broadcasting, and the like.
  • the present disclosure is a computer system provided with a microprocessor and a memory, the memory storing the computer program, and the microprocessor may operate according to the computer program.
  • It may be implemented by another independent computer system by recording and transferring the program or digital signal on a recording medium, or by transferring the program or digital signal via a network or the like .
  • the present disclosure can be used as, for example, a production management device that can help suppress the production efficiency and the deterioration of product quality, and can be used, for example, for management of production in a factory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

A manufacturing management device (100) for managing a plurality of processes performed to manufacture a manufactured item (30). Each of the plurality of processes is performed using two or more constituent elements selected from a plurality of constituent elements. The manufacturing management device (100) is provided with: an acquisition unit (110) which acquires manufacturing log information indicating, with respect to each of the plurality of processes, two or more constituent elements used for a corresponding process and the results of the corresponding process; a calculation unit (120) which, by statistically processing the manufacturing log information, calculates the degree of contribution of each of the plurality of constituent elements to the manufacture of the manufactured item (30); and a display unit (130) which outputs the degree of contribution calculated by the calculation unit (120).

Description

製造管理装置、製造システム及び製造管理方法Manufacturing management apparatus, manufacturing system and manufacturing management method
 本開示は、製造管理装置、当該製造管理装置を備える製造システム、及び、製造管理方法に関する。 The present disclosure relates to a manufacturing management apparatus, a manufacturing system including the manufacturing management apparatus, and a manufacturing management method.
 従来、部品実装機は、複数のフィーダと複数のノズルとを備えており、複数のフィーダから選択された1つのフィーダが供給した部品を、複数のノズルから選択された1つのノズルが吸着して基板に実装する。このとき、ノズル毎、又は、フィーダ毎に吸着の位置ずれ精度を検出し、メンテナンスの要否の判断に利用する技術が知られている(例えば、特許文献1を参照)。 Conventionally, a component mounter includes a plurality of feeders and a plurality of nozzles, and a component supplied by a single feeder selected from a plurality of feeders is suctioned by a single nozzle selected from a plurality of nozzles. Mount on a board. At this time, there is known a technique in which the positional deviation accuracy of suction is detected for each nozzle or each feeder, and used to determine the necessity of maintenance (see, for example, Patent Document 1).
特開2013-98360号公報JP, 2013-98360, A
 しかしながら、上記従来技術では、メンテナンス対象の構成要素を誤判定するという問題がある。例えば、あるノズルの吸着ミスが多く、メンテナンスが必要と判断された場合であっても、実際には、当該ノズルと同時に利用されるフィーダの影響によって吸着ミスが多く発生している場合がある。このように、正しくはフィーダのメンテナンスが必要であると判定すべきところを、ノズルのメンテナンスが必要であると誤判定する恐れがある。 However, in the above-mentioned prior art, there is a problem that the component to be maintained is erroneously determined. For example, even if there is a large number of suction errors at a certain nozzle and it is determined that maintenance is necessary, in fact, a large number of suction errors may occur due to the influence of a feeder used simultaneously with the nozzle. As described above, there is a possibility that the position where it is determined that the maintenance of the feeder is required is erroneously determined as the maintenance of the nozzle.
 誤判定が起きた場合には、本来はメンテナンスが必要な構成要素のメンテナンスが行われず、異常が解決されないままとなる。このため、製造物の生産効率及び品質の低下につながる。 When an erroneous determination occurs, the maintenance of the component that originally requires maintenance is not performed, and the abnormality remains unresolved. This leads to a decrease in production efficiency and quality of the product.
 そこで、本開示は、製造物の生産効率及び品質の低下の抑制を支援することができる製造管理装置、製造システム及び製造管理方法を提供する。 Thus, the present disclosure provides a manufacturing control apparatus, a manufacturing system, and a manufacturing control method that can support suppression of the reduction in production efficiency and quality of products.
 上記課題を解決するため、本開示の一態様に係る製造管理装置は、製造物を製造するために行われた複数の処理を管理する製造管理装置であって、前記複数の処理の各々は、複数の構成要素から選択された2以上の構成要素を用いて実行され、前記製造管理装置は、前記複数の処理の各々に対して、対応する処理に用いられた2以上の構成要素と、対応する処理の実績とを示す製造ログ情報を取得する取得部と、前記製造ログ情報を統計処理することにより、前記複数の構成要素の各々の前記製造物の製造への寄与度を算出する算出部と、前記算出部によって算出された寄与度を出力する出力部とを備える。 In order to solve the above problems, a manufacturing management apparatus according to an aspect of the present disclosure is a manufacturing management apparatus that manages a plurality of processes performed to manufacture a product, and each of the plurality of processes is: The method is executed using two or more components selected from a plurality of components, and the manufacturing control device corresponds to each of the plurality of processes, the two or more components used in the corresponding process, and An acquisition unit for acquiring production log information indicating the results of the processing to be performed, and a calculation unit for calculating the contribution degree of each of the plurality of components to the production of the product by statistically processing the production log information And an output unit that outputs the degree of contribution calculated by the calculation unit.
 また、本開示の一態様に係る製造システムは、前記製造管理装置と、前記複数の構成要素の少なくとも1つを備え、前記製造物を製造する製造設備とを備える。 Moreover, a manufacturing system according to an aspect of the present disclosure includes the manufacturing control apparatus, and at least one of the plurality of components, and includes a manufacturing facility that manufactures the product.
 また、本開示の一態様に係る製造管理方法は、製造物を製造するために行われた複数の処理を管理する製造管理方法であって、前記複数の処理の各々は、複数の構成要素から選択された2以上の構成要素を用いて実行され、前記製造管理方法は、前記複数の処理の各々に対して、対応する処理に用いられた2以上の構成要素と、対応する処理の実績とを示す製造ログ情報を取得し、前記製造ログ情報を統計処理することにより、前記複数の構成要素の各々の前記製造物の製造への寄与度を算出し、前記算出部によって算出された寄与度を出力する。 Further, a manufacturing control method according to an aspect of the present disclosure is a manufacturing control method for managing a plurality of processes performed to manufacture a product, wherein each of the plurality of processes includes a plurality of components. The method is executed using two or more selected components, and the manufacturing control method includes, for each of the plurality of processes, two or more components used in the corresponding process, and the results of the corresponding process By calculating the contribution of each of the plurality of constituent elements to the production of the product by calculating the production log information indicating the information and statistically processing the production log information, and the contribution calculated by the calculation unit Output
 また、本開示の一態様は、上記製造管理方法をコンピュータに機能させるためのプログラムとして実現することができる。あるいは、当該プログラムを格納したコンピュータ読み取り可能な記録媒体として実現することもできる。 In addition, one aspect of the present disclosure can be realized as a program for causing a computer to function the manufacturing control method. Alternatively, it may be realized as a computer readable recording medium storing the program.
 本開示によれば、製造物の生産効率及び品質の低下の抑制を支援することができる。 According to the present disclosure, it is possible to support reduction in production efficiency and quality of products.
図1は、実施の形態に係る製造システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a manufacturing system according to the embodiment. 図2は、実施の形態に係る製造管理装置が取得する製造ログ情報の一例を示す図である。FIG. 2 is a diagram illustrating an example of manufacturing log information acquired by the manufacturing management apparatus according to the embodiment. 図3は、実施の形態に係る製造管理装置の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of a manufacturing control apparatus according to the embodiment. 図4は、実施の形態に係る製造管理装置によるロジスティック回帰モデルの入力データを示す図である。FIG. 4 is a diagram showing input data of a logistic regression model by the manufacturing control apparatus according to the embodiment. 図5は、実施の形態に係る製造管理装置が算出した構成要素毎の寄与度の一覧表を示す図である。FIG. 5 is a diagram showing a list of contribution degrees for each component calculated by the manufacturing control apparatus according to the embodiment. 図6は、実施の形態に係る製造管理装置の動作を示すフローチャートである。FIG. 6 is a flowchart showing the operation of the manufacturing control apparatus according to the embodiment. 図7は、実施の形態の変形例1に係る製造管理装置が算出した所定回数当たりのエラーの発生回数を示す図である。FIG. 7 is a diagram showing the number of occurrences of errors per predetermined number of times calculated by the manufacturing management apparatus according to the first modification of the embodiment. 図8は、実施の形態の変形例2に係る製造管理装置が算出した構成要素毎の寄与度の一覧表を示す図である。FIG. 8 is a diagram showing a list of contribution degrees for each component calculated by the manufacturing management apparatus according to the second modification of the embodiment. 図9は、実施の形態の変形例3に係る製造管理装置によるポワソン回帰モデルの入力データを示す図である。FIG. 9 is a diagram showing input data of a Poisson regression model by the manufacturing control apparatus according to the third modification of the embodiment. 図10は、実施の形態の変形例4に係る製造管理装置による2項ロジスティック回帰モデルの入力データを示す図である。FIG. 10 is a diagram illustrating input data of a binomial logistic regression model by the manufacturing management apparatus according to the fourth modification of the embodiment.
 (本開示の概要)
 上記課題を解決するために、本開示の一態様に係る製造管理装置は、製造物を製造するために行われた複数の処理を管理する製造管理装置であって、前記複数の処理の各々は、複数の構成要素から選択された2以上の構成要素を用いて実行され、前記製造管理装置は、前記複数の処理の各々に対して、対応する処理に用いられた2以上の構成要素と、対応する処理の実績とを示す製造ログ情報を取得する取得部と、前記製造ログ情報を統計処理することにより、前記複数の構成要素の各々の前記製造物の製造への寄与度を算出する算出部と、前記算出部によって算出された寄与度を出力する出力部とを備える。
(Summary of this disclosure)
In order to solve the above problems, a manufacturing control apparatus according to an aspect of the present disclosure is a manufacturing control apparatus that manages a plurality of processes performed to manufacture an article, and each of the plurality of processes is A plurality of components selected from a plurality of components, and the manufacturing control apparatus, for each of the plurality of processes, two or more components used in corresponding processes; Calculation for calculating the contribution of each of the plurality of components to the manufacture of the product by statistically acquiring the production log information indicating the corresponding processing performance and the production log information And an output unit that outputs the degree of contribution calculated by the calculation unit.
 これにより、構成要素毎に寄与度が算出されるので、寄与度に基づいてメンテナンスの要否を精度良く判定することができる。例えば、寄与度に基づいて、製造へ悪影響を与える構成要素を推定することができ、推定した悪い構成要素のメンテナンスを速やかに行うことができる。したがって、本態様に係る製造管理装置によれば、製造物の生産効率及び品質の低下の抑制を支援することができる。 As a result, the degree of contribution is calculated for each component, and therefore the necessity of maintenance can be accurately determined based on the degree of contribution. For example, components that adversely affect manufacturing can be estimated based on the degree of contribution, and maintenance of the estimated bad components can be performed quickly. Therefore, according to the manufacturing control apparatus according to this aspect, it is possible to support the suppression of the deterioration of the production efficiency and the quality of the product.
 また、例えば、前記算出部は、一般化線形モデルに基づいて前記製造ログ情報を処理することにより、前記寄与度を算出してもよい。 In addition, for example, the calculation unit may calculate the degree of contribution by processing the manufacturing log information based on a generalized linear model.
 このように、一般化線形モデルに基づいた統計処理を行うことで、構成要素毎の寄与度の信頼性を高めることができる。具体的には、構成要素毎の寄与度は、対応する構成要素が製造に与える影響が数値化されたものであり、一般化線形モデルに基づいた統計処理によって他の構成要素の影響が排除されている。このため、寄与度に基づいて、製造へ悪影響を与える構成要素を精度良く推定することができる。悪影響を与える構成要素の推定精度が高くなることで、メンテナンス作業者又は製造の管理者(オペレーター)などの人が異常箇所を調査及び判断しなくてもよく、悪い構成要素を速やかに対処することができる。 Thus, by performing statistical processing based on the generalized linear model, it is possible to improve the reliability of the degree of contribution of each component. Specifically, the contribution of each component is the quantified effect of the corresponding component on manufacturing, and statistical processing based on the generalized linear model eliminates the effects of other components. ing. For this reason, components that adversely affect manufacturing can be accurately estimated based on the degree of contribution. As the estimation accuracy of the adversely affecting component is increased, it is not necessary for a person such as a maintenance worker or a manufacturing manager (operator) to investigate and judge the abnormal point, and to promptly cope with the bad component. Can.
 また、例えば、一般化線形モデルは、ロジスティック回帰モデル、ポワソン回帰モデル又は2項ロジスティック回帰モデルであってもよい。 Also, for example, the generalized linear model may be a logistic regression model, a Poisson regression model, or a binary logistic regression model.
 これにより、製造ログ情報の情報種別に応じて最適な回帰モデルを利用することができるので、信頼性の高い寄与度を算出することができる。 Thereby, since the optimal regression model can be used according to the information classification of manufacture log information, the contribution degree with high reliability can be calculated.
 また、例えば、前記実績は、対応する処理においてエラーの有無を示すフラグで示され、前記算出部は、ロジスティック回帰モデルに基づいて前記製造ログ情報を処理することにより、前記寄与度を算出してもよい。 Also, for example, the actual result is indicated by a flag indicating the presence or absence of an error in the corresponding processing, and the calculation unit calculates the contribution degree by processing the manufacturing log information based on a logistic regression model. It is also good.
 これにより、エラーの発生の有無は“0”と“1”との2値で表すことができるので、ロジスティック回帰モデルを利用することで、寄与度を精度良く算出することができる。 As a result, since the occurrence of an error can be represented by a binary value of “0” and “1”, the contribution degree can be accurately calculated by using the logistic regression model.
 また、例えば、前記算出部は、さらに、前記複数の構成要素の各々の前記寄与度に基づいて、所定の構成要素を所定回数使用した場合に発生するエラーの予測回数を算出してもよい。 Further, for example, the calculation unit may further calculate the number of predictions of an error that occurs when a predetermined component is used a predetermined number of times based on the degree of contribution of each of the plurality of components.
 これにより、メンテナンス作業者又はオペレーターなどにとって、より分かりやすい態様でエラーの発生の有無を提示することができる。 This makes it possible to present the presence or absence of the occurrence of an error in a more easily understandable manner to the maintenance worker or operator.
 また、例えば、前記出力部は、前記複数の構成要素の各々の寄与度を図示化して表示する表示部であってもよい。 Also, for example, the output unit may be a display unit which graphically displays the degree of contribution of each of the plurality of components.
 これにより、メンテナンス作業者又はオペレーターなどにとって分かりやすい表示態様で寄与度を提示することができる。 Thus, the degree of contribution can be presented in a display manner that can be easily understood by the maintenance worker or operator.
 また、例えば、前記複数の構成要素は、前記複数の処理を行う複数の製造設備、当該複数の製造設備の各々が備える複数の構成部位、及び、前記製造物を構成する複数の部品のいずれかであってもよい。 Also, for example, the plurality of components may be any of a plurality of manufacturing facilities for performing the plurality of processes, a plurality of component parts provided in each of the plurality of manufacturing facilities, and a plurality of components constituting the product. It may be
 これにより、製造設備の構成部位だけでなく、製造物を構成する部品の寄与度も算出することができる。寄与度の算出対象が増えることで、統計処理の入力データが増えるので、寄与度をより精度良く算出することができる。 Thereby, not only the component part of a manufacturing installation but the contribution degree of the components which comprise a manufactured product can be calculated. Since the input data of statistical processing increases by increasing the calculation object of the degree of contribution, the degree of contribution can be calculated more accurately.
 また、例えば、前記複数の構成要素は、種類毎に複数の構成要素群に分類され、前記複数の処理の各々は、前記複数の構成要素群の各々から選択された構成要素を用いて実行されてもよい。 Also, for example, the plurality of components are classified into a plurality of component groups for each type, and each of the plurality of processes is executed using a component selected from each of the plurality of component groups. May be
 これにより、種類毎に構成要素を管理することができるので、悪い構成要素を速やかに対処することができる。 As a result, since components can be managed for each type, bad components can be dealt with promptly.
 また、本開示の一態様に係る製造システムは、前記製造管理装置と、前記複数の構成要素の少なくとも1つを備え、前記製造物を製造する製造設備とを備える。 Moreover, a manufacturing system according to an aspect of the present disclosure includes the manufacturing control apparatus, and at least one of the plurality of components, and includes a manufacturing facility that manufactures the product.
 これにより、製造管理装置によって、製造物の生産効率及び品質の低下の抑制が支援される。このため、本態様に係る製造システムによれば、製造物の生産効率及び品質の低下を抑制することができる。 In this way, the manufacturing control device helps to suppress the deterioration of the production efficiency and the quality of the product. For this reason, according to the manufacturing system according to the present aspect, it is possible to suppress the deterioration of the production efficiency and the quality of the product.
 また、本開示の一態様に係る製造管理方法は、製造物を製造するために行われた複数の処理を管理する製造管理方法であって、前記複数の処理の各々は、複数の構成要素から選択された2以上の構成要素を用いて実行され、前記製造管理方法は、前記複数の処理の各々に対して、対応する処理に用いられた2以上の構成要素と、対応する処理の実績とを示す製造ログ情報を取得し、前記製造ログ情報を統計処理することにより、前記複数の構成要素の各々の前記製造物の製造への寄与度を算出し、前記算出部によって算出された寄与度を出力してもよい。 Further, a manufacturing control method according to an aspect of the present disclosure is a manufacturing control method for managing a plurality of processes performed to manufacture a product, wherein each of the plurality of processes includes a plurality of components. The method is executed using two or more selected components, and the manufacturing control method includes, for each of the plurality of processes, two or more components used in the corresponding process, and the results of the corresponding process By calculating the contribution of each of the plurality of constituent elements to the production of the product by calculating the production log information indicating the information and statistically processing the production log information, and the contribution calculated by the calculation unit May be output.
 これにより、上述した製造管理装置と同様に、製造物の生産効率及び品質の低下の抑制を支援することができる。 Thereby, similarly to the above-described manufacturing control apparatus, it is possible to support suppression of the reduction in production efficiency and quality of products.
 また、本開示の一態様に係るプログラムは、前記製造方法をコンピュータに実行させるためのプログラムである。 Moreover, a program according to an aspect of the present disclosure is a program for causing a computer to execute the manufacturing method.
 これにより、上述した製造管理装置と同様に、製造物の生産効率及び品質の低下の抑制を支援することができる。 Thereby, similarly to the above-described manufacturing control apparatus, it is possible to support suppression of the reduction in production efficiency and quality of products.
 以下では、実施の形態について、図面を参照しながら具体的に説明する。 Embodiments will be specifically described below with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that all the embodiments described below show general or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. Moreover, among the components in the following embodiments, components not described in the independent claims are described as optional components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Further, each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
 (実施の形態)
 [1.構成]
 まず、実施の形態1に係る製造管理装置、及び、当該製造管理装置を備える製造システムの構成について、図1を用いて説明する。図1は、本実施の形態に係る製造システム10の構成を示す図である。
Embodiment
[1. Constitution]
First, the configuration of a manufacturing management apparatus according to the first embodiment and a manufacturing system including the manufacturing management apparatus will be described with reference to FIG. FIG. 1 is a diagram showing the configuration of a manufacturing system 10 according to the present embodiment.
 図1に示すように、製造システム10は、製造設備20と、製造管理装置100とを備える。本実施の形態に係る製造システム10では、製造設備20が製造物30の製造を行い、製造管理装置100が、製造設備20による製造物30を製造するために行われた複数の処理を管理する。 As shown in FIG. 1, the manufacturing system 10 includes a manufacturing facility 20 and a manufacturing control apparatus 100. In the manufacturing system 10 according to the present embodiment, the manufacturing facility 20 manufactures the product 30, and the manufacturing control apparatus 100 manages a plurality of processes performed to manufacture the product 30 by the manufacturing facility 20. .
 製造設備20は、複数の処理を実行することで製造物30を製造する。本実施の形態では、製造設備20は、例えば部品実装機である。製造物30は、基板31と、基板31に実装された複数の部品32とを有する。 The manufacturing facility 20 manufactures the product 30 by performing a plurality of processes. In the present embodiment, the manufacturing facility 20 is, for example, a component mounter. The product 30 has a substrate 31 and a plurality of components 32 mounted on the substrate 31.
 本実施の形態では、製造設備20は、基板31に複数の部品32を実装する。具体的には、製造設備20は、製造物30の製造ラインに配置された製造装置の一例であり、順次搬入されてくる複数の基板31の各々に複数の部品32を実装することで、部品32が実装された基板31(すなわち、製造物30)を搬出する。搬出された基板31(製造物30)は、次の製造工程(例えばリフロー工程)を行う製造設備、又は、製造物30の検査を行う検査設備などに搬送される。 In the present embodiment, the manufacturing facility 20 mounts the plurality of components 32 on the substrate 31. Specifically, the manufacturing facility 20 is an example of a manufacturing apparatus disposed on a manufacturing line of the product 30, and by mounting a plurality of parts 32 on each of a plurality of substrates 31 sequentially carried in, parts can be obtained. The substrate 31 with the 32 mounted thereon (ie, the product 30) is carried out. The carried-out substrate 31 (product 30) is transported to a manufacturing facility that performs the next manufacturing process (for example, a reflow process) or an inspection facility that performs an inspection of the product 30.
 製造設備20は、製造物30の製造に関わる複数の構成要素(図示せず)からなる構成要素群を複数備える。複数の構成要素には、部品32を供給するフィーダ、部品32を吸着するノズル、ノズルを保持し、フィーダと基板31(基板31が搬送されるレーン)との間を移動するヘッダなどが含まれる。例えば、製造設備20は、複数のフィーダからなるフィーダ群、複数のノズルからなるノズル群、複数のリールからなるリール群、及び、複数のヘッダからなるヘッダ群を備える。 The production facility 20 includes a plurality of component groups each including a plurality of components (not shown) involved in the production of the product 30. The plurality of components include a feeder for supplying the component 32, a nozzle for suctioning the component 32, a header for holding the nozzle and moving between the feeder and the substrate 31 (lane in which the substrate 31 is transported). . For example, the manufacturing facility 20 includes a feeder group including a plurality of feeders, a nozzle group including a plurality of nozzles, a reel group including a plurality of reels, and a header group including a plurality of headers.
 製造物30は、複数の処理が行われることで製造される。複数の処理は、例えば複数の部品32の個々の実装処理である。複数の処理は、同時に行われてもよく、順次行われてもよい。 The product 30 is manufactured by performing a plurality of processes. The plurality of processes are, for example, individual mounting processes of the plurality of components 32. The plurality of processes may be performed simultaneously or sequentially.
 複数の処理の各々は、製造設備20が備える複数の構成要素から選択された2以上の構成要素を用いて実行される。なお、本実施の形態では、複数の構成要素には、実装される対象物である部品32も含まれる。 Each of the plurality of processes is performed using two or more components selected from the plurality of components included in the manufacturing facility 20. In the present embodiment, the plurality of components also includes a component 32 which is an object to be mounted.
 製造管理装置100は、製造物30を製造するために行われた複数の処理を管理する装置である。製造管理装置100は、例えば、ディスプレイを備えるコンピュータ、又は、ディスプレイと接続されたコンピュータである。 The manufacturing control apparatus 100 is an apparatus that manages a plurality of processes performed to manufacture the product 30. The manufacturing control apparatus 100 is, for example, a computer provided with a display or a computer connected to the display.
 製造管理装置100は、製造設備20から製造ログ情報を取得し、取得した製造ログ情報に基づいて、複数の処理を管理する。製造ログ情報は、製造設備20が行う複数の処理の各々の実績を示すデータである。 The manufacturing management apparatus 100 acquires manufacturing log information from the manufacturing facility 20, and manages a plurality of processes based on the acquired manufacturing log information. The manufacturing log information is data indicating the results of each of the plurality of processes performed by the manufacturing facility 20.
 図2は、本実施の形態に係る製造管理装置100が取得する製造ログ情報の一例を示す図である。図2に示すように、製造ログ情報は、複数の処理の各々に対して、対応する処理が行われた時刻と、対応する処理に用いられた2以上の構成要素と、対応する処理の実績を示している。 FIG. 2 is a diagram showing an example of manufacturing log information acquired by the manufacturing control apparatus 100 according to the present embodiment. As shown in FIG. 2, for each of a plurality of processes, the manufacturing log information indicates the time when the corresponding process was performed, the two or more components used in the corresponding process, and the results of the corresponding process. Is shown.
 処理が行われた時刻は、例えば、処理の開始時刻及び終了時刻の少なくとも一方である。開始時刻及び終了時刻は、例えば、年/月/日で示される日付と、時:分:秒で示される時刻とで表される。なお、時刻は、ミリ秒などの秒より下の単位で表されていてもよい。 The time when the process is performed is, for example, at least one of the start time and the end time of the process. The start time and the end time are represented by, for example, a date indicated by year / month / day and a time indicated by hour: minute: second. The time may be expressed in units below second, such as milliseconds.
 処理の実績は、対応する処理においてエラーの有無を示すフラグ(エラーフラグ)で示される。図2に示す例では、エラーフラグが“1”である場合に、エラーが発生したことを示し、エラーフラグが“0”である場合に、エラーが発生しなかったことを示している。 The processing results are indicated by a flag (error flag) indicating the presence or absence of an error in the corresponding processing. In the example shown in FIG. 2, when the error flag is “1”, it indicates that an error has occurred, and when the error flag is “0”, it indicates that an error has not occurred.
 処理を行った複数の構成要素は、例えば、構成要素群毎に管理されている。図2に示すように、製造設備20は、ユニットA群、ユニットB群及びユニットC群を備える。ユニットA群は、複数のフィーダ(ユニットA)から構成されたフィーダ群である。ユニットB群は、複数のノズル(ユニットB)から構成されたノズル群である。ユニットC群は、複数のリール(ユニットC)から構成されたリール群である。“A001”、“B001”及び“C001”などのアルファベットと3桁の数字とで示される情報は、各構成要素に固有の識別番号の一例である。識別番号の付し方は、特に限定されない。 The plurality of processed components are managed, for example, for each component group. As shown in FIG. 2, the manufacturing facility 20 includes a unit A group, a unit B group, and a unit C group. The unit A group is a feeder group including a plurality of feeders (unit A). The unit B group is a nozzle group including a plurality of nozzles (unit B). The unit C group is a reel group composed of a plurality of reels (units C). Information indicated by an alphabet such as "A001", "B001" and "C001" and a three-digit number is an example of an identification number unique to each component. The way of assigning identification numbers is not particularly limited.
 図2に示す例では、処理P001は、識別番号が“A001”であるフィーダA、識別番号が“B001”であるノズルB、及び、識別番号が“C001”であるリールCを用いて行われたことを示している。なお、以下の説明では、“フィーダA001”と記載した場合、識別番号が“A001”であるフィーダAを意味する。“ノズルB001”及び“リールC001”なども同様である。また、図2では、処理毎に、“P001”などの識別番号を付しているが、これは説明を分かりやすくするために記載したものであり、製造ログ情報には含まれていなくてもよい。 In the example shown in FIG. 2, the process P001 is performed using a feeder A having an identification number "A001", a nozzle B having an identification number "B001", and a reel C having an identification number "C001". Show that. In the following description, when “feeder A 001” is described, it means the feeder A whose identification number is “A 001”. The same applies to "nozzle B001" and "reel C001". Also, in FIG. 2, an identification number such as "P001" is given for each process, but this is described for the sake of clarity of the explanation, and it is not included in the manufacturing log information. Good.
 本実施の形態では、処理毎に、ユニットA群、ユニットB群及びユニットC群の各々から1つずつユニット(フィーダ、ノズル及びリール)が選択され、選択されたユニットが互いに協働して、対応する処理を行う。なお、処理の種類によっては、選択されないユニット群が存在してもよい。例えば、ある処理は、ユニットAとユニットBとの2つのみによって行われてもよい。また、同一のユニット群から複数のユニットが選択されてもよい。例えば、別の処理は、2つ以上のユニットAによって行われてもよい。 In the present embodiment, one unit (feeder, nozzle and reel) is selected from each of unit A, unit B and unit C for each process, and the selected units cooperate with one another. Perform the corresponding processing. Note that depending on the type of processing, there may be units not selected. For example, certain processing may be performed by only two units, unit A and unit B. Also, multiple units may be selected from the same unit group. For example, another process may be performed by two or more units A.
 続いて、製造管理装置100の詳細な構成について、図3を用いて説明する。図3は、本実施の形態に係る製造管理装置100の構成を示すブロック図である。製造管理装置100は、図3に示すように、取得部110と、算出部120と、表示部130と、記憶部140とを備える。 Subsequently, the detailed configuration of the manufacturing control apparatus 100 will be described with reference to FIG. FIG. 3 is a block diagram showing the configuration of the manufacturing control apparatus 100 according to the present embodiment. As illustrated in FIG. 3, the manufacturing management apparatus 100 includes an acquisition unit 110, a calculation unit 120, a display unit 130, and a storage unit 140.
 取得部110は、製造設備20から製造ログ情報を取得する。例えば、取得部110は、図2に示す製造ログ情報を取得し、取得した製造ログ情報を記憶部140に保存する。 The acquisition unit 110 acquires manufacturing log information from the manufacturing facility 20. For example, the acquisition unit 110 acquires the manufacturing log information illustrated in FIG. 2 and stores the acquired manufacturing log information in the storage unit 140.
 取得部110は、例えば、製造設備20との間で通信を行う通信インターフェースである。当該通信は、無線通信及び有線通信のいずれでもよい。 The acquisition unit 110 is, for example, a communication interface that communicates with the manufacturing facility 20. The communication may be either wireless communication or wired communication.
 算出部120は、製造ログ情報を統計処理することにより、複数の構成要素の各々の製造物30の製造への寄与度を算出する。構成要素の寄与度は、他の構成要素の影響を排除した上で、当該構成要素が製造に与える影響を数値化したものである。具体的には、構成要素の寄与度は、製造に与える悪影響の程度、すなわち、悪さの程度に相当する。 The calculation unit 120 statistically processes the manufacturing log information to calculate the contribution of each of the plurality of components to the manufacture of the product 30. The contribution of a component quantifies the influence of the component on manufacturing after excluding the influence of other components. Specifically, the contribution of the component corresponds to the degree of adverse effect on production, ie, the degree of badness.
 算出部120は、具体的には、一般化線形モデルに基づいて製造ログ情報を処理することにより、寄与度を算出する。一般化線形モデルには、ロジスティック回帰モデル、ポワソン回帰モデル又は2項ロジスティック回帰モデルが含まれるが、これに限らない。 Specifically, the calculation unit 120 calculates the degree of contribution by processing the manufacturing log information based on the generalized linear model. Generalized linear models include, but are not limited to, logistic regression models, Poisson regression models or binary logistic regression models.
 本実施の形態では、算出部120は、ロジスティック回帰モデルに基づいて製造ログ情報を処理することにより、寄与度を算出する。ロジスティック回帰モデルに基づいた寄与度の算出処理の詳細については後で説明する。 In the present embodiment, the calculation unit 120 calculates the degree of contribution by processing the manufacturing log information based on the logistic regression model. Details of the process of calculating the degree of contribution based on the logistic regression model will be described later.
 算出部120は、製造ログ情報のうち、対応する処理の開始時刻及び終了時刻の少なくとも一方が所定の集計期間に含まれる情報に基づいて、寄与度を算出してもよい。集計期間は、当該期間中に行われた処理に用いられた構成要素の寄与度を算出するための対象となる期間であり、例えば、1時間~数時間、又は、1日~数日などの期間である。 The calculation unit 120 may calculate the degree of contribution based on information in which at least one of the start time and the end time of the corresponding process is included in the predetermined aggregation period in the manufacturing log information. The aggregation period is a period during which the contribution of components used in the processing performed during the period is calculated, and is, for example, one hour to several hours, or one day to several days, etc. It is a period.
 なお、集計期間を1分~数十分、又は、1時間~数時間などの短い期間にすることで、リアルタイム性の高い寄与度の算出が可能になる。このため、算出された寄与度に基づいて構成要素の異常を速やかに判定することができ、部材交換などのメンテナンス作業などの製造工程の改善を行うことができる。つまり、定期的な一斉メンテナンスなどを行わなくてもよくなる。したがって、製造ラインの停止期間を少なくし、生産効率を高めることができる。 Note that by setting the aggregation period to a short period such as one minute to several minutes or one hour to several hours, it is possible to calculate the contribution degree with high real-time property. For this reason, abnormality of the component can be determined promptly based on the calculated degree of contribution, and manufacturing processes such as maintenance work such as member replacement can be improved. That is, it is not necessary to perform periodic maintenance and the like. Therefore, the downtime of the production line can be reduced and the production efficiency can be improved.
 表示部130は、算出部120によって算出された寄与度を出力する出力部の一例である。本実施の形態では、表示部130は、構成要素毎の寄与度を図示化して表示する。例えば、表示部130は、構成要素毎の寄与度を示す一覧表を表示する。 The display unit 130 is an example of an output unit that outputs the degree of contribution calculated by the calculation unit 120. In the present embodiment, the display unit 130 graphically displays the degree of contribution of each component. For example, the display unit 130 displays a list indicating the degree of contribution of each component.
 表示部130は、例えば、液晶表示装置(LCD:Liquid Crystal Display)又は有機EL(Electroluminescence)表示装置などのフラットパネルディスプレイであるが、これに限らない。 The display unit 130 is, for example, a flat panel display such as a liquid crystal display (LCD) or an organic electroluminescence (EL) display, but is not limited thereto.
 記憶部140は、製造設備20から取得された製造ログ情報、及び、算出された寄与度などを記憶するためのメモリである。記憶部140は、HDD(Hard Disk Drive)又は半導体メモリなどの不揮発性メモリである。 The storage unit 140 is a memory for storing the manufacturing log information acquired from the manufacturing facility 20, the calculated contribution degree, and the like. The storage unit 140 is a non-volatile memory such as a hard disk drive (HDD) or a semiconductor memory.
 [2.統計処理]
 続いて、本実施の形態に係る算出部120が行う統計処理について説明する。
[2. Statistical processing]
Subsequently, statistical processing performed by the calculation unit 120 according to the present embodiment will be described.
 本実施の形態では、算出部120は、ロジスティック回帰モデルに基づいて製造ログ情報を処理する。ロジスティック回帰モデルは、従属変数(目的変数)が2値で表される場合に用いられる回帰モデルである。具体的には、算出部120は、まず、製造ログ情報に基づいてロジスティック回帰モデルの入力データを生成する。 In the present embodiment, the calculation unit 120 processes the manufacturing log information based on the logistic regression model. The logistic regression model is a regression model used when the dependent variable (target variable) is represented by two values. Specifically, the calculation unit 120 first generates input data of the logistic regression model based on the manufacturing log information.
 図4は、本実施の形態に係る製造管理装置100によるロジスティック回帰モデルの入力データを示す図である。図4において、縦軸(列方向)には各処理が配置され、横軸(行方向)にはエラーの有無を示す値yと、処理に関わりうる全ての構成要素の各々の使用及び不使用を示す値xとが配置されている。なお、構成要素毎の値xを区別して示す場合、図4に示すように、値xは、構成要素の識別番号に合わせてxa1、xa2、xb1などと表される。 FIG. 4 is a diagram showing input data of a logistic regression model by the manufacturing control apparatus 100 according to the present embodiment. In FIG. 4, each process is disposed on the vertical axis (column direction), and on the horizontal axis (row direction), a value y indicating the presence or absence of an error, and use and non-use of each component involved in the process. And a value x indicating. In the case shown by distinguishing values x for each component, as shown in FIG. 4, the value x is expressed as like x a1, x a2, x b1 in accordance with the identification number of the components.
 なお、図4においても、図2に示す製造ログ情報と同様に、処理毎に、“P001”などの識別番号を付しているが、これは説明を分かりやすくするために記載したものであり、入力データには含まれていない。 Also in FIG. 4, as in the case of the manufacturing log information shown in FIG. 2, an identification number such as "P001" is assigned to each process, but this is described to make the description easy to understand. , Not included in the input data.
 算出部120は、製造ログ情報に基づいて、処理毎に、エラーの有無を示す値yと全ての構成要素の使用及び不使用を示す値xとの各々に“0”及び“1”のいずれかの数値を割り当てる。 The calculation unit 120 sets “0” or “1” to each of the value y indicating the presence or absence of an error and the value x indicating the use and non-use of all the components for each process based on the manufacturing log information. Assign a number.
 具体的には、算出部120は、エラーが発生した処理に対応する値yに“1”を割り当て、エラーが発生しなかった処理に対応する値yに“0”を割り当てる。つまり、図4において、値yが“1”である場合に、対応する処理にエラーが発生したことを示し、値yが“0”である場合に、対応する処理にエラーが発生しなかったことを示している。 Specifically, the calculation unit 120 assigns “1” to the value y corresponding to the process in which the error has occurred, and assigns “0” to the value y corresponding to the process in which the error has not occurred. That is, in FIG. 4, when the value y is “1”, it indicates that an error occurs in the corresponding process, and when the value y is “0”, no error occurs in the corresponding process. It is shown that.
 また、算出部120は、処理毎に、使用した構成要素の値xに“1”を割り当て、使用しなかった構成要素の値xに“0”を割り当てる。つまり、図4において、構成要素の値xが“1”である場合に、対応する処理に当該構成要素が使用されたことを示し、値xが“0”である場合に、対応する処理に当該構成要素が使用されなかったことを示している。 In addition, the calculation unit 120 assigns “1” to the value x of the used component and assigns “0” to the value x of the unused component for each process. That is, in FIG. 4, when the component value x is “1”, it indicates that the component is used for the corresponding processing, and when the value x is “0”, the corresponding processing is performed. Indicates that the component has not been used.
 例えば、図4では、フィーダA001とノズルB001とが使用されて処理P001が行われ、エラーが発生しなかったことを示している。同様にフィーダA002とノズルB002とが使用されて処理P002が行われ、エラーが発生したことを示している。 For example, FIG. 4 shows that the feeder A 001 and the nozzle B 001 are used, the process P 001 is performed, and an error does not occur. Similarly, the feeder A 002 and the nozzle B 002 are used to perform the process P 002, indicating that an error has occurred.
 算出部120は、図4に示すデータを入力データとして、ロジスティック回帰モデルに基づいて寄与度を算出する。ロジスティック回帰モデルでは、エラー発生確率をλとして、以下の式1で表される。 The calculation unit 120 calculates the degree of contribution based on the logistic regression model, using the data shown in FIG. 4 as input data. In the logistic regression model, the error occurrence probability is represented by the following equation 1 with λ.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式1において、Cは、共通する定数項である。xa1、xa2、xb1及びxb2などは、図4で示した各構成要素の値xである。a、a、b及びbなどは、各構成要素のパラメータ(係数)であり、構成要素の寄与度に相当する。 In Equation 1, C is a common constant term. x a1 , x a2 , x b1 and x b2 are values x of the respective components shown in FIG. 4. Each of a 1 , a 2 , b 1 and b 2 is a parameter (coefficient) of each component, and corresponds to the contribution of the component.
 ロジスティック回帰モデルは、ベルヌーイ分布に従う。このため、実績値yが1である確率P(y=1|λ)は、以下の式2で表される。 Logistic regression models follow the Bernoulli distribution. For this reason, the probability P (y = 1 | λ) that the actual value y is 1 is expressed by Equation 2 below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、実績値yが0である確率P(y=0|λ)は、以下の式3で表される。 Further, the probability P (y = 0 | λ) that the actual value y is 0 is expressed by the following Equation 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 算出部120は、処理(図4に示す行)毎、すなわち、構成要素の組み合わせ毎に、x及びyの値を式1及び式2に代入し、入力データの全体においてP(y|λ)が最大になるようにパラメータを最適化する。これにより、各構成要素のパラメータ(具体的には、a、a、b及びbなど)、すなわち、各構成要素の寄与度が算出される。 The calculation unit 120 substitutes the values of x and y into Equation 1 and Equation 2 for each process (row shown in FIG. 4), that is, for each combination of components, and P (y | λ) in the entire input data. Optimize parameters to maximize. As a result, the parameters of each component (specifically, a 1 , a 2 , b 1 and b 2 etc.), that is, the degree of contribution of each component are calculated.
 図5は、本実施の形態に係る製造管理装置100が算出した構成要素毎の寄与度の一覧表を示す図である。寄与度は、構成要素の悪さを示しているので、数値が高い程、対応する構成要素を用いた場合にエラーが発生しやすいことを示している。 FIG. 5 is a diagram showing a list of contribution degrees for each component calculated by the manufacturing control apparatus 100 according to the present embodiment. The degree of contribution indicates the inferiority of the component, so a higher numerical value indicates that an error is more likely to occur when the corresponding component is used.
 図5では、構成要素毎の寄与度が降順で並べられている。これにより、最上位に位置する構成要素(具体的には、フィーダA004)が最も寄与度が高く、メンテナンスの必要性が高いことを示している。 In FIG. 5, the degree of contribution of each component is arranged in descending order. This indicates that the component positioned at the top (specifically, the feeder A 004) has the highest contribution, and the need for maintenance is high.
 図5に示す寄与度の一覧表は、例えば、表示部130に表示される。これにより、メンテナンス作業者又はオペレーターなどが図示された一覧表を見ることで、構成要素毎にメンテナンスの要否を容易に判断することができる。 The list of contribution degrees shown in FIG. 5 is displayed on the display unit 130, for example. As a result, the necessity of maintenance can be easily determined for each component by looking at the list in which the maintenance worker or operator etc. are illustrated.
 なお、当該一覧表において、寄与度は昇順で並べられていてもよい。あるいは、構成要素の識別番号の昇順又は降順で並べられていてもよい。 In the list, the degrees of contribution may be arranged in ascending order. Alternatively, they may be arranged in the ascending or descending order of the identification numbers of the components.
 [3.動作]
 続いて、本実施の形態に係る製造管理装置100の動作(製造管理方法)について、図7を用いて説明する。図6は、本実施の形態に係る製造管理装置100の動作を示すフローチャートである。
[3. Operation]
Subsequently, an operation (manufacturing management method) of the manufacturing management apparatus 100 according to the present embodiment will be described with reference to FIG. FIG. 6 is a flowchart showing the operation of the manufacturing control apparatus 100 according to the present embodiment.
 図6に示すように、まず、取得部110が、製造設備20から製造ログ情報を取得する(S10)。例えば、取得部110は、1時間~数時間又は1日~数日などの所定の期間ごとに、当該期間に行われた処理についての製造ログ情報を取得する。あるいは、取得部110は、製造設備20が処理を行う度に、当該処理についての製造ログ情報を取得してもよい。取得部110は、取得した製造ログ情報を記憶部140に保存する。 As shown in FIG. 6, first, the acquisition unit 110 acquires manufacturing log information from the manufacturing facility 20 (S10). For example, the acquiring unit 110 acquires, for each predetermined period such as one hour to several hours or one day to several days, manufacturing log information on the process performed in the period. Alternatively, the acquiring unit 110 may acquire manufacturing log information on the process each time the manufacturing facility 20 performs the process. The acquisition unit 110 stores the acquired manufacturing log information in the storage unit 140.
 次に、算出部120が、構成要素毎に寄与度を算出する(S20)。具体的には、算出部120は、上述したように、図4に示す入力データを利用してロジスティック回帰モデルに基づいて構成要素毎の寄与度を算出する。算出部120は、例えば、1時間単位又は1日単位などの所定期間毎の寄与度を算出する。 Next, the calculation unit 120 calculates the degree of contribution for each component (S20). Specifically, as described above, the calculation unit 120 calculates the contribution degree for each component based on the logistic regression model using the input data shown in FIG. 4. The calculation unit 120 calculates, for example, the degree of contribution for each predetermined period, such as one hour or one day.
 表示部130は、算出された寄与度を図示化して表示する(S30)。例えば、図5に示すように、表示部130は、構成要素毎の寄与度を一覧にして表示する。 The display unit 130 graphically displays the calculated degree of contribution (S30). For example, as shown in FIG. 5, the display unit 130 displays the degree of contribution of each component in a list.
 以上のように、本実施の形態に係る製造管理装置100によれば、回帰モデルに基づいた分析を行うことで、構成要素毎に寄与度が算出される。構成要素の寄与度は、対応する構成要素が製造に与える影響が数値化されたものであり、回帰モデルに基づいた統計処理によって他の構成要素の影響が排除されているので、寄与度に基づいてメンテナンスの要否を精度良く判定することができる。例えば、寄与度に基づいて、製造へ悪影響を与える構成要素を推定することができ、推定した悪い構成要素のメンテナンスを速やかに行うことができる。 As described above, according to the manufacturing management apparatus 100 according to the present embodiment, the degree of contribution is calculated for each component by performing analysis based on the regression model. The contribution of a component is based on the contribution because the influence of the corresponding component on manufacturing is quantified and statistical processing based on the regression model excludes the influence of other components. Thus, the necessity of maintenance can be determined accurately. For example, components that adversely affect manufacturing can be estimated based on the degree of contribution, and maintenance of the estimated bad components can be performed quickly.
 例えば、メンテナンス作業者又は製造の管理者(オペレーター)などの人が異常箇所を調査及び判断しなくてもよく、悪い構成要素を速やかに対処することができる。したがって、本実施の形態に係る製造管理装置100によれば、製造物30の生産効率及び品質の低下の抑制を支援することができる。 For example, a person such as a maintenance worker or a production manager (operator) does not have to investigate and judge the abnormal part, and bad components can be dealt with promptly. Therefore, according to the manufacturing control apparatus 100 which concerns on this Embodiment, suppression of the fall of the productive efficiency of the product 30, and quality can be assisted.
 (変形例1)
 続いて、実施の形態の変形例1について説明する。
(Modification 1)
Subsequently, a first modification of the embodiment will be described.
 本変形例に係る製造管理装置では、算出された寄与度に基づいて、構成要素毎に発生しうるエラーの予測回数を算出し、算出結果を表示する。なお、本変形例では、製造管理装置100及び製造システム10の構成は、実施の形態と同様であるので説明を省略する。 The manufacturing management apparatus according to the present modification calculates the number of predicted errors that may occur for each component based on the calculated degree of contribution, and displays the calculation result. In the present modification, the configurations of the manufacturing control apparatus 100 and the manufacturing system 10 are the same as those of the embodiment, and thus the description thereof is omitted.
 本変形例では、算出部120は、対応する構成要素を所定回数使用した場合において発生するエラーの回数を算出する。所定回数は、例えば10000回であるが、これに限らず、1000回又は10万回などでもよい。 In the present modification, the calculation unit 120 calculates the number of times of error that occurs when the corresponding component is used a predetermined number of times. The predetermined number of times is, for example, 10000 times, but is not limited to this, and may be 1000 times or 100,000 times.
 具体的には、上記式1及び式2に基づいて、構成要素毎のパラメータ、すなわち、寄与度が算出されたので、算出部120は、当該寄与度を既知の値として利用することで、構成要素毎のエラーの予測回数を算出する。具体的には、算出部120は、以下の式4に基づいて、対象となる構成要素を1回使用した場合に、発生するエラーの予測回数(エラーの発生確率)pを算出する。 Specifically, since the parameter for each component, that is, the degree of contribution is calculated based on the equation 1 and the equation 2, the calculation unit 120 uses the degree of contribution as a known value Calculate the number of errors predicted for each element. Specifically, the calculation unit 120 calculates the number of predicted errors (error occurrence probability) p when the target component is used once based on Equation 4 below.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式4において、平均ユニットの寄与度は、対象ユニットと組み合わせて使用されうる1以上のユニットの寄与度を平均した値である。例えば、対象ユニットがフィーダA001である場合に、平均ユニットの寄与度は、フィーダA001と組み合わせ可能な全てのノズルの寄与度を平均した値である。 In Equation 4, the contribution of the average unit is a value obtained by averaging the contributions of one or more units that can be used in combination with the target unit. For example, when the target unit is the feeder A 001, the contribution of the average unit is a value obtained by averaging the contributions of all the nozzles that can be combined with the feeder A 001.
 算出部120は、算出したpを10000倍することで、10000回当たりのエラーの発生回数を算出する。算出部120は、全ての構成要素に対して10000×pを算出することで、例えば図7に示すエラー回数の一覧表を生成する。図7は、本変形例に係る製造管理装置100が算出した構成要素毎の10000回試行時のエラーの発生回数を示す図である。 The calculation unit 120 calculates the number of occurrences of errors per 10000 times by multiplying the calculated p by 10000. The calculation unit 120 generates, for example, a list of the number of times of errors illustrated in FIG. 7 by calculating 10000 × p for all the constituent elements. FIG. 7 is a diagram showing the number of times of occurrence of an error in 10000 trials for each component calculated by the manufacturing management apparatus 100 according to the present modification.
 これにより、メンテナンス作業者又はオペレーターなどにとって、より分かりやすい表示態様でエラーの発生の有無を表示することができる。 As a result, the presence or absence of an error can be displayed in a more easily understandable display manner for a maintenance worker or an operator.
 なお、図7では、一日単位で寄与度を算出した結果を示している。これにより、寄与度の経時変化も表すことができる。 FIG. 7 shows the result of calculating the degree of contribution on a daily basis. Thereby, the temporal change of the degree of contribution can also be represented.
 (変形例2)
 次に、実施の形態の変形例2について説明する。
(Modification 2)
Next, a second modification of the embodiment will be described.
 上述した実施の形態では、図5に示すように、寄与度の数値そのものを一覧表として図示している。これに対して、本変形例では、寄与度を数値以外の手段で図示化して表示する。なお、本変形例では、製造管理装置100及び製造システム10の構成は、実施の形態と同様であるので説明を省略する。 In the embodiment described above, as shown in FIG. 5, the numerical values of the degree of contribution are illustrated as a list. On the other hand, in the present modification, the degree of contribution is shown graphically by means other than numerical values. In the present modification, the configurations of the manufacturing control apparatus 100 and the manufacturing system 10 are the same as those of the embodiment, and thus the description thereof is omitted.
 具体的には、表示部130は、図8に示す一覧表のように、寄与度を、その値に応じて複数の範囲に分類し、範囲毎に色分けして表示してもよい。ここで、図8は、本実施の形態に係る製造管理装置100が算出した構成要素毎の寄与度の一覧表の別の例を示す図である。 Specifically, the display unit 130 may classify the degree of contribution into a plurality of ranges according to the value as shown in the list shown in FIG. Here, FIG. 8 is a view showing another example of the list of contribution degrees for each component calculated by the manufacturing management apparatus 100 according to the present embodiment.
 寄与度は、その値に応じて、例えば4つの範囲に分類される。図8では、寄与度の範囲毎に、所定の色が予め定められている。例えば、寄与度が小さい程、白色であり、寄与度が大きい程、青色になる。図8では、色の違いをドットの密度差で表現している。なお、範囲毎に、色ではなく、図8に示すようなドットの密度差、又は、網掛けの種類を異ならせてもよい。 The degree of contribution is classified into, for example, four ranges according to the value. In FIG. 8, predetermined colors are determined in advance for each range of contribution degree. For example, the smaller the degree of contribution, the whiter, and the larger the degree of contribution, the bluer. In FIG. 8, the difference in color is expressed by the difference in density of dots. Note that the density difference of dots as shown in FIG. 8 or the type of hatching may be different for each range, instead of the color.
 例えば、算出部120は、算出した構成要素毎の寄与度を入力データとしてクラスタリングを行うことにより、寄与度が取りうる値の範囲の分割及び設定を行う。クラスタリングの手法は、例えばウォード法又はk平均法などであるが、これらに限らない。また、範囲の分割数は、4個でなくてもよく、2個以上であればよい。また、算出部120は、寄与度の範囲を均等に分割してもよい。 For example, the calculation unit 120 performs division and setting of the range of possible values of the degree of contribution by performing clustering with the calculated degree of contribution for each component as input data. The clustering method is, for example, a Ward method or a k-means method, but is not limited thereto. Further, the number of divisions of the range may not be four, and may be two or more. In addition, the calculation unit 120 may equally divide the range of the degree of contribution.
 また、図8では、算出部120が寄与度の算出を複数の期間に亘って行い、その結果を合わせて表示している。具体的には、算出部120は、製造ログ情報を処理の開始日時に基づいて処理が行われた日毎に分類し、1日毎に寄与度を算出している。図8において、Day1~Day4は、処理が行われた日を示している。 Further, in FIG. 8, the calculation unit 120 calculates the contribution degree over a plurality of periods, and the results are displayed together. Specifically, the calculation unit 120 classifies the manufacturing log information according to the day on which the process is performed based on the start date and time of the process, and calculates the degree of contribution on a daily basis. In FIG. 8, Day 1 to Day 4 indicate the days on which the process was performed.
 以上のように、本変形例によれば、メンテナンス作業者又はオペレーターなどにとって分かりやすい態様で寄与度を提示することができる。 As described above, according to the present modification, the degree of contribution can be presented in a manner that can be easily understood by the maintenance worker or the operator.
 なお、変形例1と同様に、所定回数当たりのエラー回数を、色分けにより表示してもよい。 As in the first modification, the number of errors per predetermined number may be displayed by color coding.
 (変形例3)
 続いて、変形例3について説明する。
(Modification 3)
Then, the modification 3 is demonstrated.
 本変形例では、実施の形態と比較して、製造管理装置100が取得する製造ログ情報が相違し、これに伴って、算出部120が利用する回帰モデルが相違する。製造管理装置100及び製造システム10の構成は、実施の形態と同様であるので説明を省略する。 In this modification, compared with the embodiment, the manufacturing log information acquired by the manufacturing management apparatus 100 is different, and along with this, the regression model used by the calculating unit 120 is different. The configurations of the manufacturing control apparatus 100 and the manufacturing system 10 are the same as those of the embodiment, and thus the description thereof is omitted.
 本変形例では、算出部120は、ポワソン回帰モデルに基づいて製造ログ情報を処理する。ポワソン回帰モデルは、従属変数(目的変数)が、上限数のない回数値(カウントデータ)の場合に用いられる回帰モデルである。 In the present modification, the calculation unit 120 processes the manufacturing log information based on the Poisson regression model. The Poisson regression model is a regression model used when the dependent variable (target variable) is a number value (count data) without an upper limit number.
 図9は、本変形例に係る製造管理装置100によるポワソン回帰モデルの入力データを示す図である。なお、図9では、図2で示した製造ログ情報と同様に、使用した構成要素の組み合わせを示している。 FIG. 9 is a diagram showing input data of a Poisson regression model by the manufacturing control apparatus 100 according to the present modification. In addition, in FIG. 9, the combination of the used component is shown similarly to the manufacture log information shown in FIG.
 図9に示すように、ポワソン回帰モデルでは、実績値yとして、エラーフラグの代わりに、1日あたりの生産可能台数が用いられる。なお、生産可能台数は、実質的に上限がない回数値(カウントデータ)である。 As shown in FIG. 9, in the Poisson regression model, the producible number per day is used as the actual value y, instead of the error flag. The number of producible products is a count value (count data) substantially without an upper limit.
 本変形例では、算出部120は、図9に示すデータを入力データとして、ポワソン回帰モデルに基づいて寄与度を算出する。ポワソン回帰モデルでは、平均的な生産予測台数をλとして、以下の式5で表される。 In the present modification, the calculation unit 120 calculates the degree of contribution based on the Poisson regression model, using the data shown in FIG. 9 as input data. In the Poisson regression model, the average number of predicted production is represented by λ, and is represented by the following Equation 5.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式5において、Cは、共通する定数項である。xa1、xa2、xb1及びxb2などは、図4で示した各構成要素の値xである。a、a、b及びbなどは、各構成要素のパラメータ(係数)であり、構成要素の寄与度に相当する。これらは、実施の形態と同様である。なお、式5の左辺は、logλの代わりに、λのみでもよい。 In Equation 5, C is a common constant term. x a1 , x a2 , x b1 and x b2 are values x of the respective components shown in FIG. 4. Each of a 1 , a 2 , b 1 and b 2 is a parameter (coefficient) of each component, and corresponds to the contribution of the component. These are the same as in the embodiment. The left side of Equation 5 may be only λ instead of log λ.
 ポワソン回帰モデルは、ポワソン分布に従う。このため、確率P(y|λ)は、以下の式6で表される。 The Poisson regression model follows the Poisson distribution. Therefore, the probability P (y | λ) is expressed by the following Equation 6.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 算出部120は、構成要素の組み合わせ(図9に示す行)毎に、x及びyの値を式5及び式6に代入し、入力データの全体においてP(y|λ)が最大になるようにパラメータを最適化する。これにより、各構成要素のパラメータ(具体的には、a、a、b及びbなど)、すなわち、各構成要素の寄与度が算出される。 The calculation unit 120 substitutes the values of x and y into Equations 5 and 6 for each combination of components (rows shown in FIG. 9), and maximizes P (y | λ) in the entire input data. To optimize the parameters. As a result, the parameters of each component (specifically, a 1 , a 2 , b 1 and b 2 etc.), that is, the degree of contribution of each component are calculated.
 本変形例では、実績値yが大きい程、生産可能台数が多く、製造設備20としては好ましい。したがって、構成要素の寄与度は、製造に与える良影響の程度、すなわち、良さの程度に相当する。 In the present modification, the larger the actual value y, the larger the number of producible products, which is preferable as the manufacturing equipment 20. Therefore, the contribution of the component corresponds to the degree of good influence on production, ie, the degree of goodness.
 以上のように、本変形例に係る製造管理装置100によれば、実績値として上限のない回数値を利用した場合であっても、構成要素毎の寄与度を算出することができる。構成要素の寄与度は、対応する構成要素が製造に与える影響が数値化されたものであり、回帰モデルに基づいた統計処理によって他の構成要素の影響が排除されているので、寄与度に基づいてメンテナンスの要否を精度良く判定することができる。これにより、実施の形態と同様に、製造物30の生産効率及び品質の低下の抑制を支援することができる。 As described above, according to the manufacturing management apparatus 100 according to the present modification, the contribution degree for each component can be calculated even when the number value with no upper limit is used as the actual value. The contribution of a component is based on the contribution because the influence of the corresponding component on manufacturing is quantified and statistical processing based on the regression model excludes the influence of other components. Thus, the necessity of maintenance can be determined accurately. Thereby, similarly to the embodiment, it is possible to support the suppression of the reduction of the production efficiency and the quality of the product 30.
 (変形例4)
 続いて、変形例4について説明する。
(Modification 4)
Subsequently, Modification 4 will be described.
 本変形例では変形例3と同様に、実施の形態と比較して、製造管理装置100が取得する製造ログ情報が相違し、これに伴って、算出部120が利用する回帰モデルが相違する。製造管理装置100及び製造システム10の構成は、実施の形態と同様であるので説明を省略する。 In this modification, as in the third modification, compared with the embodiment, the manufacturing log information acquired by the manufacturing management apparatus 100 is different, and accordingly, the regression model used by the calculation unit 120 is different. The configurations of the manufacturing control apparatus 100 and the manufacturing system 10 are the same as those of the embodiment, and thus the description thereof is omitted.
 本変形例では、算出部120は、2項ロジスティック回帰モデルに基づいて製造ログ情報を処理する。2項ロジスティック回帰モデルは、従属変数(目的変数)が、上限数がある回数値(カウントデータ)の場合に用いられる回帰モデルである。 In the present modification, the calculation unit 120 processes the manufacturing log information based on the binomial logistic regression model. The binomial logistic regression model is a regression model used when the dependent variable (target variable) is an upper limit number having a number value (count data).
 図10は、本変形例に係る製造管理装置100による2項ロジスティック回帰モデルの入力データを示す図である。なお、図10では、図2で示した製造ログ情報と同様に、使用した構成要素の組み合わせを示している。 FIG. 10 is a diagram showing input data of a binomial logistic regression model by the manufacturing management apparatus 100 according to the present modification. In addition, in FIG. 10, the combination of the used component is shown similarly to the manufacture log information shown in FIG.
 図10に示すように、2項ロジスティック回帰モデルでは、実績値yとして、エラーフラグの代わりに、エラーの発生回数yと、実装回数Nとが用いられる。なお、実装回数は、対応する組み合わせで行われた処理の回数に相当する。エラーの発生回数yは、実装回数Nを超えることはない。すなわち、yは、上限値がNの回数値(カウントデータ)である。 As shown in FIG. 10, in the binomial logistic regression model, the number of times of occurrence of an error y and the number of times of implementation N are used as the actual value y, instead of the error flag. Note that the number of mountings corresponds to the number of processes performed in the corresponding combination. The number of occurrences of errors y does not exceed the number of implementation times N. That is, y is a count value (count data) whose upper limit is N.
 本変形例では、算出部120は、図10に示すデータを入力データとして、2項ロジスティック回帰モデルに基づいて寄与度を算出する。2項ロジスティック回帰モデルでは、エラーの発生確率をqとして、以下の式7で表される。 In the present modification, the calculation unit 120 calculates the degree of contribution based on a binomial logistic regression model, using the data shown in FIG. 10 as input data. In the binomial logistic regression model, the occurrence probability of an error is represented by the following Equation 7 as q.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式7において、Cは、共通する定数項である。xa1、xa2、xb1及びxb2などは、図4で示した各構成要素の値xである。a、a、b及びbなどは、各構成要素のパラメータ(係数)であり、構成要素の寄与度に相当する。これらは、実施の形態と同様である。 In Equation 7, C is a common constant term. x a1 , x a2 , x b1 and x b2 are values x of the respective components shown in FIG. 4. Each of a 1 , a 2 , b 1 and b 2 is a parameter (coefficient) of each component, and corresponds to the contribution of the component. These are the same as in the embodiment.
 2項ロジスティック回帰モデルは、2項分布に従う。このため、確率P(y|N,q)は、以下の式8で表される。 A binomial logistic regression model follows a binomial distribution. Therefore, the probability P (y | N, q) is expressed by the following equation 8.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 算出部120は、構成要素の組み合わせ(図10に示す行)毎に、x、y及びNの値を式7及び式8に代入し、入力データの全体においてP(y|N,q)が最大になるようにパラメータを最適化する。これにより、各構成要素のパラメータ(具体的には、a、a、b及びbなど)、すなわち、各構成要素の寄与度が算出される。 The calculation unit 120 substitutes the values of x, y and N into Equations 7 and 8 for each combination of components (rows shown in FIG. 10), and P (y | N, q) is the entire input data. Optimize parameters for maximum. As a result, the parameters of each component (specifically, a 1 , a 2 , b 1 and b 2 etc.), that is, the degree of contribution of each component are calculated.
 以上のように、本変形例に係る製造管理装置100によれば、実績値として上限がある回数値を利用した場合であっても、構成要素毎の寄与度を算出することができる。構成要素の寄与度は、対応する構成要素が製造に与える影響が数値化されたものであり、回帰モデルに基づいた統計処理によって他の構成要素の影響が排除されているので、寄与度に基づいてメンテナンスの要否を精度良く判定することができる。これにより、実施の形態と同様に、製造物30の生産効率及び品質の低下の抑制を支援することができる。 As described above, according to the manufacturing management apparatus 100 according to the present modification, the contribution degree for each component can be calculated even when the upper limit value is used as the actual value. The contribution of a component is based on the contribution because the influence of the corresponding component on manufacturing is quantified and statistical processing based on the regression model excludes the influence of other components. Thus, the necessity of maintenance can be determined accurately. Thereby, similarly to the embodiment, it is possible to support the suppression of the reduction of the production efficiency and the quality of the product 30.
 本変形例は、例えば、スマートフォンなどの電子機器の故障台数に対して、部品ロット又は部品の製造業者毎の寄与度を算出する。これにより、故障率が高いロット、又は、製造業者の推定を行うことができる。 In the present variation, for example, the degree of contribution for each component lot or manufacturer of parts is calculated with respect to the number of failures of electronic devices such as smart phones. This makes it possible to estimate lots with high failure rates or manufacturers.
 (他の実施の形態)
 以上、1つ又は複数の態様に係る製造管理装置、製造システム及び製造管理方法について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
(Other embodiments)
The manufacturing control apparatus, the manufacturing system, and the manufacturing control method according to one or more aspects have been described above based on the embodiments, but the present disclosure is not limited to these embodiments. As long as various modifications that can occur to those skilled in the art are made to the present embodiment, and forms configured by combining components in different embodiments are included within the scope of the present disclosure, without departing from the gist of the present disclosure. Be
 例えば、上記の実施の形態及び変形例で示した回帰モデル及び確率分布は、一例に過ぎず、他の回帰モデル及び確率分布を利用してもよい。例えば、正規分布又はガンマ分布などを利用してもよい。 For example, the regression model and probability distribution shown in the above embodiment and modification are merely examples, and other regression models and probability distributions may be used. For example, normal distribution or gamma distribution may be used.
 また、例えば、上記の実施の形態では、寄与度の一覧表を表示したが、算出した寄与度のうち、閾値より大きい寄与度及び構成要素(具体的には、悪影響を与える構成要素)のみを表示してもよい。 Also, for example, in the above embodiment, a list of contribution degrees is displayed, but among the calculated contribution degrees, only contribution degrees and components (specifically, constituent elements that adversely affect) that are larger than the threshold are You may display it.
 例えば、寄与度を出力する出力部の一例として表示部を例示したが、出力部は、音声出力部であってもよい。例えば、出力部は、寄与度が高い構成要素を音声データとして出力してもよい。あるいは、出力部は、寄与度の一覧表を紙などの媒体に印刷してもよい。 For example, although the display unit is illustrated as an example of the output unit that outputs the degree of contribution, the output unit may be an audio output unit. For example, the output unit may output a component with a high degree of contribution as audio data. Alternatively, the output unit may print a list of contribution degrees on a medium such as paper.
 また、例えば、製造設備20が部品実装機である例について示したが、これに限らない。例えば、製造設備20は、金属又は樹脂などの原材料を加工する加工装置、及び、加工された材料の成形を行う成形装置などであってもよい。 Also, for example, although an example in which the manufacturing facility 20 is a component mounter has been shown, the present invention is not limited to this. For example, the manufacturing equipment 20 may be a processing device for processing a raw material such as metal or resin, and a molding device for molding a processed material.
 また、構成要素は、製造設備、製造設備が備える構成部位、製造物を構成する部品のいずれでなくてもよい。具体的には、構成要素は、物理的に存在する物でなくてもよい。例えば、構成要素は、生産実績に影響を及ぼす可能性がある要素である、製造に関する条件であってもよい。具体的には、構成要素は、ヘッドの速度又は部品吸着方法などの設備の条件であってもよく、担当作業者又は担当グループなどの人の条件であってもよい。あるいは、構成要素は、スプライシングの有無などの製造方法の条件、又は、季節などの環境条件であってもよい。 Further, the component may not be any one of the manufacturing equipment, the components provided in the manufacturing equipment, and the parts constituting the product. Specifically, the components do not have to be physically present. For example, the component may be a condition relating to manufacturing, which is an element that may affect production performance. Specifically, the component may be the condition of equipment such as the speed of a head or a part suction method, or may be the condition of a person such as a worker in charge or a group in charge. Alternatively, the component may be conditions of the production method such as the presence or absence of splicing, or environmental conditions such as season.
 また、(1)上記の各装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニットなどから構成されるコンピュータシステムであってもよい。RAM(Ramdom Access Memory)又はハードディスクユニットには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。 Further, (1) Each of the above-described devices may be specifically a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, and the like. A computer program is stored in a RAM (Ramdom Access Memory) or a hard disk unit. Each device achieves its function by the microprocessor operating according to the computer program. Here, the computer program is configured by combining a plurality of instruction codes indicating instructions to the computer in order to achieve a predetermined function.
 (2)上記の各装置を構成する構成要素の一部又は全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されていてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM(Read Only Memory)、RAMなどを含んで構成されるコンピュータシステムである。RAMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。 (2) A part or all of the components constituting each of the above-described devices may be configured from one system LSI (Large Scale Integration: large scale integrated circuit). The system LSI is a super-multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically includes a microprocessor, a ROM (Read Only Memory), a RAM, etc. Computer system. A computer program is stored in the RAM. The system LSI achieves its functions by the microprocessor operating according to the computer program.
 (3)上記の各装置を構成する構成要素の一部又は全部は、各装置に脱着可能なICカード又は単体のモジュールから構成されていてもよい。ICカード又はモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカード又はモジュールは、上記の超多機能LSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、ICカード又はモジュールは、その機能を達成する。このICカード又はこのモジュールは、耐タンパ性を有するとしてもよい。 (3) A part or all of the components constituting each of the above-described devices may be composed of an IC card or a single module which can be detached from each device. The IC card or module is a computer system including a microprocessor, a ROM, a RAM, and the like. The IC card or module may include the above-described ultra-multifunctional LSI. The IC card or module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may be tamper resistant.
 (4)本開示は、上記に示す方法であってもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムであってもよく、コンピュータプログラムからなるデジタル信号であってもよい。 (4) The present disclosure may be the method described above. In addition, it may be a computer program that realizes these methods by a computer, or may be a digital signal composed of a computer program.
 (5)本開示は、コンピュータプログラム又はデジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray(登録商標) Disc)、半導体メモリなどに記録したものであってもよい。また、これらの記録媒体に記録されているデジタル信号であってもよい。 (5) The present disclosure relates to a computer program or a recording medium capable of reading digital signals from a computer, such as a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD (Blu-ray (registration It may be recorded on a trademark (trademark) Disc), a semiconductor memory or the like. In addition, digital signals recorded on these recording media may be used.
 (6)本開示は、コンピュータプログラム又はデジタル信号を、電気通信回線、無線又は有線通信回線、インターネットを代表とするネットワーク、データ放送などを経由して伝送してもよい。 (6) The present disclosure may transmit a computer program or a digital signal via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, data broadcasting, and the like.
 (7)本開示は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、メモリは、上記コンピュータプログラムを記憶しており、マイクロプロセッサは、コンピュータプログラムに従って動作してもよい。 (7) The present disclosure is a computer system provided with a microprocessor and a memory, the memory storing the computer program, and the microprocessor may operate according to the computer program.
 (8)プログラム又はデジタル信号を記録媒体に記録して移送することにより、あるいは、プログラム又はデジタル信号を、ネットワークなどを経由して移送することにより、独立した他のコンピュータシステムにより実施してもよい。 (8) It may be implemented by another independent computer system by recording and transferring the program or digital signal on a recording medium, or by transferring the program or digital signal via a network or the like .
 また、上記の各実施の形態は、請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Further, various modifications, replacements, additions, omissions and the like can be made in the above-described embodiments within the scope of the claims or the equivalent thereof.
 本開示は、製造物の生産効率及び品質の低下の抑制を支援することができる製造管理装置などとして利用でき、例えば、工場における製造の管理などに利用することができる。 The present disclosure can be used as, for example, a production management device that can help suppress the production efficiency and the deterioration of product quality, and can be used, for example, for management of production in a factory.
10 製造システム
20 製造設備
30 製造物
31 基板
32 部品
100 製造管理装置
110 取得部
120 算出部
130 表示部
140 記憶部
DESCRIPTION OF SYMBOLS 10 Manufacturing system 20 Manufacturing equipment 30 Manufacture 31 Substrate 32 Parts 100 Manufacturing management apparatus 110 Acquisition part 120 Calculation part 130 Display part 140 Storage part

Claims (11)

  1.  製造物を製造するために行われた複数の処理を管理する製造管理装置であって、
     前記複数の処理の各々は、複数の構成要素から選択された2以上の構成要素を用いて実行され、
     前記製造管理装置は、
     前記複数の処理の各々に対して、対応する処理に用いられた2以上の構成要素と、対応する処理の実績とを示す製造ログ情報を取得する取得部と、
     前記製造ログ情報を統計処理することにより、前記複数の構成要素の各々の前記製造物の製造への寄与度を算出する算出部と、
     前記算出部によって算出された寄与度を出力する出力部とを備える
     製造管理装置。
    A manufacturing control apparatus for managing a plurality of processes performed to manufacture a product, comprising:
    Each of the plurality of processes is performed using two or more components selected from a plurality of components,
    The manufacturing control device is
    An acquisition unit configured to acquire, for each of the plurality of processes, manufacturing log information indicating two or more components used in the corresponding process and the results of the corresponding process;
    A calculation unit that calculates contribution of each of the plurality of components to the production of the product by statistically processing the production log information;
    And an output unit that outputs the degree of contribution calculated by the calculation unit.
  2.  前記算出部は、一般化線形モデルに基づいて前記製造ログ情報を処理することにより、前記寄与度を算出する
     請求項1に記載の製造管理装置。
    The manufacturing management apparatus according to claim 1, wherein the calculation unit calculates the contribution degree by processing the manufacturing log information based on a generalized linear model.
  3.  前記一般化線形モデルは、ロジスティック回帰モデル、ポワソン回帰モデル又は2項ロジスティック回帰モデルである
     請求項2に記載の製造管理装置。
    The manufacturing control apparatus according to claim 2, wherein the generalized linear model is a logistic regression model, a Poisson regression model, or a binary logistic regression model.
  4.  前記実績は、対応する処理においてエラーの有無を示すフラグで示され、
     前記算出部は、ロジスティック回帰モデルに基づいて前記製造ログ情報を処理することにより、前記寄与度を算出する
     請求項3に記載の製造管理装置。
    The result is indicated by a flag indicating the presence or absence of an error in the corresponding processing,
    The manufacturing management apparatus according to claim 3, wherein the calculation unit calculates the contribution degree by processing the manufacturing log information based on a logistic regression model.
  5.  前記算出部は、さらに、前記複数の構成要素の各々の前記寄与度に基づいて、所定の構成要素を所定回数使用した場合に発生するエラーの予測回数を算出する
     請求項1~4のいずれか1項に記載の製造管理装置。
    The calculation unit further calculates, based on the degree of contribution of each of the plurality of components, the number of times of prediction of an error that occurs when a predetermined component is used a predetermined number of times. The manufacturing control device according to item 1.
  6.  前記出力部は、前記複数の構成要素の各々の寄与度を図示化して表示する表示部である
     請求項1~5のいずれか1項に記載の製造管理装置。
    The manufacturing control apparatus according to any one of claims 1 to 5, wherein the output unit is a display unit that graphically illustrates and displays the degree of contribution of each of the plurality of components.
  7.  前記複数の構成要素は、前記複数の処理を行う複数の製造設備、当該複数の製造設備の各々が備える複数の構成部位、及び、前記製造物を構成する複数の部品のいずれかである
     請求項1~6のいずれか1項に記載の製造管理装置。
    The plurality of components are any of a plurality of manufacturing facilities for performing the plurality of processes, a plurality of component parts provided in each of the plurality of manufacturing facilities, and a plurality of components constituting the product. The manufacturing control device according to any one of items 1 to 6.
  8.  前記複数の構成要素は、種類毎に複数の構成要素群に分類され、
     前記複数の処理の各々は、前記複数の構成要素群の各々から選択された構成要素を用いて実行される
     請求項1~7のいずれか1項に記載の製造管理装置。
    The plurality of components are classified into a plurality of component groups by type.
    The manufacturing control apparatus according to any one of claims 1 to 7, wherein each of the plurality of processes is executed using a component selected from each of the plurality of component groups.
  9.  請求項1~8のいずれか1項に記載の製造管理装置と、
     前記複数の構成要素の少なくとも1つを備え、前記製造物を製造する製造設備とを備える
     製造システム。
    A manufacturing control apparatus according to any one of claims 1 to 8;
    A manufacturing system comprising: at least one of the plurality of components; and a manufacturing facility for manufacturing the product.
  10.  製造物を製造するために行われた複数の処理を管理する製造管理方法であって、
     前記複数の処理の各々は、複数の構成要素から選択された2以上の構成要素を用いて実行され、
     前記製造管理方法は、
     前記複数の処理の各々に対して、対応する処理に用いられた2以上の構成要素と、対応する処理の実績とを示す製造ログ情報を取得し、
     前記製造ログ情報を統計処理することにより、前記複数の構成要素の各々の前記製造物の製造への寄与度を算出し、
     算出された寄与度を出力する
     製造管理方法。
    A manufacturing control method for managing a plurality of processes performed to manufacture a product, comprising:
    Each of the plurality of processes is performed using two or more components selected from a plurality of components,
    The manufacturing control method is
    For each of the plurality of processes, manufacturing log information indicating two or more components used in the corresponding process and the results of the corresponding process is acquired;
    Calculating the contribution of each of the plurality of components to the production of the product by statistically processing the production log information;
    A manufacturing control method that outputs the calculated contribution.
  11.  請求項10に記載の製造管理方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the manufacturing control method according to claim 10.
PCT/JP2018/026011 2017-07-14 2018-07-10 Manufacturing management device, manufacturing system, and manufacturing management method WO2019013196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-138110 2017-07-14
JP2017138110 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019013196A1 true WO2019013196A1 (en) 2019-01-17

Family

ID=65001222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026011 WO2019013196A1 (en) 2017-07-14 2018-07-10 Manufacturing management device, manufacturing system, and manufacturing management method

Country Status (1)

Country Link
WO (1) WO2019013196A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021240845A1 (en) * 2020-05-27 2021-12-02 パナソニックIpマネジメント株式会社 Data analysis device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190700A (en) * 2000-12-20 2002-07-05 Matsushita Electric Ind Co Ltd Controller for electronic component mounting, and its method
JP2006048429A (en) * 2004-08-05 2006-02-16 Nec Corp System of type having replaceable analysis engine and data analysis program
JP2007323455A (en) * 2006-06-02 2007-12-13 Fuji Xerox Co Ltd System and method for supporting failure preventive diagnosis
JP2013098360A (en) * 2011-11-01 2013-05-20 Panasonic Corp Feeder ranking device in electronic component mounting device and feeder ranking method
WO2015136586A1 (en) * 2014-03-14 2015-09-17 日本電気株式会社 Factor analysis device, factor analysis method, and factor analysis program
WO2016079972A1 (en) * 2014-11-19 2016-05-26 日本電気株式会社 Factor analysis apparatus, factor analysis method and recording medium, and factor analysis system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190700A (en) * 2000-12-20 2002-07-05 Matsushita Electric Ind Co Ltd Controller for electronic component mounting, and its method
JP2006048429A (en) * 2004-08-05 2006-02-16 Nec Corp System of type having replaceable analysis engine and data analysis program
JP2007323455A (en) * 2006-06-02 2007-12-13 Fuji Xerox Co Ltd System and method for supporting failure preventive diagnosis
JP2013098360A (en) * 2011-11-01 2013-05-20 Panasonic Corp Feeder ranking device in electronic component mounting device and feeder ranking method
WO2015136586A1 (en) * 2014-03-14 2015-09-17 日本電気株式会社 Factor analysis device, factor analysis method, and factor analysis program
WO2016079972A1 (en) * 2014-11-19 2016-05-26 日本電気株式会社 Factor analysis apparatus, factor analysis method and recording medium, and factor analysis system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021240845A1 (en) * 2020-05-27 2021-12-02 パナソニックIpマネジメント株式会社 Data analysis device and method
EP4160330A4 (en) * 2020-05-27 2023-12-13 Panasonic Intellectual Property Management Co., Ltd. Data analysis device and method

Similar Documents

Publication Publication Date Title
US9807920B2 (en) Electronic component mounting system
US11550313B2 (en) Equipment element maintenance analysis system and equipment element maintenance analysis method
US20090157455A1 (en) Instruction system and method for equipment problem solving
CN109960234B (en) Production management system and production management method
JP7133775B2 (en) Display device, manufacturing system and display method
US11143689B2 (en) Method and system for data collection and analysis for semiconductor manufacturing
JP5807158B2 (en) Feeder ranking apparatus and feeder ranking method for electronic component mounting apparatus
JP2017139364A (en) Component mounting system and component mounting method
US10692738B2 (en) Information management device and information management method
CN104684271A (en) A system for monitoring and predicting faults of SMT equipment and a method for operating the same
WO2019013196A1 (en) Manufacturing management device, manufacturing system, and manufacturing management method
JP3772906B1 (en) Information processing apparatus, information processing method, program, and computer-readable recording medium recording the program
US11917765B2 (en) Device for estimating cause of mounting error, and method for estimating cause of mounting error
US11550293B2 (en) Board production management device and board production management method to determine a countermeasure to a board production device error
US11307567B2 (en) Component mounting device, method, and system that controls head based on degree of malfunction
JP2002251212A (en) Method for quality control and system for the same and recording medium with its program recorded
US11494278B2 (en) Service system and server
CN103760881B (en) A kind of method for managing and monitoring of material service condition and system
CN114747307A (en) Production data generation device, production data generation method, and program
WO2024105931A1 (en) Production assistance system, production assistance method, and program
WO2023037693A1 (en) Production management method, production management device, and program
KR20210133685A (en) Method for integrated management of maintenance of electronic component mounting device
JP2020027329A (en) Facility diagnostic system and facility diagnostic method
WO2019013224A1 (en) Manufacturing status visualization method, manufacturing status visualization device, and manufacturing system
JP2016189359A (en) Cream solder printing process inspection method and cream solder printing process inspection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP