WO2020158182A1 - 電池制御装置 - Google Patents

電池制御装置 Download PDF

Info

Publication number
WO2020158182A1
WO2020158182A1 PCT/JP2019/047426 JP2019047426W WO2020158182A1 WO 2020158182 A1 WO2020158182 A1 WO 2020158182A1 JP 2019047426 W JP2019047426 W JP 2019047426W WO 2020158182 A1 WO2020158182 A1 WO 2020158182A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
upper limit
battery
limit voltage
time
Prior art date
Application number
PCT/JP2019/047426
Other languages
English (en)
French (fr)
Inventor
亮平 中尾
大川 圭一朗
有島 康夫
佐々木 寛文
Original Assignee
ビークルエナジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ビークルエナジージャパン株式会社 filed Critical ビークルエナジージャパン株式会社
Priority to US17/427,182 priority Critical patent/US20220131400A1/en
Priority to CN201980090881.1A priority patent/CN113396503B/zh
Priority to EP19912851.3A priority patent/EP3920308A4/en
Priority to JP2020569416A priority patent/JP7231657B2/ja
Publication of WO2020158182A1 publication Critical patent/WO2020158182A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery control device.
  • a battery system mounted on an electric vehicle (EV), a plug-in hybrid vehicle (PHEV), a hybrid vehicle (HEV), etc. is generally composed of a plurality of secondary batteries connected in series or in parallel and various electric components. It The electrical components include a relay for controlling the on/off of the electrical connection between the battery and the load, sensors for measuring the current and voltage of the battery, and a battery control device for controlling the charging and discharging of the battery. Be done.
  • the battery control device sets a limit value (upper limit voltage) for the voltage of the battery in order to use the battery in an appropriate range, and performs charge/discharge control of the battery within this upper limit voltage range. This prevents overcharging of the battery and suppresses deterioration of the battery.
  • a limit value upper limit voltage
  • lithium-ion batteries which are often used as secondary batteries, especially at low temperatures
  • the potential of the negative electrode potential based on lithium metal
  • Lithium metal may precipitate.
  • the deposition of lithium metal reduces the amount of lithium ions that should have been used for charging and discharging, which reduces the chargeable and dischargeable capacity of the battery.
  • the lithium metal grows like an icicle and contacts the positive electrode side, which may cause an internal short circuit in the worst case. Therefore, in the battery control device, it is necessary to set the upper limit voltage so as to appropriately limit the battery voltage and prevent the deposition of lithium metal.
  • Patent Document 1 Regarding the control method of the upper limit voltage of the battery, the technique described in Patent Document 1 is known.
  • the negative electrode potential difference is calculated based on the input/output current of the battery, and the allowable upper limit voltage of the battery is set using the calculated negative electrode potential difference, thereby suppressing the deposition of lithium metal in the lithium ion secondary battery.
  • the technology is disclosed.
  • the upper limit voltage that the battery control device should set for the battery changes variously depending on the usage state of the battery.
  • the voltage history of the battery that is, how The important factor is whether it was used at a proper voltage.
  • the input/output current of the battery is considered when setting the upper limit voltage, but the voltage history is not considered. Therefore, it is not possible to set the upper limit voltage that can maximize the charging performance of the secondary battery while effectively suppressing the deterioration of the secondary battery.
  • the battery control device estimates the upper limit voltage of the secondary battery based on the voltage of the secondary battery, and the voltage of the secondary battery based on time-series data of the voltage of the secondary battery.
  • An upper limit voltage calculation unit that calculates a history and calculates the upper limit voltage based on the voltage history is provided.
  • the present invention it is possible to set an appropriate upper limit voltage in order to maximize the charging performance of the secondary battery while effectively suppressing the deterioration of the secondary battery.
  • a case where the present invention is applied to a battery system that constitutes a power source of a plug-in hybrid vehicle (PHEV) will be described as an example.
  • PHEV plug-in hybrid vehicle
  • the configuration of the embodiment described below is not limited to this, and a storage battery control circuit of a power storage device that constitutes a power source of a passenger vehicle such as a hybrid vehicle (HEV) or an electric vehicle (EV) or an industrial vehicle such as a hybrid railway vehicle. It can also be applied to
  • a case of adopting a lithium ion battery will be described as an example, but as long as it is a rechargeable secondary battery, a nickel-hydrogen battery, a lead battery, an electric double layer capacitor, A hybrid capacitor or the like can also be used.
  • a plurality of unit cells are connected in series to form an assembled battery, but a plurality of unit cells connected in parallel are further connected in series to form an assembled battery.
  • a plurality of unit cells connected in series may be further connected in parallel to form an assembled battery.
  • FIG. 1 is a diagram showing a configuration of a battery system 100 and its periphery according to an embodiment of the present invention.
  • Battery system 100 is connected to inverter 400 via relays 300 and 310.
  • the battery system 100 includes an assembled battery 110, a unit battery management unit 120, a current detection unit 130, a voltage detection unit 140, an assembled battery control unit 150, and a storage unit 180.
  • the assembled battery 110 is composed of a plurality of unit cells 111.
  • the unit cell management unit 120 monitors the state of the unit cell 111.
  • the current detection unit 130 detects the current flowing through the battery system 100.
  • the voltage detector 140 detects the total voltage of the assembled battery 110.
  • the assembled battery control unit 150 detects the state of the assembled battery 110 and also manages the state.
  • the assembled battery 110 is configured by electrically connecting in series a plurality of unit cells 111 capable of storing and releasing electric energy (charging and discharging DC power).
  • a lithium ion battery having an output voltage of 3.0 to 4.2 V (average output voltage: 3.6 V) is used for each of the cells 111. Note that other voltage specifications may be used.
  • the unit cells 111 that constitute the assembled battery 110 are grouped into a predetermined number of units in order to manage and control the state.
  • the unit cells 111 divided into groups are electrically connected in series to form unit cell groups 112a and 112b.
  • the number of the unit cells 111 forming the unit cell group 112 may be the same in all the unit cell groups 112, or the number of the unit cells 111 may be different for each unit cell group 112.
  • the unit cell management unit 120 monitors the state of the unit cells 111 that form the assembled battery 110.
  • the unit cell management unit 120 includes a unit cell control unit 121 provided for each unit cell group 112.
  • unit cell control units 121a and 121b are provided corresponding to the unit cell groups 112a and 112b.
  • the unit cell control unit 121 monitors and controls the state of the unit cells 111 that form the unit cell group 112.
  • unit cells 111 are electrically connected in series to form unit cell groups 112a and 112b, and the unit cell groups 112a and 112b are further electrically connected in series.
  • an assembled battery 110 including a total of eight unit cells 111 was obtained.
  • the assembled battery control unit 150 includes the measured values of the battery voltage and temperature of the unit battery 111 output from the unit battery management unit 120, the current value from the current detection unit 130, and the assembled battery 110 output from the voltage detection unit 140.
  • the total voltage value, the battery characteristic information of the unit cell 111 stored in the storage unit 180, and the like are input.
  • the unit cell management unit 120 has a function of diagnosing whether the unit cell 111 is overcharged or overdischarged, and a function of outputting an abnormal signal when a communication error or the like occurs in the unit cell management unit 120.
  • the diagnostic result and the abnormal signal are also input to the battery pack controller 150. Further, a signal is also input from the vehicle control unit 200 that is a higher-level control device.
  • the battery pack control unit 150 calculates based on the input information, the current limit value stored in advance in the storage unit 180, and the battery characteristics of the single battery 111, to appropriately control the charging and discharging of the battery pack 110. I do. For example, calculation of the limit value of charge/discharge power for each single battery 111, calculation of the charge state (SOC: State of Charge) and deterioration state (SOHR: State of Health based on Resistance) of each single battery 111, and calculation of each single The calculation for performing the voltage equalization control of the battery 111 is executed. The battery pack control unit 150 outputs these calculation results and a command based on the calculation results to the unit cell management unit 120 and the vehicle control unit 200.
  • SOC State of Charge
  • SOHR State of Health based on Resistance
  • the storage unit 180 stores information about the battery characteristics of the assembled battery 110, the unit cell 111, and the unit cell group 112.
  • the storage unit 180 is arranged outside the assembled battery control unit 150 or the unit battery management unit 120, but the assembled battery control unit 150 or unit battery management unit 120 includes the storage unit.
  • the above information may be stored in a configuration.
  • the battery pack control unit 150 and the unit cell management unit 120 send and receive signals via the insulating element 170 represented by a photocoupler and the signal communication unit 160.
  • the insulating element 170 is provided because the battery pack control unit 150 and the unit cell management unit 120 have different operating power supplies. That is, the unit cell management unit 120 operates by receiving electric power from the assembled battery 110, while the assembled battery control unit 150 uses a battery for vehicle-mounted auxiliary equipment (for example, a 14V system battery) as a power source.
  • the insulating element 170 may be mounted on the circuit board forming the unit cell management unit 120 or may be mounted on the circuit board forming the battery pack control unit 150. The insulating element 170 may be omitted depending on the system configuration.
  • the communication means between the assembled battery control unit 150 and the unit cell control units 121a and 121b that form the unit cell management unit 120 will be described.
  • the unit cell control units 121a and 121b are connected in series according to the highest potential of the unit cell groups 112a and 112b monitored by them.
  • the signal transmitted from the assembled battery control unit 150 to the unit cell management unit 120 is input to the unit cell control unit 121a via the insulating element 170 and the signal communication unit 160.
  • the output of the unit cell control unit 121a is input to the unit cell control unit 121b via the signal communication unit 160, and the output of the lowest unit cell control unit 121b is via the insulating element 170 and the signal communication unit 160.
  • the insulating element 170 is not provided between the unit cell control unit 121a and the unit cell control unit 121b, but it is also possible to send and receive a signal via the insulating element 170.
  • the vehicle control unit 200 uses the information transmitted by the battery pack control unit 150 to control the inverter 400 connected to the battery system 100 via the relays 300 and 310. While the vehicle is running, the battery system 100 is connected to the inverter 400, and the energy stored in the battery pack 110 is used to drive the motor generator 410.
  • the battery system 100 When the vehicle system equipped with the battery system 100 starts and runs, the battery system 100 is connected to the inverter 400 under the control of the vehicle control unit 200, and the motor using the energy stored in the assembled battery 110 is used.
  • the generator 410 is driven, and the assembled battery 110 is charged by the electric power generated by the motor generator 410 during regeneration.
  • the energy stored in the assembled battery 110 by charging is used when the vehicle next runs, or is also used for operating electric components inside and outside the vehicle.
  • FIG. 2 is a diagram showing a circuit configuration of the unit cell control unit 121.
  • the unit cell control unit 121 includes a voltage detection circuit 122, a control circuit 123, a signal input/output circuit 124, and a temperature detection unit 125.
  • the voltage detection circuit 122 measures the terminal voltage of each unit cell 111.
  • the control circuit 123 receives the measurement result from the voltage detection circuit 122 and the temperature detection unit 125, and transmits the measurement result to the assembled battery control unit 150 via the signal input/output circuit 124.
  • the circuit configuration that is generally mounted in the unit cell control unit 121 and that equalizes the voltage variation and the SOC variation between the unit cells 111 caused by the self-discharge, the consumption current variation, and the like is determined to be known. The description was omitted.
  • the temperature detection unit 125 included in the unit cell control unit 121 in FIG. 2 has a function of measuring the temperature of the unit cell group 112.
  • the temperature detection unit 125 measures one temperature as the whole unit cell group 112 and handles the temperature as a temperature representative value of the unit cells 111 forming the unit cell group 112.
  • the temperature measured by the temperature detection unit 125 is used for various calculations for detecting the state of the unit cell 111, the unit cell group 112, or the assembled battery 110. Since FIG. 2 is premised on this, one temperature detection unit 125 is provided in the unit cell control unit 121. It is possible to provide the temperature detection unit 125 for each unit cell 111, measure the temperature for each unit cell 111, and perform various calculations based on the temperature for each unit cell 111. In this case, the number of temperature detection units 125 is set. As the number of cells increases, the configuration of the unit cell control unit 121 becomes complicated.
  • the temperature detection unit 125 is simply shown. Actually, a temperature sensor is installed on the temperature measurement target, the installed temperature sensor outputs temperature information as voltage, and the measurement result is transmitted to the signal input/output circuit 124 via the control circuit 123, and the signal input/output circuit 124 is output. Outputs the measurement result to the outside of the unit cell control unit 121.
  • a function for realizing this series of flows is mounted in the unit cell control unit 121 as the temperature detection unit 125, and the voltage detection circuit 122 can be used for measuring the temperature information (voltage).
  • FIG. 3 is a diagram showing a functional configuration of the assembled battery control unit 150 according to the first embodiment of the present invention.
  • the battery pack control unit 150 based on the current value and voltage value of each battery cell 111 detected while the vehicle is traveling, the state of each battery cell 111 in the battery pack 110 and the power that can be input to and output from each battery cell 111. Which has a function of calculating chargeable power (charging power limit value) for limiting the charging power of each unit cell 111.
  • FIG. 3 shows a functional configuration of the battery pack control unit 150 relating to the calculation of the chargeable power. This is a part having a function corresponding to the battery control device according to the embodiment of the present invention.
  • the battery pack control unit 150 has various functions necessary for controlling the battery pack 110, such as a function of controlling the discharge of the battery cells 111 and a voltage equalization of the battery cells 111, in addition to the calculation function of the rechargeable power. Although it has a control function and the like, these are well-known functions and are not directly related to the present invention, and therefore detailed description thereof will be omitted below.
  • the assembled battery control unit 150 has, as its functions, functional blocks of a battery state detection unit 151, an upper limit voltage calculation unit 152, and a chargeable power calculation unit 153.
  • the assembled battery control unit 150 uses these functional blocks to detect the current of the assembled battery 110 detected by the current detection unit 130, the voltage and temperature of the assembled battery 110 detected by the voltage detection unit 140, and Calculate chargeable power.
  • the assembled battery control unit 150 calculates the chargeable power of the assembled battery 110, but the chargeable power may be calculated for a plurality of unit cells 111 collectively. For example, it can be calculated for each unit cell group 112a, 112b, or can be calculated based on the voltage for each unit cell 111 detected by the unit cell control unit 120. Even in these cases, the chargeable power can be calculated by the same process as that of the assembled battery 110. The chargeable electric power of each unit cell 111 can be calculated by the same process. Therefore, hereinafter, the calculation target of the rechargeable power is simply referred to as “battery”, and the calculation function of the rechargeable power in the battery pack control unit 150 will be described.
  • the battery state detection unit 151 calculates the SOC and SOHR of the battery based on the information on the battery current, voltage and temperature input to the assembled battery control unit 150. Note that the calculation method of SOC and SOHR is publicly known and will not be described.
  • the upper limit voltage calculation unit 152 receives the time series data of the voltage of the battery as input, and calculates the voltage history of the battery based on this. Then, the upper limit voltage at the time of charging the battery is calculated and output based on the voltage history of the battery. A specific method of calculating the upper limit voltage by the upper limit voltage calculator 152 will be described later.
  • the chargeable power calculation unit 153 calculates the SOC and SOHR of the battery calculated by the battery state detection unit 151, the temperature of the battery input to the assembled battery control unit 150, and the upper limit voltage of the battery calculated by the upper limit voltage calculation unit 152. Based on this, the rechargeable power of the battery is calculated and output. The method of calculating the chargeable power will be described later.
  • FIG. 4 is a control block diagram of the upper limit voltage calculation unit 152 according to the first embodiment of the present invention.
  • the upper limit voltage calculation unit 152 includes a voltage moving average calculation unit 1521, an upper limit voltage estimation unit 1522, and an upper limit voltage selection unit 1523.
  • the voltage moving average calculator 1521 receives the time series data of the battery voltage as an input, and calculates the voltage moving average value as the battery voltage history by averaging the time series data over a predetermined time width.
  • the voltage moving average value corresponding to each time width is calculated. Is calculated.
  • the calculation result of each obtained voltage moving average value is output to the upper limit voltage estimation unit 1522.
  • the voltage moving average value is calculated for each of n (n is an arbitrary natural number) time window, and the obtained n voltage moving average values are output to the upper limit voltage estimation unit 1522. doing.
  • the upper limit voltage estimation unit 1522 estimates the upper limit voltage of the battery based on the voltage moving average value calculated by the voltage moving average calculation unit 1521.
  • the n upper limit voltages are estimated by estimating the upper limit voltages for the n voltage moving average values calculated by the voltage moving average calculator 1521.
  • the upper limit voltage selection unit 1523 selects the upper limit voltage to be finally limited from the n upper limit voltages estimated by the upper limit voltage estimation unit 1522 for each time width.
  • the smallest upper limit voltage of the n upper limit voltages is selected as the final upper limit voltage.
  • FIG. 5 is an explanatory diagram of a method of calculating a voltage moving average value in the voltage moving average calculation unit 1521.
  • the horizontal axis represents time and the vertical axis represents voltage, and an example of time series data of the battery voltage input to the voltage moving average calculation unit 1521 is shown by a voltage waveform.
  • the voltage moving average calculation unit 1521 uses the current time T1 as a reference, and with respect to the time series data of the battery voltage obtained up to the time T1, the n time widths Tw are different from each other. Set the time window. Then, the voltage history is calculated for each time window by averaging the voltage values of the time series data included in each of the n set time windows within the time window.
  • the voltage moving average calculation unit 1521 calculates the voltage history by averaging the time series data by calculating a simple moving average of each voltage value represented by the time series data for each time window.
  • this time-series data has a time width Tw of 20 points within a time window of 2 seconds and a time width Tw of 20 seconds.
  • the voltage data of 200 points is included in the time window, and the voltage value of 600 points is included in the time window having the time width Tw of 60 seconds. Therefore, the simple moving average as the voltage history corresponding to these time windows can be calculated by the following equation (1).
  • Vk in Expression (1) represents voltage value data sampled kth within the time window in time series data.
  • the voltage moving average calculation unit 1521 applies a first-order lag filter with a predetermined time constant, and calculates the exponential moving average of each voltage value data included in the time series data for each time window to obtain the time series data.
  • the voltage history may be calculated by averaging. For example, in the case of time-series data of the battery voltage detected with the sampling period Ts set to 0.1 seconds as described above, the voltage corresponding to each time window (filter time constant) of which the time width Tw is 2 seconds, 20 seconds, and 60 seconds.
  • an exponential moving average weighted according to these filter time constants can be calculated by the following equation (2).
  • V represents the current voltage value, that is, the latest voltage value data in the time series data.
  • Vave_z represents the previous voltage history calculated for each time width Tw, that is, the value of the exponential moving average calculated by the weighted average for each filter time constant in the previous processing.
  • the voltage moving average calculation unit 1521 sets one or more time windows for the time series data of the voltage of the battery by the processing described above, and the voltage moving average as the voltage history corresponding to each time window. The value can be calculated. In addition, although the example which calculates a simple moving average and an exponential moving average as a voltage moving average value was demonstrated above, you may calculate arbitrary moving averages other than this.
  • the upper limit voltage estimation unit 1522 estimates the upper limit voltage corresponding to the voltage moving average value for each time width calculated by the voltage moving average calculation unit 1521 using the upper limit voltage map stored in advance in the storage unit 180.
  • the upper limit voltage map used in this embodiment is preset for each time width. For example, for the simple moving average calculated by the above formula (1) or the exponential moving average calculated by the formula (2), the time width Tw corresponds to each time window of 2 seconds, 20 seconds, and 60 seconds.
  • the upper limit voltage map to be stored is stored in the storage unit 180 in advance.
  • the upper limit voltage estimation unit 1522 can estimate the upper limit voltage corresponding to the voltage moving average value for each time width by using these upper limit voltage maps.
  • the process of the upper limit voltage estimation unit 1522 is expressed by the following equation (3).
  • 2secVmaxMap, 20secVmaxMap, and 60secVmaxMap represent the upper limit voltage maps corresponding to the time windows having the time width Tw of 2 seconds, 20 seconds, and 60 seconds, respectively.
  • the upper limit voltage selection unit 1523 selects the upper limit voltage used for battery control from the upper limit voltage for each time width estimated by the upper limit voltage estimation unit 1522 by the equation (3).
  • the smallest value is selected as the final upper limit voltage value from the plurality of upper limit voltages, for example, by the following formula (4).
  • the upper limit voltage map is created based on the result of the charge/discharge test performed in advance using the battery. For example, a cycle test assuming a charging/discharging cycle in which the battery voltage reached during charging and the voltage stay time (the time during which the battery voltage stays at a certain voltage) are variously performed is carried out as a battery charge/discharge test. .. An upper limit voltage map is constructed based on the result of this cycle test.
  • the capacity retention rate or resistance increase rate of the battery can be used.
  • the capacity maintenance rate is the ratio of the current (after deterioration) battery capacity to the battery capacity at the time of new product, and decreases with deterioration.
  • the resistance increase rate is the ratio of the current (after deterioration) internal resistance to the internal resistance of the battery when it is new, and increases with deterioration.
  • FIG. 6 is a diagram showing an example of a cycle test result according to the first embodiment of the present invention.
  • FIG. 6 shows the results of a cycle test in which the charging and discharging of the battery are repeated by changing the voltage during charging and the voltage dwell time.
  • FIG. 6A shows an example where the voltage dwell time is long
  • FIG. 6B shows an example when the voltage dwell time is medium
  • FIG. 6C shows a short voltage dwell time.
  • the horizontal axis represents the number of cycles
  • the vertical axis represents the capacity retention rate, respectively, to show the relationship between the cycle number and the capacity retention rate of the battery.
  • the evaluation regarding the presence or absence of lithium metal precipitation may be performed not only by the method based on the capacity retention ratio as described above but also by another method.
  • the resistance increase rate may be used instead of the capacity maintenance rate as described above.
  • the battery may be disassembled and whether or not lithium metal is deposited on the electrode surface may be evaluated by an analysis method such as NMR (Nuclear Magnetic Resonance). Based on such test results, a voltage value at which lithium metal is not deposited is extracted for each voltage dwell time, and an upper limit voltage map is created. For example, when the voltage dwell time shown in FIG. 6A is long, a low voltage value is shown. When the voltage dwell time shown in FIG. 6B is medium, a medium voltage value is shown in FIG. 6C. When the indicated voltage dwell time is short, a high voltage value is set in the upper limit voltage map.
  • FIG. 7 is a diagram showing an outline of an upper limit voltage map according to the first embodiment of the present invention.
  • FIG. 7 shows an outline of the upper limit voltage map created from the cycle test result of FIG. 6 and installed in the storage unit 180.
  • FIG. 7A is an example of an upper limit voltage map when the filter time constant (time window) is relatively long
  • FIG. 7B is an upper limit voltage when the filter time constant (time window) is relatively long. It is an example of a map.
  • the upper limit voltage is set to a high value.
  • the upper limit voltage map is set such that the upper limit voltage becomes smaller as the voltage moving average value becomes higher.
  • Vth1 the upper limit voltage is lowered, and when it finally reaches another threshold value Vth2, the upper limit voltage is set so that it becomes the upper limit voltage in each filter time constant (time window).
  • FIG. 8 is a diagram showing an equivalent circuit model that reproduces the voltage behavior of the battery.
  • OCV is the open circuit voltage of the battery
  • Ro is the ohmic resistance of the members of the battery
  • Rp is the internal resistance (polarization resistance) that indicates the loss due to the electrochemical reaction and diffusion of lithium ions.
  • is the polarization time constant
  • Vp is the polarization voltage.
  • the chargeable power calculation unit 153 detects the upper limit voltage determined by the upper limit voltage calculation unit 152, the state of charge (SOC) calculated by the battery state detection unit 151 and the increase rate of internal resistance (SOHR), and the temperature detection unit 125. Using the battery temperature as input, the chargeable power of the assembled battery 110 is calculated and output.
  • the chargeable power is calculated by the product of the chargeable current that can flow in the battery during charging and the voltage of the battery when the chargeable current is energized.
  • the chargeable current is the smaller current of the current value that can flow until the battery voltage reaches the upper limit voltage and the current limit value determined by the constituent members (relay, fuse, etc.) that configure the battery system 100. It can be calculated as a value.
  • the current value that can be passed until the battery voltage reaches the upper limit voltage is obtained when the battery voltage V calculated by the equivalent circuit model of FIG. 8 is equal to the upper limit voltage value Vmax calculated by the equation (4).
  • the current value can be calculated by the following equation (5).
  • the current limit value Ilimit may be a predetermined value or may be changed according to the temperature of the battery or the like.
  • the chargeable power is calculated by the following equation (7).
  • N represents the number of the unit cells 111 included in the assembled battery 110.
  • the terms after OCV(SOC,T) on the right side correspond to the expressions for calculating the battery voltage when a chargeable current is applied. This represents the battery voltage when the chargeable current Imax,chg is applied in the battery equivalent circuit model shown in FIG.
  • the current value Ichg calculated based on the above equation (5) is extremely large.
  • the current limit value Ilimit determined by the constituent members of the battery system 100 is often adopted as the chargeable current Imax,chg.
  • the current value Ichg becomes lower than the current limit value Ilimit after a low temperature where the internal resistance of the battery increases and after deterioration. Therefore, in the formula (6), the current value Ichg is often adopted as the chargeable current Imax,chg, and as a result, the chargeable current and the chargeable power are the upper limit voltage value calculated by the formula (4). It becomes highly dependent on Vmax.
  • the chargeable power calculation unit 153 calculates both the chargeable current and the chargeable power has been described, but only one of them may be calculated. That is, it is possible that the chargeable power calculation unit 153 only calculates the chargeable current and not the chargeable power.
  • FIG. 9 an example of time series data of the voltage when the battery is charged and discharged at a certain temperature, and the voltage history, the upper limit voltage, and the rechargeable power calculated by the battery pack control unit 150 based on the time series data.
  • FIG. 9 shows time series data of voltage
  • (b) shows a moving average voltage showing a voltage history
  • (c) shows an upper limit voltage
  • (d) shows rechargeable power.
  • the unit cell control unit 121 acquires time series data of voltage as shown in FIG. 9A, for example.
  • the upper limit voltage calculation unit 152 sets two types of time windows having a time width Tw of 2 seconds and 60 seconds for the voltage waveform of FIG.
  • the moving average is calculated based on (1) or equation (2).
  • a moving average voltage such as the voltage waveform shown in FIG. 9B is obtained as each voltage history.
  • the solid line shows the moving average voltage with a time width of 2 seconds
  • the broken line shows the moving average voltage with a time width of 60 seconds.
  • the upper limit voltage calculation unit 152 estimates the upper limit voltage corresponding to each moving average voltage of FIG. 9B, based on the above-mentioned formula (3). Thereby, the upper limit voltage like the voltage waveform shown in FIG. 9C is obtained for each moving average voltage.
  • the solid line indicates the upper limit voltage corresponding to the moving average voltage having a time width of 2 seconds
  • the broken line indicates the upper limit voltage corresponding to the moving average voltage having a time width of 60 seconds.
  • the upper limit voltage calculation unit 152 compares the respective upper limit voltages of FIG. 9(c) for each predetermined calculation cycle based on the above-mentioned equation (4), selects the smaller one, and determines the final upper limit for the battery. Voltage. Then, the chargeable electric power corresponding to the final upper limit voltage is calculated based on the above equations (5) to (7). As a result, for each upper limit voltage shown in FIG. 9C, chargeable electric power having the voltage waveform shown in FIG. 9D is obtained.
  • the final upper limit voltage when the moving average voltage is high, that is, when the voltage dwell time (holding time) in a high voltage region can be regarded as long, the final upper limit voltage is low. It is set to a value.
  • the moving average voltage when the moving average voltage is low, that is, when the voltage residence time (holding time) in the high voltage region can be regarded as short, the final upper limit voltage is set to a high value.
  • the chargeable power is limited as shown in FIG.
  • the assembled battery control unit 150 of the present embodiment it is possible to maximize the chargeable power while suppressing the deposition of lithium metal on the electrode surface of the secondary battery. ..
  • the battery pack control unit 150 determines the upper limit voltage at the time of charging the secondary battery cell 111 or the battery pack 110, and calculates the rechargeable power of these batteries based on the upper limit voltage.
  • the assembled battery control unit 150 includes an upper limit voltage calculation unit 152 that calculates the voltage history of the battery based on the time series data of the voltage of the battery and calculates the upper limit voltage based on the voltage history. Since this is done, it is possible to set an appropriate upper limit voltage in order to maximize the charging performance of the secondary battery while effectively suppressing the deterioration of the secondary battery.
  • the voltage moving average calculation unit 1521 calculates the voltage history by averaging the time series data of the battery voltage in a predetermined time width. Since it did in this way, the voltage history required for calculation of an upper limit voltage can be appropriately calculated from the time series data of the voltage of a battery.
  • the voltage moving average calculation unit 1521 weights the simple moving average of each voltage corresponding to a predetermined time width in the time series data of the battery voltage or each voltage according to the time constant.
  • the averaged exponential moving average is calculated as the voltage history. Since it did in this way, the time series data of the voltage of a battery can be appropriately averaged according to a time width, and can be used as a voltage history.
  • the upper limit voltage calculation unit 152 calculates a plurality of voltage histories by calculating a voltage history for each of a plurality of time windows having different time widths by the voltage moving average calculation unit 1521, and based on the plurality of voltage histories.
  • the upper limit voltage estimating unit 1522 sets the smallest upper limit voltage of the plurality of upper limit voltages calculated by the upper limit voltage estimating unit 1522 as the upper limit voltage of the battery. Since it did in this way, the optimal upper limit voltage can be set in consideration of the voltage dwell time.
  • the battery pack control unit 150 includes the chargeable power calculation unit 153 that calculates the chargeable current or chargeable power of the battery based on the upper limit voltage determined by the upper limit voltage calculation unit 152. Since it did in this way, chargeable current and chargeable electric power according to an upper limit voltage can be defined and used for charge control of a battery.
  • FIG. 10 is a diagram showing a functional configuration of an assembled battery control unit 150a according to the second embodiment of the present invention.
  • the assembled battery control unit 150a in the present embodiment has an upper limit voltage calculation unit 152a in place of the upper limit voltage calculation unit 152 in FIG. 3, and the battery voltage and temperature acquired by the assembled battery control unit 150 are the upper limit voltage.
  • the functional configuration is the same as that of the battery pack control unit 150 in the first embodiment except that the input is input to the calculation unit 152a.
  • the upper limit voltage calculation unit 152a receives the time series data of the battery voltage as an input, and calculates the battery voltage history based on this. Then, based on the voltage history and temperature of the battery, the upper limit voltage at the time of charging the battery is calculated and output.
  • FIG. 11 is a control block diagram of the upper limit voltage calculation unit 152a according to the second embodiment of the present invention.
  • the upper limit voltage calculating unit 152a in the present embodiment has an upper limit voltage estimating unit 1522a in place of the upper limit voltage estimating unit 1522 of FIG. 4, and the battery temperature calculated by the battery state detecting unit 151 is the upper limit voltage estimating unit.
  • the functional configuration is the same as that of the upper limit voltage calculation unit 152 in the first embodiment, except that it is input to the 1522a.
  • the upper limit voltage estimating unit 1522a estimates the upper limit voltage of the battery based on the voltage moving average value calculated by the voltage moving average calculating unit 1521. At this time, the upper limit voltage estimation unit 1522a calculates the n voltage moving average values for each time width calculated by the voltage moving average calculation unit 1521 and the battery temperature input from the unit cell management unit 120 to the upper limit voltage calculation unit 152a. Based on the above, referring to the upper limit voltage map stored in advance in the storage unit 180, the upper limit voltage is estimated for each of the n voltage moving average values.
  • the upper limit voltage map used in this embodiment is set in advance for each combination of time width and temperature, and is created based on the result of the charge/discharge test performed in advance using the battery. For example, a cycle test assuming a charge/discharge cycle in which the battery voltage reached during charging, the voltage dwell time, and the battery temperature are variously changed is performed as a battery charge/discharge test. An upper limit voltage map is constructed based on the result of this cycle test.
  • FIG. 12 is a diagram showing an example of a cycle test result according to the second embodiment of the present invention.
  • FIG. 12 shows the results when the cycle test in which the combination of the voltage during charging and the voltage dwell time is changed and the battery is repeatedly charged and discharged is carried out at different temperatures.
  • FIG. 12(a) shows an example of extremely low temperature (eg -30° C.)
  • FIG. 12(b) shows an example of low temperature (eg 0° C.)
  • FIG. 12(c) shows room temperature (eg 25° C.).
  • the horizontal axis represents the number of cycles and the vertical axis represents the capacity retention rate, respectively, to show the relationship between the cycle number and the capacity retention rate of the battery.
  • FIG. 13 is a diagram showing an outline of an upper limit voltage map according to the second embodiment of the present invention.
  • FIG. 13 shows an outline of the upper limit voltage map created from the cycle test result of FIG. 12 and installed in the storage unit 180.
  • FIG. 13A is an example of an upper limit voltage map when the filter time constant (time window) is relatively long
  • FIG. 13B is an upper limit voltage when the filter time constant (time window) is relatively short. It is an example of a map.
  • the voltage moving average value is small, a high value is set as the upper limit voltage, and the upper limit voltage map is set so that the upper limit voltage becomes smaller as the voltage moving average value becomes higher. Also, the lower the temperature, the lower the upper limit voltage as a whole. Taking this tendency into consideration, the upper limit voltage according to the voltage moving average value is appropriately set by experiments and simulations so as not to deviate from the upper limit voltage obtained from the experimental result.
  • the upper limit voltage calculation unit 152a determines the upper limit voltage based on the voltage history and the battery temperature. Since it did in this way, a more appropriate upper limit voltage can be set in consideration of the temperature of the battery. As a result, it becomes possible to maximize the charging performance of the battery while preventing the deposition of lithium metal even when the battery temperature changes.
  • a third embodiment of the present invention Since the presence/absence of lithium metal deposition also largely depends on the current value during charging, in the present embodiment, in addition to the voltage history and temperature of the battery, an example in which the upper limit voltage is calculated in consideration of the current flowing through the battery Will be explained.
  • the configuration of the battery system according to the present embodiment is the same as the battery system 100 of FIG. 1 described in the first and second embodiments, except that the assembled battery control unit 150 is replaced by the assembled battery control unit 150b. It is the same. In the following, the content of the present embodiment will be described focusing on the difference points between the battery pack control units 150 and 150a.
  • FIG. 14 is a diagram showing a functional configuration of an assembled battery control unit 150b according to the third embodiment of the present invention.
  • the battery pack control unit 150b in the present embodiment has the same functional configuration as the battery pack control unit 150 in the first embodiment, except that a current is added as an input to the upper limit voltage calculation unit 152b.
  • FIG. 14 is a diagram showing a functional configuration of an assembled battery control unit 150b according to the third embodiment of the present invention.
  • the battery pack control unit 150b in the present embodiment has an upper limit voltage calculation unit 152b in place of the upper limit voltage calculation unit 152 in FIG. 3, and in addition to the battery voltage and temperature acquired by the battery pack control unit 150,
  • the functional configuration is the same as that of the battery pack control unit 150 in the first embodiment, except that the value of the current flowing through is input to the upper limit voltage calculation unit 152b.
  • the upper limit voltage calculation unit 152b receives the time series data of the battery voltage as input, and calculates the battery voltage history based on this. Then, the upper limit voltage of the battery is calculated and output based on the voltage history, current and temperature of the battery.
  • FIG. 15 is a control block diagram of the upper limit voltage calculation unit 152b according to the third embodiment of the present invention.
  • the upper limit voltage calculation unit 152b in the present embodiment has an upper limit voltage estimation unit 1522b in place of the upper limit voltage estimation unit 1522 of FIG. 4, and additionally, a current moving average calculation based on the value of the current flowing in the battery.
  • the portion 1524 is further included.
  • the functional configuration is the same as that of the unit 152.
  • the upper limit voltage estimating unit 1522b estimates the upper limit voltage of the battery based on the voltage moving average value calculated by the voltage moving average calculating unit 1521. At this time, the upper limit voltage estimation unit 1522b calculates the n moving average voltage values for each time width calculated by the voltage moving average calculation unit 1521, and the battery temperature input from the unit cell management unit 120 to the upper limit voltage calculation unit 152a. Based on the current moving average value calculated by the current moving average calculation unit 1524, the upper limit voltage is estimated for each of the n voltage moving average values by referring to the upper limit voltage map stored in advance in the storage unit 180. To do.
  • the current moving average calculator 1524 is calculated based on the current value based on the following equation (8) or equation (9).
  • Tw included in Expression (8) or Expression (9) is a filter time constant (time window) for current moving average calculation.
  • the filter for current moving average calculation may set the same value as the filter time constant (time constant) for voltage moving average calculation, for example.
  • the behavior of the diffusion is assumed on the assumption that the lithium-ion concentration change (diffusion) at the electrode-electrolyte interface is linear diffusion. You may set the value which reproduces.
  • Iave is the current moving average value
  • Iave_z is the previous value of the current moving average value
  • the upper limit voltage map used in this embodiment is set in advance for each combination of time width, temperature, and current moving average value, and is created based on the result of the charge/discharge test performed in advance using the battery. For example, a cycle test assuming a charging/discharging cycle in which the battery voltage reached during charging, the voltage dwell time, the battery temperature, and the charging current value are variously performed is performed as a battery charging/discharging test. An upper limit voltage map is constructed based on the result of this cycle test.
  • FIG. 16 is a diagram showing an example of a cycle test result according to the third embodiment of the present invention.
  • FIG. 16 shows the results of a cycle test in which the combination of the voltage and the voltage dwell time at the time of charging is changed and the battery is repeatedly charged and discharged, while the current value flowing at the time of charging is variously changed.
  • FIG. 16A shows an example of the result when tested with a large charging current value
  • FIG. 16B shows an example of the result when tested with a small charging current value.
  • the horizontal axis represents the number of cycles
  • the vertical axis represents the capacity retention rate, respectively, to show the relationship between the cycle number and the capacity retention rate of the battery.
  • the battery temperature was also added to the level in this cycle test, and when the data was analyzed, it was possible to confirm the presence or absence of metal lithium deposition according to all the conditions of voltage, temperature, and current. It will be possible.
  • the upper limit voltage map it is preferable to set the upper limit voltage such that the use of the battery is avoided under the lithium metal deposition conditions.
  • FIG. 17 is a diagram showing an outline of an upper limit voltage map according to the third embodiment of the present invention.
  • FIG. 17 shows an outline of an upper limit voltage map created from the cycle test result of FIG. 16 and installed in the storage unit 180.
  • 17A is an example of the upper limit voltage map when the filter time constant (time window) is relatively long and the current moving average value is small
  • FIG. 17B shows the filter time constant (time window).
  • 17) is an example of the upper limit voltage map when the current moving average value is relatively short
  • FIG. 17C shows a case where the filter time constant (time window) is relatively long and the current moving average value is large.
  • 17D is an example of the upper limit voltage map of FIG. 17D
  • FIG. 17D is an example of the upper limit voltage map of FIG. 17D
  • 17D is an example of the upper limit voltage map when the filter time constant (time window) is relatively short and the current moving average value is large.
  • the upper limit voltage map is set so that the upper limit voltage becomes smaller as the voltage moving average value becomes higher.
  • the upper limit voltage is set such that the larger the current moving average value, the smaller the upper limit voltage.
  • the lower the temperature the lower the upper limit voltage as a whole. Taking this tendency into consideration, the upper limit voltage according to the voltage moving average value is appropriately set by experiments and simulations so as not to deviate from the upper limit voltage obtained from the experimental result.
  • the upper limit voltage calculation unit 152b determines the upper limit voltage based on the voltage history and the temperature of the battery and the value of the current flowing in the battery. Since it did in this way, a further appropriate upper limit voltage can be set in consideration of the current value (current moving average value) of the battery. As a result, it becomes possible to maximize the charging performance of the battery while preventing the deposition of lithium metal even if the current value during charging/discharging changes.
  • a fourth embodiment of the present invention will be described.
  • the presence/absence of lithium metal precipitation also largely depends on the current value at the time of charging, and thus an example reflecting this has been described.
  • the current value is reduced by a simpler method.
  • a method of considering the dependency on the value will be described.
  • the configuration of the battery system according to the present embodiment is the same as that of the first to third embodiments except that the battery pack control unit 150b has an upper limit voltage calculation unit 152c instead of the upper limit voltage calculation unit 152b. It is similar to the battery system 100 of No. 1.
  • the contents of the present embodiment will be described, focusing on the points of difference from the upper limit voltage calculation unit 152b.
  • FIG. 18 illustrates an upper limit voltage calculation unit 152c according to the fourth embodiment of the present invention.
  • the difference from the upper limit voltage calculation unit 152b is that the current moving average value calculation unit 1524 is deleted and the current moving average value that is an input to the upper limit voltage estimation unit 1522b is deleted, but a current value is added as an input.
  • the point is that it has a voltage moving average value calculator 1521a.
  • the deposition of lithium metal differs depending on the voltage of the battery and the current flowing in the battery.
  • Expression (10) is an example in which weighting by current and voltage is applied to simple moving average, which is so-called weighted average. Based on the acquired voltage value and the current value flowing at that time, a weighting factor is calculated from a predetermined weighting factor map (weightMap) and standardized by the sum of all weighting factors within the time window (Equation (11 ) (12)). Using this result, the voltage moving average value for each time window is calculated by weighted averaging.
  • weightMap weighting factor map
  • the formula (13) is a weighted average formula when the exponential moving average is applied to the calculation of the voltage moving average.
  • a weighting coefficient is calculated from a predetermined weighting coefficient map (weightMap) based on the acquired voltage value and the current value flowing at that time (Equation (14)), and the voltage moving average value for each time window is calculated. ..
  • FIG. 19 illustrates an example of weightMap described in equations (12) and (14).
  • the map corresponds to the current and the voltage, and the higher the voltage value and the larger the current value (+ on the charging side), the larger the weight coefficient is set.
  • the upper limit voltage is estimated using the voltage moving average value calculated based on the above equation (10) or (13). Since various calculations using the voltage moving average value are the same as those described in the first and second embodiments, the description thereof will be omitted.
  • the map of FIG. 19 may be set in consideration of the current dependency of the metal lithium deposition conditions introduced in the third embodiment.
  • the voltage moving average calculation unit 1521a sets the weighting coefficient set based on the current and voltage of the battery, and by the moving average processing of the voltage reflecting the weighting coefficient, The voltage moving average value can be calculated in consideration of the influence of the current value. Since this is done, the current value of the battery is taken into consideration, and the weighting to the moving average calculation is increased for the voltage value when the current value is high, so that even if the high current state is maintained, it will be faster.
  • the upper limit voltage can be limited to. As a result, as a result, it becomes possible to maximize the charging performance of the battery while preventing the deposition of lithium metal even when the current and voltage, which are important factors in the deposition of lithium metal, change.
  • the initial value of the voltage moving average value at this time starting is appropriately set. The method to determine is described.
  • FIG. 20 is a control block diagram of the assembled battery control means 150c in the embodiment of the present invention.
  • the main difference from the first to fourth embodiments is that the vehicle rest time, the voltage at the end of the previous run, and the moving average voltage at the end of the previous run are input and added to the upper limit voltage calculation unit 152c.
  • the vehicle leaving time is measured by using a device capable of measuring time, for example, RTC (Real Time Clock).
  • the voltage at the end of the previous run and the moving average voltage at the end of the previous run are stored in the storage unit 180 at the end of the previous run and read at the next start.
  • the configuration of the battery pack control unit 150c other than this is the same as in the first to fourth embodiments.
  • a voltage moving average calculation unit 1521b is provided instead of the voltage moving average calculation unit 1521.
  • the voltage moving average calculation unit 1521b is added with the vehicle rest time, the voltage moving average value at the end of the previous traveling, and the voltage at the end of the previous traveling as inputs.
  • FIG. 22 is a diagram for explaining a problem to be solved by this embodiment.
  • the vehicle system is stopped, and the vehicle is started after rest, charging/discharging is restarted.
  • the battery system cannot measure the voltage, but the battery voltage depends on the polarization voltage of the battery generated by charging/discharging (the overvoltage accompanying the electrochemical reaction of the battery and the diffusion of lithium ions). This is an overvoltage and corresponds to Vp in FIG. 8) relaxes, that is, approaches the open circuit voltage (OCV) shown in FIG. Therefore, as shown in FIG. 22, the voltage changes as the rest time elapses.
  • OCV open circuit voltage
  • FIG. 23 shows the concept of the initial value of the voltage moving average value when the vehicle is started in this embodiment.
  • a value obtained by acquiring the voltage during the rest period before and after the rest at the time of starting the vehicle that is, one of the voltage at the end of the previous travel and the voltage value at the present start time. adopt.
  • a large value was adopted from the voltage at the end of the previous run and the voltage value at the start of this time so as to be a safe side value, which was maintained at all times during the rest period.
  • the initial value of the voltage moving average value is determined.
  • the initial value of the voltage moving average value can be calculated by the equation (15) based on the voltage moving average value at the end of the previous run, the voltage during the rest period and the vehicle rest time.
  • PrevVave represents the voltage moving average value at the end of the previous travel
  • RestTime represents the rest time
  • Vrest represents the voltage value during the rest period.
  • a large value is set to the above-described voltage at the time of ending the previous travel and the voltage value at the time of this start.
  • Vrest is set to the value at the time of this start. Set and execute the calculation by equation (15), or set Vrest as the initial value of the voltage moving average value.
  • the formula (15) has described the method of determining the initial value of the voltage history in consideration of the calculation by the exponential moving average
  • the calculation by the simple moving average can be reflected in the initial value calculation in the same way.
  • the voltage array corresponding to the time window (Vk in equation (1)) is set in order from the value acquired at the old time from the voltage array by the number of elements of the time corresponding to the vehicle downtime. You can replace it with the value of Vrest.
  • the averaging process described in equations (1) and (2) is restarted to calculate the voltage moving average value during charging/discharging and Based on this, the upper limit voltage is estimated.
  • the voltage moving average calculation unit 1521b is in the direction of suppressing the precipitation of metallic lithium in consideration of the behavior of the voltage during the vehicle rest time, in which the voltage cannot be measured. , The initial value of the voltage history can be set. Since this is done, as a result, it is possible to set a more appropriate upper limit voltage for the deposition of metallic lithium in consideration of the current value of the battery.
  • Battery system 110 Battery pack 111: Single battery 112: Single battery group 120: Single battery management unit 121: Single battery control unit 122: Voltage detection circuit 123: Control circuit 124: Signal input/output circuit 125: Temperature detection unit 130 : Current detection unit 140: Voltage detection unit 150: Battery pack control unit 151: Battery state detection unit 152: Upper limit voltage calculation unit 153: Chargeable power calculation unit 154: Power limit rate calculation unit 155: Power limit rate reflection unit 160: Signal communication means 170: Insulation element 180: Storage unit 200: Vehicle control unit 300 to 330: Relay 400: Inverter 410: Motor generator 1521: Voltage moving average calculation unit 1522: Upper limit voltage estimation unit 1523: Upper limit voltage selection unit 1524: Current Moving average calculator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

二次電池の劣化を効果的に抑制しつつ、二次電池の充電性能を最大限に引き出すために、適切な上限電圧を設定する。組電池制御部150は、二次電池の充電時の上限電圧を決定し、この上限電圧に基づいて二次電池の充電可能電力を演算する。組電池制御部150は、二次電池の電圧の時系列データに基づいて二次電池の電圧履歴を演算し、電圧履歴に基づいて上限電圧を演算する上限電圧演算部152を備える。

Description

電池制御装置
 本発明は、電池制御装置に関する。
 電気自動車(EV)、プラグインハイブリッド自動車(PHEV)、ハイブリッド自動車(HEV)等に搭載される電池システムは、一般に、直列もしくは並列に接続された複数の二次電池と、各種電気部品から構成される。電気部品には、電池と負荷との電気的な接続のオンオフを制御するためのリレーや、電池の電流や電圧を測定するためのセンサ類、電池の充放電制御を行う電池制御装置などが含まれる。
 電池制御装置は、電池を適切な範囲で使用するために、電池の電圧に対する制限値(上限電圧)を設定し、この上限電圧の範囲内で電池の充放電制御を行う。これにより、電池の過充電を防止して、電池の劣化を抑制している。
 一般的に二次電池として利用されることが多いリチウムイオン電池では、特に低温時において、負極の電位(リチウム金属を基準とする電位)が低い場合、つまり電池電圧が高い場合に、負極表面にリチウム金属が析出する可能性がある。リチウム金属の析出により、充放電に用いるはずだったリチウムイオン量が減少するため、電池の充放電可能な容量が減少する。さらには、負極でリチウム金属の析出が進むと、リチウム金属がつらら状に成長して正極側と接触し、最悪の場合、内部短絡を起こす可能性がある。このため、電池制御装置では、適切に電池電圧を制限してリチウム金属の析出を防止できるように、上限電圧を設定する必要がある。
 電池の上限電圧の制御方法に関して、特許文献1に記載の技術が知られている。特許文献1では、電池の入出力電流に基づいて負極電位差を計算し、計算した負極電位差を用いて電池の許容上限電圧を設定することで、リチウムイオン二次電池におけるリチウム金属の析出を抑制する技術が開示されている。
特開2010-268642号公報
 電池制御装置が電池に対して設定すべき上限電圧は、電池の使用状態に応じて様々に変化する。特に、リチウムイオン電池においてリチウム金属の析出を効果的に抑制しつつ、電池の充電性能を最大限に発揮できる上限電圧を設定するためには、電池の電圧履歴、すなわち現在までに電池がどのような電圧で使用されていたかが重要な要素となる。しかしながら、特許文献1に記載の技術では、上限電圧の設定に際して電池の入出力電流は考慮しているが、電圧履歴については未考慮であった。このため、二次電池の劣化を効果的に抑制しつつ、二次電池の充電性能を最大限に引き出すことが可能な上限電圧を設定することができない。
 本発明による電池制御装置は、二次電池の電圧に基づき、前記二次電池の上限電圧を推定するものであって、前記二次電池の電圧の時系列データに基づいて前記二次電池の電圧履歴を演算し、前記電圧履歴に基づいて前記上限電圧を演算する上限電圧演算部を備える。
 本発明によれば、二次電池の劣化を効果的に抑制しつつ、二次電池の充電性能を最大限に引き出すために、適切な上限電圧を設定することができる。
本発明の一実施形態に係る電池システムとその周辺の構成を示す図である。 単電池制御部の回路構成を示す図である。 本発明の第1の実施形態に係る組電池制御部の機能構成を示す図である。 本発明の第1の実施形態に係る上限電圧演算部の制御ブロック図である。 電圧移動平均値の演算方法の説明図である。 本発明の第1の実施形態に係るサイクル試験結果の例を示す図である。 本発明の第1の実施形態に係る上限電圧マップの概要を示す図である。 電池の電圧挙動を再現する等価回路モデルを示す図である。 本発明を適用して電池の充電可能電力を演算することの効果を説明する図である。 本発明の第2の実施形態に係る組電池制御部の機能構成を示す図である。 本発明の第2の実施形態に係る上限電圧演算部の制御ブロック図である。 本発明の第2の実施形態に係るサイクル試験結果の例を示す図である。 本発明の第2の実施形態に係る上限電圧マップの概要を示す図である。 本発明の第3の実施形態に係る組電池制御部の機能構成を示す図である。 本発明の第3の実施形態に係る上限電圧演算部の制御ブロック図である。 本発明の第3の実施形態に係るサイクル試験結果の例を示す図である。 本発明の第3の実施形態に係る上限電圧マップの概要を示す図である。 本発明の第4の実施形態に係る上限電圧演算部の制御ブロック図である。 本発明の第4の実施形態に係る重み係数マップの概要を示す図である。 本発明の第5の実施形態に係る組電池制御部の機能構成を示す図である。 本発明の第5の実施形態に係る上限電圧マップの概要を示す図である。 車両休止期間中の電圧の挙動を示す例を示す図である。 本発明の第5の実施形態に係る休止中の電圧値の考え方を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。以下の実施形態では、プラグインハイブリッド自動車(PHEV)の電源を構成する電池システムに対して本発明を適用した場合を例に挙げて説明する。ただし、以下に説明する実施形態の構成はこれに限らず、ハイブリッド自動車(HEV)、電気自動車(EV)などの乗用車や、ハイブリッド鉄道車両といった産業用車両の電源を構成する蓄電装置の蓄電器制御回路などにも適用できる。
 また、以下の実施形態では、リチウムイオン電池を採用した場合を例に挙げて説明するが、充放電可能な二次電池であれば、他にもニッケル水素電池、鉛電池、電気二重層キャパシタ、ハイブリッドキャパシタなどを用いることもできる。さらに、以下の実施形態では複数の単電池を直列に接続して組電池を構成しているが、複数の単電池を並列接続したものをさらに複数個直列に接続して組電池を構成してもよいし、直列接続した複数の単電池をさらに複数個並列に接続して組電池を構成してもよい。
<第1の実施形態>
 図1は、本発明の一実施形態に係る電池システム100とその周辺の構成を示す図である。電池システム100は、リレー300,310を介してインバータ400に接続される。電池システム100は、組電池110、単電池管理部120、電流検知部130、電圧検知部140、組電池制御部150、記憶部180を備える。
 組電池110は、複数の単電池111から構成される。単電池管理部120は、単電池111の状態を監視する。電流検知部130は、電池システム100に流れる電流を検知する。電圧検知部140は、組電池110の総電圧を検知する。組電池制御部150は、組電池110の状態を検知し、状態の管理等も行う。
 組電池110は、電気エネルギーの蓄積および放出(直流電力の充放電)が可能な複数の単電池111を電気的に直列に接続して構成されている。各単電池111には、例えば出力電圧が3.0~4.2V(平均出力電圧:3.6V)のリチウムイオン電池が用いられる。なお、これ以外の電圧仕様のものでも構わない。組電池110を構成する単電池111は、状態の管理・制御を実施する上で、所定の単位数にグループ分けされている。グループ分けされた単電池111は、電気的に直列に接続され、単電池群112a、112bを構成している。単電池群112を構成する単電池111の個数は、全ての単電池群112において同数でもよいし、単電池群112毎に単電池111の個数が異なっていてもよい。
 単電池管理部120は、組電池110を構成する単電池111の状態を監視する。単電池管理部120は、単電池群112毎に設けられた単電池制御部121を備える。図1では、単電池群112aと112bに対応して、単電池制御部121aと121bが設けられている。単電池制御部121は、単電池群112を構成する単電池111の状態を監視および制御する。
 本実施形態では、説明を簡略化するために、4個の単電池111を電気的に直列接続して単電池群112aと112bを構成し、単電池群112aと112bをさらに電気的に直列接続して合計8個の単電池111を備える組電池110とした。
 組電池制御部150には、単電池管理部120から出力される単電池111の電池電圧や温度の計測値、電流検知部130からの電流値、電圧検知部140から出力される組電池110の総電圧値、記憶部180に格納された単電池111の電池特性情報などが入力される。また、単電池管理部120は、単電池111が過充電もしくは過放電であるかの診断を行う機能や、単電池管理部120に通信エラーなどが発生した場合に異常信号を出力する機能を有しており、それらの診断結果や異常信号も組電池制御部150に入力される。さらに、上位の制御装置である車両制御部200からも信号が入力される。
 組電池制御部150は、入力された情報、および記憶部180に予め記憶されている電流制限値や単電池111の電池特性に基づいて、組電池110の充放電を適切に制御するための演算を行う。例えば、各単電池111に対する充放電電力の制限値の演算や、各単電池111の充電状態(SOC:State Of Charge)および劣化状態(SOHR:State Of Health based on Resistance)の演算や、各単電池111の電圧均等化制御を行うための演算などを実行する。組電池制御部150は、これらの演算結果や、その演算結果に基づく指令を、単電池管理部120や車両制御部200に出力する。
 記憶部180は、組電池110、単電池111、および単電池群112の電池特性に関する情報を格納する。なお、本実施形態では、記憶部180は組電池制御部150または単電池管理部120の外部に設置されている構成としたが、組電池制御部150または単電池管理部120が記憶部を備える構成とし、これに上記情報を格納してもよい。
 組電池制御部150と単電池管理部120は、フォトカプラに代表される絶縁素子170および信号通信手段160を介して信号を送受信する。絶縁素子170を設けるのは、組電池制御部150と単電池管理部120は、動作電源が異なるためである。すなわち、単電池管理部120は、組電池110から電力をうけて動作するのに対して、組電池制御部150は、車載補機用のバッテリ(例えば14V系バッテリ)を電源として用いている。絶縁素子170は、単電池管理部120を構成する回路基板に実装してもよいし、組電池制御部150を構成する回路基板に実装してもよい。システム構成によっては、絶縁素子170を省略することもできる。
 組電池制御部150と、単電池管理部120を構成する単電池制御部121aおよび121bとの間の通信手段について説明する。単電池制御部121aおよび121bは、それぞれが監視する単電池群112aおよび112bの電位の高い順にしたがって直列に接続されている。組電池制御部150が単電池管理部120に送信した信号は、絶縁素子170および信号通信手段160を介して単電池制御部121aに入力される。単電池制御部121aの出力は信号通信手段160を介して単電池制御部121bに入力され、最下位の単電池制御部121bの出力は絶縁素子170および信号通信手段160を介して組電池制御部150へと伝送される。本実施形態では、単電池制御部121aと単電池制御部121bの間は絶縁素子170を介していないが、絶縁素子170を介して信号を送受信することもできる。
 車両制御部200は、組電池制御部150が送信する情報を用いて、リレー300と310を介して電池システム100と接続されるインバータ400を制御する。車両走行中には、電池システム100はインバータ400と接続され、組電池110が蓄えているエネルギーを用いて、モータジェネレータ410を駆動する。
 電池システム100を搭載した車両システムが始動して走行する場合には、車両制御部200の管理のもと、電池システム100はインバータ400に接続され、組電池110が蓄えているエネルギーを用いてモータジェネレータ410を駆動し、回生時はモータジェネレータ410の発電電力により組電池110が充電される。充電によって組電池110に蓄えられたエネルギーは、次回の車両走行時に利用されるか、車両内外の電装品等を動作させるためにも利用される。
 図2は、単電池制御部121の回路構成を示す図である。単電池制御部121は、電圧検出回路122、制御回路123、信号入出力回路124、温度検知部125を備える。電圧検出回路122は、各単電池111の端子間電圧を測定する。制御回路123は、電圧検出回路122および温度検知部125から測定結果を受け取り、信号入出力回路124を介して組電池制御部150に送信する。なお、単電池制御部121に一般的に実装される、自己放電や消費電流ばらつき等に伴い発生する単電池111間の電圧やSOCばらつきを均等化する回路構成は、周知のものであると判断して記載を省略した。
 図2における単電池制御部121が備える温度検知部125は、単電池群112の温度を測定する機能を有する。温度検知部125は、単電池群112全体として1つの温度を測定し、単電池群112を構成する単電池111の温度代表値としてその温度を取り扱う。温度検知部125が測定した温度は、単電池111、単電池群112、または組電池110の状態を検知するための各種演算に用いられる。図2はこれを前提とするため、単電池制御部121に1つの温度検知部125を設けた。単電池111毎に温度検知部125を設けて単電池111毎に温度を測定し、単電池111毎の温度に基づいて各種演算を実行することもできるが、この場合は温度検知部125の数が多くなる分、単電池制御部121の構成が複雑となる。
 図2では、簡易的に温度検知部125を示した。実際は温度測定対象に温度センサが設置され、設置した温度センサが温度情報を電圧として出力し、これを測定した結果が制御回路123を介して信号入出力回路124に送信され、信号入出力回路124が単電池制御部121の外に測定結果を出力する。この一連の流れを実現する機能が単電池制御部121に温度検知部125として実装され、温度情報(電圧)の測定には電圧検出回路122を用いることもできる。
 図3は、本発明の第1の実施形態に係る組電池制御部150の機能構成を示す図である。組電池制御部150は、車両走行中に検出された各単電池111の電流値および電圧値をもとに、組電池110における各単電池111の状態や各単電池111に入出力可能な電力を決定する部分であり、その1つの機能構成要素として、各単電池111の充電電力を制限するための充電可能電力(充電電力制限値)の演算を行う機能を有する。図3は、この充電可能電力の演算に関する組電池制御部150の機能構成を示している。これは、本発明の一実施形態に係る電池制御装置に相当する機能を担う部分である。なお、組電池制御部150は充電可能電力の演算機能以外にも、組電池110の制御に必要な各種機能、例えば各単電池111の放電制御を行う機能や、各単電池111の電圧均等化制御を行う機能などを有しているが、これらは周知の機能であり、また本発明とは直接関係がないため、以下では詳細な説明を省略する。
 図3に示すように、組電池制御部150は、その機能として、電池状態検知部151、上限電圧演算部152、および充電可能電力演算部153の各機能ブロックを有する。組電池制御部150は、これらの機能ブロックにより、電流検知部130が検知した組電池110の電流や、電圧検知部140が検知した組電池110の電圧および温度に基づいて、各単電池111の充電可能電力を演算する。
 なお、上記では組電池制御部150が組電池110の充電可能電力を演算することとして説明したが、複数の単電池111をまとめて充電可能電力を算出してもよい。例えば、単電池群112a,112bごとに算出したり、単電池制御部120が検知する単電池111毎の電圧をもとに算出したりすることができる。これらの場合でも、組電池110と同様の処理で充電可能電力を算出できる。また、各単電池111の充電可能電力は、同様の処理によって算出できる。そのため以下では、充電可能電力の算出対象を単に「電池」と称して、組電池制御部150における充電可能電力の演算機能を説明する。
 電池状態検知部151は、組電池制御部150に入力される電池の電流、電圧、温度の情報をもとに、電池のSOCやSOHRを演算する。なお、SOCやSOHRの演算方法については、公知であるものとして説明を省略する。
 上限電圧演算部152は、電池の電圧の時系列データを入力とし、これに基づいて電池の電圧履歴を演算する。そして、電池の電圧履歴に基づいて、電池の充電時の上限電圧を演算して出力する。なお、上限電圧演算部152による上限電圧の具体的な演算方法については後述する。
 充電可能電力演算部153は、電池状態検知部151が演算した電池のSOCおよびSOHRと、組電池制御部150に入力される電池の温度と、上限電圧演算部152が演算した電池の上限電圧をもとに、電池の充電可能電力を演算して出力する。なお、充電可能電力の演算方法については後述する。
 続いて、上限電圧演算部152による上限電圧の具体的な演算方法について、図4~図7を参照して説明する。
 図4は、本発明の第1の実施形態に係る上限電圧演算部152の制御ブロック図である。本実施形態において、上限電圧演算部152は、電圧移動平均演算部1521、上限電圧推定部1522、および上限電圧選択部1523から構成される。
 電圧移動平均演算部1521は、電池の電圧の時系列データを入力とし、この時系列データを所定の時間幅で平均化することにより、電池の電圧履歴としての電圧移動平均値を演算する。ここでは、1つの時間窓、または時間幅が異なる複数の時間窓を設定し、これらの時間窓ごとに時系列データの移動平均値を算出することで、各時間幅に対応する電圧移動平均値を演算する。そして、得られた各電圧移動平均値の演算結果を上限電圧推定部1522へ出力する。なお、図4の例では、n個(nは任意の自然数)の時間窓に対して電圧移動平均値をそれぞれ算出し、得られたn個の電圧移動平均値を上限電圧推定部1522へ出力している。
 上限電圧推定部1522は、電圧移動平均演算部1521が演算した電圧移動平均値に基づいて、電池の上限電圧を推定する。ここでは、電圧移動平均演算部1521が演算したn個の電圧移動平均値に対してそれぞれ上限電圧を推定することで、n個の上限電圧を推定する。
 上限電圧選択部1523は、上限電圧推定部1522が時間幅ごとに推定したn個の上限電圧の中から、最終的に制限すべき上限電圧を選択する。ここでは、例えばn個の上限電圧のうちで最も小さい上限電圧を、最終的な上限電圧として選択する。
 図5は、電圧移動平均演算部1521における電圧移動平均値の演算方法の説明図である。図5では、横軸を時間、縦軸を電圧として、電圧移動平均演算部1521に入力される電池電圧の時系列データの一例を電圧波形により示している。
 電圧移動平均演算部1521は、図5に示すように、現在の時刻T1を基準に、この時刻T1までに得られた電池電圧の時系列データに対して、時間幅Twが互いに異なるn個の時間窓を設定する。そして、設定したn個の時間窓にそれぞれ含まれる時系列データの各電圧値を時間窓内で平均化することで、時間窓ごとに電圧履歴を演算する。
 具体的には、電圧移動平均演算部1521は、例えば時系列データが表す各電圧値の単純移動平均を時間窓ごとに演算することで、時系列データを平均化して電圧履歴を演算する。例えば、サンプリング周期Tsを0.1秒として検出された電池電圧の時系列データの場合、この時系列データには、時間幅Twが2秒の時間窓内には20点、時間幅Twが20秒の時間窓内には200点、時間幅Twが60秒の時間窓内には600点の電圧値のデータがそれぞれ含まれている。そのため、これらの時間窓に対応する電圧履歴としての単純移動平均は、以下の式(1)によりそれぞれ算出することができる。なお、式(1)においてVkは、時系列データにおいて当該時間窓内でk番目にサンプリングされた電圧値のデータを表している。
Figure JPOXMLDOC01-appb-M000001
 あるいは、電圧移動平均演算部1521は、所定の時定数による一次遅れフィルタを適用し、時系列データに含まれる各電圧値データの指数移動平均を時間窓ごとに演算することで、時系列データを平均化して電圧履歴を演算してもよい。例えば、上記のようにサンプリング周期Tsを0.1秒として検出された電池電圧の時系列データの場合、時間幅Twが2秒、20秒、60秒の各時間窓(フィルタ時定数)に対応する電圧履歴として、これらのフィルタ時定数に応じて重み付け平均した指数移動平均は、以下の式(2)によりそれぞれ算出することができる。なお、式(2)において、Vは現在の電圧値、すなわち時系列データにおける最新の電圧値のデータを表している。また、Vave_zは時間幅Twごとに算出された前回の電圧履歴、すなわち前回の処理時においてフィルタ時定数ごとの重み付け平均により演算された指数移動平均の値を表している。
Figure JPOXMLDOC01-appb-M000002
 電圧移動平均演算部1521は、以上説明したような処理により、電池の電圧の時系列データに対して1つまたは複数の時間窓を設定し、各時間窓に対応する電圧履歴としての電圧移動平均値を演算することができる。なお、上記では電圧移動平均値として単純移動平均および指数移動平均を演算する例を説明したが、これ以外の任意の移動平均を演算してもよい。
 上限電圧推定部1522は、予め記憶部180に格納しておいた上限電圧マップを用いて、電圧移動平均演算部1521が演算した時間幅ごとの電圧移動平均値に対応する上限電圧を推定する。本実施形態において用いられる上限電圧マップは、予め時間幅ごとに設定されている。例えば、上記の式(1)で演算された単純移動平均、または式(2)で演算された指数移動平均に対して、時間幅Twが2秒、20秒、60秒の各時間窓に対応する上限電圧マップが予め記憶部180に格納されている。上限電圧推定部1522は、これらの上限電圧マップを用いることで、時間幅ごとの電圧移動平均値に対応する上限電圧をそれぞれ推定することができる。
 上限電圧推定部1522の処理は、以下の式(3)により表される。なお、式(3)において、2secVmaxMap、20secVmaxMap、60secVmaxMapは、時間幅Twが2秒、20秒、60秒の時間窓にそれぞれ対応する上限電圧マップを表している。
Figure JPOXMLDOC01-appb-M000003
 なお、式(3)では式(1)、(2)でそれぞれ演算された単純移動平均や指数移動平均に対する上限電圧の例を説明したが、他の移動平均についても、同様にして時間幅ごとに上限電圧を推定することができる。
 上限電圧選択部1523は、上限電圧推定部1522が式(3)により推定した時間幅ごとの上限電圧から、電池の制御に活用する上限電圧を選択する。本実施例では、例えば以下の式(4)により、複数の上限電圧の中から最も小さい値を、最終的な上限電圧値として選択する。
Figure JPOXMLDOC01-appb-M000004
 次に、記憶部180に格納されて上限電圧推定部1522により参照される上限電圧マップについて説明する。本実施形態では、上限電圧マップは、電池を用いて予め実施された充放電試験の結果に基づいて作成される。例えば、充電時に到達する電池電圧や、電圧滞在時間(電池電圧がある電圧に滞在している時間)を様々に変化させた充放電サイクルを想定したサイクル試験を、電池の充放電試験として実施する。このサイクル試験の結果をもとに、上限電圧マップを構築する。
 なお、サイクル試験結果から上限電圧マップを構築する際には、リチウムイオン電池においてリチウム金属の析出が生じるかどうかを判断する必要がある。このときの指標としては、例えば、電池の容量維持率や抵抗上昇率を用いることができる。容量維持率は、新品時の電池容量に対する現在(劣化後)の電池容量の比率であり、劣化に伴って減少する。一方で、抵抗上昇率は、新品時の電池の内部抵抗に対する現在(劣化後)の内部抵抗の比率であり、劣化に伴って増加する。
 図6は、本発明の第1の実施形態に係るサイクル試験結果の例を示す図である。図6では、充電時の電圧と電圧滞在時間をそれぞれ変化させて電池の充電と放電を繰り返すサイクル試験を実施したときの結果を示している。図6(a)は、電圧滞在時間が長い場合の例を示し、図6(b)は、電圧滞在時間が中程度の場合の例を示し、図6(c)は、電圧滞在時間が短い場合の例を示している。これらの図では、横軸にサイクル数、縦軸に容量維持率をそれぞれプロットすることで、サイクル数と電池の容量維持率との関係を示している。
 図6(a)~(c)のいずれにおいても、電圧が低い場合にはサイクル数に対する容量の変化がほとんど生じないが、電圧が中程度の場合や高い場合には、サイクル数が多くなると容量が大きく低下する傾向があることが分かる。また、このときの容量の低下幅は、電圧滞在時間が長いほど大きいことが分かる。このように容量が大きく低下する条件では、いわゆる通常の劣化ではなく、電極でのリチウム金属の析出に伴う容量の劣化が生じていると推測される。このため、上限電圧マップでは、当該試験条件での電池使用が回避されるような上限電圧を設定することが好ましい。
 なお、リチウム金属の析出の有無に関する評価は、上記のような容量維持率による方法のみではなく、他の方法を用いて行ってもよい。例えば、前述のように容量維持率の代わりに抵抗上昇率で判断してもよい。また、電池を解体して、電極表面にリチウム金属が析出しているかどうかをNMR(Nuclear Magnetic Resonance)などの分析方法により評価してもよい。このような試験結果をもとに、リチウム金属が析出しない電圧値を電圧滞在時間ごとに抽出し、上限電圧マップを作成する。例えば、図6(a)に示す電圧滞在時間が長い場合は低い電圧値を、図6(b)に示す電圧滞在時間が中程度の場合は中程度の電圧値を、図6(c)に示す電圧滞在時間が短い場合は高い電圧値を、上限電圧マップにおいてそれぞれ設定する。
 図7は、本発明の第1の実施形態に係る上限電圧マップの概要を示す図である。図7では、図6のサイクル試験結果から作成されて記憶部180に搭載される上限電圧マップの概要を示している。図7(a)は、フィルタ時定数(時間窓)が比較的長い場合の上限電圧マップの例であり、図7(b)は、フィルタ時定数(時間窓)が比較的長い場合の上限電圧マップの例である。これらの図に示すように、電圧移動平均値が小さい場合は上限電圧に高い値を設定する。電圧移動平均値が高くなるにつれて上限電圧が小さな値となるように、上限電圧マップを設定する。電圧移動平均値がある閾値Vth1を超えたところから、上限電圧を下げていき、最終的に別の閾値Vth2に到達したところで、各フィルタ時定数(時間窓)における上限電圧となるように上限電圧を変化させる。
 次に、組電池制御部150を構成する充電可能電力演算部153について、図8に基づき説明する。
 図8は、電池の電圧挙動を再現する等価回路モデルを示す図である。図8において、OCVは電池の開回路電圧を、Roは電池の部材等のオーミックな抵抗を、Rpは電気化学的な反応やリチウムイオンの拡散に伴う損失分を示す内部抵抗(分極抵抗)を、τは分極の時定数を、Vpは分極電圧をそれぞれ示している。これらの等価回路パラメータは、SOCや温度に応じて、予め実験やシミュレーションにより抽出しておき、記憶部180に格納しておく。本実施形態では、充電可能電力演算部153は、図8の等価回路モデルを想定して、充電可能電力を演算する構成としている。
 充電可能電力演算部153は、上限電圧演算部152が決定した上限電圧と、電池状態検知部151が演算した充電状態(SOC)および内部抵抗の上昇率(SOHR)と、温度検知部125が検出した電池温度とを入力として、組電池110の充電可能電力を演算して出力する。ここで、充電可能電力は、充電時に電池に流すことができる充電可能電流と、充電可能電流が通電したときの電池の電圧との積によって演算される。充電可能電流は、電池の電圧が上限電圧に至るまでに流すことができる電流値と、電池システム100を構成する構成部材(リレー、ヒューズなど)によって決まる電流制限値とのうち、小さい方の電流値として算出できる。
 電池の電圧が上限電圧に至るまでに流すことができる電流値は、図8の等価回路モデルにて算出される電池電圧Vが、式(4)で算出される上限電圧値Vmaxと等しいときの電流値として、以下の式(5)により算出することができる。
Figure JPOXMLDOC01-appb-M000005
 以下の式(6)により、上記の式(5)で算出される電流値Ichgと、電池システム100の構成部材等によって決まる電流制限値Ilimitとのうち、いずれか小さい方を充電可能電流Imax,chgとして選択する。なお、電流制限値Ilimitは予め定めた値であってもよいし、電池の温度等に応じて変化させてもよい。
Figure JPOXMLDOC01-appb-M000006
 上記の式(6)で算出される充電可能電流Imax,chgから、以下の式(7)により充電可能電力が演算される。式(7)において、Nは組電池110を構成する単電池111の数を示している。また、式(7)において右辺のOCV(SOC,T)以降の項は、充電可能電流を通電したときの電池電圧を演算する式に相当する。これは、図8に示した電池の等価回路モデルにおいて、充電可能電流Imax,chgが通電したときの電池電圧を表している。
Figure JPOXMLDOC01-appb-M000007
 一般に、常温以上では、電池の内部抵抗が小さいため、前述の式(5)に基づき算出される電流値Ichgは非常に大きな値となる。その結果、式(6)では、電池システム100の構成部材などから決まる電流制限値Ilimitが充電可能電流Imax,chgとして採用されることが多い。一方、電池の内部抵抗が大きくなる低温や劣化後においては、電流値Ichgが電流制限値Ilimitを下回るようになる。そのため、式(6)では、電流値Ichgが充電可能電流Imax,chgとして採用されることが多くなり、その結果、充電可能電流や充電可能電力は、式(4)で演算される上限電圧値Vmaxに大きく依存するようになる。
 なお、上記の説明では、充電可能電力演算部153が充電可能電流と充電可能電力を両方とも演算する例を説明したが、いずれか一方のみを演算してもよい。すなわち、充電可能電力演算部153では充電可能電流の演算のみを行い、充電可能電力の演算を行わないことも可能である。
 本発明を適用して電池の充電可能電力を演算することの効果を、以下に図9を参照して説明する。図9では、電池をある温度で充放電させたときの電圧の時系列データの例と、この時系列データに基づいて組電池制御部150により演算される電圧履歴、上限電圧および充電可能電力の例を示している。図9において、(a)は電圧の時系列データを、(b)は電圧履歴を表す移動平均電圧を、(c)は上限電圧を、(d)は充電可能電力をそれぞれ示している。
 電池システム100を搭載した車両がある走行パターンで走行すると、単電池制御部121により、例えば図9(a)に示すような電圧の時系列データが取得される。組電池制御部150において、上限電圧演算部152は、この図9(a)の電圧波形に対して、例えば時間幅Twが2秒と60秒の2種類の時間窓を設定し、前述の式(1)または式(2)に基づいて移動平均を算出する。これにより、図9(b)に示す電圧波形のような移動平均電圧が、それぞれの電圧履歴として求められる。なお、図9(b)において、実線は時間幅が2秒の移動平均電圧を、破線は時間幅が60秒の移動平均電圧をそれぞれ示している。
 上限電圧演算部152は、前述の式(3)に基づいて、図9(b)の各移動平均電圧に対応した上限電圧を推定する。これにより、図9(c)に示す電圧波形のような上限電圧が、それぞれの移動平均電圧に対して求められる。なお、図9(c)において、実線は時間幅が2秒の移動平均電圧に対応する上限電圧を、破線は時間幅が60秒の移動平均電圧に対応する上限電圧をそれぞれ示している。
 さらに上限電圧演算部152は、前述の式(4)に基づいて、図9(c)の各上限電圧を所定の演算周期ごとに比較してより小さい方を選択し、電池に対する最終的な上限電圧とする。そして、前述の式(5)~(7)に基づいて、この最終的な上限電圧に対応する充電可能電力を算出する。これにより、図9(c)の各上限電圧に対して、図9(d)に示す電圧波形のような充電可能電力が求められる。
 図9(b)と図9(c)を比較すると、移動平均電圧が高い、つまり、電圧の高い領域での電圧滞在時間(保持時間)が長いとみなせるときは、最終的な上限電圧が低い値に設定されている。反対に、移動平均電圧が低い、つまり、電圧の高い領域での電圧滞在時間(保持時間)が短いとみなせるときは、最終的な上限電圧が高い値に設定されている。その結果、図9(d)に示すように充電可能電力が制限される。これにより、リチウム金属の析出が懸念される高い電圧領域での滞在(保持)を回避でき、かつ、高い電圧領域での電圧滞在時間が短いときには、高い電力での電池使用を許容できていることが分かる。
 以上説明したように、本実施形態の組電池制御部150によれば、二次電池の電極表面にリチウム金属が析出するのを抑制しつつ、充電可能電力を最大限に引き出すことが可能となる。
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)組電池制御部150は、二次電池である単電池111や組電池110の充電時の上限電圧を決定し、この上限電圧に基づいて、これらの電池の充電可能電力を演算する。組電池制御部150は、電池の電圧の時系列データに基づいて電池の電圧履歴を演算し、電圧履歴に基づいて上限電圧を演算する上限電圧演算部152を備える。このようにしたので、二次電池の劣化を効果的に抑制しつつ、二次電池の充電性能を最大限に引き出すために、適切な上限電圧を設定することができる。
(2)上限電圧演算部152において、電圧移動平均演算部1521は、電池の電圧の時系列データを所定の時間幅で平均化することにより、電圧履歴を演算する。このようにしたので、電池の電圧の時系列データから、上限電圧の演算に必要な電圧履歴を適切に求めることができる。
(3)上限電圧演算部152において、電圧移動平均演算部1521は、電池の電圧の時系列データにおける所定の時間幅に対応する各電圧の単純移動平均、または各電圧を時定数に応じて重み付け平均した指数移動平均を、電圧履歴として演算する。このようにしたので、電池の電圧の時系列データを時間幅に応じて適切に平均化し、電圧履歴として用いることができる。
(4)上限電圧演算部152は、電圧移動平均演算部1521により、時間幅が異なる複数の時間窓について電圧履歴をそれぞれ演算することで複数の電圧履歴を演算し、これら複数の電圧履歴に基づいて上限電圧推定部1522により演算された複数の上限電圧のうちで最も小さい上限電圧を、上限電圧推定部1522により電池の上限電圧として設定する。このようにしたので、電圧滞在時間を考慮して最適な上限電圧を設定することができる。
(5)組電池制御部150は、上限電圧演算部152が決定した上限電圧に基づいて、電池の充電可能電流または充電可能電力を演算する充電可能電力演算部153を備える。このようにしたので、上限電圧に応じた充電可能電流や充電可能電力を定めて電池の充電制御に利用することができる。
<第2の実施形態>
 次に、本発明の第2の実施形態について説明する。金属リチウムの析出の有無は、電池の温度にも大きく依存するため、本実施形態では、電池の電圧履歴に加えて、さらに電池の温度を考慮して上限電圧を演算する例を説明する。なお、本実施形態に係る電池システムの構成は、組電池制御部150に替えて組電池制御部150aを有する点以外は、第1の実施形態で説明した図1の電池システム100と同様である。以下では、この組電池制御部150と150aの差分点を中心に、本実施形態の内容を説明する。
 図10は、本発明の第2の実施形態に係る組電池制御部150aの機能構成を示す図である。本実施形態における組電池制御部150aは、図3の上限電圧演算部152に替えて上限電圧演算部152aを有しており、組電池制御部150が取得した電池の電圧と温度がこの上限電圧演算部152aに入力される点以外は、第1の実施形態における組電池制御部150と同様の機能構成である。
 上限電圧演算部152aは、第1の実施形態における上限電圧演算部152と同様に、電池の電圧の時系列データを入力とし、これに基づいて電池の電圧履歴を演算する。そして、電池の電圧履歴と温度に基づき、電池の充電時の上限電圧を演算して出力する。
 図11は、本発明の第2の実施形態に係る上限電圧演算部152aの制御ブロック図である。本実施形態における上限電圧演算部152aは、図4の上限電圧推定部1522に替えて上限電圧推定部1522aを有しており、電池状態検知部151が演算した電池の温度がこの上限電圧推定部1522aに入力される点以外は、第1の実施形態における上限電圧演算部152と同様の機能構成である。
 上限電圧推定部1522aは、第1の実施形態における上限電圧推定部1522と同様に、電圧移動平均演算部1521が演算した電圧移動平均値に基づいて、電池の上限電圧を推定する。このとき上限電圧推定部1522aは、電圧移動平均演算部1521が演算した時間幅ごとのn個の電圧移動平均値と、単電池管理部120から上限電圧演算部152aに入力される電池の温度とに基づき、予め記憶部180に格納しておいた上限電圧マップを参照して、n個の電圧移動平均値に対してそれぞれ上限電圧を推定する。
 本実施形態において用いられる上限電圧マップは、予め時間幅と温度の組み合わせごとに設定されており、電池を用いて予め実施された充放電試験の結果に基づいて作成される。例えば、充電時に到達する電池電圧や電圧滞在時間、電池温度を様々に変化させた充放電サイクルを想定したサイクル試験を、電池の充放電試験として実施する。このサイクル試験の結果をもとに、上限電圧マップを構築する。
 図12は、本発明の第2の実施形態に係るサイクル試験結果の例を示す図である。図12では、充電時の電圧と電圧滞在時間の組み合わせを変化させて電池の充電と放電を繰り返すサイクル試験を、異なる温度でそれぞれ実施したときの結果を示している。図12(a)は、極低温(例えば-30℃)の例を示し、図12(b)は、低温(例えば0℃)の例を示し、図12(c)は、常温(例えば25℃)の例を示している。これらの図では、横軸にサイクル数、縦軸に容量維持率をそれぞれプロットすることで、サイクル数と電池の容量維持率との関係を示している。
 図12(a)~(c)のいずれにおいても、電圧が低く電圧滞在時間が短い場合にはサイクル数に対する容量の変化がほとんど生じないが、電圧が低く電圧滞在時間が長い場合や、電圧が高く電圧滞在時間が長い場合には、サイクル数が多くなると容量が大きく低下する傾向があることが分かる。また、このときの容量の低下幅は、電池温度が低いほど大きいことが分かる。このように容量が大きく低下する条件では、いわゆる通常の劣化ではなく、電極でのリチウム金属の析出に伴う容量の劣化が生じていると推測される。このため、上限電圧マップでは、当該試験条件での電池使用が回避されるような上限電圧を設定することが好ましい。
 図13は、本発明の第2の実施形態に係る上限電圧マップの概要を示す図である。図13では、図12のサイクル試験結果から作成されて記憶部180に搭載される上限電圧マップの概要を示している。図13(a)は、フィルタ時定数(時間窓)が比較的長い場合の上限電圧マップの例であり、図13(b)は、フィルタ時定数(時間窓)が比較的短い場合の上限電圧マップの例である。これらの図に示すように、電圧移動平均値が小さい場合は上限電圧に高い値を設定し、電圧移動平均値が高くなるにつれて上限電圧が小さな値となるように、上限電圧マップを設定する。また、温度が低くなるほど上限電圧は、全体的に小さくなる。この傾向を考慮しつつ、電圧移動平均値に応じた上限電圧を、実験結果から得た上限電圧を逸脱しないよう、実験及びシミュレーションなどにより、適切に設定する。
 以上説明した本発明の第2の実施形態によれば、上限電圧演算部152aは、電圧履歴および電池の温度に基づいて上限電圧を決定する。このようにしたので、電池の温度を考慮して、さらに適切な上限電圧を設定することができる。結果として、電池温度が変わってもリチウム金属の析出を防止しつつ、電池の充電性能を最大限活用することが可能となる。
<第3の実施形態>
 次に、本発明の第3の実施形態について説明する。リチウム金属の析出の有無は、充電時における電流値にも大きく依存するため、本実施形態では、電池の電圧履歴、温度に加えて、さらに電池に流れる電流を考慮して上限電圧を演算する例を説明する。なお、本実施形態に係る電池システムの構成は、組電池制御部150に替えて組電池制御部150bを有する点以外は、第1及び第2の実施形態で説明した図1の電池システム100と同様である。以下では、この組電池制御部150、150aの差分点を中心に、本実施形態の内容を説明する。
 図14は、本発明の第3の実施形態に係る組電池制御部150bの機能構成を示す図である。本実施形態における組電池制御部150bは、上限電圧演算部152bへ電流が入力として追加されている点以外は、第1の実施形態における組電池制御部150と同様の機能構成である。
 図14は、本発明の第3の実施形態に係る組電池制御部150bの機能構成を示す図である。本実施形態における組電池制御部150bは、図3の上限電圧演算部152に替えて上限電圧演算部152bを有しており、組電池制御部150が取得した電池の電圧と温度に加え、電池に流れる電流値が、この上限電圧演算部152bに入力される点以外は、第1の実施形態における組電池制御部150と同様の機能構成である。
 上限電圧演算部152bは、第1の実施形態における上限電圧演算部152と同様に、電池の電圧の時系列データを入力とし、これに基づいて電池の電圧履歴を演算する。そして、電池の電圧履歴と電流、温度に基づき、電池の上限電圧を演算して出力する。
 図15は、本発明の第3の実施形態に係る上限電圧演算部152bの制御ブロック図である。本実施形態における上限電圧演算部152bは、図4の上限電圧推定部1522に替えて上限電圧推定部1522bを有している点に加え、電池に流れる電流値をもとに、電流移動平均演算部1524をさらに有している。組電池制御部150が取得した電池の温度と、電流移動平均演算部1524が演算した電流移動平均値がこの上限電圧推定部1522bに入力される点以外は、第1の実施形態における上限電圧演算部152と同様の機能構成である。
 上限電圧推定部1522bは、第1の実施形態における上限電圧推定部1522と同様に、電圧移動平均演算部1521が演算した電圧移動平均値に基づいて、電池の上限電圧を推定する。このとき上限電圧推定部1522bは、電圧移動平均演算部1521が演算した時間幅ごとのn個の電圧移動平均値と、単電池管理部120から上限電圧演算部152aに入力される電池の温度と、電流移動平均演算部1524が演算する電流移動平均値に基づき、予め記憶部180に格納しておいた上限電圧マップを参照して、n個の電圧移動平均値に対してそれぞれ上限電圧を推定する。
 電流移動平均演算部1524は、電流値をもとに以下の式(8)もしくは式(9)に基づき演算される。式(8)もしくは式(9)に含まれるTwは、電流移動平均演算用のフィルタ時定数(時間窓)である。電流移動平均演算用のフィルタは、例えば、電圧移動平均演算用のフィルタ時定数(時定数)と同様の値を設定してもよい。もしくは、金属リチウムの析出は、電極電解質界面のリチウムイオン濃度が影響するため、これを考慮するため、電極電解質界面のリチウムイオン濃度変化(拡散)が線形拡散であることを前提に、拡散の挙動を再現するような値を設定してもよい。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
ここで、Iaveは電流移動平均値、Iave_zは電流移動平均値の前回値を示している。
 本実施形態において用いられる上限電圧マップは、予め時間幅、温度と電流移動平均値の組み合わせごとに設定されており、電池を用いて予め実施された充放電試験の結果に基づいて作成される。例えば、充電時に到達する電池電圧や電圧滞在時間、電池温度、さらに、充電電流値を様々に変化させた充放電サイクルを想定したサイクル試験を、電池の充放電試験として実施する。このサイクル試験の結果をもとに、上限電圧マップを構築する。
 図16は、本発明の第3の実施形態に係るサイクル試験結果の例を示す図である。図16では、充電時の電圧と電圧滞在時間の組み合わせを変化させて電池の充電と放電を繰り返すサイクル試験を、充電時に流す電流値を様々に変化させて、それぞれ実施したときの結果を示している。図16(a)は、大きな充電電流値で試験した場合の結果例を示し、図16(b)は、小さな充電電流値で試験した場合の結果例を示している。これらの図では、横軸にサイクル数、縦軸に容量維持率をそれぞれプロットすることで、サイクル数と電池の容量維持率との関係を示している。
 図16(a)(b)のいずれにおいても、電圧が低く電圧滞在時間が短い場合にはサイクル数に対する容量の変化がほとんど生じないが、電圧が低く電圧滞在時間が長い場合や、電圧が高く電圧滞在時間が長い場合には、サイクル数が多くなると容量が大きく低下する傾向があることが分かる。また、このときの容量の低下幅は、電池に流れる充電電流が大きいほど大きいことが分かる。このように容量が大きく低下する条件では、いわゆる通常の劣化ではなく、電極でのリチウム金属の析出に伴う容量の劣化が生じていると推測される。図16には記載していないが、本サイクル試験に対し、電池温度も水準に加え、データを解析すると、電圧、温度、電流すべての条件に応じて、金属リチウムの析出有無を確認することが可能となる。上限電圧マップは、リチウム金属の析出条件から電池使用が回避されるような上限電圧を設定することが好ましい。
 図17は、本発明の第3の実施形態に係る上限電圧マップの概要を示す図である。図17では、図16のサイクル試験結果から作成されて記憶部180に搭載される上限電圧マップの概要を示している。図17(a)は、フィルタ時定数(時間窓)が比較的長く、かつ、電流移動平均値が小さい場合の上限電圧マップの例であり、図17(b)は、フィルタ時定数(時間窓)が比較的短く、電流移動平均値が小さい場合の上限電圧マップの例であり、図17(c)は、フィルタ時定数(時間窓)が比較的長く、かつ、電流移動平均値が大きい場合の上限電圧マップの例であり、図17(d)は、フィルタ時定数(時間窓)が比較的短く、電流移動平均値が大きい場合の上限電圧マップの例である。これらの図に示すように、電圧移動平均値が小さい場合は上限電圧に高い値を設定し、電圧移動平均値が高くなるにつれて上限電圧が小さな値となるように、上限電圧マップを設定する。電流移動平均値については、電流移動平均値が大きければ大きいほど、上限電圧が小さい値となるように上限電圧を設定する。また、実施形態2と同様に、温度が低くなるほど上限電圧は、全体的に小さくなる。この傾向を考慮しつつ、電圧移動平均値に応じた上限電圧を、実験結果から得た上限電圧を逸脱しないよう、実験及びシミュレーションなどにより、適切に設定する。
 以上説明した本発明の第3の実施形態によれば、上限電圧演算部152bは、電圧履歴および電池の温度と電池に流れる電流値に基づいて上限電圧を決定する。このようにしたので、電池の電流値(電流移動平均値)を考慮して、さらに適切な上限電圧を設定することができる。結果として、充放電中の電流値が様々に変わってもリチウム金属の析出を防止しつつ、電池の充電性能を最大限活用することが可能となる。
<第4の実施形態>
 次に、本発明の第4の実施形態について説明する。第3の実施形態にて、リチウム金属の析出の有無は、充電時における電流値にも大きく依存するため、これを反映した例を述べたが、本実施形態では、より簡便な方法で、電流値に対する依存性を考慮する方法について述べる。なお、本実施形態に係る電池システムの構成は、組電池制御部150bにおける上限電圧演算部152bに替えて、上限電圧演算部152cを有する点以外は、第1~3の実施形態で説明した図1の電池システム100と同様である。以下では、この上限電圧演算部152bとの差分点を中心に、本実施形態の内容を説明する。
 図18に本発明の第4の実施形態における上限電圧演算部152cについて説明する。上限電圧演算部152bとの違いは、電流移動平均値演算部1524が削除され、上限電圧推定部1522bへの入力となる電流移動平均値が削除されている代わりに、電流値を入力として追加した、電圧移動平均値演算部1521aを有している点である。
 第1~3の実施形態の説明でも述べたように、リチウム金属の析出は、電池の電圧や電池に流れる電流に応じて異なる。電圧は高ければ高いほど、電流値は大きければ大きいほど、析出は発生しやすくなる。そこで、本実施形態では、電圧移動平均の演算に、取得した電圧値、電流値に応じた重み係数を設ける。つまり、新規に取得した電圧値が高い値で、かつ、そのとき流れていた電流値が大きいような場合、取得した電圧値の平均化への反映度合いが大きくなるように重みをつける。
 具体的な処理内容を式(10)~(14)に基づき述べる。式(10)は電流、電圧による重みを単純移動平均に適用した場合の例で、いわゆる重み付け平均である。取得した電圧値とそのとき流れた電流値をもとに、予め定めた重み係数マップ(weightMap)から重み係数を演算し、時間窓内のすべての重み係数の和で規格化する(式(11)(12))。この結果を用いて重み付け平均により、各時間窓毎の電圧移動平均値を演算する。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 式(13)は電圧移動平均の演算に、指数移動平均を適用した場合の重み付け平均式である。取得した電圧値とそのとき流れた電流値をもとに、予め定めた重み係数マップ(weightMap)から重み係数を演算し(式(14))、各時間窓毎の電圧移動平均値を演算する。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 図19には、式(12)(14)に記載のweightMapの例を図示した。電流と電圧に応じたマップとなっており、電圧値が高ければ高いほど、電流値が大きければ大きいほど(充電側を+)重み係数を大きく設定する。上述した式(10)もしくは(13)に基づき演算した電圧移動平均値を用いて、上限電圧を推定する。電圧移動平均値を用いた各種演算は、実施形態1~2で述べた内容と同様であるため、説明は省略する。図19のマップは、第3の実施形態にて紹介した、金属リチウム析出条件の電流依存性を考慮して定めればよい。
 以上説明した本発明の第4の実施形態によれば、電圧移動平均演算部1521aは、電池の電流および電圧に基づき設定した重み係数を設定し、重み係数を反映した電圧の移動平均処理により、電流値の影響を考慮した電圧移動平均値を算出できる。このようにしたので、電池の電流値を考慮して、電流値が高いときの電圧値に対して、移動平均演算への重みを大きくすることで、電流が高い状態が維持した場合でも、早めに上限電圧を制限することができる。結果として、結果として、リチウム金属の析出において、重要な要因である電流、電圧が様々に変わってもリチウム金属の析出を防止しつつ、電池の充電性能を最大限活用することが可能となる。
<第5の実施形態>
 次に、本発明の第5の実施形態について図20から図23に基づき説明する。本実施形態では、電動車両システムに搭載する上で課題となる、車両システム休止期間中の電圧をどのように扱うかについて述べる。車両システム休止期間中は、電池電圧を測定することができないため、式(1)(2)に記載したような電圧移動平均演算を継続することができない。このため、車両システム起動時に、時定数毎に、休止期間中の電圧の変化を加味して、電圧履歴(電圧移動平均値)の初期値を定める演算ロジックが必要になる。そこで、本実施形態では、車両休止時間と前回走行終了時の電圧移動平均値および電圧値と、今回起動時の電圧値をもとに、今回起動時の電圧移動平均値の初期値を適切に定める手法について述べる。
 図20は、本発明の実施形態における組電池制御手段150cの制御ブロック図である。実施形態1~4との主な差分は、上限電圧演算部152cに車両休止時間、前回走行終了時の電圧、前回走行終了時の移動平均電圧を入力して追加している点である。なお、車両放置時間は、図示しないが、時間を計測可能なデバイス、例えば、RTC(Real Time Clock )を活用し、計測する。また、前回走行終了時の電圧、前回走行終了時の移動平均電圧は、前回走行終了時に記憶部180に格納され、次回起動時に読みだされる構成とする。これ以外の組電池制御部150cの構成は、実施形態1~4と同様である。
 次に、上限電圧演算部152cについて図21に基づき述べる。実施形態1~3との主な差分は、電圧移動平均演算部1521の代わりに電圧移動平均演算部1521bを有する点である。電圧移動平均演算部1521bは、入力として車両休止時間、前回走行終了時の電圧移動平均値、前回走行終了時の電圧が追加されている。
 電圧移動平均演算部1521bにおける処理内容について図22および図23に基づき述べる。図22は、本実施形態で解決する課題を説明する図である。充放電が終了し、車両システムが停止し、休止後に車両が起動すると、再び充放電が再開する。休止期間中は、電池システムは電圧を計測することが出来ない一方で、電池電圧は、充放電に伴い発生した電池の分極電圧(電池の電気化学的反応に伴う過電圧やリチウムイオンの拡散に伴う過電圧であり、図8のVpに相当する)が緩和する、つまり、図8に示した開回路電圧(OCV)へと近づく。このため、図22に示すように休止時間の経過に伴い電圧は変化する。
 図23に本実施形態における車両起動時の電圧移動平均値の初期値の考え方を示す。図23に示したように、休止期間中の電圧として、車両起動時に休止期間中の電圧を休止前後に取得した値、つまり、前回走行終了時の電圧と今回起動時における電圧値の何れかを採用する。その際、金属リチウムの析出抑制の観点から、安全サイドな値となるよう、前回走行終了時の電圧と今回起動時における電圧値のうち、大きな値を採用し、これが休止期間中常時、維持したものとして、電圧移動平均値の初期値を決定する。
 電圧移動平均値の初期値は、前回走行終了時の電圧移動平均値、休止期間中の電圧と車両休止時間に基づき、式(15)により求めることができる。
Figure JPOXMLDOC01-appb-M000015
 式(15)におけるPrevVaveは、前回走行終了時の電圧移動平均値、RestTimeは休止時間、Vrestは休止期間中の電圧値を示している。式(15)に記載のVrestに、上述した、前回走行終了時の電圧と今回起動時の電圧値のうち、大きな値を設定する。
 なお、車両放置時間が時間窓毎に設定されているフィルタ時定数に対して十分長い場合、つまり、電圧移動平均値の初期値がVrestとして扱えるような場合は、Vrestに今回起動時の値を設定し、式(15)による演算を実行する、もしくは、電圧移動平均値の初期値として、Vrestを設定する。
 また、式(15)は指数移動平均による演算を考慮した電圧履歴の初期値決定方法について述べたが、単純移動平均による演算においても同様の考え方で初期値演算に反映できる。つまり、時間窓に対応した数分の電圧配列(式(1)中のVk)に、車両休止時間に対応した時間の要素数分、電圧配列の中から古い時刻に取得した値から順番に設定したVrestの値に入れ替えればよい。
 電圧履歴(電圧移動平均値)の初期値を演算したあとは、式(1)及び式(2)で記載した平均化処理を再開し、充放電中の電圧移動平均値を演算するとともにこれをもとに上限電圧を推定する。
 以上説明した本発明の第5の実施形態によれば、電圧移動平均演算部1521bは、電圧の計測ができない、車両休止時間における電圧の挙動を考慮して、金属リチウムの析出を抑制する方向に、電圧履歴の初期値を設定できる。このようにしたので、結果として、金属リチウムの析出を電池の電流値を考慮して、さらに適切な上限電圧を設定することができる。
 なお、以上説明した各実施形態では、二次電池としてリチウムイオン電池を用いた場合の例を説明したが、他の二次電池を用いた場合にも、同様の充放電制御が可能である。すなわち、リチウムイオン電池に限らず、他の任意の二次電池についても、本発明を適用することで、その二次電池の劣化を効果的に抑制しつつ、二次電池の充電性能を最大限に引き出すために、適切な上限電圧を設定することができる。
 また、以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記の各実施形態は、任意に組み合わせて使用することもできる。さらに、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 100:電池システム
 110:組電池
 111:単電池
 112:単電池群
 120:単電池管理部
 121:単電池制御部
 122:電圧検出回路
 123:制御回路
 124:信号入出力回路
 125:温度検知部
 130:電流検知部
 140:電圧検知部
 150:組電池制御部
 151:電池状態検知部
 152:上限電圧演算部
 153:充電可能電力演算部
 154:電力制限率演算部
 155:電力制限率反映部
 160:信号通信手段
 170:絶縁素子
 180:記憶部
 200:車両制御部
 300~330:リレー
 400:インバータ
 410:モータジェネレータ
1521:電圧移動平均演算部
1522:上限電圧推定部
1523:上限電圧選択部
1524:電流移動平均演算部

Claims (11)

  1.  二次電池の電圧に基づき、前記二次電池の上限電圧を推定する電池制御装置であって、
     前記二次電池の電圧の時系列データに基づいて前記二次電池の電圧履歴を演算し、前記電圧履歴に基づいて前記上限電圧を演算する上限電圧演算部を備える電池制御装置。
  2.  請求項1に記載の電池制御装置において、
     前記上限電圧演算部は、前記時系列データを所定の時間幅で平均化することにより、前記電圧履歴を演算する電池制御装置。
  3.  請求項2に記載の電池制御装置において、
     前記上限電圧演算部は、前記時系列データにおける前記所定の時間幅に対応する前記二次電池の電圧の単純移動平均、または前記電圧を時定数に応じて重み付け平均した指数移動平均を、前記電圧履歴として演算する電池制御装置。
  4.  請求項2または3に記載の電池制御装置において、
     前記上限電圧演算部は、時間幅が異なる複数の時間窓について前記電圧履歴をそれぞれ演算することで複数の電圧履歴を演算し、前記複数の電圧履歴に基づいて演算された複数の上限電圧のうちで最も小さい上限電圧を、前記二次電池の上限電圧として設定する電池制御装置。
  5.  請求項1から請求項4のいずれか一項に記載の電池制御装置において、
     前記上限電圧演算部は、前記電圧履歴および前記二次電池の温度に基づいて前記上限電圧を決定する電池制御装置。
  6.  請求項1から請求項5のいずれか一項に記載の電池制御装置において、
     前記上限電圧演算部は、前記電圧履歴および前記二次電池の電流に基づいて前記上限電圧を決定する電池制御装置。
  7.  請求項3に記載の電池制御装置において、
     前記上限電圧演算部は、前記二次電池の電流もしくは電圧の何れか一方、または両方に基づき、前記二次電池の電圧に対する移動平均への反映度合いを調整する重み係数を決定し、決定した重み係数に基づき、前記電圧の単純移動平均もしくは指数移動平均を演算する電池制御装置。
  8.  請求項7に記載の電池制御装置において、
     前記電圧に対する移動平均への反映度合いを調整する重み係数は、前記二次電池に流れる充電電流もしくは電圧のうち、1つもしくは両方が高ければ高いほど、前記電圧に対する移動平均への反映度合いを大きくする電池制御装置。
  9.  請求項1~8のいずれか一項に記載の電池制御装置において、
     前記二次電池の充放電が停止した時点の前記二次電池の電圧と停止時間経過後の充放電再開時における前記二次電池の電圧のうち大きい方の電圧値を用いて、前記二次電池の停止時間経過後の充放電再開時点における前記電圧履歴の初期値を演算する電池制御装置。
  10.  請求項9に記載の電池制御装置において、
     前記二次電池の停止時間が、予め定めた時間幅よりも十分長い場合、前記停止時間経過後の充放電再開時における前記二次電池の電圧を採用して、前記二次電池の停止時間経過後の充放電再開時点における前記電圧履歴の初期値を演算する電池制御装置。
  11.  請求項1~10のいずれか一項に記載の電池制御装置において、
     前記上限電圧演算部が演算する上限電圧に基づいて、前記二次電池の充電可能な最大電流または充電可能な最大電力を演算する電池制御装置。
PCT/JP2019/047426 2019-01-31 2019-12-04 電池制御装置 WO2020158182A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/427,182 US20220131400A1 (en) 2019-01-31 2019-12-04 Battery control apparatus
CN201980090881.1A CN113396503B (zh) 2019-01-31 2019-12-04 电池控制装置
EP19912851.3A EP3920308A4 (en) 2019-01-31 2019-12-04 BATTERY CONTROL DEVICE
JP2020569416A JP7231657B2 (ja) 2019-01-31 2019-12-04 電池制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-015907 2019-01-31
JP2019015907 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020158182A1 true WO2020158182A1 (ja) 2020-08-06

Family

ID=71840538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047426 WO2020158182A1 (ja) 2019-01-31 2019-12-04 電池制御装置

Country Status (5)

Country Link
US (1) US20220131400A1 (ja)
EP (1) EP3920308A4 (ja)
JP (1) JP7231657B2 (ja)
CN (1) CN113396503B (ja)
WO (1) WO2020158182A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186373A1 (ja) * 2021-03-05 2022-09-09 ヌヴォトンテクノロジージャパン株式会社 電圧測定装置
JP7483922B2 (ja) 2020-11-27 2024-05-15 エルジー エナジー ソリューション リミテッド バッテリ診断装置、バッテリ診断方法、バッテリパック及び自動車

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240051432A1 (en) * 2022-08-09 2024-02-15 Ford Global Technologies, Llc Vehicle control based on battery temperature estimation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268642A (ja) 2009-05-15 2010-11-25 Toyota Motor Corp 電動車両およびリチウムイオン二次電池の入力制限の設定方法
JP2013243869A (ja) * 2012-05-21 2013-12-05 Toyota Motor Corp 二次電池の制御装置
WO2016159086A1 (ja) * 2015-03-31 2016-10-06 株式会社Gsユアサ 蓄電素子の充電電圧コントローラ、蓄電装置、蓄電素子の充電装置、及び蓄電素子の充電方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131533B2 (ja) * 2008-03-25 2013-01-30 マツダ株式会社 バッテリの充放電制御方法及び充放電制御装置
JP5446356B2 (ja) * 2009-03-19 2014-03-19 日産自動車株式会社 組電池制御装置
JP5496612B2 (ja) * 2009-11-11 2014-05-21 三洋電機株式会社 電池の充放電可能電流演算方法及び電源装置並びにこれを備える車両
JP5146502B2 (ja) * 2009-11-12 2013-02-20 トヨタ自動車株式会社 二次電池の充放電制御装置
CN101867191B (zh) * 2010-06-11 2012-02-08 中国南方电网有限责任公司超高压输电公司 一种自适应调整控制参考电压值的方法
JP5880162B2 (ja) * 2012-03-12 2016-03-08 三菱自動車工業株式会社 組電池の充放電制御装置
JP5856548B2 (ja) * 2012-08-02 2016-02-09 トヨタ自動車株式会社 二次電池の状態推定装置
JP6228481B2 (ja) * 2014-02-17 2017-11-08 シチズン時計株式会社 降圧充電システム
CN103904378A (zh) * 2014-04-10 2014-07-02 哈尔滨威星动力电源科技开发有限责任公司 锂电池模组的充放电方法
JP6626356B2 (ja) * 2015-03-18 2019-12-25 積水化学工業株式会社 二次電池劣化検出システム、二次電池劣化検出方法
JP6441188B2 (ja) * 2015-09-01 2018-12-19 日立オートモティブシステムズ株式会社 電池管理装置、電池システムおよびハイブリッド車両制御システム
JP6657879B2 (ja) * 2015-12-04 2020-03-04 いすゞ自動車株式会社 バッテリーの制御システム、ハイブリッド車両及びバッテリーの制御方法
JP6787660B2 (ja) * 2015-12-10 2020-11-18 ビークルエナジージャパン株式会社 電池制御装置、動力システム
JP6445190B2 (ja) * 2016-01-27 2018-12-26 日立オートモティブシステムズ株式会社 電池制御装置
WO2018003210A1 (ja) * 2016-06-28 2018-01-04 株式会社日立製作所 二次電池制御システム、二次電池制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268642A (ja) 2009-05-15 2010-11-25 Toyota Motor Corp 電動車両およびリチウムイオン二次電池の入力制限の設定方法
JP2013243869A (ja) * 2012-05-21 2013-12-05 Toyota Motor Corp 二次電池の制御装置
WO2016159086A1 (ja) * 2015-03-31 2016-10-06 株式会社Gsユアサ 蓄電素子の充電電圧コントローラ、蓄電装置、蓄電素子の充電装置、及び蓄電素子の充電方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3920308A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7483922B2 (ja) 2020-11-27 2024-05-15 エルジー エナジー ソリューション リミテッド バッテリ診断装置、バッテリ診断方法、バッテリパック及び自動車
WO2022186373A1 (ja) * 2021-03-05 2022-09-09 ヌヴォトンテクノロジージャパン株式会社 電圧測定装置

Also Published As

Publication number Publication date
JPWO2020158182A1 (ja) 2021-11-25
EP3920308A1 (en) 2021-12-08
JP7231657B2 (ja) 2023-03-01
EP3920308A4 (en) 2023-03-15
CN113396503A (zh) 2021-09-14
US20220131400A1 (en) 2022-04-28
CN113396503B (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
JP6588632B2 (ja) 電池制御装置
US10553896B2 (en) Battery capacity degradation resolution methods and systems
CN107533109B (zh) 电池控制装置以及电动车辆系统
EP3352289B1 (en) Storage battery control device
JP5715694B2 (ja) 電池制御装置、電池システム
EP2579381B1 (en) System and method for determination of deterioration of lithium ion secondary battery
JP5819443B2 (ja) 電池制御装置、電池システム
JP5673654B2 (ja) 蓄電システムおよび満充電容量算出方法
EP2720343B1 (en) Battery control device and battery system
CN106662620B (zh) 电池状态探测装置、二次电池系统、存储介质、电池状态探测方法
WO2020158182A1 (ja) 電池制御装置
CN105339802A (zh) 二次电池劣化度判定装置
KR102101002B1 (ko) 배터리 수명 예측 방법
JP7174327B2 (ja) 二次電池の状態判定方法
JP7100151B2 (ja) 電池制御装置
JP7375473B2 (ja) 蓄電量推定装置、蓄電量推定方法及びコンピュータプログラム
WO2023190988A1 (ja) 電池制御装置及び電池制御方法
KR20230164474A (ko) 배터리의 충전 상태를 추정하는 방법
Spataru Battery aging diagnosis and prognosis for Hybrid Electrical Vehicles Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019912851

Country of ref document: EP

Effective date: 20210831