WO2020158174A1 - 発進装置 - Google Patents

発進装置 Download PDF

Info

Publication number
WO2020158174A1
WO2020158174A1 PCT/JP2019/047225 JP2019047225W WO2020158174A1 WO 2020158174 A1 WO2020158174 A1 WO 2020158174A1 JP 2019047225 W JP2019047225 W JP 2019047225W WO 2020158174 A1 WO2020158174 A1 WO 2020158174A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
starting device
input
piston
torque
Prior art date
Application number
PCT/JP2019/047225
Other languages
English (en)
French (fr)
Inventor
雅樹 輪嶋
章裕 長江
一哉 五代儀
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2020158174A1 publication Critical patent/WO2020158174A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type

Definitions

  • the present disclosure relates to an input member for transmitting torque from an engine, a damper device including an input element, an output element, and an elastic body for transmitting torque between the input element and the output element, and an input member and an input of the damper device.
  • the present invention relates to a starting device including a hydraulic clutch that connects and disconnects elements.
  • a damper mechanism includes an intermediate plate, a support plate disposed on the piston side, and first and second coil springs that act in series between the input side plate and the output side plate via the intermediate plate.
  • the intermediate plate is arranged inside the input side plate in the radial direction, and the output side plate and the support plate are arranged on both sides in the axial direction of the input side plate and the intermediate plate and are connected by a plurality of rivets.
  • the plurality of rivets are arranged in a notch (gap) formed in the inner peripheral portion of the input side plate, and a spacer is fitted to each rivet. Then, when the torque transmitted to the input side plate becomes large and the spacer of the rivet comes into pressure contact with the contact surface of the end portion of the cutout portion of the input side plate, the output side plate rotates together with the input side plate. become.
  • the present disclosure makes it possible to restrict the relative rotation between the input element and the output element according to the increase in the torque transmitted to the input element of the damper device while suppressing the cost increase of the starting device including the damper device.
  • the main purpose is.
  • a starting device of the present disclosure includes an input member to which torque from an engine is transmitted, a damper device including an input element, an output element, and an elastic body that transmits torque between the input element and the output element, and the input device.
  • a starting device including a hydraulic clutch that connects a member and the input element of the damper device and disconnects the both, the hydraulic clutch is fixed to the piston and a piston that rotates integrally with the input element.
  • a friction material frictionally engaged with the input member in accordance with the hydraulic pressure acting on the piston, and a part of the piston is provided in the output element in response to an increase in torque transmitted to the input element. It comes into contact with the part.
  • a part of the piston of the hydraulic clutch that connects the input member and the input element of the damper device rotates integrally with the input element, and in response to an increase in the torque transmitted to the input element. Abut on a part of the output element. That is, in the starting device of the present disclosure, the relative rotation between the input element and the output element is the element that transmits the torque from the input member, and is the piston and the output element of the hydraulic clutch that are heat-treated to increase the hardness.
  • a stopper that regulates the In this way by forming the stopper that restricts the relative rotation between the input element and the output element by the piston and the output element whose heat treatment is not omitted, a dedicated member for the stopper such as a spacer becomes unnecessary, and the dedicated member There is no need to heat-treat. As a result, it is possible to restrict the relative rotation between the input element and the output element according to the increase in the torque transmitted to the input element of the damper device while suppressing the cost increase of the starting device including the damper device.
  • FIG. 1 is a schematic configuration diagram showing a starting device 1 of the present disclosure
  • FIG. 2 is a sectional view showing a main part of the starting device 1.
  • a starting device 1 shown in these drawings includes an engine EG (internal combustion engine) as a drive device, a transmission TM such as an automatic transmission (AT), a continuously variable transmission (CVT), and an output shaft OS of the transmission TM.
  • a vehicle V including a differential gear DF directly or via a gear mechanism (not shown), a drive shaft DS connected to the differential gear DF (a pair of side gears), a drive wheel DW connected to the drive shaft DS, and the like. Is installed in.
  • the starting device 1 includes a front cover 3 as an input member that is connected to a crankshaft CS of an engine EG and transmits torque from the engine EG, and a pump impeller (input side fluid transmission element) fixed to the front cover 3. 4, a turbine runner (output side fluid transmission element) 5 arranged in a fluid chamber Cf defined by the front cover 3 and the pump impeller 4 so as to rotate coaxially with the pump impeller 4, and arranged in a fluid chamber Cf Stator 6 for rectifying the flow of hydraulic fluid (working fluid) from turbine runner 5 to pump impeller 4, damper hub 7 as an output member fixed to input shaft IS of transmission TM, lockup clutch 8, and damper device 10. Including etc.
  • the "axial direction” basically indicates the extending direction of the central axes (axial centers) of the starting device 1 and the damper device 10, unless otherwise specified.
  • the “radial direction” is basically the radial direction of the starting device 1, the damper device 10, and the rotating elements such as the damper device 10, that is, the center of the starting device 1 and the damper device 10, unless otherwise specified.
  • the extending direction of a straight line extending from the axis in the direction (radial direction) orthogonal to the central axis is shown.
  • the “circumferential direction” is basically the circumferential direction of the starting device 1, the damper device 10, and the rotating elements such as the damper device 10, that is, the rotational direction of the rotating element, unless otherwise specified. Indicates the direction.
  • the pump impeller 4 includes a pump shell (not shown) that is tightly fixed to the front cover 3, and a plurality of pump blades (not shown) arranged on the inner surface of the pump shell.
  • the turbine runner 5 includes a turbine shell 50 and a plurality of turbine blades 51 arranged on the inner surface of the turbine shell 50.
  • the inner peripheral portion of the turbine shell 50 is fixed to the damper hub 7 via a plurality of rivets 70.
  • the pump impeller 4 and the turbine runner 5 face each other, and a stator 6 is coaxially arranged between them.
  • the stator 6 includes a plurality of stator blades, and the rotation direction of the stator 6 is set only in one direction by the one-way clutch 60 (see FIG. 1).
  • the pump impeller 4, the turbine runner 5, and the stator 6 form a torus (annular passage) that circulates hydraulic oil, and functions as a torque converter (fluid transmission device) having a torque amplification function.
  • the stator 6 and the one-way clutch 60 may be omitted and the pump impeller 4 and the turbine runner 5 may function as a fluid coupling.
  • the lockup clutch 8 is arranged in the fluid chamber Cf, and executes lockup for connecting the front cover 3 and the damper hub 7 via the damper device 10 and releases the lockup.
  • the lockup clutch 8 is a single-plate hydraulic clutch, is arranged inside the front cover 3 and near the inner wall surface of the front cover 3 on the engine EG side, and is rotatable with respect to the damper hub 7 and has a shaft. It includes a lockup piston 80 that is movably fitted in the direction.
  • the lockup piston 80 is an annular member (pressed product) formed by pressing a metal plate, and the lockup piston 80 is heat-treated so that the hardness required as a torque transmission element is ensured. (Quenching treatment) is performed.
  • a friction material 81 is attached (fixed) to the outer peripheral surface of the lockup piston 80 and the surface on the front cover 3 side. Further, between the lockup piston 80 and the front cover 3, a lockup chamber (engaging oil chamber) connected to a hydraulic control device (not shown) via a hydraulic oil supply passage and an oil passage formed in the input shaft IS. ) 82 is defined.
  • Hydraulic oil from a hydraulic control device can flow into the lockup chamber 82. If the inside of the lock-up chamber 82 and the inside of the fluid chamber Cf are kept at the same pressure, the lock-up piston 80 does not move to the front cover 3 side, and the friction material 81 fixed to the lock-up piston 80 becomes the front cover 3. There is no frictional engagement. On the other hand, if the hydraulic pressure in the fluid chamber Cf is made higher than the hydraulic pressure in the lockup chamber 82 by a hydraulic control device (not shown), the lockup piston 80 moves toward the front cover 3 due to the pressure difference, and The friction material 81 frictionally engages with the front cover 3 according to the hydraulic pressure acting on the lockup piston 80. As a result, the front cover 3 (engine EG) is connected to the damper hub 7 via the lockup piston 80 and the damper device 10.
  • the damper device 10 is arranged in the fluid chamber Cf, and as shown in FIGS. 1 and 2, a drive plate (input element) 11, an intermediate member (intermediate element) 12, and a driven member (output) as rotating elements. Element) 15. Further, the damper device 10 serves as a torque transmission elastic body and includes a plurality of (for example, three in the present embodiment) first springs (first elastic bodies) SP1 that transmit torque between the drive plate 11 and the intermediate member 12. And a plurality of (for example, three in the present embodiment) second springs (second elastic bodies) that act in series with the corresponding first springs SP1 to transmit torque between the intermediate member 12 and the driven member 15. ) SP2 and a plurality of (for example, three in this embodiment) third springs SP3 that transmit torque between the drive plate 11 and the driven member 15.
  • first springs first elastic bodies
  • second springs second elastic bodies
  • the first and second springs SP1 and SP2 and the third spring SP3 are linear type made of a metal material that is spirally wound so as to have a straight axis that extends straight when no load is applied.
  • a coil spring is adopted.
  • the first and second springs SP1 and SP2 and the third spring SP3 can be more appropriately expanded and contracted along the axial center as compared with the case of using the arc coil spring.
  • an arc coil spring may be adopted as at least one of the first and second springs SP1, SP2 and the third spring SP3.
  • the spring constants of the first and second springs SP1 and SP2 may be the same or different from each other.
  • the drive plate (input plate) 11 of the damper device 10 is one annular plate body (pressed product) formed by pressing a metal plate. Is subjected to heat treatment (quenching treatment) so as to ensure the hardness required as a torque transmission element. Further, the outer peripheral portion of the drive plate 11 is connected to the lockup piston 80 of the lockup clutch 8. That is, as shown in FIG. 3, the drive plate 11 has a plurality of (for example, six in the present embodiment) fitting recesses 115 that are recessed from the outer peripheral surface of the drive plate 11, forming two pairs of fitting recesses 115. Are formed at intervals in the circumferential direction.
  • a plurality of (for example, six in the present embodiment) claw portions 85 are axially extended at intervals in the circumferential direction so as to form two pairs.
  • the claws 85 are formed so as to fit into the corresponding fitting recesses 115 of the drive plate 11 without a gap, and by fitting the claws 85 into the corresponding fitting recesses 115, the lock-up piston 80 is connected to the outer peripheral portion of the drive plate 11.
  • the front cover 3 (engine EG) and the drive plate 11 of the damper device 10 are connected by the engagement (engagement) of the lockup clutch 8.
  • the drive plate 11 includes a plurality of (for example, three in this embodiment) inner spring housing windows 11wi each extending in an arc shape, and a plurality (for example, three in this embodiment) of inner spring contact portions 11ci.
  • a plurality of (for example, three in this embodiment) outer spring housing windows 11wo each extending in an arc shape and a plurality of (for example, six in this embodiment) outer spring contact portions 11co are included.
  • the plurality of inner spring accommodating windows 11wi are opened on the inner peripheral side of the drive plate 11, and are arranged on the drive plate 11 at regular intervals (at equal intervals) in the circumferential direction.
  • the inner spring contact portions 11ci are formed one by one between the inner spring housing windows 11wi adjacent to each other in the circumferential direction.
  • the plurality of outer spring accommodating windows 11wo each have a circumferential length corresponding to the natural length of the third spring SP3, and are circumferentially spaced so as to be located radially outside of the inner spring accommodating windows 11wi (e.g. Spaced apart).
  • One outer spring contact portion 11co is formed on each side of each outer spring housing window 11wo in the circumferential direction.
  • the intermediate member 12 is a single annular plate body (pressed product) formed by pressing a metal plate, and the intermediate member 12 has a hardness required as a torque transmission element. Is heat-treated (quenching treatment). As shown in FIG. 3, the intermediate member 12 includes a plurality of annular portions 12a and a plurality of (in the present embodiment, radially outwardly projecting from the outer peripheral surface of the annular portion 12a at circumferential intervals (at equal intervals). For example, three spring contact portions 12c are included.
  • the driven member 15 has a first output plate 16 fixed to the damper hub 7 together with the turbine shell 50 of the turbine runner 5 via the plurality of rivets 70, an inner diameter larger than that of the first output plate 16, and the turbine runner 5. And a second output plate 17 arranged so as to be spaced apart from.
  • the first and second output plates 16 and 17 are annular plate bodies (pressed products) formed by pressing a metal plate, and the first and second output plates 16 and 17 have a torque.
  • a heat treatment quenching treatment is performed so as to secure the hardness required as the transmission element.
  • the first output plate 16 includes a plurality of (for example, three in this embodiment) inner spring housing windows 16wi each extending in an arc shape, and a plurality of (for example, three in this embodiment) inner spring housing windows 16wi.
  • the plurality of inner spring accommodating windows 16wi are arranged in the first output plate 16 at intervals (at equal intervals) in the circumferential direction, and the inner spring contact portions 16ci are arranged in the circumferential direction of the adjacent inner spring accommodating windows 16wi. One is formed between them.
  • the plurality of outer spring accommodating windows 16wo each have a perimeter longer than the natural length of the third spring SP3, and are arranged radially outward of the inner spring accommodating windows 16wi at intervals (at equal intervals) in the circumferential direction. To be done.
  • One outer spring contact portion 16co is formed on each side of each outer spring housing window 16wo in the circumferential direction.
  • the first output plate 16 includes a plurality of (for example, three in this embodiment) spring support portions 161 extending along the inner peripheral edge of each inner spring accommodating window 16wi, and an outer peripheral edge of each inner spring accommodating window 16wi.
  • a plurality (for example, three in this embodiment) of spring support portions 164 extending along the outer peripheral edge of each outer spring accommodating window 16wo.
  • the second output plate 17 includes a plurality of (for example, three in this embodiment) inner spring accommodation windows 17wi each extending in an arc shape, and a plurality of (for example, three in this embodiment) inner spring accommodation windows 17wi.
  • the plurality of inner spring accommodating windows 17wi are arranged in the second output plate 17 at intervals (at equal intervals) in the circumferential direction, and the inner spring contact portions 17ci are arranged in the circumferential direction of the adjacent inner spring accommodating windows 17wi. One is formed between them.
  • the plurality of outer spring accommodating windows 17wo each have a circumferential length longer than the natural length of the third spring SP3, and are arranged radially outward of the inner spring accommodating windows 17wi at circumferential intervals (at equal intervals). To be done.
  • One outer spring contact portion 17co is formed on each side of each outer spring housing window 17wo in the circumferential direction.
  • the second output plate 17 has a plurality of (for example, three in this embodiment) spring support portions 171 extending along the inner peripheral edge of each inner spring accommodating window 17wi, and an outer peripheral edge of each inner spring accommodating window 17wi.
  • a plurality of (for example, three in this embodiment) spring support portions 174 extending along the outer peripheral edge of each outer spring accommodating window 17wo.
  • the first output plate 16 is arranged closer to the turbine runner 5 than the drive plate 11, and the second output plate 17 is arranged closer to the lockup piston 80 than the drive plate 11. That is, the first output plate 16 is axially separated from the roots of the claws 85 as compared with the drive plate 11 and the second output plate 17 to which the claws 85 of the lockup piston 80 are fitted.
  • the first and second output plates 16 and 17 are arranged on both sides of the drive plate 11 in the axial direction of the damper device 10 and are connected to each other via a plurality of rivets 90 (see FIG. 3). The plurality of rivets 90 are inserted into the notches formed in the drive plate 11 so as to communicate with the corresponding inner spring housing windows 11wi.
  • the drive plate 11 is arranged in the outer peripheral side region between the first and second output plates 16 and 17 in the axial direction.
  • the intermediate member 12 has an inner peripheral side between the first and second output plates 16 and 17 in the axial direction so that each spring contact portion 12c is located inside the corresponding inner spring accommodation window 11wi of the drive plate 11.
  • the area, that is, the inner side of the drive plate 11 in the radial direction is arranged.
  • the inner peripheral surface of the intermediate member 12 is rotatably supported by the driven member 15, that is, the support portion 17s axially extending from the inner peripheral portion of the second output plate 17.
  • the first and second springs SP1 and SP2 are arranged in the inner spring accommodating window 11wi of the drive plate 11 so as to be alternately arranged along the circumferential direction of the damper device 10, and the first and second output plates 16, Supported by 17. That is, in the inner spring housing windows 11wi, 16wi and 17wi arranged in the axial direction of the damper device 10, the first and second springs SP1 and SP2 are arranged one by one so as to form a pair (to operate in series). It Further, the first and second springs SP1 and SP2 in each inner spring accommodation window 11wi are supported (guided) from the inside in the radial direction by the corresponding spring supporting portions 161 and 171 of the first and second output plates 16 and 17, respectively. It Further, the first and second springs SP1 and SP2 in each inner spring accommodation window 11wi are supported (guided) from the radial outside by the corresponding spring support portions 162 and 172 of the first and second output plates 16 and 17, respectively. It
  • the inner spring contact portions 11ci of the drive plate 11 have different inner spring accommodating windows.
  • the first and second springs SP1 and SP2 which are arranged in the 11wi and do not form a pair (do not act in series), come into contact with both ends. That is, in the mounted state of the damper device 10, one end portion of each first spring SP1 and the other end portion of each second spring SP2 contact the corresponding inner spring contact portion 11ci of the drive plate 11.
  • the spring contact portions 12c of the intermediate member 12 are arranged in the common inner spring accommodation windows 11wi, 16wi and 17wi, and the first and second springs SP1, which are paired with each other. It abuts both ends during SP2. That is, the other end of each first spring SP1 and the one end of each second spring SP2 abut on the corresponding spring abutment portion 12c of the intermediate member 12.
  • the inner spring contact portions 16ci and 17ci of the first and second output plates 16 and 17 (driven member 15) that face each other do not form a pair like the inner spring contact portions 11ci of the drive plate 11 (in series). Between the first and second springs SP1 and SP2 (which do not operate), they abut on both ends. As a result, in the mounted state of the damper device 10, the one end of each first spring SP1 also abuts the corresponding inner spring abutting portions 16ci and 17ci of the driven member 15, and the other end of each second spring SP2. Also contacts the corresponding inner spring contact portions 16ci and 17ci of the driven member 15.
  • the driven member 15 is connected to the drive plate 11 via the plurality of first springs SP1, the intermediate member 12, and the plurality of second springs SP2, and forms a pair of first and second springs SP1, SP1.
  • SP2 is connected in series between the drive plate 11 and the driven member 15 via the intermediate member 12 (spring contact portion 12c).
  • the plurality of first and second springs SP1 and SP2 are arranged on the same circumference, and the axial center of the starting device 1 and the damper device 10 and the axial center of each first spring SP1 are arranged. The distance is equal to the distance between the axis of the starting device 1 and the like and the axis of each second spring SP2.
  • each third spring SP3 is arranged (fitted) in the corresponding outer spring housing window 11wo of the drive plate 11, and is supported by the first and second output plates 16 and 17. That is, in the mounted state of the damper device 10, both end portions of each third spring SP3 come into contact with the corresponding outer spring abutting portions 11co of the drive plate 11, and each third spring SP3 has the first and second output plates. It is located near the central portion in the circumferential direction of the outer spring accommodating windows 16wo and 17wo corresponding to 16 and 17. Further, the third spring SP3 in each outer spring accommodation window 11wo is supported (guided) from the radially inner side by the corresponding spring supporting portions 163, 173 of the first and second output plates 16, 17.
  • the third spring SP3 in each outer spring housing window 11wo is supported (guided) from the outside in the radial direction by the corresponding spring supporting portions 164 and 174 of the first and second output plates 16 and 17.
  • the third springs SP3 are arranged radially outside the first and second springs SP1 and SP2 so as to overlap the first and second springs SP1 and SP2 in the radial direction. This makes it possible to further reduce the axial length of the damper device 10 and thus the starting device 1.
  • each third spring SP3 and the outer spring contact portions 16co, 17co of the first and second output plates 16, 17 (driven member 15) located on both sides thereof A predetermined circumferential interval is formed so that they do not come into contact with each other. Then, one of the outer spring contact portions 16co, 17co located on both sides of each third spring SP3 has the drive plate 11 and the driven member 15 when torque is transmitted between the drive plate 11 and the driven member 15. As the relative twist angle of 15 increases, it comes into contact with one end of the third spring SP3.
  • the circumferential distance between the end of the third spring SP3 and the outer spring contact portions 16co and 17co of the driven member 15 in the mounted state of the damper device 10 is transmitted from the engine EG to the drive plate 11.
  • the input torque reaches a predetermined torque (first value) T1 that is smaller than the torque T2 (second value) corresponding to the maximum twist angle ⁇ max of the damper device 10, the main rotation of the drive plate 11 or the like occurs. Is determined so that one end of the third spring SP3 located on the front side in the direction (the rotation direction of the vehicle forward (engine EG)) contacts the outer spring contact portions 16co, 17co on the front side in the main rotation direction.
  • the damper device 10 restricts the relative rotation between the drive plate 11 and the driven member 15 when the input torque to the drive plate 11 reaches the torque T2 corresponding to the maximum twist angle ⁇ max (see FIG. 1). including.
  • the stopper 18 is driven so as to be positioned radially outward of the plurality of claw portions 85 of the lockup piston 80 connected to the drive plate 11 and the first to third springs SP1, SP2, SP3.
  • the member 15 includes a plurality of (for example, three in this embodiment) protrusions 165 formed on the outer peripheral portion of the first output plate 16.
  • the plurality of protrusions 165 are formed on the outer peripheral portion of the first output plate 16 at intervals (at equal intervals) in the circumferential direction, each protrude outward in the radial direction, and include a pair of side surfaces 166. Further, in the outer peripheral portion of the first output plate 16, a plurality of (for example, three in this embodiment) recessed from the outer peripheral surface of the first output plate 16 between the protrusions 165 adjacent to each other in the circumferential direction. A recess 167 is formed.
  • the ends of the pair of claws 85 of the lockup piston 80 are arranged in the corresponding recesses 167 of the first output plate 16 on the turbine runner 5 side.
  • the distance in the circumferential direction between one of the two claws 85 arranged in the same recess 167 and the side surface 166 of the protrusion 165 adjacent thereto, and the other of the two claws 85 is substantially the same as shown in FIG.
  • the distance in the circumferential direction between the side surface 166 of the protrusion 165 and the side surface 166 adjacent thereto is substantially the same as shown in FIG.
  • the outer diameter of the second output plate 17 of the driven member 15 located closer to the lockup piston 80 than the first output plate 16 is such that the outer peripheral portion of the lockup piston 80 (the claw portion 85). ), the outer peripheral portion of the second output plate 17 does not interfere with each claw portion 85 of the lockup piston 80.
  • the damper device 10 includes a mass body 19 fixed to the damper hub 7 so as to be located between the turbine runner 5 and the first output plate 16 of the damper device 10 in the axial direction.
  • the mass body 19 includes an annular first plate 191 having a larger diameter than the turbine runner 5 and an annular second plate 192 having an inner diameter larger than the inner diameter of the first plate 191.
  • the inner peripheral portion of the first plate 191 is fixed to the damper hub 7 together with the turbine shell 50 of the turbine runner 5 and the first output plate 16 via the plurality of rivets 70.
  • the outer peripheral portion 191o of the first plate 191 is bent toward the turbine runner 5.
  • the second plate 192 is fixed to the first plate 191 via a plurality of rivets so as not to interfere with the first output plate 16 (spring support portion 162) and the like.
  • the operation of the starting device 1 configured as described above will be described.
  • the torque (power) transmitted from the engine EG to the front cover 3 is the pump impeller 4, the turbine runner 5, It is transmitted to the input shaft IS of the transmission TM via the driven member 15 and the damper hub 7, and is further transmitted to the drive wheels DW via the differential gear DF and the drive shaft DS.
  • the torque transmitted from the engine EG to the drive plate 11 via the front cover 3 and the lockup clutch 8 is transmitted to the drive plate 11.
  • the input torque is transmitted to the driven member 15 and the damper hub 7 via the plurality of first springs SP1, the intermediate member 12 and the plurality of second springs SP2 until the input torque reaches the torque T1.
  • the fluctuation of the torque from the engine EG is attenuated (absorbed) by the first and second springs SP1 and SP2 acting in series.
  • each third spring SP3 causes the outer spring contact portion 11co on the rear side of the drive plate 11 in the main rotation direction and the driven member 15 (first and second output plates 16 and 17) in the main rotation direction. While expanding and contracting between the outer spring contact portions 16co and 17co on the front side, the first and second springs SP1 and SP2 acting in series act in parallel to generate torque between the drive plate 11 and the intermediate member 12. introduce.
  • the torque from the engine EG acts in parallel with the first and second springs SP1 and SP2 acting in series via the front cover 3, the lockup clutch 8, the drive plate 11, and the intermediate member 12, and the second acting. It is transmitted to the input shaft IS of the transmission through the path of the 3-spring SP3, the driven member 15, and the damper hub 7. Then, the fluctuation of the torque input to the front cover 3 is attenuated (absorbed) by the first to third springs SP1, SP2, SP3. As a result, the large torque fluctuations transmitted to the drive plate 11 can be absorbed by the first to third springs SP1, SP2, SP3.
  • the damper device 10 of the starting device 1 the first and second springs SP1 and SP2 act in series until the input torque to the drive plate 11 reaches the torque T1. Further, while the input torque to the drive plate 11 is included in the range from the torque T1 to the torque T2, the third spring SP3 acts in parallel with the first and second springs SP1 and SP2 acting in series. Therefore, the damper device 10 has a two-stage (two-stage) damping characteristic.
  • a part of the lock-up piston 80 of the lock-up clutch 8 that connects the front cover 3 and the drive plate 11 with a portion of the lock-up piston 80 that connects the front cover 3 and the drive plate 11 is increased according to an increase in the input torque transmitted from the engine EG to the drive plate 11.
  • a certain plurality of claw portions 85 abut on the side surface 166 of the protrusion 165 that is a part of the first output plate 16. That is, in the starting device 1, the lockup piston 80 and the first output plate 16 are elements that transmit the torque from the front cover 3 and the heat treatment for increasing the hardness is not omitted.
  • a stopper 18 that restricts relative rotation with the driven member 15 is configured.
  • the plurality of rivets 90 that connect the first and second output plates 16 and 17 of the driven member 15 are all Does not come into contact with the drive plate 11.
  • the starting device 1 it is not necessary to heat-treat the plurality of rivets 90 as a connecting member that connects the first and second output plates 16 and 17, and a special member for a stopper such as a spacer is also unnecessary.
  • a special member for a stopper such as a spacer is also unnecessary.
  • the lockup piston 80 and the first output plate 16 (driven member) constitute the stopper 18 that restricts the relative rotation between the drive plate 11 and the driven member 15, so that the drive plate is increased when the input torque increases. Since the torque can be transmitted from the lock-up piston 80 to the driven member 15 by bypassing 11, the load on the drive plate 11 can be reduced.
  • the lock-up pistons 80 are fitted into the corresponding fitting recesses 115 of the drive plate 11, respectively, and are arranged between the adjacent protrusions 165 of the first output plate 16.
  • the plurality of claws 85 are included, and the plurality of claws 85 contact the side surface 166 of the corresponding protrusion 165 according to an increase in the torque transmitted to the drive plate 11. Accordingly, the plurality of claw portions 85 have a torque transmitting function, and the lockup piston 80 and the first output plate 16 constitute the stopper 18 that restricts relative rotation between the drive plate 11 and the driven member 15.
  • the vibration damping performance of the damper device 10 can be further improved by increasing the moment of inertia of the first output plate 16 and thus the driven member 15 by the amount of the protrusion 165.
  • the first output plate 16 of the first and second output plates 16 and 17 is fixed to the damper hub 7 connected (fixed) to the input shaft IS of the transmission TM. This prevents the load from the drive plate 11 and the driven member 15 from acting on the second output plate 17 when the claw portion 85 of the lockup piston 80 abuts on the first output plate 16, and thereby the first output plate 16 is prevented. Further, the strength of the connecting portion of the second output plates 16 and 17, that is, the strength of each rivet 90 can be favorably maintained.
  • the lockup piston 80 and the second output plate 17 may constitute a stopper that restricts the relative rotation between the drive plate 11 and the driven member 15, and only the second output plate 17 or the second output plate 17 may be provided. Both the first and second output plates 16 and 17 may be fixed to the damper hub 7.
  • the driven member 15 may be a single plate member, and the intermediate member 12 is arranged on both sides of the drive plate 11 and the driven member 15 in the axial direction and is connected to each other by the connecting member. The two plate members may be included.
  • both the turbine runner 5 and the mass body 19 are connected to the driven member 15 which is an output element, but the invention is not limited to this. That is, the connection of at least one of the turbine runner 5 and the mass body 19 to the driven member 15 may be omitted.
  • the third spring SP3 is arranged in parallel with one of the first and second springs SP1 and SP2. It may be configured to act. Furthermore, the third spring SP3 may be omitted from the damper device 10.
  • the drive plate 11 (input element) and the lock-up piston 80 may be integrally formed, and a plurality of claw portions similar to the claw portion 85 may be formed in such an integral member. ..
  • the lock-up clutch 8 of the damper device 10 may be a multi-plate hydraulic clutch, and in this case, a plurality of pawl portions similar to the pawl portion 85 are formed on the clutch drum or clutch hub of the multi-plate hydraulic clutch. May be.
  • the damper device 10 of the starting device 1 of the present disclosure includes the input element and the output element as the rotation element, the elastic body arranged between the input element and the output element as the torque transmission element, and the intermediate element. It may not be included.
  • the input element may include one input plate
  • the output elements are two plate members arranged on both sides in the axial direction of the input plate and connected to each other by a connecting member. May be included.
  • the output element may include one output plate, and the input elements are arranged on both sides of the output plate in the axial direction and are connected to each other by the connecting member. It may include a plate member.
  • the damper device 10 of the starting device 1 of the present disclosure includes the input element, the first intermediate element, the second intermediate member, and the output element as the rotating element, and the input element and the first intermediate element as the torque transmitting element.
  • the damper device 10 of the starting device 1 of the present disclosure may include two torque transmission paths provided in parallel between the input element and the output element.
  • the starting device of the present disclosure includes the input member (3) to which the torque from the engine (EG) is transmitted, the input element (11), the output element (15), and the input element (11).
  • a part of the piston of the hydraulic clutch that connects the input member and the input element of the damper device rotates integrally with the input element, and in response to an increase in the torque transmitted to the input element. Abut on a part of the output element. That is, in the starting device of the present disclosure, the relative rotation between the input element and the output element is the element that transmits the torque from the input member, and is the piston and the output element of the hydraulic clutch that are heat-treated to increase the hardness.
  • a stopper that regulates the In this way by forming the stopper with the piston and the output element whose heat treatment is not omitted, a stopper-dedicated member such as a spacer becomes unnecessary, and it is not necessary to heat-treat the dedicated member. As a result, it is possible to restrict the relative rotation between the input element and the output element according to the increase in the torque transmitted to the input element of the damper device while suppressing the cost increase of the starting device including the damper device.
  • the output element (15, 16) may include a plurality of protrusions (165) protruding in the radial direction at intervals in the circumferential direction, and the piston (80) is configured in the circumferential direction. May include a plurality of claw portions (85) extending in the axial direction at intervals, the plurality of claw portions (85) of the piston (80) being respectively the output elements (15, 16). ) Disposed between the adjacent protrusions (165) and abutting on the side surface (166) of the corresponding protrusion (165) according to an increase in the torque transmitted to the input element (11).
  • the piston and the output element constitute a stopper that restricts the relative rotation between the input element and the output element, while increasing the moment of inertia of the output element by the amount of the plurality of protrusions to improve the vibration damping performance of the damper device. It is possible to further improve.
  • the plurality of claw portions (85) of the piston (80) may be fitted to the input element (11), respectively.
  • the claw portion of the piston can have a torque transmission function.
  • the plurality of protrusions (165) are formed in the output element (15, 16) so as to be located outside the elastic bodies (SP1, SP2, SP3) in the radial direction of the damper device (10). May be.
  • the input element may include one input plate (11), and the output element (15) is provided on both sides of the input plate (11) in the axial direction of the damper device (10).
  • the piston (80) and the two output plates (16, 17) may be heat-treated, and the connecting member (90) may not be heat-treated.
  • the one (16) of the two output plates may be separated from the root of the claw (85) in the axial direction as compared with the other (17).
  • the starting device (1) may further include an output member (7) connected to the transmission (TM), and only one of the two output plates is fixed to the output member. May be done. As a result, when a part of the piston comes into contact with a part of one of the two output plates, the load from the input element or the output element does not act on the other of the two output plates. It is possible to maintain the strength of the connecting portion between the two output plates in a good condition.
  • connecting member (90) is connected to the input element (11) when the part of the piston (80) comes into contact with the part of the one (16) of the two output plates. It may not abut.
  • the damper device (10) may further include an intermediate element (12), and the elastic body is arranged between the input element (11) and the intermediate element (12).
  • the damper device (10) is provided with at least the input element (11) and the output element (15) when torque is not transmitted at least between the input element (11) and the output element (15).
  • the relative twist angle between the input element (11) and the output element (15), which is held by one side and torque is transmitted between the input element (11) and the output element (15).
  • It may include a third elastic body (SP3) that operates in parallel with at least one of the first and second elastic bodies (SP1, SP2) according to the increase of the.
  • the invention of the present disclosure can be used in the field of manufacturing a starting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

本開示の発進装置は、ダンパ装置と、エンジンからのトルクが伝達される入力部材とダンパ装置の入力要素とを接続すると共に両者の接続を解除する油圧クラッチとを含み、油圧クラッチは、入力要素と一体に回転するピストンと、ピストンに固定されると共にピストンに作用する油圧に応じて入力部材と摩擦係合する摩擦材とを含み、ピストンの一部は、入力要素に伝達されるトルクの増加に応じて出力要素の一部に当接する。これにより、コストアップを抑制しつつ、ダンパ装置の入力要素に伝達されるトルクの増加に応じて入力要素と出力要素との相対回転を規制することができる。

Description

発進装置
 本開示は、エンジンからのトルクが伝達される入力部材と、入力要素、出力要素および入力要素と出力要素との間でトルクを伝達する弾性体を含むダンパ装置と、入力部材とダンパ装置の入力要素とを接続すると共に両者の接続を解除する油圧クラッチとを含む発進装置に関する。
 従来、ロックアップクラッチのピストンに連結されるリング状の入力側プレートと、タービンランナに連結されるリング状の出力側プレートと、入力側プレートと出力側プレートとの間に配置されたリング状の中間プレートと、ピストン側に配置された支持プレートと、中間プレートを介して入力側プレートと出力側プレートとの間で直列に作用する第1および第2コイルスプリングとを含むダンパ機構が知られている(例えば、特許文献1参照)。このダンパ機構において、中間プレートは、入力側プレートの径方向内側に配置され、出力側プレートおよび支持プレートは、入力側プレートおよび中間プレートの軸方向における両側に配置されると共に複数のリベットにより連結される。また、当該複数のリベットは、入力側プレートの内周部に形成された切欠き部(空隙)内に配置され、各リベットにはスペーサが嵌着されている。そして、入力側プレートに伝達されるトルクが大きくなって当該入力側プレートの切欠き部の端部の当接面にリベットのスペーサが圧接すると、出力側プレートが入力側プレートと一体に回転するようになる。
特開2008-196540号公報
 上記特許文献1に記載されたダンパ機構では、入力側プレートの切欠き部の当接面と複数のリベットおよびスペーサとが、入力側プレートと出力側プレート(および支持プレート)との相対回転を規制するストッパを構成する。このため、上記従来のダンパ機構では、各スペーサに対してストッパ作動時における耐久性を確保するための熱処理(焼入れ処理)が施されるが、各スペーサに熱処理を施すことで、ダンパ機構ひいてはそれを含む発進装置のコストが増加してしまう。
 そこで、本開示は、ダンパ装置を含む発進装置のコストアップを抑制しつつ、ダンパ装置の入力要素に伝達されるトルクの増加に応じて入力要素と出力要素との相対回転を規制可能にすることを主目的とする。
 本開示の発進装置は、エンジンからのトルクが伝達される入力部材と、入力要素、出力要素および前記入力要素と前記出力要素との間でトルクを伝達する弾性体を含むダンパ装置と、前記入力部材と前記ダンパ装置の前記入力要素とを接続すると共に両者の接続を解除する油圧クラッチとを含む発進装置において、前記油圧クラッチが、前記入力要素と一体に回転するピストンと、前記ピストンに固定されると共に前記ピストンに作用する油圧に応じて前記入力部材と摩擦係合する摩擦材とを含み、前記ピストンの一部が、前記入力要素に伝達されるトルクの増加に応じて前記出力要素の一部に当接するものである。
 本開示の発進装置において、入力部材とダンパ装置の入力要素とを接続する油圧クラッチのピストンの一部は、入力要素と一体に回転すると共に、当該入力要素に伝達されるトルクの増加に応じて出力要素の一部に当接する。すなわち、本開示の発進装置では、入力部材からのトルクを伝達する要素であって、硬度を高めるために熱処理が施される油圧クラッチのピストンと出力要素とにより入力要素と出力要素との相対回転を規制するストッパが構成される。このように、熱処理が省略されることのないピストンと出力要素とで入力要素と出力要素との相対回転を規制するストッパを構成することで、スペーサといったストッパの専用部材が不要となり、当該専用部材に熱処理を施す必要もなくなる。この結果、ダンパ装置を含む発進装置のコストアップを抑制しつつ、ダンパ装置の入力要素に伝達されるトルクの増加に応じて入力要素と出力要素との相対回転を規制することが可能となる。
本開示の発進装置を示す概略構成図である。 本開示の発進装置の要部を示す断面図である。 本開示の発進装置を示す正面図である。 本開示の発進装置を示す正面図である。
 次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。
 図1は、本開示の発進装置1を示す概略構成図であり、図2は、発進装置1の要部を示す断面図である。これらの図面に示す発進装置1は、駆動装置としてのエンジンEG(内燃機関)や、自動変速機(AT)、無段変速機(CVT)等である変速機TM、変速機TMの出力軸OSに直接または図示しないギヤ機構を介して連結されるデファレンシャルギヤDF、当該デファレンシャルギヤDF(一対のサイドギヤ)に連結されるドライブシャフトDS、当該ドライブシャフトDSに連結される駆動輪DW等を含む車両Vに搭載されるものである。
 発進装置1は、エンジンEGのクランクシャフトCSに連結されて当該エンジンEGからのトルクが伝達される入力部材としてのフロントカバー3や、フロントカバー3に固定されるポンプインペラ(入力側流体伝動要素)4、ポンプインペラ4と同軸に回転するようにフロントカバー3およびポンプインペラ4により画成される流体室Cf内に配置されるタービンランナ(出力側流体伝動要素)5、流体室Cf内に配置されてタービンランナ5からポンプインペラ4への作動油(作動流体)の流れを整流するステータ6、変速機TMの入力軸ISに固定される出力部材としてのダンパハブ7、ロックアップクラッチ8、ダンパ装置10等を含む。
 なお、以下の説明において、「軸方向」は、特に明記するものを除いて、基本的に、発進装置1やダンパ装置10の中心軸(軸心)の延在方向を示す。また、「径方向」は、特に明記するものを除いて、基本的に、発進装置1やダンパ装置10、当該ダンパ装置10等の回転要素の径方向、すなわち発進装置1やダンパ装置10の中心軸から当該中心軸と直交する方向(半径方向)に延びる直線の延在方向を示す。更に、「周方向」は、特に明記するものを除いて、基本的に、発進装置1やダンパ装置10、当該ダンパ装置10等の回転要素の周方向、すなわち当該回転要素の回転方向に沿った方向を示す。
 ポンプインペラ4は、フロントカバー3に密に固定される図示しないポンプシェルと、ポンプシェルの内面に配設された複数のポンプブレード(図示省略)とを含む。タービンランナ5は、図2に示すように、タービンシェル50と、タービンシェル50の内面に配設された複数のタービンブレード51とを含む。タービンシェル50の内周部は、複数のリベット70を介してダンパハブ7に固定される。ポンプインペラ4とタービンランナ5とは、互いに対向し合い、両者の間には、ステータ6が同軸に配置される。ステータ6は、複数のステータブレードを含み、ステータ6の回転方向は、ワンウェイクラッチ60(図1参照)により一方向のみに設定される。ポンプインペラ4、タービンランナ5およびステータ6は、作動油を循環させるトーラス(環状流路)を形成し、トルク増幅機能をもったトルクコンバータ(流体伝動装置)として機能する。ただし、発進装置1において、ステータ6やワンウェイクラッチ60を省略し、ポンプインペラ4およびタービンランナ5を流体継手として機能させてもよい。
 ロックアップクラッチ8は、上記流体室Cf内に配置され、ダンパ装置10を介してフロントカバー3とダンパハブ7とを連結するロックアップを実行すると共に当該ロックアップを解除するものである。本実施形態において、ロックアップクラッチ8は、単板式油圧クラッチであり、フロントカバー3の内部かつ当該フロントカバー3のエンジンEG側の内壁面近傍に配置されると共にダンパハブ7に対して回転自在かつ軸方向に移動自在に嵌合されるロックアップピストン80を含む。ロックアップピストン80は、金属板をプレス加工することにより形成された環状部材(プレス加工品)であり、当該ロックアップピストン80には、トルク伝達要素として要求される硬度が確保されるように熱処理(焼入れ処理)が施される。また、ロックアップピストン80の外周側かつフロントカバー3側の面には、摩擦材81が貼着(固定)されている。更に、ロックアップピストン80とフロントカバー3との間には、作動油供給路や入力軸ISに形成された油路を介して図示しない油圧制御装置に接続されるロックアップ室(係合油室)82が画成される。
 ロックアップ室82内には、図示しない油圧制御装置からの作動油が流入可能である。ロックアップ室82内と流体室Cf内とが等圧に保たれれば、ロックアップピストン80はフロントカバー3側に移動せず、ロックアップピストン80に固定された摩擦材81がフロントカバー3と摩擦係合することはない。これに対して、図示しない油圧制御装置により流体室Cf内の油圧をロックアップ室82内の油圧よりも高くすれば、ロックアップピストン80は、圧力差によりフロントカバー3に向けて移動し、当該ロックアップピストン80に作用する油圧に応じて摩擦材81がフロントカバー3と摩擦係合する。これにより、フロントカバー3(エンジンEG)は、ロックアップピストン80やダンパ装置10を介してダンパハブ7に連結される。
 ダンパ装置10は、上記流体室Cf内に配置され、図1および図2に示すように、回転要素として、ドライブプレート(入力要素)11と、中間部材(中間要素)12と、ドリブン部材(出力要素)15とを含む。更に、ダンパ装置10は、トルク伝達弾性体として、ドライブプレート11と中間部材12との間でトルクを伝達する複数(本実施形態では、例えば3個)の第1スプリング(第1弾性体)SP1と、それぞれ対応する第1スプリングSP1と直列に作用して中間部材12とドリブン部材15との間でトルクを伝達する複数(本実施形態では、例えば3個)の第2スプリング(第2弾性体)SP2と、ドライブプレート11とドリブン部材15との間でトルクを伝達する複数(本実施形態では、例えば3個)の第3スプリングSP3とを含む。
 本実施形態では、第1および第2スプリングSP1,SP2並びに第3スプリングSP3として、荷重が加えられてないときに真っ直ぐに延びる軸心を有するように螺旋状に巻かれた金属材からなる直線型コイルスプリングが採用される。これにより、アークコイルスプリングを用いた場合に比べて、第1および第2スプリングSP1,SP2並びに第3スプリングSP3を軸心に沿ってより適正に伸縮させることができる。この結果、ドライブプレート11(入力要素)とドリブン部材15(出力要素)との相対変位が増加していく際に第2スプリングSP2等からドリブン部材15に伝達されるトルクと、ドライブプレート11とドリブン部材15との相対変位が減少していく際に第2スプリングSP2等からドリブン部材15に伝達されるトルクとの差すなわちヒステリシスを低減化することが可能となる。ただし、第1および第2スプリングSP1,SP2並びに第3スプリングSP3の少なくとも何れかとして、アークコイルスプリングが採用されてもよい。また、第1および第2スプリングSP1,SP2のばね定数は、同一であってもよく、互いに異なっていてもよい。
 図2に示すように、ダンパ装置10のドライブプレート(入力プレート)11は、金属板をプレス加工することにより形成された1枚の環状の板体(プレス加工品)であり、当該ドライブプレート11には、トルク伝達要素として要求される硬度が確保されるように熱処理(焼入れ処理)が施される。また、ドライブプレート11の外周部は、ロックアップクラッチ8のロックアップピストン80に連結される。すなわち、ドライブプレート11には、図3に示すように、それぞれ当該ドライブプレート11の外周面から窪む複数(本実施形態では、例えば6個)の嵌合凹部115が2個ずつ対をなすように周方向に間隔をおいて形成されている。更に、ロックアップピストン80の外周部からは、複数(本実施形態では、例えば6個)の爪部85が2個ずつ対をなすように周方向に間隔をおいて軸方向に延出されている。各爪部85は、ドライブプレート11の対応する嵌合凹部115に隙間無く嵌まり込むように形成されており、各爪部85が対応する嵌合凹部115に嵌合されることでロックアップピストン80がドライブプレート11の外周部に連結される。これにより、ロックアップクラッチ8の締結(係合)によりフロントカバー3(エンジンEG)とダンパ装置10のドライブプレート11とが連結されることになる。
 また、ドライブプレート11は、それぞれ円弧状に延びる複数(本実施形態では、例えば3個)の内側スプリング収容窓11wiと、複数(本実施形態では、例えば3個)の内側スプリング当接部11ciと、それぞれ円弧状に延びる複数(本実施形態では、例えば3個)の外側スプリング収容窓11woと、複数(本実施形態では、例えば6個)の外側スプリング当接部11coとを含む。複数の内側スプリング収容窓11wiは、それぞれドライブプレート11の内周側で開口しており、ドライブプレート11に周方向に間隔をおいて(等間隔に)配設される。内側スプリング当接部11ciは、隣り合う内側スプリング収容窓11wiの周方向における間に1個ずつ形成される。複数の外側スプリング収容窓11woは、それぞれ第3スプリングSP3の自然長に応じた周長を有し、内側スプリング収容窓11wiよりも径方向外側に位置するように周方向に間隔をおいて(等間隔に)配設される。外側スプリング当接部11coは、各外側スプリング収容窓11woの周方向における両側に1個ずつ形成される。
 中間部材12は、金属板をプレス加工することにより形成された1枚の環状の板体(プレス加工品)であり、当該中間部材12には、トルク伝達要素として要求される硬度が確保されるように熱処理(焼入れ処理)が施される。中間部材12は、図3に示すように、環状部12aと、当該環状部12aの外周面から周方向に間隔をおいて(等間隔に)径方向外側に突出する複数(本実施形態では、例えば3個)のスプリング当接部12cとを含む。
 ドリブン部材15は、上記複数のリベット70を介してタービンランナ5のタービンシェル50と共にダンパハブ7に固定される第1出力プレート16と、当該第1出力プレート16よりも大きい内径を有すると共にタービンランナ5から離間するように配置される第2出力プレート17とを含む。第1および第2出力プレート16,17は、金属板をプレス加工することにより形成された環状の板体(プレス加工品)であり、当該第1および第2出力プレート16,17には、トルク伝達要素として要求される硬度が確保されるように熱処理(焼入れ処理)が施される。
 図2に示すように、第1出力プレート16は、それぞれ円弧状に延びる複数(本実施形態では、例えば3個)の内側スプリング収容窓16wiと、複数(本実施形態では、例えば3個)の内側スプリング当接部16ciと、それぞれ円弧状に延びる複数(本実施形態では、例えば3個)の外側スプリング収容窓16woと、複数(本実施形態では、例えば6個)の外側スプリング当接部(弾性体当接部)16coとを含む。複数の内側スプリング収容窓16wiは、第1出力プレート16に周方向に間隔をおいて(等間隔に)配設され、内側スプリング当接部16ciは、隣り合う内側スプリング収容窓16wiの周方向における間に1個ずつ形成される。複数の外側スプリング収容窓16woは、それぞれ第3スプリングSP3の自然長よりも長い周長を有し、内側スプリング収容窓16wiの径方向外側に周方向に間隔をおいて(等間隔に)配設される。外側スプリング当接部16coは、各外側スプリング収容窓16woの周方向における両側に1個ずつ形成される。
 更に、第1出力プレート16は、各内側スプリング収容窓16wiの内周縁に沿って延びる複数(本実施形態では、例えば3個)のスプリング支持部161と、各内側スプリング収容窓16wiの外周縁に沿って延びる複数(本実施形態では、例えば3個)のスプリング支持部162と、各外側スプリング収容窓16woの内周縁に沿って延びる複数(本実施形態では、例えば3個)のスプリング支持部163と、各外側スプリング収容窓16woの外周縁に沿って延びる複数(本実施形態では、例えば3個)のスプリング支持部164とを含む。
 第2出力プレート17は、図2に示すように、それぞれ円弧状に延びる複数(本実施形態では、例えば3個)の内側スプリング収容窓17wiと、複数(本実施形態では、例えば3個)の内側スプリング当接部17ciと、それぞれ円弧状に延びる複数(本実施形態では、例えば3個)の外側スプリング収容窓17woと、複数(本実施形態では、例えば6個)の外側スプリング当接部(弾性体当接部)17coとを含む。複数の内側スプリング収容窓17wiは、第2出力プレート17に周方向に間隔をおいて(等間隔に)配設され、内側スプリング当接部17ciは、隣り合う内側スプリング収容窓17wiの周方向における間に1個ずつ形成される。複数の外側スプリング収容窓17woは、それぞれ第3スプリングSP3の自然長よりも長い周長を有し、内側スプリング収容窓17wiの径方向外側に周方向に間隔をおいて(等間隔に)配設される。外側スプリング当接部17coは、各外側スプリング収容窓17woの周方向における両側に1個ずつ形成される。
 更に、第2出力プレート17は、各内側スプリング収容窓17wiの内周縁に沿って延びる複数(本実施形態では、例えば3個)のスプリング支持部171と、各内側スプリング収容窓17wiの外周縁に沿って延びる複数(本実施形態では、例えば3個)のスプリング支持部172と、各外側スプリング収容窓17woの内周縁に沿って延びる複数(本実施形態では、例えば3個)のスプリング支持部173と、各外側スプリング収容窓17woの外周縁に沿って延びる複数(本実施形態では、例えば3個)のスプリング支持部174とを含む。
 図2に示すように、第1出力プレート16は、ドライブプレート11よりもタービンランナ5側に配置され、第2出力プレート17は、ドライブプレート11よりもロックアップピストン80側に配置される。すなわち、第1出力プレート16は、ロックアップピストン80の各爪部85が嵌合されるドライブプレート11および第2出力プレート17に比べて各爪部85の根元から軸方向に離間する。そして、第1および第2出力プレート16,17は、ダンパ装置10の軸方向におけるドライブプレート11の両側に配置され、複数のリベット90(図3参照)を介して互いに連結される。複数のリベット90は、対応する内側スプリング収容窓11wiに連通するように当該ドライブプレート11に形成された切欠部に挿通される。また、ドライブプレート11は、第1および第2出力プレート16,17の軸方向における間の外周側領域に配置される。更に、中間部材12は、各スプリング当接部12cがドライブプレート11の対応する内側スプリング収容窓11wi内に位置するように第1および第2出力プレート16,17の軸方向における間の内周側領域、すなわちドライブプレート11の径方向内側に配置される。また、中間部材12の内周面は、ドリブン部材15、すなわち第2出力プレート17の内周部から軸方向に延出された支持部17sにより回転自在に支持される。
 第1および第2スプリングSP1,SP2は、ダンパ装置10の周方向に沿って交互に並ぶようにドライブプレート11の内側スプリング収容窓11wi内に配置されると共に、第1および第2出力プレート16,17により支持される。すなわち、ダンパ装置10の軸方向に並ぶ内側スプリング収容窓11wi,16wiおよび17wiには、第1および第2スプリングSP1,SP2が対をなすように(直列に作用するように)1個ずつ配置される。また、各内側スプリング収容窓11wi内の第1および第2スプリングSP1,SP2は、第1および第2出力プレート16,17の対応するスプリング支持部161,171により径方向内側から支持(ガイド)される。更に、各内側スプリング収容窓11wi内の第1および第2スプリングSP1,SP2は、第1および第2出力プレート16,17の対応するスプリング支持部162,172により径方向外側から支持(ガイド)される。
 また、ダンパ装置10の取付状態(ドライブプレート11とドリブン部材15との間でトルクが伝達されていない状態)において、ドライブプレート11の各内側スプリング当接部11ciは、それぞれ互いに異なる内側スプリング収容窓11wi内に配置されて対をなさない(直列に作用しない)第1および第2スプリングSP1,SP2の間で両者の端部に当接する。すなわち、ダンパ装置10の取付状態において、各第1スプリングSP1の一端部および各第2スプリングSP2の他端部は、ドライブプレート11の対応する内側スプリング当接部11ciに当接する。更に、ダンパ装置10の取付状態において、中間部材12の各スプリング当接部12cは、共通の内側スプリング収容窓11wi,16wiおよび17wi内に配置されて互いに対をなす第1および第2スプリングSP1,SP2の間で両者の端部に当接する。すなわち、各第1スプリングSP1の他端部および各第2スプリングSP2の一端部は、中間部材12の対応するスプリング当接部12cに当接する。
 第1および第2出力プレート16,17(ドリブン部材15)の互いに対向する内側スプリング当接部16ci,17ciも、ドライブプレート11の内側スプリング当接部11ciと同様に、対をなさない(直列に作用しない)第1および第2スプリングSP1,SP2の間で両者の端部に当接する。これにより、ダンパ装置10の取付状態において、各第1スプリングSP1の上記一端部は、ドリブン部材15の対応する内側スプリング当接部16ci,17ciとも当接し、各第2スプリングSP2の上記他端部は、ドリブン部材15の対応する内側スプリング当接部16ci,17ciとも当接する。この結果、ドリブン部材15は、複数の第1スプリングSP1と、中間部材12と、複数の第2スプリングSP2とを介してドライブプレート11に連結され、互いに対をなす第1および第2スプリングSP1,SP2は、ドライブプレート11とドリブン部材15との間で、中間部材12(スプリング当接部12c)を介して直列に連結される。なお、本実施形態において、それぞれ複数の第1および第2スプリングSP1,SP2は、同一円周上に配列され、発進装置1やダンパ装置10の軸心と各第1スプリングSP1の軸心との距離と、発進装置1等の軸心と各第2スプリングSP2の軸心との距離とが等しくなっている。
 また、各第3スプリングSP3は、ドライブプレート11の対応する外側スプリング収容窓11wo内に配置(嵌合)されると共に、第1および第2出力プレート16,17により支持される。すなわち、ダンパ装置10の取付状態において、各第3スプリングSP3の両端部は、ドライブプレート11の対応する外側スプリング当接部11coに当接し、各第3スプリングSP3は、第1および第2出力プレート16,17の対応する外側スプリング収容窓16wo,17woの周方向における中央部付近に位置する。更に、各外側スプリング収容窓11wo内の第3スプリングSP3は、第1および第2出力プレート16,17の対応するスプリング支持部163,173により径方向内側から支持(ガイド)される。また、各外側スプリング収容窓11wo内の第3スプリングSP3は、第1および第2出力プレート16,17の対応するスプリング支持部164,174により径方向外側から支持(ガイド)される。本実施形態において、各第3スプリングSP3は、第1および第2スプリングSP1,SP2よりも径方向外側に当該第1および第2スプリングSP1,SP2と径方向からみて重なるように配置される。これにより、ダンパ装置10ひいては発進装置1の軸長をより短縮化することが可能となる。
 ダンパ装置10の取付状態において、各第3スプリングSP3と、その両側に位置する第1および第2出力プレート16,17(ドリブン部材15)の外側スプリング当接部16co,17coとの間には、予め定められた周方向の間隔が形成され、両者が当接することはない。そして、各第3スプリングSP3の両側に位置する外側スプリング当接部16co,17coの一方は、ドライブプレート11とドリブン部材15との間でトルクが伝達されているときに当該ドライブプレート11およびドリブン部材15の相対捩れ角が増加するのに伴って第3スプリングSP3の一方の端部に当接することになる。本実施形態において、ダンパ装置10の取付状態における第3スプリングSP3の端部とドリブン部材15の外側スプリング当接部16co,17coとの周方向における間隔は、エンジンEGからドライブプレート11に伝達される入力トルクがダンパ装置10の最大捩れ角θmaxに対応したトルクT2(第2の値)よりも小さい予め定められたトルク(第1の値)T1に達した段階で、ドライブプレート11等の主回転方向(車両前進時(エンジンEG)の回転方向)における前側に位置する第3スプリングSP3の一方の端部が、当該主回転方向における前側の外側スプリング当接部16co,17coに当接するように定められる。
 また、ダンパ装置10は、ドライブプレート11への入力トルクが最大捩れ角θmaxに対応したトルクT2に達した段階でドライブプレート11とドリブン部材15との相対回転を規制するストッパ18(図1参照)を含む。本実施形態において、ストッパ18は、ドライブプレート11に連結されるロックアップピストン80の複数の爪部85と、第1から第3スプリングSP1,SP2,SP3よりも径方向外側に位置するようにドリブン部材15の第1出力プレート16の外周部に形成された複数(本実施形態では、例えば3個)の突部165とにより構成される。複数の突部165は、第1出力プレート16の外周部に周方向に間隔をおいて(等間隔に)形成され、それぞれ径方向外側に突出すると共に一対の側面166を含む。更に、第1出力プレート16の外周部には、それぞれ周方向に隣り合う突部165同士の間で当該第1出力プレート16の外周面から窪む複数(本実施形態では、例えば3個)の凹部167が形成される。
 図3に示すように、ロックアップピストン80の対をなす2つの爪部85の端部は、タービンランナ5側の第1出力プレート16の対応する凹部167内に配置される。ダンパ装置10の取付状態において、同一の凹部167内に配置された2つの爪部85の一方とそれに隣り合う突部165の側面166との周方向における距離と、当該2つの爪部85の他方とそれに隣り合う突部165の側面166との周方向における距離とは、図3に示すように、概ね同一となる。また、図2に示すように、第1出力プレート16よりもロックアップピストン80側に位置するドリブン部材15の第2出力プレート17の外径は、当該ロックアップピストン80の外周部(爪部85)の内径よりも小さく定められており、当該第2出力プレート17の外周部がロックアップピストン80の各爪部85と干渉することはない。
 更に、ダンパ装置10は、タービンランナ5とダンパ装置10の第1出力プレート16との軸方向における間に位置するようにダンパハブ7に固定される質量体19を含む。質量体19は、タービンランナ5よりも大径の環状の第1プレート191と、当該第1プレート191の内径よりも大きい内径を有する環状の第2プレート192とを含む。第1プレート191の内周部は、上記複数のリベット70を介してタービンランナ5のタービンシェル50および第1出力プレート16と共にダンパハブ7に固定される。また、第1プレート191の外周部191oは、タービンランナ5に向けて曲げられている。第2プレート192は、第1出力プレート16(スプリング支持部162)等と干渉しないように複数のリベットを介して第1プレート191に固定される。
 続いて、上述のように構成される発進装置1の動作について説明する。発進装置1では、ロックアップクラッチ8によるロックアップが解除されている際、図1からわかるように、エンジンEGからフロントカバー3に伝達されたトルク(動力)が、ポンプインペラ4、タービンランナ5、ドリブン部材15およびダンパハブ7という経路を介して変速機TMの入力軸ISへと伝達され、更に、デファレンシャルギヤDFやドライブシャフトDSを介して駆動輪DWに伝達される。これに対して、発進装置1のロックアップクラッチ8によりロックアップが実行されると、エンジンEGからフロントカバー3およびロックアップクラッチ8を介してドライブプレート11に伝達されたトルクは、ドライブプレート11への入力トルクが上記トルクT1に達するまで、複数の第1スプリングSP1、中間部材12および複数の第2スプリングSP2を介してドリブン部材15およびダンパハブ7に伝達される。この間、直列に作用する第1および第2スプリングSP1,SP2により、エンジンEGからのトルクの変動が減衰(吸収)される。
 また、ドライブプレート11への入力トルクが上記トルクT1になると、上述のように、第3スプリングSP3の主回転方向における前側の端部が、当該主回転方向における前側の外側スプリング当接部16co,17coに当接する。これにより、各第3スプリングSP3は、ドライブプレート11の上記主回転方向における後側の外側スプリング当接部11coとドリブン部材15(第1および第2出力プレート16,17)の上記主回転方向における前側の外側スプリング当接部16co,17coとの間で伸縮しながら、直列に作用する第1および第2スプリングSP1,SP2と並列に作用してドライブプレート11と中間部材12との間でトルクを伝達する。
 この結果、エンジンEGからのトルクは、フロントカバー3、ロックアップクラッチ8、ドライブプレート11、中間部材12を介して直列に作用する第1および第2スプリングSP1,SP2並びに両者と並列に作用する第3スプリングSP3、ドリブン部材15およびダンパハブ7という経路を介して変速装置の入力軸ISへと伝達される。そして、フロントカバー3に入力されるトルクの変動は、第1から第3スプリングSP1,SP2,SP3により減衰(吸収)される。これにより、当該第1から第3スプリングSP1,SP2,SP3によって、ドライブプレート11に伝達された大きなトルク変動を吸収することが可能となる。
 更に、ドライブプレート11への入力トルクが上記トルクT2になると、第1出力プレート16の各凹部167内に配置されたロックアップピストン80の2つの爪部85の一方が、図4に示すように、対応する突部165の側面166に当接する。これにより、ロックアップピストン80に連結されたドライブプレート11と、第1出力プレート16すなわちドリブン部材15との相対回転が規制され、第1、第2および第3スプリングSP1,SP2,SP3のすべての撓みが規制されることになる。また、発進装置1において、ロックアップピストン80の爪部85が対応する突部165の側面166に当接した際、ドリブン部材15の第1および第2出力プレート16,17を連結する複数のリベット90は、何れもドライブプレート11に当接しない。
 上述のように、発進装置1のダンパ装置10では、ドライブプレート11への入力トルクが上記トルクT1に達するまで、第1および第2スプリングSP1,SP2が直列に作用する。また、ドライブプレート11への入力トルクがトルクT1からトルクT2までの範囲に含まれる間、第3スプリングSP3は、直列に作用する第1および第2スプリングSP1,SP2と並列に作用する。従って、ダンパ装置10は、2段階(2ステージ)の減衰特性を有することになる。
 そして、発進装置1では、エンジンEGからドライブプレート11に伝達される入力トルクの増加に応じて、フロントカバー3と当該ドライブプレート11とを接続するロックアップクラッチ8のロックアップピストン80の一部である複数の爪部85が、第1出力プレート16の一部である突部165の側面166に当接する。すなわち、発進装置1では、フロントカバー3からのトルクを伝達する要素であって、硬度を高めるための熱処理が省略されることのないロックアップピストン80と第1出力プレート16とによりドライブプレート11とドリブン部材15との相対回転を規制するストッパ18が構成される。また、ロックアップピストン80の爪部85が対応する突部165の側面166に当接した際、ドリブン部材15の第1および第2出力プレート16,17を連結する複数のリベット90は、何れもドライブプレート11に当接しない。
 従って、発進装置1では、第1および第2出力プレート16,17を連結する連結部材としての複数のリベット90に熱処理を施す必要がなくなり、スペーサといったストッパの専用部材も不要となる。この結果、ダンパ装置10を含む発進装置1のコストアップを抑制しつつ、当該ダンパ装置10のドライブプレート11とドリブン部材15との相対回転を規制することが可能となる。加えて、ロックアップピストン80と第1出力プレート16(ドリブン部材)とによりドライブプレート11とドリブン部材15との相対回転を規制するストッパ18を構成することで、入力トルクが増加した際にドライブプレート11を迂回してロックアップピストン80からドリブン部材15にトルクを伝達することができるので、ドライブプレート11の負荷を減らすことも可能となる。
 また、上記発進装置1において、ロックアップピストン80は、それぞれドライブプレート11の対応する嵌合凹部115に嵌合されると共に、第1出力プレート16の隣り合う突部165同士の間に配置される複数の爪部85を含み、当該複数の爪部85は、ドライブプレート11に伝達されるトルクの増加に応じて対応する突部165の側面166に当接する。これにより、複数の爪部85にトルク伝達機能をもたせ、かつロックアップピストン80と第1出力プレート16とによりドライブプレート11とドリブン部材15との相対回転を規制するストッパ18を構成しつつ、複数の突部165の分だけ第1出力プレート16ひいてはドリブン部材15の慣性モーメントを大きくしてダンパ装置10の振動減衰性能をより向上させることができる。
 更に、上記発進装置1において、第1および第2出力プレート16,17のうち、第1出力プレート16のみが変速機TMの入力軸ISに連結(固定)されるダンパハブ7に固定される。これにより、ロックアップピストン80の爪部85が第1出力プレート16に当接した際に、第2出力プレート17にドライブプレート11やドリブン部材15からの荷重が作用しないようにし、それにより第1および第2出力プレート16,17の連結部すなわち各リベット90の強度を良好に維持することが可能となる。
 なお、ダンパ装置10において、ロックアップピストン80と第2出力プレート17とによりドライブプレート11とドリブン部材15との相対回転を規制するストッパが構成されてもよく、第2出力プレート17のみ、あるいは第1および第2出力プレート16,17の双方がダンパハブ7に固定されてもよい。また、ダンパ装置10において、ドリブン部材15は、1枚のプレート部材であってもよく、中間部材12は、ドライブプレート11およびドリブン部材15の軸方向における両側に配置されると共に連結部材により互いに連結される2枚のプレート部材を含むものであってもよい。
 更に、上記ダンパ装置10では、出力要素であるドリブン部材15にタービンランナ5および質量体19の双方が連結されるが、これに限られるものではない。すなわち、ドリブン部材15に対するタービンランナ5および質量体19の少なくとも何れか一方の連結が省略されてもよい。また、上記ダンパ装置10は、ドライブプレート11への入力トルクがトルクT1からトルクT2までの範囲に含まれる間、第3スプリングSP3が第1および第2スプリングSP1,SP2の何れか一方と並列に作用するように構成されてもよい。更に、上記ダンパ装置10から第3スプリングSP3が省略されてもよい。また、ダンパ装置10において、ドライブプレート11(入力要素)とロックアップピストン80とが一体に形成されてもよく、かかる一体の部材に上記爪部85と同様の爪部が複数形成されてもよい。更に、ダンパ装置10のロックアップクラッチ8は、多板式油圧クラッチであってもよく、この場合、当該多板式油圧クラッチのクラッチドラムあるいはクラッチハブに上記爪部85と同様の爪部が複数形成されてもよい。
 また、本開示の発進装置1のダンパ装置10は、回転要素として入力要素および出力要素を含むと共に、トルク伝達要素として入力要素と出力要素との間に配置される弾性体を含み、中間要素を含まないものであってもよい。この場合、入力要素は、1枚の入力プレートを含むものであってもよく、出力要素は、当該入力プレートの軸方向における両側に配置されると共に連結部材により互いに連結される2枚のプレート部材を含むものであってもよい。更に、この場合、出力要素は、1枚の出力プレートを含むものであってもよく、入力要素は、当該出力プレートの軸方向における両側に配置されると共に連結部材により互いに連結される2枚のプレート部材を含むものであってもよい。また、本開示の発進装置1のダンパ装置10は、回転要素として、入力要素、第1中間要素、第2中間部材、および出力要素を含むと共に、トルク伝達要素として、入力要素と第1中間要素との間に配置される第1弾性体、第1中間要素と第2中間要素との間に配置される第2弾性体、および第2中間要素と出力要素との間に配置される第3弾性体を含むものであってもよい。更に、本開示の発進装置1のダンパ装置10は、入力要素と出力要素との間に並列に設けられた2つのトルク伝達経路を含むものであってもよい。
 以上説明したように、本開示の発進装置は、エンジン(EG)からのトルクが伝達される入力部材(3)と、入力要素(11)、出力要素(15)および前記入力要素(11)と前記出力要素(15)との間でトルクを伝達する弾性体(SP1,SP2,SP3)を含むダンパ装置(10)と、前記入力部材(3)と前記ダンパ装置(10)の前記入力要素(11)とを接続すると共に両者の接続を解除する油圧クラッチ(8)とを含む発進装置(1)において、前記油圧クラッチ(8)が、前記入力要素(11)と一体に回転するピストン(80)と、前記ピストン(80)に固定されると共に前記ピストン(80)に作用する油圧に応じて前記入力部材(3)と摩擦係合する摩擦材(81)とを含み、前記ピストン(80)の一部(85)が、前記入力要素(11)に伝達されるトルクの増加に応じて前記出力要素(15)の一部(16)に当接するものである。
 本開示の発進装置において、入力部材とダンパ装置の入力要素とを接続する油圧クラッチのピストンの一部は、入力要素と一体に回転すると共に、当該入力要素に伝達されるトルクの増加に応じて出力要素の一部に当接する。すなわち、本開示の発進装置では、入力部材からのトルクを伝達する要素であって、硬度を高めるために熱処理が施される油圧クラッチのピストンと出力要素とにより入力要素と出力要素との相対回転を規制するストッパが構成される。このように、熱処理が省略されることのないピストンと出力要素とで当該ストッパを構成することで、スペーサといったストッパの専用部材が不要となり、当該専用部材に熱処理を施す必要もなくなる。この結果、ダンパ装置を含む発進装置のコストアップを抑制しつつ、ダンパ装置の入力要素に伝達されるトルクの増加に応じて入力要素と出力要素との相対回転を規制することが可能となる。
 また、前記出力要素(15,16)は、周方向に間隔をおいて径方向外側に突出する複数の突部(165)を含むものであってもよく、前記ピストン(80)は、周方向に間隔において軸方向に延出された複数の爪部(85)を含むものであってもよく、前記ピストン(80)の前記複数の爪部(85)は、それぞれ前記出力要素(15,16)の隣り合う前記突部(165)同士の間に配置されて前記入力要素(11)に伝達されるトルクの増加に応じて対応する前記突部(165)の側面(166)に当接するものであってもよい。これにより、ピストンと出力要素とにより入力要素と出力要素との相対回転を規制するストッパを構成しつつ、複数の突部の分だけ出力要素の慣性モーメントを大きくしてダンパ装置の振動減衰性能をより向上させることが可能となる。
 更に、前記ピストン(80)の前記複数の爪部(85)は、それぞれ前記入力要素(11)に嵌合されてもよい。ピストンの爪部に、ストッパの機能に加えて、トルク伝達機能をもたすことが可能となる。
 また、前記複数の突部(165)は、前記ダンパ装置(10)の径方向における前記弾性体(SP1,SP2,SP3)の外側に位置するように前記出力要素(15,16)に形成されてもよい。
 更に、前記入力要素は、1枚の入力プレート(11)を含むものであってもよく、前記出力要素(15)は、前記ダンパ装置(10)の軸方向における前記入力プレート(11)の両側に配置されると共に連結部材(90)により互いに連結される2枚の出力プレート(16,17)を含むものであってもよく、前記複数の突部(165)は、前記2枚の出力プレートの一方(16)に形成されてもよい。
 また、前記ピストン(80)および前記2枚の出力プレート(16,17)には、熱処理が施されてもよく、前記連結部材(90)には、熱処理が施されなくてもよい。
 更に、前記2枚の出力プレートの前記一方(16)は、他方(17)に比べて前記爪部(85)の根元から前記軸方向に離間していてもよい。
 また、前記発進装置(1)は、変速機(TM)に連結される出力部材(7)を更に含むものであってもよく、前記2枚の出力プレートの前記一方のみが前記出力部材に固定されてもよい。これにより、ピストンの一部が2枚の出力プレートの一方の一部に当接した際に、当該2枚の出力プレートの他方に入力要素や出力要素からの荷重が作用しないようにし、それにより2枚の出力プレートの連結部の強度を良好に維持することが可能となる。
 更に、前記連結部材(90)は、前記ピストン(80)の前記一部が前記2枚の出力プレートの前記一方(16)の前記一部に当接した際に、前記入力要素(11)に当接しないものであってもよい。
 また、前記ダンパ装置(10)は、中間要素(12)を更に含むものであってもよく、前記弾性体は、前記入力要素(11)と前記中間要素(12)との間に配置される第1弾性体(SP1)と、前記中間要素(12)と前記出力要素(15)との間に配置されて前記第1弾性体(SP1)と直列に作用する第2弾性体(SP2)とを含んでもよい。
 更に、前記ダンパ装置(10)は、少なくとも前記入力要素(11)と前記出力要素(15)との間でトルクが伝達されていないときに前記入力要素(11)および前記出力要素(15)の一方により保持されると共に、前記入力要素(11)と前記出力要素(15)との間でトルクが伝達されているときに前記入力要素(11)と前記出力要素(15)との相対捩れ角の増加に応じて前記第1および第2弾性体(SP1,SP2)の少なくとも何れか一方と並列に作用する第3弾性体(SP3)を含むものであってもよい。
 そして、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記発明を実施するための形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。
 本開示の発明は、発進装置の製造分野等において利用可能である。

Claims (11)

  1.  エンジンからのトルクが伝達される入力部材と、入力要素、出力要素および前記入力要素と前記出力要素との間でトルクを伝達する弾性体を含むダンパ装置と、前記入力部材と前記ダンパ装置の前記入力要素とを接続すると共に両者の接続を解除する油圧クラッチとを含む発進装置において、
     前記油圧クラッチは、前記入力要素と一体に回転するピストンと、前記ピストンに固定されると共に前記ピストンに作用する油圧に応じて前記入力部材と摩擦係合する摩擦材とを含み、
     前記ピストンの一部は、前記入力要素に伝達されるトルクの増加に応じて前記出力要素の一部に当接する発進装置。
  2.  請求項1に記載の発進装置において、
     前記出力要素は、周方向に間隔をおいて径方向外側に突出する複数の突部を含み、
     前記ピストンは、周方向に間隔において軸方向に延出された複数の爪部を含み、
     前記ピストンの前記複数の爪部は、それぞれ前記出力要素の隣り合う前記突部同士の間に配置されて前記入力要素に伝達されるトルクの増加に応じて対応する前記突部の側面に当接する発進装置。
  3.  請求項2に記載の発進装置において、前記ピストンの前記複数の爪部は、それぞれ入力要素に嵌合される発進装置。
  4.  請求項2または3に記載の発進装置において、
     前記複数の突部は、前記ダンパ装置の径方向における前記弾性体の外側に位置するように前記出力要素に形成される発進装置。
  5.  請求項2から4の何れか一項に記載の発進装置において、
     前記入力要素は、1枚の入力プレートを含み、
     前記出力要素は、前記ダンパ装置の軸方向における前記入力プレートの両側に配置されると共に連結部材により互いに連結される2枚の出力プレートを含み、
     前記複数の突部は、前記2枚の出力プレートの一方に形成される発進装置。
  6.  請求項5に記載の発進装置において、
     前記ピストンおよび前記2枚の出力プレートには、熱処理が施されており、前記連結部材には、熱処理が施されていない発進装置。
  7.  請求項5または6に記載の発進装置において、
     前記2枚の出力プレートの前記一方は、他方に比べて前記爪部の根元から前記軸方向に離間している発進装置。
  8.  請求項5から7の何れか一項に記載の発進装置において、
     変速機に連結される出力部材を更に含み、前記2枚の出力プレートの前記一方のみが前記出力部材に固定されている発進装置。
  9.  請求項5から8の何れか一項に記載の発進装置において、
     前記連結部材は、前記ピストンの前記一部が前記2枚の出力プレートの前記一方の前記一部に当接した際に、前記入力要素に当接しない発進装置。
  10.  請求項1から9の何れか一項に記載の発進装置において、
     前記ダンパ装置は、中間要素を更に含み、
     前記弾性体は、前記入力要素と前記中間要素との間に配置される第1弾性体と、前記中間要素と前記出力要素との間に配置されて前記第1弾性体と直列に作用する第2弾性体とを含む発進装置。
  11.  請求項10に記載の発進装置において、
     前記ダンパ装置は、少なくとも前記入力要素と前記出力要素との間でトルクが伝達されていないときに前記入力要素および前記出力要素の一方により保持されると共に、前記入力要素と前記出力要素との間でトルクが伝達されているときに前記入力要素と前記出力要素との相対捩れ角の増加に応じて前記第1および第2弾性体の少なくとも何れか一方と並列に作用する第3弾性体を更に含む発進装置。
PCT/JP2019/047225 2019-01-30 2019-12-03 発進装置 WO2020158174A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019014487 2019-01-30
JP2019-014487 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020158174A1 true WO2020158174A1 (ja) 2020-08-06

Family

ID=71841330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047225 WO2020158174A1 (ja) 2019-01-30 2019-12-03 発進装置

Country Status (1)

Country Link
WO (1) WO2020158174A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132906A1 (ja) * 2013-02-26 2014-09-04 株式会社エクセディ ダイナミックダンパ装置
JP2015203460A (ja) * 2014-04-15 2015-11-16 トヨタ自動車株式会社 トルクコンバータ
JP2017210971A (ja) * 2016-05-23 2017-11-30 アイシン・エィ・ダブリュ工業株式会社 発進装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132906A1 (ja) * 2013-02-26 2014-09-04 株式会社エクセディ ダイナミックダンパ装置
JP2015203460A (ja) * 2014-04-15 2015-11-16 トヨタ自動車株式会社 トルクコンバータ
JP2017210971A (ja) * 2016-05-23 2017-11-30 アイシン・エィ・ダブリュ工業株式会社 発進装置

Similar Documents

Publication Publication Date Title
US9004248B2 (en) Power transmission device for torque converter
US9989136B2 (en) Starting device
CN107202147B (zh) 减振装置
CN110056633B (zh) 液力变矩器的锁定装置
US20120090936A1 (en) Torque converter lock-up device
JP7181737B2 (ja) トルクコンバータのロックアップ装置
WO2012133816A1 (ja) ダンパ装置
JP4926228B2 (ja) トルクコンバータの動力伝達装置
CN108138901B (zh) 减震装置
JP4073749B2 (ja) 流体式トルク伝達装置のロックアップ装置
JP6654072B2 (ja) トルクコンバータのロックアップ装置
JP4684347B1 (ja) ダンパ装置
WO2018155357A1 (ja) トルクコンバータ
JP2011127686A (ja) ダンパ装置
WO2020158174A1 (ja) 発進装置
US20180320755A1 (en) Damper device
WO2023038059A1 (ja) 発進装置
JP2006183776A (ja) 流体式トルク伝達装置のロックアップ装置
JP6928820B2 (ja) ダンパ装置
WO2020059632A1 (ja) ダンパ装置およびその設計方法
JP2017210971A (ja) 発進装置
JP2004156692A (ja) 流体式トルク伝達装置のロックアップ装置
CN112049914A (zh) 扭矩减振装置
JP6562872B2 (ja) ダンパ装置
JP3475703B2 (ja) ロックアップクラッチ構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP