WO2020158159A1 - 応力センサ及びその製造方法 - Google Patents

応力センサ及びその製造方法 Download PDF

Info

Publication number
WO2020158159A1
WO2020158159A1 PCT/JP2019/046917 JP2019046917W WO2020158159A1 WO 2020158159 A1 WO2020158159 A1 WO 2020158159A1 JP 2019046917 W JP2019046917 W JP 2019046917W WO 2020158159 A1 WO2020158159 A1 WO 2020158159A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ferromagnetic layer
stress
ferromagnetic
stress sensor
Prior art date
Application number
PCT/JP2019/046917
Other languages
English (en)
French (fr)
Inventor
安藤 陽
千葉 大地
Original Assignee
株式会社村田製作所
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 国立大学法人東京大学 filed Critical 株式会社村田製作所
Priority to JP2020569408A priority Critical patent/JP7031023B2/ja
Publication of WO2020158159A1 publication Critical patent/WO2020158159A1/ja
Priority to US17/329,675 priority patent/US11959815B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Definitions

  • the present invention relates to a stress sensor and its manufacturing method.
  • a stress sensor that detects stress by a change in resistance value that correlates with the amount of deformation of an element according to the magnitude of stress (for example, Patent Document 1).
  • Patent Document 1 is an example of a stress sensor capable of detecting the vector direction of stress, and is a stress detection layer including a laminated body formed by laminating a first magnetic layer, a first non-magnetic layer, and a second magnetic layer. And the first magnetic layer and the second magnetic layer have different magnetoelastic coupling constants, and the relative angles of the magnetization directions of the first magnetic layer and the second magnetic layer change depending on the stress applied from the outside.
  • a stress sensor that detects a stress by an electric resistance depending on the temperature.
  • one of the first magnetic layer and the second magnetic layer is a strain insensitive layer in which the change in the magnetization direction depending on the stress applied from the outside is small, and the other is the stress applied from the outside.
  • a stress sensor is disclosed which is a strain-sensitive layer in which the change in the magnetization direction depending on is large.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a stress sensor with improved operation stability and a manufacturing method thereof.
  • a stress sensor includes a stress detection layer including a laminated body formed by laminating a first ferromagnetic layer, a first nonmagnetic layer, a second ferromagnetic layer, and an antiferromagnetic layer.
  • the ferromagnetic layer contains Mn, and the magnetization direction of the second ferromagnetic layer is fixed by an exchange bias generated by exchange coupling with the antiferromagnetic layer, and changes depending on an externally applied stress.
  • the stress is detected by the electric resistance depending on the relative angle between the magnetization directions of the ferromagnetic layer and the second ferromagnetic layer.
  • a method of manufacturing a stress sensor includes a step of providing a first ferromagnetic layer, a step of providing a nonmagnetic layer, a step of providing a second ferromagnetic layer, and an antiferromagnetic layer.
  • a method of manufacturing a stress sensor comprising: a step of annealing at least a second ferromagnetic layer and an antiferromagnetic layer in a magnetic field, wherein the step of annealing in a magnetic field heat treats an object in a magnetic field.
  • the stress sensor 10 includes a substrate 1, an underlayer 2 formed on the substrate 1, a stress detection layer 3 formed on the underlayer 2, and a stress detection layer 3 formed on the stress detection layer 3.
  • the protective layer 4 is formed, and the electrodes 5a and 5b are formed on the protective layer 4 at positions separated from each other.
  • the substrate 1 is made of a resin substrate, and if a flexible substrate having flexibility and elasticity is used, it can be used as a sensor for detecting the movement of the human body.
  • a flexible substrate for example, a substrate made of polyester, polycarbonate, polyimide or the like is used.
  • the substrate 1 preferably has a high heat resistance from the viewpoint of the feasibility of annealing the stress detection layer 3, and improves the crystal orientation of each layer of the stress detection layer 3 and improves the flatness of the interface of each layer. From the viewpoint, it preferably has high flatness.
  • the underlayer 2 determines the crystal orientation of the stress detection layer 3 and enhances the adhesion between the stress detection layer 3 and the substrate 1, and may be a non-magnetic material.
  • the underlayer 2 is made of 3d, 4d, 5d transition metal non-magnetic material such as Pt, Cu, Ta, and Au.
  • the base layer 2 may be a stack of different types of metal layers.
  • the base layer 2 may be made of an insulator, and may be silicon oxide, silicon nitride, aluminum oxide, or magnesium oxide.
  • the stress detection layer 3 includes a laminated body including a first ferromagnetic layer 31, a first nonmagnetic layer 30, a second ferromagnetic layer 32, and an antiferromagnetic layer 33 in this order from the substrate 1 side (lower layer).
  • the stress detection layer 3 is a layer that strengthens the exchange bias magnetic field (Heb) exerted on the second ferromagnetic layer 32 by stacking the second ferromagnetic layer 32 and the antiferromagnetic layer 33, and the first ferromagnetic layer 31.
  • Heb exchange bias magnetic field
  • Layers not shown in FIG. 1, such as layers for These layers (not shown) may be provided outside the laminated body, and inside the laminated body, that is, between the first ferromagnetic layer 31 and the first nonmagnetic layer 30, between the first nonmagnetic layer 30 and the first nonmagnetic layer 30. It may be provided between the second ferromagnetic layer 32 and the second ferromagnetic layer 32 or between the second ferromagnetic layer 32 and the antiferromagnetic layer 33.
  • each layer of the stress detection layer 3 is set to 30 nm or less. By making the film thickness of each layer as thin as 30 nm or less, the stress detection layer 3 can exhibit the characteristic that it expands and contracts due to the presence of stress and restores to its original state when the stress disappears.
  • the first ferromagnetic layer 31 and the second ferromagnetic layer 32 have different magnetoelastic coupling constants B.
  • the magnetization directions (directions of magnetic moments) of the first ferromagnetic layer 31 and the second ferromagnetic layer 32 are arranged parallel or antiparallel in the initial state where no stress is applied.
  • the angle formed by the magnetization direction of the first ferromagnetic layer 31 and the magnetization direction of the second ferromagnetic layer 32 (hereinafter referred to as “relative angle of magnetization direction”) is 0° or 180° in the initial state. Is.
  • the relative angle of the magnetization direction in the initial state is not limited to the above, and may be larger than 0° and smaller than 180°.
  • the first ferromagnetic layer 31 is a strain sensitive layer
  • the second ferromagnetic layer 32 is a strain insensitive layer.
  • the strain-insensitive layer is a layer in which the magnetization direction of the strain-insensitive layer does not substantially change even when stress (strain) is applied, and the strain-sensitive layer is the strain-sensitive layer of the strain-sensitive layer when stress (strain) is applied.
  • the absolute value of the magnetoelastic coupling constant B of the strain insensitive layer is sufficiently smaller than that of the strain sensitive layer, and preferably the absolute value of the magnetoelastic coupling constant B of the strain insensitive layer. Is defined to be 1 ⁇ 5 or less of the absolute value of the magnetoelastic coupling constant B of the strain sensitive layer. Further, when defined from the absolute value of the magnetoelastic coupling constant B, the absolute value of the magnetoelastic coupling constant of the strain insensitive layer is preferably substantially 0, specifically, preferably 0.5 MJ/m 3 or less.
  • the absolute value of the magnetoelastic coupling constant B of the strain sensitive layer is 1 MJ/m 3 or more.
  • the stress (strain) includes various stresses such as tension, compression, and flexure.
  • the magnetic layers including the first ferromagnetic layer 31 and the second ferromagnetic layer 32 are each made of a metal (including an alloy) ferromagnetic material, and are preferably 3d transition metals such as Fe, Co, or Ni, or those. It is made of an alloy (3d transition metal alloy) containing at least one of the above.
  • the first ferromagnetic layer 31 and the second ferromagnetic layer 32 may be formed by laminating different kinds of metal magnetic layers.
  • the first ferromagnetic layer 31 and the second ferromagnetic layer 32 may be made of the same magnetic material or different magnetic materials. Further, the first ferromagnetic layer 31 and the second ferromagnetic layer 32 may have the same thickness or different thicknesses. When the other ferromagnetic layer (for example, the third ferromagnetic layer described later) is provided, the other ferromagnetic layer is made of the same material as the first ferromagnetic layer 31 or the second ferromagnetic layer 32. Alternatively, the first ferromagnetic layer 31 and the second ferromagnetic layer 32 may be made of a different material.
  • the other ferromagnetic layer may have the same thickness as the first ferromagnetic layer 31 or the second ferromagnetic layer 32, and a different thickness from the first ferromagnetic layer 31 and the second ferromagnetic layer 32. May be
  • the antiferromagnetic layer 33 fixes the magnetization direction of the second ferromagnetic layer 32 by the exchange bias generated by the exchange coupling with the second ferromagnetic layer 32. That is, the exchange bias magnetic field (Heb) is applied to the second ferromagnetic layer 32. Since the exchange bias is strain insensitive, stacking the second ferromagnetic layer 32 and the antiferromagnetic layer 33 results in making the second ferromagnetic layer 32 strain insensitive. Therefore, the second ferromagnetic layer 32 is set to a material, shape, and dimension that will have a magnetoelastic coupling constant B equal to or higher than that of the first ferromagnetic layer 31 if the antiferromagnetic layer 33 does not exist. Even so, it can function as a strain insensitive layer.
  • Heb exchange bias magnetic field
  • the antiferromagnetic layer 33 is made of an antiferromagnetic material containing Mn, and preferably made of Mn alloy such as FeMn, IrMn, PtMn.
  • Mn alloy such as FeMn, IrMn, PtMn.
  • the material of the antiferromagnetic layer 33 is not limited to metal (alloy), It may be an insulator.
  • the first non-magnetic layer 30 may be any non-magnetic material, and is made of 3d, 4d, 5d transition metal non-magnetic material such as Pt, Cu, Ta, Au, Cr, Ag.
  • the first nonmagnetic layer 30 may be an insulator, and may be made of, for example, silicon oxide, silicon nitride, aluminum oxide, magnesium oxide, or the like.
  • the thickness of the first nonmagnetic layer 30 is 10 nm or less.
  • the other non-magnetic layer for example, the second non-magnetic layer described later
  • the other non-magnetic layer is made of the same material as the first non-magnetic layer 30 or different material. They may have the same thickness or different thicknesses.
  • the protective layer 4 protects the stress detection layer 3 and may be a non-magnetic material.
  • the protective layer 4 is made of 3d, 4d, 5d transition metal non-magnetic material such as Pt, Cu, Ta, Au, Ru.
  • the protective layer 4 may be a stack of different types of metal layers.
  • the protective layer 4 may be made of an insulator, for example, silicon oxide, silicon nitride, aluminum oxide, magnesium oxide, or the like. It may be configured.
  • the material of the electrodes 5a and 5b there is no limitation on the material of the electrodes 5a and 5b, and for example, a metal made of Pt, Cu, Ag, Au, Al, Cr, Ti or the like or a conductor containing these metals is used.
  • a current is supplied to the stress detection layer 3 through the electrodes 5a and 5b, and the electric resistance value of the stress detection layer 3 is detected.
  • a voltage is applied between the electrodes 5a and 5b formed on the stress detection layer 3 so as to be separated from each other, as a result, a current flows into all of the stress detection layers.
  • the giant magnetoresistive effect described later can be detected.
  • FIG. 2 is a sectional view schematically showing an example of the magnetization direction in the low resistance state.
  • FIG. 3 is a sectional view schematically showing an example of the magnetization direction in the high resistance state.
  • the magnetization direction (magnetic moment) of the first ferromagnetic layer 31 is M1
  • the magnetization direction (magnetic moment) of the second ferromagnetic layer 32 is M2.
  • the magnetizations of the surfaces of the second ferromagnetic layer 32 and the antiferromagnetic layer 33 facing each other form an exchange coupling CP
  • the antiferromagnetic layer 33 and the second ferromagnetic layer 32 are stacked to form a second ferromagnetic layer.
  • the exchange bias magnetic field (Heb) applied to 32 the magnetization direction M2 of the second ferromagnetic layer 32 is fixed in one direction.
  • the magnetization directions M1 and M2 are arranged in parallel, and the relative angle between the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32 (the angle formed by M1 and M2) is 0.
  • the angle is °
  • the stress detection layer 3 is in a low resistance state.
  • the magnetization direction M1 and the magnetization direction M2 are antiparallel arranged, and the relative angle between the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32 (the angle formed by M1 and M2). ) Is 180°, the stress detection layer 3 is in a high resistance state.
  • the electric resistance value of the stress detection layer 3 is detected by the magnitude of the detection current Id flowing into all the layers of the stress detection layer 3.
  • This electric resistance value changes according to the relative angle of the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32.
  • FIG. 2 in the low resistance state in which the relative angle between the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32 is 0°, the first ferromagnetic layer 31 and the second ferromagnetic layer 32.
  • minimum electric resistance value As shown in FIG.
  • the first ferromagnetic layer 31 and the second ferromagnetic layer 32 are The interface scattering of electrons between and increases, and the magnitude of the detection current Id becomes the minimum (the electric resistance value is the maximum).
  • the magnitude of the detection current Id is larger than that in the low resistance state and high. The value is smaller than the state, and is a value depending on the relative angle of the magnetization direction.
  • the electric resistance value of the stress detection layer 3 varies depending on the relative angle of the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32. This is the so-called giant magnetoresistive effect (2007 Nobel Prize in Physics).
  • the stress sensor 10 according to the present embodiment utilizes this giant magnetoresistive effect.
  • the magnetization direction M1 of the first ferromagnetic layer 31 is parallel to the magnetization direction M2 of the second ferromagnetic layer 32 (low resistance state in FIG. 2) or antiparallel (FIG. 3). High resistance state).
  • the magnetization direction M2 of the second ferromagnetic layer 32 fixed by the strain-insensitive exchange bias generated by the exchange coupling with the antiferromagnetic layer 33 becomes stable.
  • the magnetization direction M1 of the first ferromagnetic layer 31 is sensitive to strain and changes.
  • the magnetization direction M1 of the first ferromagnetic layer 31 is arranged parallel to the strain direction (extension direction) of the first ferromagnetic layer 31 when the magnetoelastic coupling constant B is positive, When the magnetoelastic coupling constant B is negative, they are arranged vertically. That is, the relative angle of the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32 changes depending on the strain direction (stress direction), and the giant magnetoresistive effect causes the electrical angle corresponding to the relative angle of the magnetization directions. It shows the resistance value.
  • the relative angle between the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32 can be detected, and the strain vector direction can be determined. Can be detected.
  • the method of measuring the relative angle of the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32 is not limited to the above, and for example, a constant current is applied to the stress detection layer 3 to apply the first strong current. A voltage change depending on the relative angle between the magnetization directions of the magnetic layer 31 and the second ferromagnetic layer 32 may be detected, and the vector direction of strain may be detected from the voltage change.
  • the magnetization direction of the second ferromagnetic layer is fixed by the strain-insensitive exchange bias generated by the exchange coupling with the antiferromagnetic layer. This stabilizes the relative angle between the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32 during strain measurement, and improves the operational stability of the stress sensor 10.
  • the second ferromagnetic layer may be any layer as long as it forms an exchange coupling with the antiferromagnetic layer, so that the degree of freedom in designing the material selection and the shape/dimension of the second ferromagnetic layer is improved. For example, even if the first ferromagnetic layer and the second ferromagnetic layer have the same material and the same shape, the stress sensor can function.
  • FIG. 4 is a flowchart schematically showing the method of manufacturing the stress sensor according to the first embodiment.
  • a base layer is provided on the flexible substrate (S12).
  • a first ferromagnetic layer is provided on the underlayer (S13).
  • a first nonmagnetic layer is provided on the first ferromagnetic layer (S14).
  • a second ferromagnetic layer is provided on the first nonmagnetic layer (S15).
  • an antiferromagnetic layer is provided on the second ferromagnetic layer (S16).
  • steps S13 to S16 correspond to the stress detection layer manufacturing step.
  • a cap layer is provided on the antiferromagnetic layer (S17).
  • the method of providing each layer in steps S12 to S17 is not particularly limited. ) Or atomic layer deposition (ALD) and other chemical vapor deposition methods (Chemical Vapor Deposition), etc., and various vapor deposition methods can be appropriately selected.
  • a step of providing an electrode and a step of processing into an element shape are performed.
  • the step of providing the electrode and the step of processing into the element shape may be performed after the step S18 of annealing in a magnetic field described later.
  • the stress detection layer is annealed together with the flexible substrate in a magnetic field (also referred to as "a state in which an external magnetic field is applied”) (S18).
  • the object to be processed (the second ferromagnetic layer and the antiferromagnetic layer) is heat-treated in a magnetic field and then further cooled to room temperature in a magnetic field.
  • the step S18 of annealing in a magnetic field includes a step of applying an external magnetic field to the object to be processed in vacuum, a step of heating the object to be processed to which the external magnetic field is applied to a processing temperature, and an external step.
  • the method includes the steps of holding the object to be processed to which the magnetic field is applied at the processing temperature only for the processing time, and cooling the object to be processed to which the external magnetic field is applied to room temperature.
  • the room temperature here is, for example, about 0° C. to 40° C.
  • the external magnetic field is 0.05 T to 3 T
  • the processing temperature is 150° C. to 500° C.
  • the processing time is 10 minutes to 120 minutes.
  • the external magnetic field is set to 0.2 T to 2 T
  • the processing temperature is set to 200° C. to 450° C.
  • the processing time is set to 30 minutes to 60 minutes.
  • step S18 of annealing in the magnetic field exchange coupling is formed between the second ferromagnetic layer and the antiferromagnetic layer, and the second ferromagnetic layer is subjected to the exchange bias magnetic field (Heb) applied to the second ferromagnetic layer.
  • Heb exchange bias magnetic field
  • the magnetization direction is fixed.
  • the stress detecting layer can be formed on the flexible substrate and the second ferromagnetic layer and the antiferromagnetic layer can be annealed together with the flexible substrate, the annealed stress detecting layer is flexible.
  • the manufacturing process can be simplified as compared with the manufacturing method of transferring to the substrate.
  • step S18 of annealing in the magnetic field at least the second ferromagnetic layer and the antiferromagnetic layer can be annealed in the magnetic field, and the step S18 of annealing in the magnetic field may be performed before the step S17 of providing the cap layer. ..
  • FIG. 5 is a sectional view schematically showing the configuration of the stress sensor according to the example of the first embodiment.
  • FIG. 6 is a diagram showing the relationship between the strain direction and the magnetization direction of the stress sensor according to the example of the first embodiment.
  • FIG. 7 is a graph showing the relationship between the strain amount and the resistance change rate in the example of the first embodiment and the comparative example.
  • the horizontal axis of FIG. 7 is the strain amount (%), and the vertical axis is the resistance change rate (%).
  • the present invention is not limited to this embodiment.
  • the stress sensor 10 of the present embodiment includes a substrate 1, a base layer 2a formed on the substrate 1, a base layer 2b formed on the base layer 2a, and a base layer 2b.
  • First ferromagnetic layer 31 a first nonmagnetic layer 30 formed on the first ferromagnetic layer 31, and an additional second ferromagnetic layer formed on the first nonmagnetic layer 30.
  • 32a a second ferromagnetic layer 32 formed on the additional second ferromagnetic layer 32a, an antiferromagnetic layer 33 formed on the second ferromagnetic layer 32, and an antiferromagnetic layer 33.
  • the protective layer 4 formed on the protective layer 4 and the electrodes 5a and 5b formed on the protective layer 4 apart from each other.
  • each layer constituting the stress sensor 10 of the example is as follows.
  • Substrate 1 Polyimide film (UPLEX (registered trademark) manufactured by Ube Industries, Ltd.)
  • Underlayer 2a 2.2 nm Ta
  • Underlayer 2b 2.0 nm
  • Pt First ferromagnetic layer 31 2.1 nm
  • Co First non-magnetic layer 30 4.0 nm
  • Additional second ferromagnetic layer 32a 0.5 nm Co Second ferromagnetic layer 32: 2.0 nm NiFe Antiferromagnetic layer 33: 10.0 nm FeMn Protective layer 4: 2.2 nm
  • Electrodes 5a, 5b conductive epoxy resin
  • the main difference between the stress sensor of the comparative example and the stress sensor 10 of the embodiment is that it does not include an antiferromagnetic layer and that the second ferromagnetic layer functions as a strain insensitive layer by applying a weak auxiliary magnetic field. That is the point.
  • the material and film thickness of each layer constituting the stress sensor of the comparative example are specifically as follows.
  • Substrate Polyethylene naphthalate Underlayer: 2.5 nm Ta Underlayer: 2.0 nm Pt First ferromagnetic layer: 3.5 nm Co (strain sensitive layer) First non-magnetic layer: 4.0 nm Cu Additional second ferromagnetic layer: 0.4 nm Co Second ferromagnetic layer: 3.8 nm NiFe (strain-sensitive layer) Protective layer: 2.0nm Cu Electrodes 5a, 5b: conductive epoxy resin
  • the NiFe layer which is a strain insensitive layer
  • the Co layer which is a strain sensitive layer
  • strain amount 0%
  • FIG. 7 tensile strains are applied in the tensile directions 0°, 30°, 60° and 90° with respect to the magnetization directions of the NiFe layer and the Co layer in the initial state, and the strain amount is 0% to 1.0%.
  • the rate of change in resistance was measured in a range of degrees.
  • the strain amount is less than 1.0%
  • the difference in the rate of change in resistance depending on the change in the tensile strain direction in the example is larger than that in the comparative example.
  • the amount of strain is 0.3%
  • the stress sensor of the embodiment can detect the direction of tensile strain.
  • FIG. 8 is a sectional view schematically showing the configuration of the stress sensor according to the second embodiment.
  • the difference between the second embodiment and the first embodiment is that the electrode 5a is formed on the base layer 2 at a position apart from the stress detection layer 3, and the electrode 5b is formed on the protective layer 4. That is the point.
  • a voltage is applied between the electrodes 5a and 5b, a current flows along the direction perpendicular to the interface of each layer of the stress detection layer 3, so that the giant magnetoresistive effect can be detected.
  • the configuration of the electrodes 5a and 5b is not particularly limited as long as the current flowing along the direction perpendicular to the interface of each layer of the stress detection layer 3 can be detected.
  • the base layer 2 may be used as the electrode 5a
  • the protective layer 4 may be used as the electrode 5b.
  • FIG. 9 is a sectional view schematically showing the configuration of the stress sensor according to the third embodiment.
  • the difference between the third embodiment and the second embodiment is that the structure of the stress detection layer 3 is vertically inverted. Specifically, the antiferromagnetic layer 33 is provided on the underlayer 2, the second ferromagnetic layer 32 is provided on the antiferromagnetic layer 33, and the first nonmagnetic layer 30 is the second ferromagnetic layer. 32 is provided, and the first ferromagnetic layer 31 is provided on the first nonmagnetic layer 30.
  • FIG. 10 is a sectional view schematically showing the configuration of the stress sensor according to the fourth embodiment.
  • the first nonmagnetic layer 30 has a multilayer structure including a metal layer 30a and an insulator layer 30b.
  • the first nonmagnetic layer 30 is made of a combination of metal and an insulator.
  • the thickness of the insulator layer 30b is preferably as thin as a tunnel current flows, and is preferably set to 5 nm or less.
  • the insulator layer 30b is, for example, a natural oxide film of the metal layer 30a, and the first nonmagnetic layer 30 is a passive layer for the metal layer 30a. If the first non-magnetic layer 30 may include a natural oxide film, for example, a processing step that requires exposure to the atmosphere, such as photolithography, can be performed at the stage where the metal layer 30a is provided.
  • FIG. 11 is a sectional view schematically showing the configuration of the stress sensor according to the fifth embodiment.
  • the first nonmagnetic layer 30 is made of an insulator.
  • the stress sensor 10 according to the fifth embodiment utilizes the tunnel magnetoresistive effect. Therefore, similarly to the insulator layer 30b of the third embodiment, the thickness of the first nonmagnetic layer 30 of the fourth embodiment is preferably set to 5 nm or less.
  • the first ferromagnetic layer 31 and the second ferromagnetic layer 32 are made of CoFeB, and the first nonmagnetic layer 30 is made of MgO.
  • FIG. 12 is a sectional view schematically showing the configuration of the stress sensor according to the sixth embodiment.
  • the difference between the sixth embodiment and the second embodiment is that between the antiferromagnetic layer 33 and the protective layer 4, the fourth ferromagnetic layer 72 and the second ferromagnetic layer 72 are arranged in this order from the antiferromagnetic layer 33 side (lower layer).
  • the point is that a non-magnetic layer 70 and a third ferromagnetic layer 71 are further provided.
  • the magnetization direction of the fourth ferromagnetic layer 72 is fixed by the exchange bias generated by the exchange coupling with the antiferromagnetic layer 33. According to this, the rate of change in resistance can be increased.
  • FIG. 13 is a sectional view schematically showing the configuration of the stress sensor according to the seventh embodiment.
  • the difference between the seventh embodiment and the first embodiment is that the electrodes 5a and 5b are formed on the side portions of the stress detection layer 3. When a voltage is applied between the electrodes 5a and 5b, a current eventually flows into all layers of the stress detection layer 3, so that the giant magnetoresistive effect can be detected.
  • a stress detection layer 3 including a laminated body formed by laminating a first ferromagnetic layer 31, a first nonmagnetic layer 30, a second ferromagnetic layer 32, and an antiferromagnetic layer 33 is provided.
  • the antiferromagnetic layer 33 contains Mn, and the magnetization direction of the second ferromagnetic layer 32 is fixed by the exchange bias generated by the exchange coupling with the antiferromagnetic layer 33 and depends on the stress applied from the outside.
  • a stress sensor 10 is provided which detects stress by the electric resistance depending on the relative angle of the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32 which are changed accordingly.
  • the stress is detected by detecting the electric resistance depending on the relative angle of the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32, which changes depending on the stress applied from the outside. ..
  • the magnetization direction of the second ferromagnetic layer 32 is fixed by the strain-insensitive exchange bias generated by the exchange coupling with the antiferromagnetic layer 33. This stabilizes the relative angle between the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32 during strain measurement, and improves the operational stability of the stress sensor 10.
  • the second ferromagnetic layer 32 may be one that forms an exchange coupling with the antiferromagnetic layer 33, the degree of freedom in designing the material selection and the shape/dimension of the second ferromagnetic layer 32 is improved. To do. For example, even if the first ferromagnetic layer 31 and the second ferromagnetic layer 32 have the same material and the same shape, the stress sensor can function.
  • the first ferromagnetic layer 31 and the second ferromagnetic layer 32 are arranged such that their magnetization directions are parallel or antiparallel to each other in an initial state where no stress is applied.
  • the electric resistance of the stress sensor 10 becomes maximum or minimum in the initial state. Therefore, the difference in electric resistance between when stress is applied and in the initial state becomes clear, and the stress detection sensitivity is improved.
  • the stress detection layer 3 further includes a third ferromagnetic layer 71, a second nonmagnetic layer 70, and a fourth ferromagnetic layer 72 in addition to the stacked body, and the magnetization direction of the third ferromagnetic layer 71 is Are fixed by the exchange bias generated by exchange coupling with the antiferromagnetic layer 33. According to this, the resistance change rate is increased, and the stress detection sensitivity is improved.
  • the stress sensor 10 further includes a substrate 1 that supports the stress detection layer 3.
  • the substrate 1 is a flexible substrate. According to this, when stress is applied to the stress sensor 10, the stress detection layer 3 is likely to be subjected to tensile stress or compression stress, and the stress detection sensitivity is improved.
  • the first ferromagnetic layer 31 is provided on the substrate 1 side of the first nonmagnetic layer 30, and the second ferromagnetic layer 32 and the antiferromagnetic layer 33 are on the substrate 1 side of the first nonmagnetic layer 30. It is provided on the opposite side of.
  • the first ferromagnetic layer 31 and the second ferromagnetic layer 32 are made of a magnetic material of metal.
  • the first ferromagnetic layer 31 and the second ferromagnetic layer 32 are made of Fe, Co, Ni, or an alloy containing at least one of them. According to this, a stress sensor using the giant magnetoresistive effect can be realized.
  • the first nonmagnetic layer 30 is a metal, an insulator, or a combination thereof. According to this, a stress sensor using the giant magnetoresistive effect or the tunnel magnetoresistive effect can be realized.
  • a step S13 of providing a first ferromagnetic layer a step S14 of providing a nonmagnetic layer, a step S15 of providing a second ferromagnetic layer, and a step S16 of providing an antiferromagnetic layer.
  • a step S18 of annealing at least the second ferromagnetic layer and the antiferromagnetic layer in a magnetic field wherein the step of annealing the magnetic field in the magnetic field comprises annealing the object to be processed in the magnetic field.
  • a step S18 of annealing in a magnetic field which includes a step of further cooling to room temperature in a magnetic field
  • an exchange coupling is formed between the second ferromagnetic layer and the antiferromagnetic layer, and an exchange generated by the exchange coupling is formed.
  • the bias fixes the magnetization direction of the second ferromagnetic layer, and the stress sensor depends on the relative angle of the magnetization directions of the first ferromagnetic layer and the second ferromagnetic layer, which changes depending on the stress applied from the outside.
  • a method for manufacturing a stress sensor which detects stress by electric resistance.
  • the stress can be detected by detecting the electric resistance depending on the relative angle of the magnetization directions of the first ferromagnetic layer 31 and the second ferromagnetic layer 32, which changes depending on the stress applied from the outside, Moreover, it is possible to manufacture a stress sensor having improved operation stability.
  • the method further includes a step S11 of preparing a flexible substrate, wherein the first ferromagnetic layer, the non-magnetic layer, the second ferromagnetic layer, and the antiferromagnetic layer are formed above the flexible substrate, respectively, in a magnetic field.
  • the step S18 of annealing the flexible substrate the flexible substrate is also annealed together. According to this, the manufacturing process can be simplified as compared with the manufacturing method in which the annealed stress detection layer is transferred to the flexible substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)

Abstract

応力センサ(10)は、第1強磁性層(31)、第1非磁性層(30)、第2強磁性層(32)、及び反強磁性層(33)を積層してなる積層体を含む応力検出層(3)を備える。反強磁性層(33)は、Mnを含み、第2強磁性層(32)の磁化方向は、反強磁性層(33)との交換結合によって生み出される交換バイアスによって固定されている。応力センサ(10)は、外部から加えられた応力に依存して変化する第1強磁性層(31)及び第2強磁性層(32)の磁化方向の相対角度に依存した電気抵抗によって応力を検出する。

Description

応力センサ及びその製造方法
 本発明は、応力センサ及びその製造方法に関する。
 従来、応力の大きさに応じた素子の変形量に相関する抵抗値変化をもって応力を検出する応力センサが知られている(例えば、特許文献1)。
 特許文献1には、応力のベクトル方向を検出可能な応力センサの一例であって、第1磁性層、第1非磁性層、及び第2磁性層を積層してなる積層体を含む応力検出層を有し、第1磁性層及び第2磁性層は互いに異なる磁気弾性結合定数を有し、外部から加えた応力に依存して変化する第1磁性層及び第2磁性層の磁化方向の相対角度に依存した電気抵抗によって応力を検出する応力センサが開示されている。また、特許文献1には、第1磁性層及び第2磁性層のうち一方が外部から加えられた応力に依存する磁化方向の変化が小さい歪鈍感層であり、他方は外部から加えられた応力に依存する磁化方向の変化が大きい歪敏感層である応力センサが開示されている。
国際公開第2018/151083号
 しかしながら、特許文献1に記載の応力センサにおいては、歪みが加わると歪鈍感層の単磁区状態が維持しにくくなる場合がある。歪鈍感層の単磁区状態を安定させるために補助磁界を加えると、歪敏感層の磁化方向が補助磁界に影響されて変化しにくくなる場合がある。これらの場合、歪み方向に対する磁化方向の相対角度の変化が不安定となり動作安定性が低下するという課題が生じる。
 本発明はこのような事情に鑑みてなされたものであり、動作安定性の向上した応力センサ及びその製造方法を提供することを目的とする。
 本発明の一態様に係る応力センサは、第1強磁性層、第1非磁性層、第2強磁性層、及び反強磁性層を積層してなる積層体を含む応力検出層を備え、反強磁性層は、Mnを含み、第2強磁性層の磁化方向は、反強磁性層との交換結合によって生み出される交換バイアスによって固定され、外部から加えられた応力に依存して変化する第1強磁性層及び第2強磁性層の磁化方向の相対角度に依存した電気抵抗によって応力を検出する。
 本発明の他の一態様に係る応力センサの製造方法は、第1強磁性層を設ける工程と、非磁性層を設ける工程と、第2強磁性層を設ける工程と、反強磁性層を設ける工程と、少なくとも第2強磁性層及び反強磁性層を磁界中でアニールする工程と、を備える応力センサの製造方法であって、磁界中でアニールする工程は、被処理物を磁界中で熱処理したのちにさらに磁界中で室温に冷却する工程を含み、磁界中でアニールする工程において、第2強磁性層と反強磁性層との間に交換結合が形成され、交換結合によって生み出される交換バイアスによって第2強磁性層の磁化方向が固定され、応力センサは、外部から加えられた応力に依存して変化する第1強磁性層及び第2強磁性層の磁化方向の相対角度に依存した電気抵抗によって応力を検出する。
 本発明によれば、動作安定性の向上した応力センサ及びその製造方法が提供できる。
第1実施形態に係る応力センサの構成を概略的に示す断面図である。 低抵抗状態における磁化方向の一例を概略的に示す断面図である。 高抵抗状態における磁化方向の一例を概略的に示す断面図である。 第1実施形態に係る応力センサの製造方法を概略的に示すフローチャートである。 第1実施形態の実施例に係る応力センサの構成を概略的に示す断面図である。 第1実施形態の実施例に係る応力センサの歪方向と磁化方向の関係を示す図である。 第1実施形態の実施例と比較例における歪量と抵抗変化率の関係を示すグラフである。 第2実施形態に係る応力センサの構成を概略的に示す断面図である。 第3実施形態に係る応力センサの構成を概略的に示す断面図である。 第4実施形態に係る応力センサの構成を概略的に示す断面図である。 第5実施形態に係る応力センサの構成を概略的に示す断面図である。 第6実施形態に係る応力センサの構成を概略的に示す断面図である。 第7実施形態に係る応力センサの構成を概略的に示す断面図である。
 以下、図面を参照しながら本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本発明の技術的範囲を当該実施形態に限定して解するべきではない。
 <第1実施形態>
 図1を参照しつつ、本発明の第1実施形態に係る応力センサ10の構成について説明する。第1実施形態に係る応力センサの構成を概略的に示す断面図である。
 図1に示すとおり、応力センサ10は、基板1と、基板1の上に形成された下地層2と、下地層2の上に形成された応力検出層3と、応力検出層3の上に形成された保護層4と、保護層4の上であって互いに離れた位置に形成された電極5a及び電極5bとを備える。
 基板1は、樹脂基板からなり、中でも、可擁性や伸縮性を有するフレキシブル基板を用いると、人体の動きを感知するセンサなどの用途に用いることができる。このようなフレキシブル基板として、例えば、ポリエステル、ポリカーボネート、ポリイミドなどからなる基板が用いられる。基板1は、応力検出層3のアニールの実施可能性の観点から好ましくは高い耐熱性を有し、応力検出層3の各層の結晶配向性を向上させる観点及び各層の界面の平坦性を向上させる観点から好ましくは高い平坦性を有する。
 下地層2は、応力検出層3の結晶配向性を決め、また応力検出層3と基板1との密着性を高めるものであり、非磁性体であればよい。例えば、下地層2は、3d,4d,5d遷移金属非磁性体である、Pt、Cu、Ta、Auなどからなる。下地層2は、種類の異なる金属層を積層したものでもよい。また、検出電流が下地層2を通過しなくてもよい構成の場合、下地層2は絶縁体により構成されてもよく、例えば酸化シリコン、窒化シリコン、酸化アルミニウムや酸化マグネシウムであってもよい。
 応力検出層3は、基板1側(下層)から順に、第1強磁性層31、第1非磁性層30、第2強磁性層32、及び反強磁性層33からなる積層体を備える。なお、応力検出層3は、第2強磁性層32と反強磁性層33との積層によって第2強磁性層32に及ぼされる交換バイアス磁界(Heb)を強める層や、第1強磁性層31と第2強磁性層32との層間結合磁界(Hin)を弱める層や、第1強磁性層31及び第2強磁性層32の磁化方向の相対角度に依存した電気抵抗の変化率を増大させるための層など、図1に図示しない層を備えてもよい。これらの図示しない層は、積層体の外部に設けられてもよく、積層体の内部、すなわち、第1強磁性層31と第1非磁性層30との層間、第1非磁性層30と第2強磁性層32との層間、又は、第2強磁性層32と反強磁性層33との層間に設けられてもよい。
 応力検出層3の各層の膜厚は、30nm以下に設定される。各層の膜厚を30nm以下と薄くすることにより、応力検出層3は、応力の存在により伸縮し、応力がなくなれば元に復元する特性を発揮することができる。
 第1強磁性層31及び第2強磁性層32は互いに異なる磁気弾性結合定数Bを有する。第1強磁性層31及び第2強磁性層32の磁化方向(磁気モーメントの向き)は、応力が加えられていない初期状態で平行、あるいは反平行に配列している。言い換えると、第1強磁性層31の磁化方向と第2強磁性層32の磁化方向とがなす角度(以下、「磁化方向の相対角度」とする。)は、初期状態では0°あるいは180°である。但し、初期状態における磁化方向の相対角度は上記に限定されるものではなく、0°よりも大きく180°よりも小さくてもよい。
 第1強磁性層31は歪敏感層であり、第2強磁性層32は歪鈍感層である。歪鈍感層とは、応力(歪)が加わった場合でも歪鈍感層の磁化方向が実質的に変化しない層であり、歪敏感層とは、応力(歪)が加わった場合に歪敏感層の磁化方向が歪方向に対して平行または垂直に向く層をいう。磁気弾性結合定数Bが正の場合には歪敏感層の磁化方向が歪方向に対して平行に向き、磁気弾性結合定数Bが負の場合には歪敏感層の磁化方向が歪方向に対して垂直に向くこととなる。歪敏感層との相対値から定義すると、歪鈍感層は、歪敏感層よりもその磁気弾性結合定数Bの絶対値が十分に小さく、好ましくは、歪鈍感層の磁気弾性結合定数Bの絶対値は、歪敏感層の磁気弾性結合定数Bの絶対値の1/5以下と定義される。また、磁気弾性結合定数Bの絶対値から定義すると、歪鈍感層の磁気弾性結合定数の絶対値は実質的に0であることが好ましく、具体的には、好ましくは0.5MJ/m以下、さらに好ましくは0.4MJ/m以下、さらに好ましくは0.3MJ/m以下、さらに好ましくは0.2MJ/m以下、さらに好ましくは0.1MJ/m以下であり、できる限り0に近いことが好ましい。また好ましくは、歪敏感層の磁気弾性結合定数Bの絶対値は、1MJ/m以上である。なお、応力(歪)とは、引張、圧縮、たわみ、などの各種応力を含む。
 第1強磁性層31及び第2強磁性層32を含めた磁性層は、それぞれ、金属(合金を含む)の強磁性体からなり、好ましくは、Fe、Co、Niなどの3d遷移金属又はそれらのうち少なくとも1つを含む合金(3d遷移金属合金)からなる。第1強磁性層31及び第2強磁性層32は、それぞれ、種類の異なる金属磁性層を積層したものでもよい。
 第1強磁性層31及び第2強磁性層32は、同一の磁性材料で構成されていても異なる磁性材料で構成されていてもよい。また、第1強磁性層31及び第2強磁性層32は、同一の厚さであっても異なる厚さであってもよい。また、他の強磁性層(例えば、後述する第3強磁性層)を備える場合、当該他の強磁性層は第1強磁性層31又は第2強磁性層32と同一材料で構成されていてもよく、第1強磁性層31及び第2強磁性層32とは異なる材料で構成されていてもよい。また、当該他の強磁性層は第1強磁性層31又は第2強磁性層32と同じ厚さであってもよく、第1強磁性層31及び第2強磁性層32とは異なる厚さであってもよい。
 反強磁性層33は、第2強磁性層32との交換結合によって生み出される交換バイアスによって第2強磁性層32の磁化方向を固定する。つまり、第2強磁性層32に交換バイアス磁界(Heb)が加わる。交換バイアスは歪鈍感であるため、第2強磁性層32と反強磁性層33とを積層することにより、結果として第2強磁性層32を歪鈍感とならしめる。したがって、第2強磁性層32は、反強磁性層33が存在しなければ第1強磁性層31と同等かそれ以上の磁気弾性結合定数Bを有することとなる材料や形状・寸法に設定されたとしても、歪鈍感層として機能させられる。
 反強磁性層33は、Mnを含む反強磁性体からなり、好ましくはFeMn、IrMn、PtMnなどのMn合金からなる。なお、後述する第7実施形態のように検出電流が反強磁性層33を通過しなくてもよい構成の場合、反強磁性層33の材料は金属(合金)に限定されるものではなく、絶縁体であってもよい。
 第1非磁性層30は、非磁性体であればよく、3d,4d,5d遷移金属非磁性体、例えば、Pt、Cu、Ta、Au、Cr、Agなどからなる。また、第1非磁性層30は絶縁体であってもよく、例えば、酸化シリコン、窒化シリコン、酸化アルミニウムや酸化マグネシウムなどからなってもよい。第1非磁性層30の厚さは10nm以下である。また、他の非磁性層(例えば、後述する第2非磁性層)を備える場合、当該他の非磁性層は第1非磁性層30と同一材料で構成されていても異なる材料で構成されていてもよいし、同じ厚さであっても異なる厚さであってもよい。
 保護層4は、応力検出層3を保護するものであり、非磁性体であればよい。例えば、保護層4は、3d,4d,5d遷移金属非磁性体である、Pt、Cu、Ta、Au、Ruなどからなる。保護層4は、種類の異なる金属層を積層したものでもよい。また、後述する第7実施形態のように検出電流が保護層4を通過しない場合、保護層4は絶縁体により構成されていてもよく、例えば酸化シリコン、窒化シリコン、酸化アルミニウム、酸化マグネシウムなどによって構成されてもよい。
 電極5a,5bの材料に限定はなく、例えばPt、Cu、Ag、Au、Al、Cr、Tiなどからなる金属又はこれらの金属を含む導電体が使用される。電極5a,5bを通じて応力検出層3に電流が供給され、応力検出層3の電気抵抗値が検出される。本実施形態では、応力検出層3の上部に互いに離れて形成された電極5aと電極5bとの間に電圧を印加することで、結果的に応力検出層の全ての層に電流が流れ込むことから、後述する巨大磁気抵抗効果を検出可能である。
 次に、図2及び図3を参照しつつ、第1強磁性層31及び第2強磁性層32の磁化方向の相対角度と電気抵抗の関係について説明する。図2は、低抵抗状態における磁化方向の一例を概略的に示す断面図である。図3は、高抵抗状態における磁化方向の一例を概略的に示す断面図である。
 第1強磁性層31の磁化方向(磁気モーメント)をM1とし、第2強磁性層32の磁化方向(磁気モーメント)をM2とする。第2強磁性層32及び反強磁性層33の互いに対向する表面の磁化が交換結合CPを形成し、反強磁性層33と第2強磁性層32とを積層することによって第2強磁性層32に及ぼされる交換バイアス磁界(Heb)に従って、第2強磁性層32の磁化方向M2が一方向に固定される。
 図2に示すように、磁化方向M1と磁化方向M2とが平行配列され、第1強磁性層31及び第2強磁性層32の磁化方向の相対角度(M1とM2とが成す角度)が0°であるとき、応力検出層3が低抵抗状態となる。また、図3に示すように、磁化方向M1と磁化方向M2とが反平行配列され、第1強磁性層31及び第2強磁性層32の磁化方向の相対角度(M1とM2とが成す角度)が180°であるとき、応力検出層3は高抵抗状態となる。
 本実施形態に係る応力センサ10では、応力検出層3の全ての層に流れ込む検出電流Idの大きさによって応力検出層3の電気抵抗値を検出する。この電気抵抗値は、第1強磁性層31及び第2強磁性層32の磁化方向の相対角度に応じて変化する。図2に示すように第1強磁性層31及び第2強磁性層32の磁化方向の相対角度が0°となった低抵抗状態の場合、第1強磁性層31と第2強磁性層32との間での電子の界面散乱が減少し、検出電流Idの大きさが最大(電気抵抗値が最小)となる。図3に示すように第1強磁性層31及び第2強磁性層32の磁化方向の相対角度が180°となった高抵抗状態の場合、第1強磁性層31と第2強磁性層32との間での電子の界面散乱が増大し、検出電流Idの大きさが最小(電気抵抗値が最大)となる。第1強磁性層31及び第2強磁性層32の磁化方向の相対角度が0°よりも大きく180°よりも小さい中間状態の場合、検出電流Idの大きさは低抵抗状態よりも大きく高抵抗状態よりも小さい値であり、当該磁化方向の相対角度に依存した値となる。このように、第1強磁性層31及び第2強磁性層32の磁化方向の相対角度に応じて、応力検出層3の電気抵抗値は異なる値となる。これはいわゆる巨大磁気抵抗効果(2007年ノーベル物理学賞)である。本実施形態に係る応力センサ10は、この巨大磁気抵抗効果を利用したものである。
 一例として、初期状態において、第1強磁性層31の磁化方向M1は、第2強磁性層32の磁化方向M2に対して平行配列(図2の低抵抗状態)、あるいは反平行配列(図3の高抵抗状態)となるように設計されている。この状態で、応力センサ10の面内に応力が作用すると、反強磁性層33との交換結合によって生み出される歪鈍感な交換バイアスによって固定された第2強磁性層32の磁化方向M2は安定しており変化しないのに対し、第1強磁性層31の磁化方向M1は歪みに対して敏感に反応して変化する。具体的には、第1強磁性層31の磁化方向M1は、第1強磁性層31の歪み方向(伸長方向)に対して、磁気弾性結合定数Bが正の場合には平行に配列し、磁気弾性結合定数Bが負の場合には垂直に配列する。すなわち、歪み方向(応力方向)に依存して第1強磁性層31及び第2強磁性層32の磁化方向の相対角度が変化し、巨大磁気抵抗効果により当該磁化方向の相対角度に応じた電気抵抗値を示すこととなる。この電気抵抗値を電極5a,5bにより検出電流Idの大きさとして検出することにより、第1強磁性層31及び第2強磁性層32の磁化方向の相対角度を検出でき、歪みのベクトル方向を検出することができる。なお、第1強磁性層31及び第2強磁性層32の磁化方向の相対角度の測定方法は上記に限定されるものではなく、例えば、応力検出層3に一定電流を印加して第1強磁性層31及び第2強磁性層32の磁化方向の相対角度に依存した電圧変化を検出し、当該電圧変化から歪みのベクトル方向を検出してもよい。
 以上のように、第1実施形態に係る応力センサによれば、第2強磁性層の磁化方向が反強磁性層との交換結合により生み出される歪鈍感な交換バイアスによって固定される。これにより、歪み測定時の第1強磁性層31及び第2強磁性層32の磁化方向の相対角度が安定し、応力センサ10の動作安定性が向上する。また、第2強磁性層は反強磁性層との間で交換結合を形成するものであればよいため、第2強磁性層の材料選択や形状・寸法などの設計自由度が向上する。例えば、第1強磁性層と第2強磁性層とが同じ材料且つ同じ形状であっても、応力センサを機能させることができる。
 (製造方法)
 次に、図4を参照しつつ、第1実施形態に係る応力センサ10の製造方法について説明する。図4は、第1実施形態に係る応力センサの製造方法を概略的に示すフローチャートである。
 まず、フレキシブル基板を準備する(S11)。次に、フレキシブル基板の上に下地層を設ける(S12)。次に、下地層の上に第1強磁性層を設ける(S13)。次に、第1強磁性層の上に第1非磁性層を設ける(S14)。次に、第1非磁性層の上に第2強磁性層を設ける(S15)。次に、第2強磁性層の上に反強磁性層を設ける(S16)。以上、工程S13から工程S16までが応力検出層の製造工程に相当する。次に、反強磁性層の上にキャップ層を設ける(S17)。工程S12~S17における各層を設ける方法は特に限定されるものではなく、例えば、スパッタリング法や分子線エピタキシ法(MBE)などの物理蒸着法(Physical Vapor Deposition)や、有機金属気相成長法(MOCVD)や原子層堆積法(ALD)などの化学蒸着法(Chemical Vapor Deposition)など、各種蒸着法から適宜選択可能である。
 キャップ層を設ける工程S17の次には、電極を設ける工程や素子形状に加工する工程が実施される。なお、電極を設ける工程や素子形状に加工する工程は、後述する磁界中でアニールする工程S18の次に実施されてもよい。
 次に、応力検出層をフレキシブル基板と一緒に磁界中(「外部磁界が印加された状態」ともいう。)でアニールする(S18)。本工程S18においては、被処理物(第2強磁性層及び反強磁性層)を磁界中で熱処理したのちにさらに磁界中で室温に冷却する。具体的には、磁界中でアニールする工程S18は、真空中の被処理物に外部磁界を印加する工程と、外部磁界が印加された状態の被処理物を処理温度まで加熱する工程と、外部磁界が印加された状態の被処理物を処理時間の間だけ処理温度に保持する工程と、外部磁界が印加された状態の被処理物を室温に冷却する工程と、を含む。ここでいう室温は、例えば、0℃~40℃程度である。好ましくは、外部磁界は0.05T~3T、処理温度は150℃~500℃、処理時間は10分~120分の範囲で条件設定される。より好ましくは、外部磁界は0.2T~2T、処理温度は200℃~450℃、処理時間は30分~60分の範囲で条件設定される。磁界中でアニールする工程S18によって、第2強磁性層と反強磁性層との間に交換結合が形成され、第2強磁性層に及ぼされる交換バイアス磁界(Heb)に従って第2強磁性層の磁化方向が固定される。以上に説明したように、フレキシブル基板に応力検出層が成膜可能であり且つフレキシブル基板と一緒に第2強磁性層及び反強磁性層がアニール可能である場合、アニールされた応力検出層をフレキシブル基板に転写する製造方法に比べて、製造工程を簡略化できる。
 磁界中でアニールする工程S18では、少なくとも第2強磁性層及び反強磁性層を磁界中でアニールできればよく、キャップ層を設ける工程S17の前に磁界中でアニールする工程S18が実施されてもよい。
 (第1実施形態の実施例)
 以下、図5~図7を参照しつつ、本発明の第1実施形態に係る応力センサの実施例について説明する。図5は、第1実施形態の実施例に係る応力センサの構成を概略的に示す断面図である。図6は、第1実施形態の実施例に係る応力センサの歪方向と磁化方向の関係を示す図である。図7は、第1実施形態の実施例と比較例におけるひずみ量と抵抗変化率の関係を示すグラフである。図7の横軸はひずみ量(%)であり、縦軸は抵抗変化率(%)である。なお、本発明はこの実施例に限定されるものではない。
 本実施例の応力センサ10は、基板1と、基板1の上に成膜された下地層2aと、下地層2aの上に成膜された下地層2bと、下地層2bの上に成膜された第1強磁性層31と、第1強磁性層31の上に成膜された第1非磁性層30と、第1非磁性層30の上に成膜された追加第2強磁性層32aと、追加第2強磁性層32aの上に成膜された第2強磁性層32と、第2強磁性層32の上に成膜された反強磁性層33と、反強磁性層33の上に成膜された保護層4と、保護層4の上に互いに離れて成膜された電極5a,5bと、を備える。
 実施例の応力センサ10を構成する各層の材料及び膜厚は、以下の通りである。
 基板1:ポリイミドフィルム(宇部興産株式会社製UPILEX(登録商標))
 下地層2a:2.2nm Ta
 下地層2b:2.0nm Pt
 第1強磁性層31:2.1nm Co
 第1非磁性層30:4.0nm Cu
 追加第2強磁性層32a:0.5nm Co
 第2強磁性層32:2.0nm NiFe
 反強磁性層33:10.0nm FeMn
 保護層4:2.2nm Pt
 電極5a,5b:導電性エポキシ樹脂
 比較例の応力センサにおける実施例の応力センサ10との主な相違点は、反強磁性層を備えておらず、弱い補助磁界を加えることで第2強磁性層を歪鈍感層として機能させている点である。比較例の応力センサを構成する各層の材料及び膜厚は、具体的には以下の通りである。
 基板:ポリエチレンナフタレート
 下地層:2.5nm Ta
 下地層:2.0nm Pt
 第1強磁性層:3.5nm Co(歪敏感層)
 第1非磁性層:4.0nm Cu
 追加第2強磁性層:0.4nm Co
 第2強磁性層:3.8nm NiFe(歪鈍感層)
 保護層:2.0nm Cu
 電極5a,5b:導電性エポキシ樹脂
 本実施例においては、図6に示すように、歪鈍感層であるNiFe層は応力が加わっても磁化方向が変化せず、一方、歪敏感層であるCo層は応力方向に対して平行に向く。実施例及び比較例の応力センサは、初期状態(ひずみ量=0%)におけるNiFe層及びCo層の磁化方向の相対角度が0°となるように設計した。図7に示すように、初期状態のNiFe層及びCo層の磁化方向に対して引張方向0°、30°、60°、90°に引張ひずみを与え、ひずみ量が0%~1.0%程度の範囲での抵抗変化率を測定した。
 ひずみ量が1.0%未満のとき、実施例における引張ひずみの方向変化に依存する抵抗変化率の差異が、比較例におけるものよりも大きい。具体例として、ひずみ量が0.3%のとき、実施例における引張方向60°の抵抗変化率と引張方向90°の抵抗変化率とには有意な差がみられるが、比較例における引張方向60°の抵抗変化率と引張方向90°の抵抗変化率とには有意な差がみられなかった。このように、比較例の応力センサでは引張ひずみの方向の検出が難しい微小なひずみ量であっても、実施例の応力センサならば引張ひずみの方向が検出可能である。
 以下に、本発明の他の実施形態に係る応力センサの構成について説明する。なお、下記の実施形態では、上記の第1実施形態と共通の事柄については記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については逐次言及しない。
 <第2実施形態>
 図8を参照しつつ、第2実施形態に係る応力センサ10の構成について説明する。図8は、第2実施形態に係る応力センサの構成を概略的に示す断面図である。
 第2実施形態の第1実施形態との相違点は、下地層2の上であって応力検出層3から離れた位置に電極5aが形成され、保護層4の上に電極5bが形成されている点である。電極5aと電極5bの間に電圧を印加すると応力検出層3の各層の界面に垂直な方向に沿って電流が流れることから、巨大磁気抵抗効果を検出可能である。なお、応力検出層3の各層の界面に垂直な方向に沿って流れる電流を検出可能であれば電極5a,5bの構成は特に限定されるものではない。例えば、下地層2が電極5aとして用いられてもよく、保護層4が電極5bとして用いられてもよい。
 <第3実施形態>
 図9を参照しつつ、第3実施形態に係る応力センサ10の構成について説明する。図9は、第3実施形態に係る応力センサの構成を概略的に示す断面図である。
 第3実施形態の第2実施形態との相違点は、応力検出層3の構造が上下逆転している点である。具体的には、反強磁性層33が下地層2の上に設けられ、第2強磁性層32が反強磁性層33の上に設けられ、第1非磁性層30が第2強磁性層32の上に設けられ、第1強磁性層31が第1非磁性層30の上に設けられている。
 <第4実施形態>
 図10を参照しつつ、第4実施形態に係る応力センサ10の構成について説明する。図10は、第4実施形態に係る応力センサの構成を概略的に示す断面図である。
 第4実施形態の第3実施形態との相違点は、第1非磁性層30が金属層30aと絶縁体層30bからなる多層構造な点である。言い換えると、第1非磁性層30は、金属と絶縁体との組合せからなる。絶縁体層30bの厚さはトンネル電流が流れる程度に薄いことが好ましく、5nm以下に設定されるのが好ましい。絶縁体層30bは、例えば、金属層30aの自然酸化膜であり、第1非磁性層30は金属層30aにとっての不動態である。第1非磁性層30が自然酸化膜を含んでもよいならば、例えば、金属層30aを設けた段階で、フォトリソグラフィなどの大気暴露が必要な処理工程を実施することができる。
 <第5実施形態>
 図11を参照しつつ、第5実施形態に係る応力センサ10の構成について説明する。図11は、第5実施形態に係る応力センサの構成を概略的に示す断面図である。
 第5実施形態の第2実施形態との相違点は、第1非磁性層30が絶縁体からなる点である。第5実施形態に係る応力センサ10は、トンネル磁気抵抗効果を利用する。したがって、第3実施形態の絶縁体層30bと同様に、第4実施形態の第1非磁性層30の厚さは5nm以下に設定されるのが好ましい。トンネル磁気抵抗効果によって高い抵抗変化率を得るための好ましい構成の一例としては、第1強磁性層31及び第2強磁性層32がCoFeBからなり、第1非磁性層30がMgOからなる。
 <第6実施形態>
 図12を参照しつつ、第6実施形態に係る応力センサ10の構成について説明する。図12は、第6実施形態に係る応力センサの構成を概略的に示す断面図である。
 第6実施形態の第2実施形態との相違点は、反強磁性層33と保護層4との間に、反強磁性層33側(下層)から順に第4強磁性層72と、第2非磁性層70と、第3強磁性層71とをさらに備える点である。第4強磁性層72の磁化方向は、反強磁性層33との交換結合によって生み出される交換バイアスによって固定される。これによれば、抵抗変化率の上昇を図ることができる。
 <第7実施形態>
 図13を参照しつつ、第7実施形態に係る応力センサ10の構成について説明する。図13は、第7実施形態に係る応力センサの構成を概略的に示す断面図である。
 第7実施形態の第1実施形態との相違点は、応力検出層3の側部に電極5a,5bが形成されている点である。電極5aと電極5bの間に電圧を印加すると結果的に応力検出層3の全層に電流が流れ込むことから、巨大磁気抵抗効果を検出可能である。
 以上、本発明の例示的な実施形態及び実施例について説明した。以下に本発明の実施形態の一部又は全部を付記する。なお、本発明は以下の構成に限定されるものではない。
 本発明の一態様によれば、第1強磁性層31、第1非磁性層30、第2強磁性層32、及び反強磁性層33を積層してなる積層体を含む応力検出層3を備え、反強磁性層33は、Mnを含み、第2強磁性層32の磁化方向は、反強磁性層33との交換結合によって生み出される交換バイアスによって固定され、外部から加えられた応力に依存して変化する第1強磁性層31及び第2強磁性層32の磁化方向の相対角度に依存した電気抵抗によって応力を検出する、応力センサ10が提供される。
 これによれば、外部から加えた応力に依存して変化する第1強磁性層31及び第2強磁性層32の磁化方向の相対角度に依存した電気抵抗を検出することによって応力が検出される。このとき、第2強磁性層32の磁化方向が反強磁性層33との交換結合により生み出される歪鈍感な交換バイアスによって固定される。これにより、歪み測定時の第1強磁性層31及び第2強磁性層32の磁化方向の相対角度が安定し、応力センサ10の動作安定性が向上する。また、第2強磁性層32は反強磁性層33との間で交換結合を形成するものであればよいため、第2強磁性層32の材料選択や形状・寸法などの設計自由度が向上する。例えば、第1強磁性層31と第2強磁性層32とが同じ材料且つ同じ形状であっても、応力センサを機能させることができる。
 一態様として、第1強磁性層31及び第2強磁性層32は、応力が加えられていない初期状態において、磁化方向が互いに平行あるいは反平行配列している。
 このように初期状態における磁化方向を平行あるいは反平行に揃えておくことにより、応力センサ10の電気抵抗が初期状態で最大又は最小となる。したがって、応力が加えられた場合と初期状態との電気抵抗の差異が明確となり、応力の検出感度が向上する。
 一態様として、応力検出層3は、積層体に加えて、第3強磁性層71、第2非磁性層70、及び第4強磁性層72をさらに備え、第3強磁性層71の磁化方向は、反強磁性層33との交換結合によって生み出される交換バイアスによって固定される。
 これによれば、抵抗変化率が上昇し、応力の検出感度が向上する。
 一態様として、応力センサ10は応力検出層3を支持する基板1をさらに有する。好ましくは、基板1は、フレキシブル基板である。
 これによれば、応力センサ10に応力が加わった場合に応力検出層3が引張応力ないし圧縮応力を受けやすくなり、応力の検出感度が向上する。
 一態様として、第1強磁性層31は、第1非磁性層30の基板1側に設けられ、第2強磁性層32及び反強磁性層33は、第1非磁性層30の基板1側とは反対側に設けられる。
 一態様として、第1強磁性層31及び第2強磁性層32は、金属の磁性体からなる。第1強磁性層31及び第2強磁性層32は、Fe、Co、Ni又はそれらのうち少なくとも1つを含む合金からなる。
 これによれば、巨大磁気抵抗効果を利用した応力センサを実現できる。
 一態様として、第1非磁性層30は、金属、絶縁体、又はこれらの組合せである。
 これによれば、巨大磁気抵抗効果又はトンネル磁気抵抗効果を利用した応力センサを実現できる。
 本発明の他の一態様によれば、第1強磁性層を設ける工程S13と、非磁性層を設ける工程S14と、第2強磁性層を設ける工程S15と、反強磁性層を設ける工程S16と、少なくとも第2強磁性層及び反強磁性層を磁界中でアニールする工程S18と、を備える応力センサの製造方法であって、磁界中でアニールする工程は、被処理物を磁界中で熱処理したのちにさらに磁界中で室温に冷却する工程を含み、磁界中でアニールする工程S18において、第2強磁性層と反強磁性層との間に交換結合が形成され、交換結合によって生み出される交換バイアスによって第2強磁性層の磁化方向が固定され、応力センサは、外部から加えられた応力に依存して変化する第1強磁性層及び第2強磁性層の磁化方向の相対角度に依存した電気抵抗によって応力を検出する、応力センサの製造方法が提供される。
 これによれば、外部から加えた応力に依存して変化する第1強磁性層31及び第2強磁性層32の磁化方向の相対角度に依存した電気抵抗を検出することによって応力が検出でき、且つ動作安定性が向上した応力センサを製造できる。
 一態様として、フレキシブル基板を準備する工程S11をさらに備え、第1強磁性層、非磁性層、第2強磁性層、及び反強磁性層は、それぞれフレキシブル基板の上方に成膜され、磁界中でアニールする工程S18において、フレキシブル基板も一緒にアニールされる。
 これによれば、アニールされた応力検出層をフレキシブル基板に転写する製造方法に比べて、製造工程を簡略化できる。
 以上説明したように、本発明の一態様によれば、動作安定性の向上した応力センサ及びその製造方法が提供できる。
 なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
 10…応力センサ
 1…基板
 2…下地層
 3…応力検出層
 4…保護層4
 5a,5b…電極
 30…第1非磁性層
 31…第1強磁性層
 32…第2強磁性層
 33…反強磁性層

Claims (11)

  1.  第1強磁性層、第1非磁性層、第2強磁性層、及び反強磁性層を積層してなる積層体を含む応力検出層を備え、
     前記反強磁性層は、Mnを含み、
     前記第2強磁性層の磁化方向は、前記反強磁性層との交換結合によって生み出される交換バイアスによって固定され、
     外部から加えられた応力に依存して変化する前記第1強磁性層及び前記第2強磁性層の磁化方向の相対角度に依存した電気抵抗によって応力を検出する、
     応力センサ。
  2.  前記第1強磁性層及び前記第2強磁性層は、応力が加えられていない初期状態において、磁化方向が互いに平行あるいは反平行配列している、
     請求項1に記載の応力センサ。
  3.  前記応力検出層は、前記積層体に加えて、第3強磁性層、第2非磁性層、及び第4強磁性層をさらに備え、
     前記第3強磁性層の磁化方向は、前記反強磁性層との交換結合によって生み出される交換バイアスによって固定される、
     請求項1又は2に記載の応力センサ。
  4.  前記応力検出層を支持する基板をさらに有する、
     請求項1から3のいずれか1項に記載の応力センサ。
  5.  前記基板は、フレキシブル基板である、
     請求項4に記載の応力センサ。
  6.  前記第1強磁性層は、前記第1非磁性層の前記基板側に設けられ、
     前記第2強磁性層及び前記反強磁性層は、前記第1非磁性層の前記基板側とは反対側に設けられる、
     請求項4又は5に記載の応力センサ。
  7.  前記第1強磁性層及び前記第2強磁性層は、金属の磁性体からなる、
     請求項1から6のいずれか1項に記載の応力センサ。
  8.  前記第1強磁性層及び前記第2強磁性層は、Fe、Co、Ni又はそれらのうち少なくとも1つを含む合金からなる、
     請求項7に記載の応力センサ。
  9.  前記第1非磁性層は、金属、絶縁体、又はこれらの組合せからなる、
     請求項1から8のいずれか1項に記載の応力センサ。
  10.  第1強磁性層を設ける工程と、
     非磁性層を設ける工程と、
     第2強磁性層を設ける工程と、
     反強磁性層を設ける工程と、
     少なくとも第2強磁性層及び前記反強磁性層を磁界中でアニールする工程と、
     を備える応力センサの製造方法であって、
     前記磁界中でアニールする工程は、被処理物を磁界中で熱処理したのちにさらに磁界中で室温に冷却する工程を含み、
     前記磁界中でアニールする工程において、前記第2強磁性層と前記反強磁性層との間に交換結合が形成され、前記交換結合によって生み出される交換バイアスによって前記第2強磁性層の磁化方向が固定され、
     前記応力センサは、外部から加えられた応力に依存して変化する前記第1強磁性層及び前記第2強磁性層の磁化方向の相対角度に依存した電気抵抗によって応力を検出する、
     応力センサの製造方法。
  11.  フレキシブル基板を準備する工程をさらに備え、
     前記第1強磁性層、前記非磁性層、前記第2強磁性層、及び前記反強磁性層は、それぞれ前記フレキシブル基板の上方に成膜され、
     前記磁界中でアニールする工程において、前記フレキシブル基板も一緒にアニールされる、
     請求項10に記載の応力センサの製造方法。
PCT/JP2019/046917 2019-01-30 2019-11-29 応力センサ及びその製造方法 WO2020158159A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020569408A JP7031023B2 (ja) 2019-01-30 2019-11-29 応力センサ及びその製造方法
US17/329,675 US11959815B2 (en) 2019-01-30 2021-05-25 Stress sensor and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-014792 2019-01-30
JP2019014792 2019-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/329,675 Continuation US11959815B2 (en) 2019-01-30 2021-05-25 Stress sensor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2020158159A1 true WO2020158159A1 (ja) 2020-08-06

Family

ID=71840537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046917 WO2020158159A1 (ja) 2019-01-30 2019-11-29 応力センサ及びその製造方法

Country Status (3)

Country Link
US (1) US11959815B2 (ja)
JP (1) JP7031023B2 (ja)
WO (1) WO2020158159A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027007A1 (ja) * 2021-08-25 2023-03-02 国立大学法人大阪大学 情報処理方法、情報処理装置及び磁性素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6722304B2 (ja) * 2017-02-20 2020-07-15 株式会社村田製作所 応力センサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020073785A1 (en) * 2000-12-20 2002-06-20 Shiva Prakash Use of multi-layer thin films as stress sensors
JP2002357489A (ja) * 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd 応力センサー
JP2009042178A (ja) * 2007-08-10 2009-02-26 Tdk Corp 磁気デバイス及び周波数検出器
JP2015179772A (ja) * 2014-03-19 2015-10-08 株式会社東芝 圧力センサの製造方法、成膜装置及び熱処理装置
WO2018151083A1 (ja) * 2017-02-20 2018-08-23 株式会社村田製作所 応力センサ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291370B2 (ja) * 2014-07-02 2018-03-14 株式会社東芝 歪検出素子、圧力センサ、マイクロフォン、血圧センサ及びタッチパネル
US10345162B2 (en) * 2015-08-28 2019-07-09 Kabushiki Kaisha Toshiba Sensor and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020073785A1 (en) * 2000-12-20 2002-06-20 Shiva Prakash Use of multi-layer thin films as stress sensors
JP2002357489A (ja) * 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd 応力センサー
JP2009042178A (ja) * 2007-08-10 2009-02-26 Tdk Corp 磁気デバイス及び周波数検出器
JP2015179772A (ja) * 2014-03-19 2015-10-08 株式会社東芝 圧力センサの製造方法、成膜装置及び熱処理装置
WO2018151083A1 (ja) * 2017-02-20 2018-08-23 株式会社村田製作所 応力センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027007A1 (ja) * 2021-08-25 2023-03-02 国立大学法人大阪大学 情報処理方法、情報処理装置及び磁性素子

Also Published As

Publication number Publication date
US20210278292A1 (en) 2021-09-09
JPWO2020158159A1 (ja) 2021-11-25
US11959815B2 (en) 2024-04-16
JP7031023B2 (ja) 2022-03-07

Similar Documents

Publication Publication Date Title
CN111630402B (zh) 磁检测装置及其制造方法
CN111615636B (zh) 磁检测装置及其制造方法
JP6686147B2 (ja) 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置
US20200319274A1 (en) Magnetic-field-applying bias film, and magnetic detection element and magnetic detector including the same
JP2018073913A (ja) 磁気センサおよびその製造方法
WO2020158159A1 (ja) 応力センサ及びその製造方法
US11476413B2 (en) Tunnel magnetoresistance effect device and magnetic device using same
WO2004010443A1 (en) Enhanced giant magnetoresistance device and method
US20210372820A1 (en) Magnetoresistive element and method of manufacture
US9304176B2 (en) Thin-film magnetic sensor including a GMR film and method for manufacturing the same
JP6923881B2 (ja) トンネル磁気抵抗素子及びその製造方法
US11366028B2 (en) Stress sensor
WO2018037634A1 (ja) 磁気センサおよび電流センサ
US11488758B2 (en) Exchange coupling film, and magnetoresistive sensor and magnetic detector including the same
WO2017110534A1 (ja) 面直通電巨大磁気抵抗素子用積層膜、面直通電巨大磁気抵抗素子、及びその用途
US20190265312A1 (en) Magnetic Field Sensor Using In Situ Solid Source Graphene and Graphene Induced Anti-Ferromagnetic Coupling and Spin Filtering
JP6204391B2 (ja) 磁気センサおよび電流センサ
JP6708232B2 (ja) 磁気抵抗効果素子とその製造方法、及び磁気センサ
GB2601390A (en) Magnetoresistive element and method of manufacture
JP2022538384A (ja) 異方性磁場の低い2次元外部磁場を検知する磁場センサ
JP2018098305A (ja) 高感度面直通電巨大磁気抵抗素子用積層膜、高感度面直通電巨大磁気抵抗素子、及びその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913453

Country of ref document: EP

Kind code of ref document: A1