WO2020157919A1 - 機械学習装置、およびモータ制御システム - Google Patents

機械学習装置、およびモータ制御システム Download PDF

Info

Publication number
WO2020157919A1
WO2020157919A1 PCT/JP2019/003395 JP2019003395W WO2020157919A1 WO 2020157919 A1 WO2020157919 A1 WO 2020157919A1 JP 2019003395 W JP2019003395 W JP 2019003395W WO 2020157919 A1 WO2020157919 A1 WO 2020157919A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic capacitor
motor
machine learning
evaluation value
state variable
Prior art date
Application number
PCT/JP2019/003395
Other languages
English (en)
French (fr)
Inventor
弘之 打越
康彦 和田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/003395 priority Critical patent/WO2020157919A1/ja
Priority to JP2020569280A priority patent/JP7042932B2/ja
Publication of WO2020157919A1 publication Critical patent/WO2020157919A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a machine learning device and a motor control system.
  • Patent Document 1 discloses an inverter control device that switches a connection state between a smoothing capacitor and a bus and a control system of an inverter according to a temperature condition. According to the inverter control device, the motor can be stably driven and the life of the smoothing capacitor can be extended.
  • the electrolytic capacitor when the ambient temperature of the motor control device is equal to or higher than the reference temperature as a severe case for the life of the electrolytic capacitor, the electrolytic capacitor is disconnected from the busbar in that case. ..
  • the reference temperature is arbitrarily set according to the temperature characteristic of the life of the electrolytic capacitor.
  • the life of the electrolytic capacitor can be calculated by measuring the electrolytic capacitor under various temperature conditions during evaluation of the prototype.
  • the environment in which the electrolytic capacitor is actually used often changes with the passage of time, and often deviates from the environment in the actual experiment in which the reference temperature is determined or the environment in the simulation. Therefore, the protection operation of the electrolytic capacitor using the predetermined reference temperature may not be suitable for the deterioration condition of the electrolytic capacitor in the environment where the electrolytic capacitor is actually used.
  • the present invention has been made to solve the above problems, and its purpose is to provide control information adapted to the environment in which the electrolytic capacitor is actually used.
  • the machine learning device learns a state variable of a motor drive device that drives a motor.
  • the motor drive device includes a rectifier circuit, an electrolytic capacitor, and an inverter.
  • the rectifier circuit converts AC power from the AC power supply into DC power.
  • the electrolytic capacitor smoothes the DC power from the rectifier circuit.
  • the inverter converts DC power from the electrolytic capacitor and outputs AC power to the motor.
  • the state variable includes at least one of data regarding AC power from the AC power source, data regarding DC power received by the electrolytic capacitor, and data regarding AC power received by the motor.
  • the machine learning device includes a storage unit and a control unit.
  • the storage unit stores a first function in which a state variable, a drive frequency of the motor, and an evaluation value of the drive frequency are associated with each other.
  • the control unit updates the evaluation value of the driving frequency according to the degree to which the change of the state variable deteriorates the electrolytic capacitor, and outputs the first function.
  • the electrolytic capacitor is actually used by updating the evaluation value of the driving frequency of the motor in the first function according to the degree to which the change of the state variable deteriorates the electrolytic capacitor. It is possible to provide the control information adapted to the environment.
  • FIG. 3 is a functional block diagram showing the configuration of the motor control system according to the first embodiment.
  • 6 is a flowchart showing a flow of a learning process regarding a drive frequency performed by the control unit of FIG. 1.
  • 3 is a flowchart showing a flow of a protection process of an electrolytic capacitor performed by the inverter control device of FIG. 1.
  • 7 is a functional block diagram showing a configuration of a motor control system according to a second embodiment.
  • FIG. 5 is a flowchart showing a flow of a learning process regarding a predicted life performed by the control unit of FIG. 4.
  • FIG. 1 is a functional block diagram showing the configuration of the motor control system 1 according to the first embodiment.
  • the motor control system 1 controls the drive of the motor 80 by controlling the motor drive device 70.
  • the motor drive device 70 includes a rectifier circuit 71, an electrolytic capacitor 72, and an inverter 73.
  • the rectifier circuit 71 converts three-phase (UVW phase) AC power from the AC power supply 60 into DC power.
  • the electrolytic capacitor 72 smoothes the DC power from the rectifier circuit 71.
  • the inverter 73 converts the DC power from the electrolytic capacitor 72 and outputs the three-phase AC power to the motor 80.
  • the motor control system 1 includes a machine learning device 10, an inverter control device 20, an unbalance ratio calculation unit 51, a ripple current measurement unit 52, a ripple voltage measurement unit 53, and a load current measurement unit 54.
  • the machine learning device 10 includes a control unit 11 and a memory 12 (storage unit).
  • the unbalance rate calculation unit 51 calculates the unbalance rate Ruv, Rvw, and Rwu between the respective phases of the three-phase AC power output from the AC power supply 60, and the control unit 11 and the inverter control device 20 have the unbalance rate Ruv, Rvw and Rwu are output.
  • the interphase voltage Vuv is a voltage between the U phase and the V phase.
  • the interphase voltage Vvw is a voltage between the V phase and the W phase.
  • the interphase voltage Vwu is a voltage between the W phase and the U phase.
  • the average voltage Vave is expressed as (Vuv+Vvw+Vwu)/3.
  • the unbalance rate Ruv is expressed as (Vuv-Vave)/Vave.
  • the unbalance rate Rvw is represented by (Vvw-Vave)/Vave.
  • the unbalance rate Rwu is expressed as (Vwu-Vave)/Vave.
  • the ripple current measuring unit 52 detects the ripple current Irp flowing from the bus bar to the electrolytic capacitor 72, and outputs the ripple current Irp to the control unit 11 and the inverter control device 20.
  • the ripple voltage measuring unit 53 detects the ripple voltage Vrp generated between the bus bar and the electrolytic capacitor 72, and outputs the ripple voltage Vrp to the control unit 11 and the inverter control device 20.
  • the load current measuring unit 54 detects the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw output from the inverter 73, and supplies the load currents Iu, Iv, and Iw to the control unit 11 and the inverter control device 20. Output.
  • the control unit 11 learns the state variable of the motor drive device 70 including the data that affects the deterioration of the electrolytic capacitor 72 by using the reinforcement learning algorithm.
  • Reinforcement learning is an agent (behavior) in an environment where a reward is obtained according to a selected action, and the action is selected based on the state of the environment observed at each time. It is a learning algorithm that learns a strategy that maximizes the expected value of the cumulative value of.
  • the state variables include unbalance rates Ruv, Rvw, and Rwu (data relating to AC power from the AC power source), ripple current Irp, and ripple voltage Vrp (data indicating that the electrolytic capacitor is Data on received DC power), and load currents Iu, Iv, and Iw (data on AC power received by the motor).
  • the state variable of the motor drive device 70 does not need to include all of the unbalance rate, ripple current, ripple voltage, and load current, and may include at least one of these.
  • the control unit 11 saves the state variable in the external storage device 90.
  • the external storage device 90 can be, for example, a storage device that can be used in a cloud service on the Internet.
  • the control unit 11 evaluates the state s t of the motor drive device 70, the action a t that is the drive frequency of the motor 80, and the action a t using the following equation (1) that is generally used in Q learning.
  • the value a is Q value and value behavior associated functions Q to update (s t, a t) ( Q table Qt1).
  • the control unit 11 outputs the Q table Qt1 to the inverter control device 20 as control information of the inverter 73.
  • the Q table Qt1 is stored in the memory 12.
  • the state s t represents a state at time t, is determined by the observed state variable at time t. Time t is the number of times the action selection is repeated.
  • Reward r t + 1 is associated with the action a t in state s t, stored in the memory 12.
  • the action b is a selectable action in the state st+1 .
  • is a learning rate
  • is a discount rate.
  • the reinforcement learning algorithm used in the control unit 11 is not limited to Q learning, and may be TD (Temporal Difference) learning, for example.
  • the inverter control device 20 uses the Q table Qt1 from the machine learning device 10 to determine the drive frequency with the highest evaluation value in the state specified by the current state variable as the drive frequency fc of the motor 80.
  • the inverter control device 20 outputs a command signal cm corresponding to the drive frequency fc to the inverter 73 and also outputs the drive frequency fc to the machine learning device 10.
  • Inverter control device 20 protects electrolytic capacitor 72 in accordance with ripple current Irp and ripple voltage Vrp.
  • the inverter 73 outputs load currents Iu, Iv, and Iw to the motor 80 by switching the connection state of the switching elements between on and off according to a command signal cm from the inverter control device 20.
  • the inverter 73 is in accordance with a command signal cm from the inverter control device 20 and is one of a power running operation (forward conversion operation) for converting AC power into DC power and a regenerative operation (reverse conversion operation) for converting DC power into AC power. Do.
  • the motor 80 performs an acceleration operation, a constant speed operation, or a deceleration operation in accordance with the operation of the inverter 73.
  • the reference temperature can be appropriately determined by an actual machine experiment or simulation according to the temperature characteristic of the life of the electrolytic capacitor 72.
  • the environment in which the electrolytic capacitor 72 is actually used often changes with the passage of time, and often deviates from the environment of the actual experiment in which the reference temperature is determined or the environment of the simulation. Therefore, the protection operation of the electrolytic capacitor 72 using the predetermined reference temperature may not be suitable for the deterioration condition of the electrolytic capacitor 72.
  • the evaluation value of the drive frequency of the motor 80 is repeated by the machine learning device 10 according to the degree to which the deterioration of the electrolytic capacitor 72 is affected in the environment where the electrolytic capacitor 72 is actually used. Will be updated.
  • the machine learning device 10 can provide the inverter control device 20 with control information adapted to the environment in which the electrolytic capacitor 72 is actually used. According to the motor control system 1, it is possible to suppress the deterioration of the electrolytic capacitor 72 by selecting the drive frequency that has a small influence on the deterioration of the electrolytic capacitor 72 in the environment where the electrolytic capacitor 72 is actually used.
  • FIG. 2 is a flowchart showing the flow of a learning process regarding the drive frequency performed by the control unit 11 of FIG.
  • the process shown in FIG. 2 is called every time the drive frequency fc is output from the inverter control device 20 by a main routine (not shown) that performs integrated control of the machine learning device 10.
  • the step is simply described as S.
  • the inverter control device 20 outputs the command signal cm corresponding to the drive frequency fc equal to or higher than the lower limit value to the inverter 73 and the drive frequency fc to the machine learning device 10, so that the process shown in FIG. Is called by.
  • the drive frequency of the motor 80 when the process shown in FIG. 2 is first called may be randomly determined within the range of the lower limit value or more.
  • An initial value is set in advance for the reward associated with the state and the driving frequency (action).
  • An initial value (for example, 0) is preset for each evaluation value of the Q table Qt1.
  • m is a natural number of 0 or more.
  • the selected driving frequency fc m is as action a m, state determined by the state variables and transitions from s m to s m + 1.
  • the state variable referred to in the (m+1)th learning process is the state variable corresponding to the state s m+1 .
  • the control unit 11 determines in S101 whether the ripple current Irp is less than or equal to a threshold value Ith1 (first reference value).
  • the threshold value Ith1 can be appropriately determined by an actual machine experiment or simulation.
  • the control unit 11 increases the reward rm +1 in S102 and advances the process to S104.
  • the control unit 11 decreases the reward r m+1 in S103 and advances the process to S104.
  • the control unit 11 determines in S104 whether the ripple voltage Vrp is equal to or lower than the threshold value Vth1 (second reference value).
  • the threshold value Vth1 can be appropriately determined by an actual machine experiment or simulation.
  • control unit 11 increases reward rm +1 in S105 and advances the process to S107.
  • control unit 11 decreases reward rm +1 in S106 and advances the process to S107.
  • the control unit 11 determines in S107 whether or not the maximum values Rmax of the imbalance rates Ruv, Rvw, and Rwu are less than or equal to the threshold value Rth (reference ratio).
  • the threshold value Rth can be appropriately determined by an actual machine experiment or simulation.
  • maximum value Rmax is equal to or smaller than threshold value Rth (YES in S107)
  • control unit 11 determines that voltage imbalance has not occurred in AC power supply 60, increases reward rm +1 in S108, and advances the process to S110.
  • maximum value Rmax is larger than threshold value Rth (NO in S107)
  • control unit 11 determines that voltage imbalance has occurred in AC power supply 60, decreases reward r m+1 in S109, and advances the process to S110.
  • the control unit 11 determines in S110 whether the load currents Iu, Iv, and Iw are optimal. Specifically, control unit 11 determines in S110 whether each of load currents Iu, Iv, and Iw is within an allowable range (reference range).
  • the allowable range is calculated from the imbalance rates Ruv, Rvw, and Rwu.
  • control unit 11 increases reward rm +1 in S111 and advances the process to S113.
  • control unit 11 decreases reward r m+1 in S112 and advances the process to S113.
  • the control unit 11 updates the Q table Qt1 using the equation (1) in S113 and returns the process to the main routine.
  • the machine learning device 10 can provide the inverter control device 20 with the Q table Qt1 that is the control information adapted to the environment in which the electrolytic capacitor 72 is actually used.
  • control unit 11 may be realized by a computer such as a CPU (Central Processing Unit) executing a program stored in the memory 12, or by a dedicated hardware processing circuit. May be done.
  • a computer such as a CPU (Central Processing Unit) executing a program stored in the memory 12, or by a dedicated hardware processing circuit. May be done.
  • CPU Central Processing Unit
  • FIG. 3 is a flowchart showing a flow of protection processing of the electrolytic capacitor 72 performed by the inverter control device 20 of FIG.
  • the process shown in FIG. 3 is called at regular time intervals by a main routine (not shown) that performs integrated control of the inverter control device 20.
  • the inverter control device 20 determines in S121 whether the ripple current Irp is less than or equal to a threshold value Ith2 (third reference value).
  • the threshold Ith2 is larger than the threshold Ith1.
  • the threshold value Ith2 is an upper limit value of the current that can flow in the electrolytic capacitor 72, and is determined in advance.
  • ripple current Irp is equal to or smaller than threshold value Ith2 (YES in S121)
  • inverter control device 20 advances the process to S122.
  • ripple current Irp is larger than threshold value Ith2 (NO in S121)
  • inverter control device 20 advances the process to S123.
  • the inverter control device 20 determines in S122 whether the ripple voltage Vrp is equal to or lower than the threshold value Vth2 (fourth reference value).
  • the threshold value Vth2 is larger than the threshold value Vth1.
  • the threshold value Vth2 is an upper limit value of the voltage that can be applied to the electrolytic capacitor 72, and is determined in advance.
  • ripple voltage Vrp is equal to or lower than threshold value Vth2 (YES in S122)
  • inverter control device 20 returns the process to the main routine.
  • ripple voltage Vrp is higher than threshold value Vth2 (NO in S122)
  • inverter control device 20 advances the process to S123.
  • Inverter control device 20 outputs a command to stop motor 80 to inverter 73 in S123, and returns the process to the main routine.
  • the inverter 73 stops the motor 80 in response to a stop command from the inverter control device 20.
  • the process performed in the inverter control device 20 may be realized by a computer such as a CPU executing a program stored in the memory of the inverter control device 20, or a dedicated hardware processing circuit (semiconductor processing circuit Integrated circuit).
  • deterioration of the electrolytic capacitor can be suppressed by controlling the motor using the control information adapted to the environment in which the electrolytic capacitor is actually used. ..
  • Embodiment 2 In the first embodiment, in the framework of the reinforcement learning, the case where the driving frequency of the motor is taken as an action and the machine learning apparatus increases the evaluation value of the driving frequency having a small influence on the deterioration of the electrolytic capacitor by repeating the learning process has been described. In the second embodiment, the case where the machine learning device increases the evaluation value of the predicted life of the electrolytic capacitor having a small relative error from the reference life by repeating the learning process by taking the life of the electrolytic capacitor as a behavior together with the motor driving frequency. ..
  • FIG. 4 is a functional block diagram showing the configuration of the motor control system 2 according to the second embodiment.
  • the configuration of the motor control system 2 is a configuration in which the control unit 11 in FIG. 1 is replaced with 11B and a life prediction device 30 and a display device 40 are added.
  • the control unit 11B has the function of the control unit 11.
  • the configuration other than these is the same, and therefore the description will not be repeated.
  • the control unit 11B uses the equation (1) to calculate the state s t of the motor drive device 70, the action a t that is the predicted life of the electrolytic capacitor 72, and the evaluation value of the action a t. action value and there Q value associated function Q to update (s t, a t) ( Q table Qt2), and outputs a Q table Qt2 the life predicting device 30.
  • the Q table Qt2 is stored in the memory 12.
  • the control unit 11B acquires data regarding the life of the electrolytic capacitor 72 from the external server 100 in order to update the evaluation value of the predicted life.
  • the data regarding the life of the electrolytic capacitor 72 is experimental data of an electrolytic capacitor of the same type as the electrolytic capacitor 72, simulation data, or a map in which the state variable and the life are associated.
  • the data regarding the life of the electrolytic capacitor 72 is provided by, for example, the manufacturer of the electrolytic capacitor 72.
  • the data regarding the life of the electrolytic capacitor 72 may be stored in the memory 12 in advance.
  • the control unit 11B calculates the reference life LSr from the data relating to the state variable and the life of the electrolytic capacitor 72.
  • the life prediction apparatus 30 receives the imbalance rates Ruv, Rvw, and Rwu from the imbalance rate calculation unit 51.
  • the life prediction apparatus 30 receives the ripple current Irp from the ripple current measuring unit 52.
  • the life prediction apparatus 30 receives the ripple voltage Vrp from the ripple voltage measuring unit 53.
  • the life prediction device 30 receives the load currents Iu, Iv, and Iw from the load current measuring unit 54.
  • the life prediction apparatus 30 uses the Q table Qt2 from the control unit 11B to output the predicted life LSp having the highest evaluation value in the state specified by the state variable to the display device 40.
  • the life prediction device 30 may output the replacement time of the electrolytic capacitor 72 to the display device 40 together with the predicted life LSp.
  • the display device 40 displays the information from the life prediction device 30.
  • the environment in which the data regarding the life of the electrolytic capacitor 72 is acquired may be different from the environment in which the electrolytic capacitor 72 is actually used. Further, in the motor control system 2, the drive frequency is selected so that the influence on the deterioration of the electrolytic capacitor 72 is reduced. Therefore, the reference life LSr derived from the data regarding the life of the electrolytic capacitor 72 may deviate from the life of the electrolytic capacitor 72 in the environment where the electrolytic capacitor 72 is actually used.
  • the reference life LSr is not directly used as the predicted life, but the evaluation value of the predicted life LSp is calculated by the machine learning device 10 according to the relative error between the reference life LSr and the predicted life LSp. Iteratively updated.
  • the machine learning device 10 can provide the life prediction device 30 with life data adapted to the environment in which the electrolytic capacitor 72 is actually used. According to the motor control system 2, it is possible to improve the accuracy of predicting the life of the electrolytic capacitor 72.
  • FIG. 5 is a flowchart showing the flow of a learning process regarding the predicted life which is performed by the control unit 11B of FIG.
  • the processing shown in FIG. 5 is called every time the drive frequency fc is output from the inverter control device 20 by a main routine (not shown) that performs integrated control of the machine learning device 10.
  • a main routine not shown
  • an initial value is set for the predicted life.
  • the initial value may be randomly determined.
  • An initial value is set in advance for the reward associated with the state and the predicted life (action).
  • An initial value (for example, 0) is set in advance for each evaluation value included in the Q table Qt2.
  • m is a natural number of 0 or more.
  • the selected predicted life LSp m as the action a m state determined by the state variables and transitions from s m to s m + 1.
  • the reward associated with the predicted lifetime LSp m is w m+1 .
  • the state variable referred to in the (m+1)th learning process is the state variable corresponding to the state s m+1 .
  • the control unit 11B determines in S201 whether the relative error of the predicted life LSp with respect to the reference life LSr is smaller than the allowable error To1.
  • the relative error of the predicted life LSp with respect to the reference life LSr is the ratio of the absolute value of the difference between the predicted life LSp and the reference life LSr with respect to the reference life LSr.
  • the allowable error To1 is appropriately determined by an actual machine experiment or simulation.
  • the control unit 11B When the relative error of the predicted life LSp with respect to the reference life LSr is smaller than the allowable error To1 (YES in S201), the control unit 11B increases the reward w m+1 in S202 and advances the process to S204. When the relative error of the predicted life LSp with respect to the reference life LSr is equal to or greater than the allowable error To1 (NO in S201), the control unit 11B decreases the reward w m+1 in S203 and advances the process to S204. The control unit 11B updates the Q table Qt2 using the equation (1) in S204 and returns the process to the main routine.
  • the motor control system of the second embodiment it is possible to suppress the deterioration of the electrolytic capacitor and improve the accuracy of the predicted life of the electrolytic capacitor in the environment where the electrolytic capacitor is actually used. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本発明に係る機械学習装置(10)は、モータ(80)を駆動するモータ駆動装置(70)の状態変数を学習する。モータ駆動装置(70)は、整流回路(71)と、電解コンデンサ(72)と、インバータ(73)とを含む。状態変数は、交流電源(60)からの交流電力に関するデータ、および電解コンデンサ(72)が受ける直流電力に関するデータ、およびモータ(80)が受ける交流電力に関するデータの少なくとも1つを含む。機械学習装置(10)は、記憶部(12)と、制御部(11)とを備える。記憶部(12)には、状態変数と、モータ(80)の駆動周波数(fc)と、駆動周波数(fc)の評価値とが関連付けられた第1関数(Qt1)が保存されている。制御部(11)は、状態変数の変化が電解コンデンサ(72)を劣化させる程度に応じて駆動周波数(fc)の評価値を更新し、第1関数(Qt1)を出力する。

Description

機械学習装置、およびモータ制御システム
 本発明は、機械学習装置、およびモータ制御システムに関する。
 従来、モータ駆動装置の平滑コンデンサとして電解コンデンサが使用可能であることが知られている。たとえば、特開2014-103703号公報(特許文献1)には、温度条件に応じて、平滑コンデンサと母線との接続状態およびインバータの制御方式を切り替えるインバータ制御装置が開示されている。当該インバータ制御装置によれば、モータを安定して駆動させることができるとともに、平滑コンデンサの寿命を延ばすことができる。
特開2014-103703号公報
 特許文献1に開示されているモータ制御装置は、モータ制御装置の周囲の温度が基準温度以上である場合を電解コンデンサの寿命に対して厳しい場合であるとして、当該場合に母線から電解コンデンサを切り離す。当該基準温度は、電解コンデンサの寿命の温度特性に応じて任意に設定される。電解コンデンサの寿命は、試作の評価時に様々な温度条件で電解コンデンサを測定して算出され得る。
 電解コンデンサが実際に使用される環境は、時間経過に伴って変化し、基準温度が決定された実機実験の環境あるいはシミュレーションにおける環境から乖離していくことが多い。そのため、予め決定された基準温度を用いた電解コンデンサの保護動作は、電解コンデンサが実際に使用される環境において電解コンデンサの劣化状況に適合していない可能性がある。
 本発明は、上述のような課題を解決するためになされたものであり、その目的は、電解コンデンサが実際に使用される環境に適合された制御情報を提供することである。
 本発明に係る機械学習装置は、モータを駆動するモータ駆動装置の状態変数を学習する。モータ駆動装置は、整流回路と、電解コンデンサと、インバータとを含む。整流回路は、交流電源からの交流電力を直流電力に変換する。電解コンデンサは、整流回路からの直流電力を平滑する。インバータは、電解コンデンサからの直流電力を変換し、モータに交流電力を出力する。状態変数は、交流電源からの交流電力に関するデータ、および電解コンデンサが受ける直流電力に関するデータ、およびモータが受ける交流電力に関するデータの少なくとも1つを含む。機械学習装置は、記憶部と、制御部とを備える。記憶部には、状態変数と、モータの駆動周波数と、駆動周波数の評価値とが関連付けられた第1関数が保存されている。制御部は、状態変数の変化が電解コンデンサを劣化させる程度に応じて駆動周波数の評価値を更新し、第1関数を出力する。
 本発明に係る機械学習装置によれば、状態変数の変化が電解コンデンサを劣化させる程度に応じて第1関数におけるモータの駆動周波数の評価値が更新されることにより、電解コンデンサが実際に使用される環境に適合された制御情報を提供することができる。
実施の形態1に係るモータ制御システムの構成を示す機能ブロック図である。 図1の制御部によって行なわれる駆動周波数に関する学習処理の流れを示すフローチャートである。 図1のインバータ制御装置によって行なわれる電解コンデンサの保護処理の流れを示すフローチャートである。 実施の形態2に係るモータ制御システムの構成を示す機能ブロック図である。 図4の制御部によって行なわれる予測寿命に関する学習処理の流れを示すフローチャートである。
 以下、実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
 実施の形態1.
 図1は、実施の形態1に係るモータ制御システム1の構成を示す機能ブロック図である。モータ制御システム1は、モータ駆動装置70を制御することによって、モータ80の駆動を制御する。
 図1に示されるように、モータ駆動装置70は、整流回路71と、電解コンデンサ72と、インバータ73とを含む。整流回路71は、交流電源60からの三相(UVW相)交流電力を直流電力に変換する。電解コンデンサ72は、整流回路71からの直流電力を平滑する。インバータ73は、電解コンデンサ72からの直流電力を変換し、モータ80に三相交流電力を出力する。
 モータ制御システム1は、機械学習装置10と、インバータ制御装置20と、不平衡率計算部51と、リプル電流測定部52と、リプル電圧測定部53と、負荷電流測定部54とを備える。機械学習装置10は、制御部11と、メモリ12(記憶部)とを含む。
 不平衡率計算部51は、交流電源60から出力される三相交流電力の各相間の不平衡率Ruv、Rvw、およびRwuを算出し、制御部11およびインバータ制御装置20に不平衡率Ruv、Rvw、およびRwuを出力する。各相間の不平衡率は、相間電圧Vuv、Vvw、およびVwuの平均電圧Vaveに対する、各相間電圧から平均電圧Vaveを引いた値の割合(各相間の不平衡率=(各相間電圧-Vave)/Vave)として算出される。相間電圧をVuvは、U相とV相との間の電圧である。相間電圧Vvwは、V相とW相との間の電圧である。相間電圧Vwuは、W相とU相との間の電圧である。平均電圧Vaveは、(Vuv+Vvw+Vwu)/3と表される。不平衡率Ruvは、(Vuv-Vave)/Vaveと表される。不平衡率Rvwは、(Vvw-Vave)/Vaveと表される。不平衡率Rwuは、(Vwu-Vave)/Vaveと表される。
 リプル電流測定部52は、母線から電解コンデンサ72に流れるリプル電流Irpを検出し、制御部11およびインバータ制御装置20にリプル電流Irpを出力する。リプル電圧測定部53は、母線と電解コンデンサ72との間に発生するリプル電圧Vrpを検出し、制御部11およびインバータ制御装置20にリプル電圧Vrpを出力する。負荷電流測定部54は、インバータ73から出力されるU相電流Iu、V相電流Iv、およびW相電流Iwを検出し、制御部11およびインバータ制御装置20に負荷電流Iu、Iv、およびIwを出力する。
 制御部11は、強化学習のアルゴリズムを用いて、電解コンデンサ72の劣化に影響を与えるデータを含むモータ駆動装置70の状態変数を学習する。強化学習とは、選択した行動に応じて報酬が得られるという環境にいるエージェント(行動主体)が、時刻毎に観測した環境の状態に基づいて行動の選択をするということを繰り返すことにより、報酬の累積値の期待値を最大化する方策を学習するという学習アルゴリズムである。
 電解コンデンサ72の劣化の原因として、リプル電流Irpが電解コンデンサ72を流れる場合の電解コンデンサ72のESR(Equivalent Series Resistance)による温度上昇を挙げることができる。リプル電流Irpは、交流電源60の電圧不平衡率が高いほど大きくなるとともに、モータ80の負荷電流が大きいほど大きくなることが知られている。そこで、当該状態変数は、電解コンデンサ72の劣化に影響を与えるデータとして、不平衡率Ruv、Rvw、およびRwu(交流電源からの交流電力に関するデータ)、リプル電流Irpおよびリプル電圧Vrp(電解コンデンサが受ける直流電力に関するデータ)、ならびに負荷電流Iu、Iv、およびIw(モータが受ける交流電力に関するデータ)を含む。なお、モータ駆動装置70の状態変数は、不平衡率、リプル電流、リプル電圧、負荷電流のすべてを含んでいる必要はなく、これらの少なくとも1つを含んでいればよい。
 制御部11は、状態変数を外部記憶装置90に保存する。外部記憶装置90としては、たとえばインターネット上のクラウドサービスにおいて利用可能な記憶装置を挙げることができる。
 制御部11は、Q学習において一般的に用いられる以下の式(1)を用いて、モータ駆動装置70の状態sと、モータ80の駆動周波数である行動aと、行動aの評価値であるQ値とが関連付けられた行動価値関数Q(s,a)(QテーブルQt1)を更新する。制御部11は、QテーブルQt1をインバータ73の制御情報としてインバータ制御装置20に出力する。QテーブルQt1は、メモリ12に保存される。
Figure JPOXMLDOC01-appb-M000001
 
 式(1)において、状態sは、時刻tにおける状態を表し、時刻tにおいて観測された状態変数によって決定される。時刻tは、行動選択を繰り返した回数である。t=0の場合の状態sは、初期状態である。状態sにおいて行動aが選択された場合、報酬rt+1が得られるとともに、モータ駆動装置70の状態は、状態sからst+1に遷移する。報酬rt+1は、状態sにおいて行動aに関連付けられ、メモリ12に保存されている。行動bは、状態st+1において選択可能な行動である。αは学習率であり、γは割引率である。なお、制御部11において用いられる強化学習のアルゴリズムは、Q学習に限定されず、たとえばTD(Temporal Difference)学習であってもよい。
 インバータ制御装置20は、機械学習装置10からのQテーブルQt1を用いて、現在の状態変数によって特定される状態において最も評価値が高い駆動周波数をモータ80の駆動周波数fcとして決定する。インバータ制御装置20は、駆動周波数fcに対応する指令信号cmをインバータ73に出力するとともに、駆動周波数fcを機械学習装置10に出力する。インバータ制御装置20は、リプル電流Irpおよびリプル電圧Vrpに応じて、電解コンデンサ72の保護処理を行なう。
 インバータ73は、インバータ制御装置20からの指令信号cmに応じてスイッチング素子の接続状態をオンおよびオフの間で切り替えることにより、モータ80に負荷電流Iu、Iv、およびIwを出力する。インバータ73は、インバータ制御装置20からの指令信号cmに従い、交流電力を直流電力に変換する力行動作(順変換動作)、および直流電力を交流電力に変換する回生動作(逆変換動作)のいずれかを行なう。インバータ73の動作に対応して、モータ80は加速動作、定速動作、あるいは減速動作を行なう。
 通常、モータ駆動装置70の周囲の温度が高くなるほど、電解コンデンサ72の寿命に対する影響は大きくなる。そのため、電解コンデンサ72に対する保護動作として、モータ駆動装置70の周囲の温度が基準温度以上である場合に母線から電解コンデンサ72を切り離す動作を挙げることができる。当該基準温度は、電解コンデンサ72の寿命の温度特性に応じて、実機実験あるいはシミュレーションによって適宜決定され得る。
 電解コンデンサ72が実際に使用される環境は、時間経過に伴って変化し、基準温度が決定された実機実験の環境あるいはシミュレーションにおける環境から乖離していくことが多い。そのため、予め決定された基準温度を用いた電解コンデンサ72の保護動作は、電解コンデンサ72の劣化状況に適合していない可能性がある。
 そこで、モータ制御システム1においては、電解コンデンサ72が実際に使用される環境において電解コンデンサ72の劣化に影響を与える程度に応じて、機械学習装置10によってモータ80の駆動周波数の評価値が反復的に更新される。その結果、機械学習装置10は、電解コンデンサ72が実際に使用される環境に適合された制御情報をインバータ制御装置20に提供することができる。モータ制御システム1によれば、電解コンデンサ72が実際に使用される環境において電解コンデンサ72の劣化に影響が小さい駆動周波数が選択されることにより、電解コンデンサ72の劣化を抑制することができる。
 図2は、図1の制御部11によって行なわれる駆動周波数に関する学習処理の流れを示すフローチャートである。図2に示される処理は、機械学習装置10の統合的な制御を行なう不図示のメインルーチンによって、インバータ制御装置20から駆動周波数fcが出力される度に呼び出される。以下では、ステップを単にSと記載する。なお、インバータ制御装置20が下限値以上の駆動周波数fcに対応する指令信号cmをインバータ73に出力するとともに、駆動周波数fcを機械学習装置10に出力することにより、図2に示される処理が最初に呼び出される。図2に示される処理が最初に呼び出される場合のモータ80の駆動周波数は、下限値以上の範囲でランダムに決定されてもよい。状態および駆動周波数(行動)に関連付けられている報酬には、予め初期値が設定されている。QテーブルQt1の各評価値には初期値(たとえば0)が予め設定されている。
 以下では、図2に示される学習処理の回数が(m+1)回目である場合について説明する。mは0以上の自然数である。前回のm回目において、行動aとして駆動周波数fcが選択され、状態変数によって決定される状態がsからsm+1に遷移したとする。駆動周波数fcに関連付けられている報酬をrm+1とする。(m+1)回目の学習処理において参照される状態変数は、状態sm+1に対応する状態変数である。
 図2に示されるように、制御部11は、S101においてリプル電流Irpが閾値Ith1(第1基準値)以下であるか否かを判定する。閾値Ith1は、実機実験あるいはシミュレーションによって適宜決定することができる。リプル電流Irpが閾値Ith1以下である場合(S101においてYES)、制御部11は、S102において報酬rm+1を増加させて処理をS104に進める。リプル電流Irpが閾値Ith1より大きい場合(S101においてNO)、制御部11は、S103において報酬rm+1を減少させて処理をS104に進める。
 制御部11は、S104においてリプル電圧Vrpが閾値Vth1(第2基準値)以下であるか否かを判定する。閾値Vth1は、実機実験あるいはシミュレーションによって適宜決定することができる。リプル電圧Vrpが閾値Vth1以下である場合(S104においてYES)、制御部11は、S105において報酬rm+1を増加させて処理をS107に進める。リプル電圧Vrpが閾値Vth1より大きい場合(S104においてNO)、制御部11は、S106において報酬rm+1を減少させて処理をS107に進める。
 制御部11は、S107において不平衡率Ruv、Rvw、およびRwuの最大値Rmaxが閾値Rth(基準比率)以下であるか否かを判定する。閾値Rthは、実機実験あるいはシミュレーションによって適宜決定することができる。最大値Rmaxが閾値Rth以下である場合(S107においてYES)、制御部11は、交流電源60に電圧不平衡は発生していないとして、S108において報酬rm+1を増加させて処理をS110に進める。最大値Rmaxが閾値Rthより大きい場合(S107においてNO)、制御部11は、交流電源60に電圧不平衡が発生しているとして、S109において報酬rm+1を減少させて処理をS110に進める。
 制御部11は、S110において負荷電流Iu、Iv、およびIwが最適か否かを判定する。具体的には、制御部11は、S110において負荷電流Iu、Iv、およびIwの各々が許容範囲(基準範囲)内であるか否かを判定する。許容範囲は、不平衡率Ruv、Rvw、およびRwuから算出される。負荷電流Iu、Iv、およびIwの各々が許容範囲(基準範囲)内である場合(S110においてYES)、制御部11は、S111において報酬rm+1を増加させて処理をS113に進める。負荷電流Iu、Iv、およびIwのいずれかが許容範囲外である場合(S110においてNO)、制御部11は、S112において報酬rm+1を減少させて処理をS113に進める。制御部11は、S113において式(1)を用いてQテーブルQt1を更新して処理をメインルーチンに返す。
 駆動周波数fcが変更される度に図2に示される処理が呼び出されることにより、電解コンデンサ72が実際に使用される環境において電解コンデンサ72の劣化に影響が小さい駆動周波数の評価値が高くなる。機械学習装置10は、電解コンデンサ72が実際に使用される環境に適合された制御情報であるQテーブルQt1をインバータ制御装置20に提供することができる。
 なお、制御部11によって行なわれる処理は、CPU(Central Processing Unit)のようなコンピュータがメモリ12に保存されているプログラムを実行することによって実現されてもよいし、専用のハードウェア処理回路によって実現されてもよい。
 図3は、図1のインバータ制御装置20によって行なわれる電解コンデンサ72の保護処理の流れを示すフローチャートである。図3に示される処理は、インバータ制御装置20の統合的な制御を行なう不図示のメインルーチンによって、一定時間間隔で呼び出される。
 図3に示されるように、インバータ制御装置20は、S121においてリプル電流Irpが閾値Ith2(第3基準値)以下であるか否かを判定する。閾値Ith2は、閾値Ith1よりも大きい。閾値Ith2は、電解コンデンサ72に流すことが可能な電流の上限値であり、予め決定されている。リプル電流Irpが閾値Ith2以下である場合(S121においてYES)、インバータ制御装置20は、処理をS122に進める。リプル電流Irpが閾値Ith2より大きい場合(S121においてNO)、インバータ制御装置20は、処理をS123に進める。
 インバータ制御装置20は、S122においてリプル電圧Vrpが閾値Vth2(第4基準値)以下であるか否かを判定する。閾値Vth2は、閾値Vth1よりも大きい。閾値Vth2は、電解コンデンサ72に印加することが可能な電圧の上限値であり、予め決定されている。リプル電圧Vrpが閾値Vth2以下である場合(S122においてYES)、インバータ制御装置20は、処理をメインルーチンに返す。リプル電圧Vrpが閾値Vth2より大きい場合(S122においてNO)、インバータ制御装置20は、処理をS123に進める。インバータ制御装置20は、S123においてモータ80の停止指令をインバータ73に出力して処理をメインルーチンに返す。インバータ73は、インバータ制御装置20からの停止指令に応じて、モータ80を停止させる。
 なお、インバータ制御装置20において行なわれる処理は、CPUのようなコンピュータがインバータ制御装置20のメモリに保存されているプログラムを実行することによって実現されてもよいし、専用のハードウェア処理回路(半導体集積回路)によって実現されてもよい。
 以上、実施の形態1に係るモータ制御システムによれば、電解コンデンサが実際に使用される環境に適合された制御情報を用いてモータを制御することにより、電解コンデンサの劣化を抑制することができる。
 実施の形態2.
 実施の形態1においては、強化学習の枠組みにおいて、モータの駆動周波数を行動として、機械学習装置が電解コンデンサの劣化に対する影響が小さい駆動周波数の評価値を学習処理の反復により高める場合について説明した。実施の形態2においては、モータ駆動周波数とともに電解コンデンサの寿命を行動として、機械学習装置が参照寿命との相対誤差が小さい電解コンデンサの予測寿命の評価値を学習処理の反復により高める場合について説明する。
 図4は、実施の形態2に係るモータ制御システム2の構成を示す機能ブロック図である。モータ制御システム2の構成は、図1の制御部11が11Bに置き換えられているとともに、寿命予測装置30および表示装置40が追加された構成である。制御部11Bは、制御部11の機能を有する。これら以外の構成は同様であるため、説明を繰り返さない。
 図4を参照しながら、制御部11Bは、式(1)を用いて、モータ駆動装置70の状態sと、電解コンデンサ72の予測寿命である行動aと、行動aの評価値であるQ値とが関連付けられた行動価値関数Q(s,a)(QテーブルQt2)を更新し、QテーブルQt2を寿命予測装置30に出力する。QテーブルQt2は、メモリ12に保存される。
 制御部11Bは、予測寿命の評価値を更新するために、外部サーバ100から電解コンデンサ72の寿命に関するデータを取得する。電解コンデンサ72の寿命に関するデータとは、電解コンデンサ72と同種の電解コンデンサの実験データ、シミュレーションデータ、あるいは状態変数と寿命が関連付けられたマップである。電解コンデンサ72の寿命に関するデータは、たとえば電解コンデンサ72の製造メーカから提供される。電解コンデンサ72の寿命に関するデータは、予めメモリ12に保存されていてもよい。制御部11Bは、状態変数および電解コンデンサ72の寿命に関するデータから、参照寿命LSrを算出する。
 寿命予測装置30は、不平衡率計算部51から不平衡率Ruv、Rvw、およびRwuを受ける。寿命予測装置30は、リプル電流測定部52からリプル電流Irpを受ける。寿命予測装置30は、リプル電圧測定部53からリプル電圧Vrpを受ける。寿命予測装置30は、負荷電流測定部54から負荷電流Iu、Iv、およびIwを受ける。
 寿命予測装置30は、制御部11BからのQテーブルQt2を用いて、状態変数によって特定される状態において最も評価値が高い予測寿命LSpを表示装置40に出力する。寿命予測装置30は、予測寿命LSpとともに電解コンデンサ72の交換時期を表示装置40に出力してもよい。表示装置40は、寿命予測装置30からの情報を表示する。
 電解コンデンサ72の寿命に関するデータが取得された環境と、電解コンデンサ72が実際に使用される環境とは異なり得る。また、モータ制御システム2においては、電解コンデンサ72の劣化に対する影響が小さくなるように駆動周波数が選択される。そのため、電解コンデンサ72の寿命に関するデータから導出された参照寿命LSrは、電解コンデンサ72が実際に使用される環境における電解コンデンサ72の寿命から乖離し得る。
 そこで、モータ制御システム2においては、参照寿命LSrをそのまま予測寿命として使用するのではなく、参照寿命LSrと予測寿命LSpとの相対誤差に応じて、機械学習装置10によって予測寿命LSpの評価値が反復的に更新される。機械学習装置10は、電解コンデンサ72が実際に使用される環境に適合された寿命データを寿命予測装置30に提供することができる。モータ制御システム2によれば、電解コンデンサ72の寿命の予測精度を向上させることができる。
 図5は、図4の制御部11Bによって行なわれる予測寿命に関する学習処理の流れを示すフローチャートである。図5に示される処理は、機械学習装置10の統合的な制御を行なう不図示のメインルーチンによって、インバータ制御装置20から駆動周波数fcが出力される度に呼び出される。図5に示される処理が最初に呼び出される場合、予測寿命に初期値が設定されている。当該初期値は、ランダムに決定されてもよい。状態および予測寿命(行動)に関連付けられている報酬には、予め初期値が設定されている。QテーブルQt2に含まれる各評価値には予め初期値(たとえば0)が設定されている。
 以下では、図5に示される学習処理の回数が(m+1)回目である場合について説明する。mは0以上の自然数である。前回のm回目において、行動aとして予測寿命LSpが選択され、状態変数によって決定される状態がsからsm+1に遷移したとする。駆動周波数に関連付けられている報酬rと区別するため、予測寿命LSpに関連付けられている報酬をwm+1とする。(m+1)回目の学習処理において参照される状態変数は、状態sm+1に対応する状態変数である。
 図5に示されるように、制御部11Bは、S201において参照寿命LSrに対する予測寿命LSpの相対誤差が許容誤差To1よりも小さいか否かを判定する。参照寿命LSrに対する予測寿命LSpの相対誤差とは、参照寿命LSrに対する、予測寿命LSpと参照寿命LSrとの差の絶対値の割合である。許容誤差To1は、実機実験あるいはシミュレーションによって適宜決定される。
 参照寿命LSrに対する予測寿命LSpの相対誤差が許容誤差To1よりも小さい場合(S201においてYES)、制御部11Bは、S202において報酬wm+1を増加させて処理をS204に進める。参照寿命LSrに対する予測寿命LSpの相対誤差が許容誤差To1以上である場合(S201においてNO)、制御部11Bは、S203において報酬wm+1を減少させて処理をS204に進める。制御部11Bは、S204において式(1)を用いてQテーブルQt2を更新して処理をメインルーチンに返す。
 以上、実施の形態2に係るモータ制御システムによれば、電解コンデンサの劣化を抑制することができるとともに、電解コンデンサが実際に使用される環境における電解コンデンサの予測寿命の精度を向上させることができる。
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,2 モータ制御システム、10 機械学習装置、11,11B 制御部、12 メモリ、20 インバータ制御装置、30 寿命予測装置、40 表示装置、51 不平衡率計算部、52 リプル電流測定部、53 リプル電圧測定部、54 負荷電流測定部、60 交流電源、70 モータ駆動装置、71 整流回路、72 電解コンデンサ、73 インバータ、80 モータ、90 外部記憶装置、100 外部サーバ。

Claims (12)

  1.  モータを駆動するモータ駆動装置の状態変数を学習する機械学習装置であって、
     前記モータ駆動装置は、
     交流電源からの交流電力を直流電力に変換する整流回路と、
     前記整流回路からの直流電力を平滑する電解コンデンサと、
     前記電解コンデンサからの直流電力を変換し、前記モータに交流電力を出力するインバータとを含み、
     前記状態変数は、前記交流電源からの交流電力に関するデータ、および前記電解コンデンサが受ける直流電力に関するデータ、および前記モータが受ける交流電力に関するデータの少なくとも1つを含み、
     前記機械学習装置は、
     前記状態変数と、前記モータの駆動周波数と、前記駆動周波数の評価値とが関連付けられた第1関数が保存された記憶部と、
     前記状態変数の変化が前記電解コンデンサを劣化させる程度に応じて前記駆動周波数の評価値を更新し、前記第1関数を出力する制御部とを備える、機械学習装置。
  2.  前記状態変数は、前記直流電力に関するデータとして前記電解コンデンサを流れるリプル電流を含み、
     前記制御部は、前記リプル電流が第1基準値よりも小さい場合、前記駆動周波数の評価値を増加させ、前記リプル電流が前記第1基準値よりも大きい場合、前記駆動周波数の評価値を減少させる、請求項1に記載の機械学習装置。
  3.  前記状態変数は、前記直流電力に関するデータとして前記電解コンデンサのリプル電圧を含み、
     前記制御部は、前記リプル電圧が第2基準値よりも小さい場合、前記駆動周波数の評価値を増加させ、前記リプル電圧が前記第2基準値よりも大きい場合、前記駆動周波数の評価値を減少させる、請求項1または2に記載の機械学習装置。
  4.  前記状態変数は、前記交流電源からの交流電力に関するデータとして、前記交流電力の不平衡率を含み、
     前記制御部は、前記不平衡率が基準比率よりも小さい場合、前記駆動周波数の評価値を増加させ、前記不平衡率が前記基準比率よりも大きい場合、前記駆動周波数の評価値を減少させる、請求項1~3のいずれか1項に記載の機械学習装置。
  5.  前記状態変数は、前記モータが受ける交流電力に関するデータとして前記モータに流れる負荷電流を含み、
     前記制御部は、前記負荷電流が基準範囲内にある場合、前記駆動周波数の評価値を増加させ、前記負荷電流が基準範囲外である場合、前記駆動周波数の評価値を減少させる、請求項1~4のいずれか1項に記載の機械学習装置。
  6.  前記記憶部には、前記状態変数と、前記電解コンデンサの予測寿命と、前記予測寿命の評価値とが関連付けられた第2関数が保存され、
     前記制御部は、前記状態変数に対応する前記電解コンデンサと同種の電解コンデンサの参照寿命と前記予測寿命との差に応じて前記予測寿命の評価値を更新し、前記第2関数を出力する、請求項1~5のいずれか1項に記載の機械学習装置。
  7.  前記制御部は、前記参照寿命に対する前記予測寿命と前記参照寿命との差の絶対値の割合が許容誤差よりも小さい場合、前記予測寿命の評価値を減少させ、前記割合が前記許容誤差よりも大きい場合、前記予測寿命の評価値を増加させる、請求項6に記載の機械学習装置。
  8.  請求項1~5のいずれか1項に記載の機械学習装置と、
     前記機械学習装置から前記第1関数を受けて、前記状態変数において最も高い評価値が付された前記モータの駆動周波数に対応する指令信号を前記インバータに出力するインバータ制御装置とを備える、モータ制御システム。
  9.  前記機械学習装置は、前記インバータ制御装置によって前記指令信号が出力される度に、前記状態変数の変化に応じて前記駆動周波数の評価値を更新する、請求項8に記載のモータ制御システム。
  10.  請求項6または7に記載の機械学習装置と、
     前記機械学習装置から前記第1関数を受けて、前記状態変数において最も高い評価値が付された前記モータの駆動周波数に対応する指令信号を前記インバータに出力するインバータ制御装置と、
     前記機械学習装置から前記第2関数を受けて、前記状態変数において最も高い評価値が付された予測寿命を出力する寿命予測装置とを備える、モータ制御システム。
  11.  前記機械学習装置は、前記インバータ制御装置によって前記指令信号が出力される度に、前記状態変数の変化に応じて前記駆動周波数の評価値を更新するとともに、現在の状態変数に対応する前記電解コンデンサと同種の電解コンデンサの参照寿命と前記予測寿命との差に応じて前記評価値を更新する、請求項10に記載のモータ制御システム。
  12.  前記インバータ制御装置は、前記電解コンデンサのリプル電流が第3基準値を超えた場合、および前記電解コンデンサのリプル電圧が第4基準値を超えた場合の少なくとも一方の場合に、前記モータを停止させる、請求項8~11のいずれか1項に記載のモータ制御システム。
PCT/JP2019/003395 2019-01-31 2019-01-31 機械学習装置、およびモータ制御システム WO2020157919A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/003395 WO2020157919A1 (ja) 2019-01-31 2019-01-31 機械学習装置、およびモータ制御システム
JP2020569280A JP7042932B2 (ja) 2019-01-31 2019-01-31 機械学習装置、およびモータ制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003395 WO2020157919A1 (ja) 2019-01-31 2019-01-31 機械学習装置、およびモータ制御システム

Publications (1)

Publication Number Publication Date
WO2020157919A1 true WO2020157919A1 (ja) 2020-08-06

Family

ID=71841980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003395 WO2020157919A1 (ja) 2019-01-31 2019-01-31 機械学習装置、およびモータ制御システム

Country Status (2)

Country Link
JP (1) JP7042932B2 (ja)
WO (1) WO2020157919A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112182981A (zh) * 2020-10-26 2021-01-05 易事特集团(河南)有限公司 电解电容寿命预测方法、装置、设备及存储介质
CN113131771A (zh) * 2021-04-25 2021-07-16 合肥工业大学 一种基于强化学习的逆变器优化控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169834A (ja) * 1997-08-12 1999-03-09 Fuji Electric Co Ltd インバータ装置用アルミ電解コンデンサの寿命警報装置
JP2007240450A (ja) * 2006-03-10 2007-09-20 Fujitsu General Ltd 平滑コンデンサの劣化検出回路及びこれを備えた電子機器
JP5956662B1 (ja) * 2015-07-31 2016-07-27 ファナック株式会社 電源回生を調整するモータ制御装置、順変換器の制御装置、ならびに機械学習装置およびその方法
WO2018190275A1 (ja) * 2017-04-13 2018-10-18 三菱電機株式会社 電力変換装置、電力変換装置の制御システム、電子機器、機械学習装置及び冷却ファンの制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169834A (ja) * 1997-08-12 1999-03-09 Fuji Electric Co Ltd インバータ装置用アルミ電解コンデンサの寿命警報装置
JP2007240450A (ja) * 2006-03-10 2007-09-20 Fujitsu General Ltd 平滑コンデンサの劣化検出回路及びこれを備えた電子機器
JP5956662B1 (ja) * 2015-07-31 2016-07-27 ファナック株式会社 電源回生を調整するモータ制御装置、順変換器の制御装置、ならびに機械学習装置およびその方法
WO2018190275A1 (ja) * 2017-04-13 2018-10-18 三菱電機株式会社 電力変換装置、電力変換装置の制御システム、電子機器、機械学習装置及び冷却ファンの制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112182981A (zh) * 2020-10-26 2021-01-05 易事特集团(河南)有限公司 电解电容寿命预测方法、装置、设备及存储介质
CN113131771A (zh) * 2021-04-25 2021-07-16 合肥工业大学 一种基于强化学习的逆变器优化控制方法
CN113131771B (zh) * 2021-04-25 2022-09-27 合肥工业大学 一种基于强化学习的逆变器优化控制方法

Also Published As

Publication number Publication date
JP7042932B2 (ja) 2022-03-28
JPWO2020157919A1 (ja) 2021-09-09

Similar Documents

Publication Publication Date Title
KR101668174B1 (ko) 전동기 제어 장치
US9048686B2 (en) Power supply system, controller therefor, and method of manufacture of controller
JP5024827B2 (ja) インバータ装置
JP2017034832A (ja) 保護動作制御部を有するモータ制御装置、ならびに機械学習装置およびその方法
WO2020157919A1 (ja) 機械学習装置、およびモータ制御システム
EP1995870A1 (en) Earth-fault detecting method
US8994317B2 (en) Output control apparatus for electric motor and method for controlling output of electric motor
JP2013005573A (ja) 交流モータの制御装置、および、これを用いた冷凍空調装置
JP2010098820A (ja) 電力変換装置
US11837963B2 (en) Bidirectional power conversion
CN111066236B (zh) 功率转换系统和控制装置
CN108736692B (zh) 电力转换装置以及异常检测方法
JP2008172862A (ja) 多相回転電機の制御装置
US11031893B2 (en) Motor control device
JP6685967B2 (ja) Dc/dcコンバータの制御装置
CN114123806B (zh) 电力转换装置和电力转换方法
US20150115864A1 (en) Motor control apparatus and method for controlling motor
JP5672145B2 (ja) 回転機の制御装置
US9001536B2 (en) Voltage smoothing circuit for smoothing voltage from power supply
CN112350550B (zh) 开关驱动电路和开关驱动装置
JP2015201956A (ja) ベクトル制御装置、それを組み込んだインバータ及びそれを組み込んだインバータとモータとのセット装置
JP5876748B2 (ja) コンバータ装置
JPH0937592A (ja) 3レベルインバータのpwm制御方法および制御装置
JP4857747B2 (ja) 交流電動機のインバータ装置
JP5525747B2 (ja) コンバータの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913936

Country of ref document: EP

Kind code of ref document: A1