WO2020156582A1 - 消防机器人及其控制方法 - Google Patents

消防机器人及其控制方法 Download PDF

Info

Publication number
WO2020156582A1
WO2020156582A1 PCT/CN2020/074241 CN2020074241W WO2020156582A1 WO 2020156582 A1 WO2020156582 A1 WO 2020156582A1 CN 2020074241 W CN2020074241 W CN 2020074241W WO 2020156582 A1 WO2020156582 A1 WO 2020156582A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
fighting robot
gravity
center
tilt angle
Prior art date
Application number
PCT/CN2020/074241
Other languages
English (en)
French (fr)
Inventor
李季
范顺杰
孙兆君
杨占宾
王洪伟
刘江波
Original Assignee
西门子股份公司
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 西门子(中国)有限公司 filed Critical 西门子股份公司
Priority to EP20747901.5A priority Critical patent/EP3904020A4/en
Publication of WO2020156582A1 publication Critical patent/WO2020156582A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/005Manipulators mounted on wheels or on carriages mounted on endless tracks or belts
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C27/00Fire-fighting land vehicles
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/28Accessories for delivery devices, e.g. supports
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0008Balancing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/075Tracked vehicles for ascending or descending stairs, steep slopes or vertical surfaces

Definitions

  • the invention relates to a fire fighting robot and a control method thereof.
  • Fire fighting robots have been widely used for firefighting and rescue.
  • Fire fighting robots usually include some sensors and devices, such as explosion-proof cameras, temperature sensors, and water cannons.
  • the controller of the fire-fighting robot is interfaced with these sensors and devices, so that the controller can run complex algorithms to control them. Therefore, traditional programmable logic controllers (PLC) and microcontrollers (MCU) may be It cannot be used as a controller for fire-fighting robots due to performance and other reasons.
  • PLC programmable logic controllers
  • MCU microcontrollers
  • the explosion-proof camera included in the fire-fighting robot can monitor the environment around the fire-fighting robot.
  • the explosion-proof camera is usually installed on one side of the fire fighting robot. When the fire-fighting robot is walking on a non-flat surface, the installation position of the explosion-proof camera and the large weight of the explosion-proof camera itself may cause the fire-fighting robot to tip over unexpectedly.
  • the present invention aims to solve the above and/or other technical problems and provide a fire fighting robot and its control method.
  • a fire-fighting robot includes: a posture sensing device configured to sense the posture of the fire-fighting robot to obtain posture information related to the posture of the fire-fighting robot; and a control device configured to be based on the posture The information adjusts the center of gravity of the fire-fighting robot to be at the tipping prevention position.
  • the fire fighting robot further includes: a main body; a water cannon, which is movably installed on the main body; and an explosion-proof camera, which is movably installed on the main body.
  • the control device includes a self-balancing unit configured to determine the position of the center of gravity of the fire fighting robot based on the position of the center of gravity of the main body, the position of the center of gravity of the water monitor, and the position of the center of gravity of the explosion-proof camera.
  • the self-balancing unit is also configured to determine the allowable tilt angle of the fire fighting robot according to the determined position of the center of gravity of the fire fighting robot, wherein the allowable tilt angle is less than or equal to the minimum angle formed by the fire fighting robot with the horizontal plane when the fire fighting robot falls over .
  • the self-balancing unit is further configured to determine the tilt angle of the fire fighting robot according to the posture information, wherein, when the self-balancing unit determines that the tilt angle of the fire fighting robot is greater than the allowable tilt angle corresponding to the position of the center of gravity of the fire fighting robot, The self-balancing unit performs at least one of controlling the movement of the water cannon and controlling the movement of the explosion-proof camera, thereby adjusting the center of gravity of the fire-fighting robot to be at the tipping prevention position, wherein the allowable tilt angle corresponding to the tipping prevention position is greater than or equal to The tilt angle of the fire fighting robot.
  • the attitude sensing device includes an Inertial Measurement Unit (IMU, Inertial Measurement Unit).
  • IMU Inertial Measurement Unit
  • a method for controlling a fire fighting robot includes: sensing the posture of the fire fighting robot to obtain posture information related to the posture of the fire fighting robot; and adjusting the center of gravity of the fire fighting robot according to the posture information It is located in the tipping prevention position.
  • the fire-fighting robot includes a main body, a water cannon movably installed on the main body, and an explosion-proof camera movably installed on the main body, wherein the center of gravity adjustment step includes: according to the position of the center of gravity of the main body, the position of the water cannon, and the explosion-proof camera The location of the center of gravity is used to determine the location of the center of gravity of the fire-fighting robot.
  • the step of adjusting the center of gravity further includes: determining the allowable tilt angle of the fire fighting robot according to the determined position of the center of gravity of the fire fighting robot, wherein the allowable tilt angle is less than or equal to the minimum angle formed by the fire fighting robot with the horizontal plane when the fire fighting robot falls over.
  • the step of adjusting the center of gravity further includes: determining the tilt angle of the firefighting robot according to the posture information, wherein, when the self-balancing unit determines that the tilt angle of the firefighting robot is greater than the allowable tilt angle corresponding to the position of the center of gravity of the firefighting robot, automatically
  • the balance unit performs at least one of controlling the movement of the water cannon and controlling the movement of the explosion-proof camera, so as to adjust the center of gravity of the firefighting robot to be at the tipping prevention position, wherein the allowable tilt angle corresponding to the tipping prevention position is greater than or equal to all State the tilt angle of the fire fighting robot.
  • the fire-fighting robot and the control method thereof can adjust the center of gravity in real time according to the current posture of the fire-fighting robot, thereby preventing the fire-fighting robot from overturning. Therefore, the stability and reliability of the fire fighting robot can be improved.
  • Fig. 1 is a schematic block diagram showing a fire fighting robot according to an exemplary embodiment
  • FIG. 2 is a perspective view showing a fire fighting robot according to an exemplary embodiment
  • Fig. 3 is a schematic diagram showing an allowable tilt angle of a fire fighting robot according to an exemplary embodiment
  • FIG. 4 is a schematic diagram illustrating a center of gravity adjustment operation of a fire fighting robot according to an exemplary embodiment
  • FIG. 5 is a flowchart illustrating a control method of a fire fighting robot according to an exemplary embodiment.
  • Fig. 1 is a schematic block diagram showing a fire fighting robot according to an exemplary embodiment
  • Fig. 2 is a perspective view showing a fire fighting robot according to an exemplary embodiment
  • a fire fighting robot according to an exemplary embodiment may include a main body 100.
  • the main body 100 may be a motion platform of the fire-fighting robot, and may be used to install various functional components 310 and 330 of the fire-fighting robot.
  • the water cannon 310 and the explosion-proof camera 330 may be installed at different positions of the main body 100.
  • the main body 100 may also include a walking device 110, and a driving device such as an energy source (for example, a power supply) for providing energy for the operation of the fire fighting robot, a driving device for driving the water cannon 310, an explosion-proof camera 330, and the walking device 110, etc. And a communication device for communicating with the outside (not shown).
  • a driving device such as an energy source (for example, a power supply) for providing energy for the operation of the fire fighting robot, a driving device for driving the water cannon 310, an explosion-proof camera 330, and the walking device 110, etc.
  • a communication device for communicating with the outside (not shown).
  • the fire fighting robot may further include a posture sensing device 500 and a control device 700.
  • the posture sensing device 500 and the control device 700 may be installed in the main body 100 and therefore are not shown in FIG. 2.
  • the posture sensing device 500 can sense (for example, sense in real time) the posture of the fire fighting robot, and can obtain posture information related to the posture of the fire fighting robot.
  • the attitude sensing device 500 may include an Inertial Measurement Unit (IMU, Inertial Measurement Unit).
  • IMU Inertial Measurement Unit
  • the inertial measurement unit can sense angular motion information and linear motion information of the fire fighting robot, such as acceleration, angular velocity, and angular acceleration, and can use these information as posture information related to the posture of the fire fighting robot.
  • the control device 700 can control multiple components of the fire fighting robot, such as the water cannon 310 and the explosion-proof camera 330.
  • the water cannon 310 and the explosion-proof camera 330 may be installed to be movable relative to the main body 100.
  • the control device 700 can control the water cannon 310 and the explosion-proof camera 330 to move relative to the main body 100, thereby changing the positions of the water cannon 310 and the explosion-proof camera 330 relative to the main body 100.
  • the control device 700 can also receive posture information from the posture sensing device 500, and can control the center of gravity of the fire robot according to the posture information. In this way, when the movement of the fire-fighting robot causes the fire-fighting robot to tilt and thus may cause the fire-fighting robot to tip over, the control device 700 can determine that the fire-fighting robot is tilted and may tip over according to the attitude information provided by the attitude sensing device 500. At this time, the control device 700 can, for example, control the water cannon 310 and the explosion-proof camera 330 to move relative to the main body 100, so that the center of gravity of the fire-fighting robot can be adjusted to be in the overturned position to prevent the fire-fighting robot from overturning.
  • the control device 700 may include a self-balancing unit 710, as shown in FIG. 1.
  • the self-balancing unit 710 can obtain the position of the center of gravity of the fire fighting robot. Specifically, the self-balancing unit 710 may first obtain the fire protection based on the position of the center of gravity of the main body 100, the position of the center of gravity of the water monitor 310, the position of the center of gravity of the explosion-proof camera 330, and/or the position of the center of gravity of other components included in the fire fighting robot. The position of the center of gravity of the robot.
  • control device 700 can control the movement of the water cannon 310 and the explosion-proof camera 330 relative to the main body 100, and can therefore record or store the positions of the water cannon 310 and the explosion-proof camera 330 relative to the main body 100 as water cannon position information and explosion-proof camera 330 respectively.
  • Camera location information may include a water cannon movement control unit, an explosion-proof camera movement control unit, and a storage unit (not shown).
  • control device 700 or the self-balancing unit 710 may also pre-store the position of the center of gravity G2 of the water monitor 310 relative to the water monitor 310 and the position of the center of gravity G3 of the explosion-proof camera 330 relative to the explosion-proof camera 330.
  • the self-balancing unit 710 can determine the position of the center of gravity G2 of the water monitor 310 relative to the center of gravity of the main body 100 according to the position of the water monitor 310 relative to the main body 100 and the position of the center of gravity G2 of the water monitor 310 relative to the water monitor 310, and The position of the center of gravity G3 of the water monitor 310 relative to the center of gravity of the main body 100 is determined according to the position of the explosion-proof camera 330 relative to the main body 100 and the position of the center of gravity G3 of the explosion-proof camera 330 relative to the explosion-proof camera.
  • control device 700 or the self-balancing unit 710 may also pre-store the position of the center of gravity G1 of the main body 100 relative to the main body 100. Therefore, the control unit 700 can determine the center of gravity G of the fire fighting robot according to the position of the center of gravity G1 of the main body 100 relative to the main body 100, the position of the center of gravity G2 of the water monitor 310 relative to the main body 100, and the position of the center of gravity G3 of the explosion-proof camera 330 relative to the main body 100. Relative to the position of the main body 100.
  • G 0 is the weight of the fire fighting robot
  • G 1 is the weight of the main body 100
  • G 2 is the weight of the water cannon 310
  • G 3 is the weight of the explosion-proof camera
  • (x 0 , y 0 , z 0 ) is the fire fighting
  • (x 1 , y 1 , z 1 ) is the position of the center of gravity G1 of the main body 100 in the rectangular coordinate system established relative to the main body 100
  • (x 2 , y 2 , z 2 ) is the position of the center of gravity G2 of the water monitor 310 in the spatial rectangular coordinate system established with respect to the main body 100
  • (x 3 , y 3 , z 3 ) is the center of gravity G3 of the explosion-proof camera 330 at The position in a rectangular coordinate system established relative to the main body 100.
  • the weight G 1 and the position of the center of gravity (x 1 , y 1 , z 1 ) of the main body 100 are fixed values.
  • the explosion-proof camera 330 can be fixed horizontally with respect to the main body, and can move vertically relative to the main body under the action of the motor, so that the position of the center of gravity G3 of the explosion-proof camera 330 (x 3 , Y 3 , z 3 ).
  • the water cannon 310 can be installed on the main body and can be swayed by two motors, so that the position of the center of gravity G2 of the water cannon 310 (x 2 , y 2 , z 2 ).
  • the self-balancing unit 710 may determine the allowable tilt angle of the fire fighting robot according to the position of the center of gravity of the fire fighting robot.
  • the allowable tilt angle can be less than or equal to the minimum angle formed by the fire-fighting robot with the horizontal plane when it falls over.
  • Fig. 3 is a schematic diagram showing an allowable tilt angle of a fire fighting robot according to an exemplary embodiment. As shown in FIG. 3, the bottom surface or the projection of the bottom surface of the fire fighting robot on the horizontal plane may be located in a plane defined by the x-axis and the y-axis.
  • r represents the distance between the center of gravity G of the fire-fighting robot determined by the self-balancing unit 710 and the bottom surface or the projection of the bottom surface of the fire-fighting robot on the horizontal plane
  • s represents the edge of the center of gravity G and the bottom surface or the bottom surface of the fire-fighting robot on the horizontal plane.
  • is the angle formed by r and s.
  • can be determined as the allowable tilt angle of the fire-fighting robot, that is, when the tilt angle of the fire-fighting robot is greater than ⁇ , the fire-fighting robot may fall over.
  • ⁇ smaller than ⁇ may be determined as the allowable tilt angle of the fire fighting robot, so that the self-balancing unit 710 may be allowed to adjust the center of gravity when the tilt angle of the fire robot has not reached ⁇ . Therefore, reliability can be improved.
  • control unit 700 or the self-balancing unit 710 may pre-store a lookup table that records the correspondence between the position of the center of gravity of the fire fighting robot and the allowable tilt angle corresponding to the position of the center of gravity.
  • the self-balancing unit 710 may use a pre-stored look-up table to determine the allowable tilt angle corresponding to the position of the center of gravity according to the determined position of the center of gravity of the fire fighting robot.
  • the self-balancing unit 710 can determine the tilt angle of the fire fighting robot according to the posture information, and can determine whether the tilt angle of the fire robot is greater than the allowable tilt angle.
  • the inclination angle of the fire-fighting robot refers to the angle formed with the horizontal plane when the fire-fighting robot is in the current posture.
  • the posture information may be information sensed by an inertial measurement unit IMU. Since it is known to determine the tilt angle with respect to the direction of gravity based on the information sensed by the inertial measurement unit IMU, in order to avoid redundancy, detailed description of the known content is omitted here.
  • the self-balancing unit 710 may adjust the center of gravity of the fire-fighting robot to be at the tipping prevention position. This will be described in detail with reference to FIG. 4 below.
  • Fig. 4 is a schematic diagram illustrating a center of gravity adjustment operation of a fire fighting robot according to an exemplary embodiment.
  • the firefighting robot can move to a position inclined with respect to the ground or a horizontal plane and thus be in a posture as shown in the figure.
  • the self-balancing unit 710 may determine the position of the center of gravity G of the fire fighting robot according to the position of the center of gravity G1 of the main body, the position of the center of gravity G2 of the water monitor, and the position of the center of gravity G3 of the explosion-proof camera as described above.
  • the self-balancing unit 710 may determine the allowable tilt angle according to the position of the center of gravity G, and may determine the current tilt angle of the fire fighting robot according to the posture information. As shown in the left part of FIG. 4, the self-balancing unit 710 can determine that the current tilt angle of the fire fighting robot is greater than the allowable tilt angle. At this time, the self-balancing unit 710 can control at least one of the movement of the water cannon 310 to the anti-overturning position of the water cannon and the movement of the explosion-proof camera 330 to the anti-overturning position of the anti-explosion camera, thereby adjusting the center of gravity of the fire fighting robot to be located Anti-tip position. As shown in FIG.
  • the self-balancing unit 710 may control the movement of the explosion-proof camera 330 relative to the main body 100 to change the position of the center of gravity G3 of the explosion-proof camera 330, for example, move the explosion-proof camera 330 toward the main body 110, as shown in the right part of FIG. Shown.
  • the position of the center of gravity of the fire-fighting robot can be adjusted by changing the position of the center of gravity of the explosion-proof camera 330 and/or the water cannon 310 until the allowable tilt angle corresponding to the position of the center of gravity of the adjusted fire-fighting robot is greater than or equal to the current fire-fighting robot As shown in the right part of Figure 4.
  • control device 700 and/or the self-balancing unit 710 may be implemented as one or more programmable logic controllers, and one or more of the control units in the control device 700 as described in the context This can be achieved by the control device 700 implemented by one or more programmable logic controllers running corresponding algorithms or programs.
  • control device 700 may have the ability to perform complex calculations.
  • the control device 700 may include, for example, Siemens Open Controller of Siemens.
  • the fire fighting robot can adjust the center of gravity in real time according to the current posture, so that the fire fighting robot can be prevented from overturning.
  • the exemplary embodiment is not limited to this, and in other exemplary embodiments, a method for controlling a fire fighting robot may also be provided.
  • FIG. 5 is a flowchart illustrating a control method of a fire fighting robot according to an exemplary embodiment.
  • the control method according to the current exemplary embodiment may be implemented by the fire fighting robot described above with reference to FIGS. 1 to 4. Therefore, for brevity, repeated descriptions of the same or similar features will be omitted.
  • the posture of the fire fighting robot can be sensed to obtain posture information related to the posture.
  • the posture can be sensed by the posture sensing device installed on the fire fighting robot.
  • the attitude sensing device may include an inertial measurement unit (IMU, Inertial Measurement Unit).
  • the center of gravity of the fire-fighting robot can be adjusted to be at the anti-overturning position according to the posture information in operation S502.
  • the fire fighting robot may include components such as a main body, a water cannon, and an explosion-proof camera. Water cannons and explosion-proof cameras can be mounted on the main body and can move relative to the main body. Therefore, the position of the center of gravity of the fire fighting robot can be adjusted by controlling the position of the water cannon, explosion-proof camera, etc. relative to the main body.
  • the position of the center of gravity of the firefighting robot can be determined according to the position of the center of gravity of the main body, the position of the center of gravity of the water monitor, and the position of the center of gravity of the explosion-proof camera.
  • the allowable tilt angle can be determined according to the position of the center of gravity of the fire fighting robot.
  • the allowable inclination angle may be defined as less than or equal to the minimum angle formed by the fire-fighting robot with the horizontal plane when it overturns. Therefore, the allowable tilt angle may depend on the current position of the center of gravity of the fire fighting robot, and may be calculated in real time as described above with reference to FIG. 3.
  • a lookup table indicating the correspondence between the position of the center of gravity of the fire fighting robot and the allowable tilt angle may be stored in advance.
  • the tilt angle of the fire robot can be determined according to the posture information.
  • the tilt angle can be determined based on various information sensed by the inertial measurement unit.
  • the tilt angle of the fire fighting robot is greater than the allowable tilt angle corresponding to the position of the center of gravity of the fire robot.
  • the movement of the water cannon can be controlled and/or the movement of the explosion-proof camera can be controlled, thereby adjusting the center of gravity of the fire-fighting robot to Located in the tipping prevention position.
  • the tipping prevention position may be defined as an allowable tilt angle corresponding to the tipping prevention position greater than or equal to the tilt angle of the fire fighting robot.
  • the fire-fighting robot and the control method thereof can adjust the center of gravity in real time according to the current posture of the fire-fighting robot, thereby preventing the fire-fighting robot from overturning. Therefore, the stability and reliability of the fire fighting robot can be improved.
  • a program product such as a non-transitory machine-readable medium.
  • the non-transitory machine-readable medium may have instructions (ie, the above-mentioned elements implemented in the form of software) that, when executed by a machine, cause the machine to perform the various operations and operations described above in conjunction with FIG. 5 in the various embodiments of the present application.
  • a computer program including computer-executable instructions, which when executed, cause at least one processor to perform various operations described above in conjunction with FIG. 5 in the various embodiments of the present application. and function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Multimedia (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Manipulator (AREA)

Abstract

一种消防机器人及其控制方法。所述消防机器人包括:姿态感测装置(500),被构造为感测所述消防机器人的姿态以得到与所述消防机器人的姿态相关的姿态信息;控制装置(700),被构造为根据姿态信息将所述消防机器人的重心调节为位于防翻倒位置。因此,可以防止消防机器人翻倒,改善消防机器人的可靠性。

Description

消防机器人及其控制方法 技术领域
本发明涉及消防机器人及其控制方法。
背景技术
当前,消防机器人已经广泛地用于消防及营救。消防机器人通常包括一些传感器和装置,例如防爆相机(explosion-proof camera)、温度传感器、水炮(water cannon)等。消防机器人的控制器与这些传感器和装置接口连接,从而控制器可以运行复杂的算法,以对它们进行控制,因此,传统的可编程逻辑控制器(PLC)和微程序控制器(MCU)等可能因为性能等原因而无法被用作消防机器人的控制器。
此外,消防机器人所包括的防爆相机可以监视消防机器人周围的环境。防爆相机通常安装在消防机器人的一侧上。当消防机器人在非平坦的表面上行走时,防爆相机的安装位置和防爆相机自身的很大的重量可能导致消防机器人不期望地翻倒。
发明内容
本发明旨在解决上面和/或其他技术问题并提供一种消防机器人及其控制方法。
根据示例性实施例,一种消防机器人包括:姿态感测装置,被构造为感测所述消防机器人的姿态以得到与所述消防机器人的姿态相关的姿态信息;控制装置,被构造为根据姿态信息将所述消防机器人的重心调节为位于防翻倒位置。
所述消防机器人还包括:主体;水炮,能够运动地安装在主体上;防爆相机,能够运动地安装在主体上。
控制装置包括:自平衡单元,被构造为根据主体的重心的位置、水炮的重心的位置和防爆相机的重心的位置来确定所述消防机器人的重心的位置。
自平衡单元还被构造为根据确定的所述消防机器人的重心的位置来确定所述消防机器人的允许倾斜角度,其中,允许倾斜角度小于等于所述消防机器人翻倒时与水平面所形成的最小角度。
自平衡单元还被构造为根据姿态信息确定所述消防机器人的倾斜角度,其中,当自平衡单元确定所述消防机器人的倾斜角度大于与所述消防机器人的重心的位置对应的允许倾斜角度时,自平衡单元进行控制水炮运动和控制防爆相机运动中的至少一种,从而将所述消防机器人的重心调节为位于防翻倒位置,其中,与防翻倒位置对应的允许倾斜角度大 于或等于所述消防机器人的倾斜角度。
姿态感测装置包括惯性测量单元(IMU,Inertial Measurement Unit)。
根据另一示例性实施例,一种消防机器人的控制方法包括:感测所述消防机器人的姿态以得到与所述消防机器人的姿态相关的姿态信息;根据姿态信息将所述消防机器人的重心调节为位于防翻倒位置。
消防机器人包括主体、能够运动地安装在主体上的水炮和能够运动地安装在主体上的防爆相机,其中,重心调节步骤包括:根据主体的重心的位置、水炮的重心的位置和防爆相机的重心的位置来确定所述消防机器人的重心的位置。
重心调节步骤还包括:根据确定的所述消防机器人的重心的位置来确定所述消防机器人的允许倾斜角度,其中,允许倾斜角度小于等于所述消防机器人翻倒时与水平面所形成的最小角度。
重心调节步骤还包括:根据姿态信息确定所述消防机器人的倾斜角度,其中,当自平衡单元确定所述消防机器人的倾斜角度大于与所述消防机器人的重心的位置对应的允许倾斜角度时,自平衡单元进行控制水炮运动和控制防爆相机运动中的至少一种,从而将所述消防机器人的重心调节为位于防翻倒位置,其中,与防翻倒位置对应的允许倾斜角度大于或等于所述消防机器人的倾斜角度。
根据示例性实施例,消防机器人及其控制方法可以根据消防机器人当前所处的姿态实时调节重心,从而可以防止消防机器人翻倒。因此,可以改善消防机器人的稳定性和可靠性。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中,
图1是示出根据示例性实施例的消防机器人的示意性框图;
图2是示出根据示例性实施例的消防机器人的透视图;
图3是示出根据示例性实施例的消防机器人的允许倾斜角度的示意图;
图4是示出根据示例性实施例的消防机器人重心调节操作的示意图;
图5是示出根据示例性实施例的消防机器人的控制方法的流程图。
附图标记说明:
100 主体
310 水炮
330 防爆相机
500 姿态感测装置
700 控制装置
710 自平衡单元
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。
图1是示出根据示例性实施例的消防机器人的示意性框图,图2是示出根据示例性实施例的消防机器人的透视图。如图1和图2中所示,根据示例性实施例的消防机器人可以包括主体100。主体100可以为消防机器人的运动平台,并可以用于安装消防机器人的多种功能组件310、330。参照图2,水炮310和防爆相机330等可以安装在主体100的不同位置上。此外,主体100还可以包括行走装置110,以及诸如用于为消防机器人的运行提供能量的能量源(例如,电源)、用于驱动水炮310、防爆相机330、行走装置110等的驱动装置、以及用于与外部通信的通信装置等(未示出)。
此外,根据示例性实施例的消防机器人还可以包括姿态感测装置500和控制装置700。姿态感测装置500和控制装置700可以安装在主体100中,并因此在图2中没有示出。姿态感测装置500可以感测(例如,实时感测)消防机器人的姿态,并可以得到与消防机器人的姿态相关的姿态信息。在一个示例性实施例中,姿态感测装置500可以包括惯性测量单元(IMU,Inertial Measurement Unit)。惯性测量单元可以感测消防机器人的角运动信息和线运动信息,例如,加速度、角速度和角加速度等,并可以将这些信息作为与消防机器人的姿态相关的姿态信息。
控制装置700可以控制消防机器人的多个组件,例如,水炮310和防爆相机330等。例如,水炮310和防爆相机330可以被安装为可相对于主体100进行运动。控制装置700可以控制水炮310和防爆相机330进行相对于主体100的运动,从而改变水炮310和防爆相机330相对于主体100的位置。
控制装置700还可以接收来自姿态感测装置500的姿态信息,并可以根据姿态信息来控制消防机器人的重心。如此,当消防机器人运动使得消防机器人发生倾斜并因此可能导致消防机器人翻倒时,控制装置700可以根据姿态感测装置500提供的姿态信息确定消防机器人发生倾斜并可能翻倒,这时,控制装置700可以例如通过控制水炮310和防爆相机330相对于主体100进行运动,从而可以将消防机器人的重心调节为位于放翻倒位置,以防止消防机器人发生翻倒。
为此,控制装置700可以包括自平衡单元710,如图1中所示。自平衡单元710可以得到消防机器人的重心的位置。具体地讲,自平衡单元710可以首先根据主体100的重心的位置、水炮310的重心的位置、防爆相机330的重心的位置和/或消防机器人所包括的其他组件的重心的位置来得到消防机器人的重心的位置。这里,控制装置700可以控制水炮310和防爆相机330相对于主体100进行运动,并可以因此记录或存储水炮310和防爆相机330相对于主体100的位置,以分别作为水炮位置信息和防爆相机位置信息。例如,控制装置700或自平衡单元710可以包括水炮运动控制单元和防爆相机运动控制单元以及存储单元(未示出)。此外,控制装置700或自平衡单元710还可以预先存储有水炮310的重心G2相对于水炮310的位置和防爆相机330的重心G3相对于防爆相机330的位置。因此,自平衡单元710可以根据水炮310相对于主体100的位置和水炮310的重心G2相对于水炮310的位置确定水炮310的重心G2相对于主体100的水炮重心位置,并可以根据防爆相机330相对于主体100的位置和防爆相机330的重心G3相对于防爆相机的位置确定水炮310的重心G3相对于主体100的防爆相机重心位置。此外,控制装置700或自平衡单元710还可以预先存储有主体100的重心G1相对于主体100的位置。因此,控制单元700可以根据主体100的重心G1相对于主体100的位置、水炮310的重心G2相对于主体100的位置、防爆相机330的重心G3相对主体100的位置来确定消防机器人的重心G相对于主体100的位置。
Figure PCTCN2020074241-appb-000001
在上式中,G 0是消防机器人的重量,G 1是主体100的重量、G 2是水炮310的重量,G 3是防爆相机的重量,(x 0,y 0,z 0)是消防机器人的重心G在相对于主体100建立的空间直角坐标系中的位置,(x 1,y 1,z 1)是主体100的重心G1在相对于主体100建立的空间直角坐标系中的位置,(x 2,y 2,z 2)是水炮310的重心G2在相对于主体100建立的空间直角坐标系中的位置,(x 3,y 3,z 3)是防爆相机330的重心G3在相对于主体100建立的空间直角坐标系中的位置。在一个示例性实施例中,主体100(即,消防机器人运动平台)的重量G 1及重心位置(x 1,y 1,z 1)为固定值。防爆相机330可以相对于主体水平固定,并可以在电机的作用下相对于主体垂直上下运动,从而可以根据电机的运行状态和防爆相机的初始位置来确定防爆相机330的重心G3的位置(x 3,y 3,z 3)。水炮310可以安装在主体上并可以通过两个电机实现摆动,从而可以根据两个电机的运行状态和水炮310的初始位置来确定水炮310的重心G2的位置(x 2,y 2,z 2)。
然后,自平衡单元710可以根据确定消防机器人的重心的位置确定消防机器人的允许 倾斜角度。允许倾斜角度可以为小于等于消防机器人在翻倒时与水平面所形成的最小角度。图3是示出根据示例性实施例的消防机器人的允许倾斜角度的示意图。如图3中所示,消防机器人的底表面或底表面在水平面上的投影可以位于由x轴和y轴限定的平面中。r表示自平衡单元710确定的消防机器人的重心G与消防机器人的底表面或底表面在水平面上的投影的距离,s表示重心G与消防机器人的底表面或底表面在水平面上的投影的边缘的距离。β为r与s所成的角度。这里,可以将β确定为消防机器人的允许倾斜角度,即,当消防机器人的倾斜角度大于β时,消防机器人将可能会翻倒。可选择地,可以将小于β的α确定为消防机器人的允许倾斜角度,从而可以允许自平衡单元710在消防机器人的倾斜角度尚未达到β时即可进行重心调节。因此,可以提高可靠性。
在一个示例性实施例中,控制单元700或自平衡单元710可以预先存储有记录了消防机器人的重心位置和与该重心位置对应的允许倾斜角度之间的对应关系的查找表。在该示例性实施例中,自平衡单元710可以根据确定的消防机器人的重心的位置,利用预先存储的查找表来确定与该重心的位置对应的允许倾斜角度。
然后,当自平衡单元710可以根据姿态信息确定消防机器人的倾斜角度,并可以确定消防机器人的倾斜角度是否大于允许倾斜角度。这里,消防机器人的倾斜角度是指在消防机器人处于当前的姿态时与水平面所形成的角度。在一个示例性实施例中,姿态信息可以为惯性测量单元IMU感测的信息。因为根据惯性测量单元IMU感测的信息确定相对于重力方向的倾斜角度是已知的,所以为了避免冗余,这里省略了对于已知内容的详细描述。
当自平衡单元710确定消防机器人的倾斜角度大于允许倾斜角度时,自平衡单元710可以将消防机器人的重心调节为位于防翻倒位置。这将在下面参照图4进行详细描述。
图4是示出根据示例性实施例的消防机器人重心调节操作的示意图。如图4中所示,消防机器人可以移动至相对于地或水平面倾斜的位置并因此处于如图中所示的姿态。这时,自平衡单元710可以如上所述地根据主体的重心G1的位置、水炮的重心G2的位置和防爆相机的重心G3的位置来确定所述消防机器人的重心G的位置。然后,自平衡单元710可以根据重心G的位置确定允许倾斜角度,并可以根据姿态信息确定消防机器人的当前的倾斜角度。如图4中的左边部分所示,自平衡单元710可以确定消防机器人的当前的倾斜角度大于允许倾斜角度。这时,自平衡单元710可以控制水炮310运动至水炮防翻倒位置和控制防爆相机330运动至防爆相机防翻倒位置中的至少一种,从而将所述消防机器人的重心调节为位于防翻倒位置。如图4中所示,自平衡单元710可以控制防爆相机330相对于主体100运动以改变防爆相机330的重心G3的位置,例如,使防爆相机330朝向主体110运动,如图4中的右边部分所示。如此,可以因改变防爆相机330和/或水炮310的重心的 位置来调节消防机器人的重心的位置,直到与调节后的消防机器人的重心的位置对应的允许倾斜角度大于或等于消防机器人的当前的倾斜角度为止,如图4中的右边部分所示。
根据示例性实施例,控制装置700和/或自平衡单元710可以被实施为一个或多个可编程逻辑控制器,控制装置700中的如在上下文中所描述的控制单元中的一个或多个可以通过由一个或多个可编程逻辑控制器实现的控制装置700运行相应的算法或程序来实现。这里,为了满足对于消防机器人的各个组件的控制需要,控制装置700可以具有进行复杂运算的能力,为此,控制装置700可以包括例如西门子公司的Siemens Open Controller。
根据示例性实施例,消防机器人可以根据当前所处的姿态实时调节重心,从而可以防止消防机器人翻倒。然而,示例性实施例不限于此,在其他的示例性实施例中,还可以提供一种消防机器人的控制方法。
图5是示出根据示例性实施例的消防机器人的控制方法的流程图。根据当前示例性实施例的控制方法可以由上面参照图1至图4描述的消防机器人实现。因此,为了简明,将省略相同或相似特征的重复描述。
如图5中所示,首先,在操作S501,可以感测消防机器人的姿态以得到与姿态相关的姿态信息。这里,可以通过安装在消防机器人上的姿态感测装置来感测姿态。例如,姿态感测装置可以包括惯性测量单元(IMU,Inertial Measurement Unit)。
当得到了姿态信息时,可以在操作S502根据姿态信息将消防机器人的重心调节为位于防翻倒位置。例如,消防机器人可以包括诸如主体、水炮、防爆相机等组件。水炮和防爆相机等可以被安装在主体上并可以相对主体运动。因此,可以通过控制水炮和防爆相机等的相对于主体的位置来调节消防机器人的重心的位置。
具体地讲,首先,可以根据主体的重心的位置、水炮的重心的位置和防爆相机的重心的位置来确定所述消防机器人的重心的位置。当确定了机器人的重心的位置时,可以根据消防机器人的重心的位置来确定允许倾斜角度。这里,允许倾斜角度可以被定义为小于等于所述消防机器人翻倒时与水平面所形成的最小角度。因此,允许倾斜角度可以取决于消防机器人的重心的当前的位置,并可以以上面参照图3描述的进行实时计算。或者,可以预先存储指示消防机器人的重心的位置与允许倾斜角度的对应关系的查找表。
同时,可以根据姿态信息确定消防机器人的倾斜角度。例如,可以根据惯性测量单元感测到的各种信息来确定倾斜角度。
然后,可以确定消防机器人的倾斜角度是否大于与所述消防机器人的重心的位置对应的允许倾斜角度。当确定所述消防机器人的倾斜角度大于与所述消防机器人的重心的位置对应的允许倾斜角度时,可以控制水炮运动和/或可以控制防爆相机运动,从而将所述消防 机器人的重心调节为位于防翻倒位置。这里,防翻倒位置可以被定义为与防翻倒位置对应的允许倾斜角度大于或等于所述消防机器人的倾斜角度。
根据示例性实施例,消防机器人及其控制方法可以根据消防机器人当前所处的姿态实时调节重心,从而可以防止消防机器人翻倒。因此,可以改善消防机器人的稳定性和可靠性。
根据一个实施例,提供了一种诸如非暂时性机器可读介质的程序产品。非暂时性机器可读介质可以具有指令(即,上述以软件形式实现的元素),该指令当被机器执行时,使得机器执行本申请的各个实施例中以上结合图5描述的各种操作和功能。
根据一个实施例,提供了一种计算机程序,包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行本申请的各个实施例中以上结合图5描述的各种操作和功能。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作的等同变化、修改与结合,均应属于本发明保护的范围。

Claims (12)

  1. 消防机器人,其特征在于,所述消防机器人包括:
    姿态感测装置(500),被构造为感测所述消防机器人的姿态以得到与所述消防机器人的姿态相关的姿态信息;
    控制装置(700),被构造为根据所述姿态信息将所述消防机器人的重心调节为位于防翻倒位置。
  2. 如权利要求1所述的消防机器人,其特征在于,所述消防机器人还包括:
    主体(100);
    水炮(310),能够相对于所述主体(100)运动地安装在主体上;
    防爆相机(330),能够相对于所述主体(100)运动地安装在主体上。
  3. 如权利要求2所述的消防机器人,其特征在于,控制装置包括:
    自平衡单元(710),被构造为根据主体的重心的位置、水炮的重心的位置和防爆相机的重心的位置来确定所述消防机器人的重心的位置。
  4. 如权利要求3所述的消防机器人,其特征在于,自平衡单元还被构造为根据确定的所述消防机器人的重心的位置来确定所述消防机器人的允许倾斜角度,其中,允许倾斜角度小于等于所述消防机器人翻倒时与水平面所形成的最小角度。
  5. 如权利要求3所述的消防机器人,其特征在于,自平衡单元还被构造为根据姿态信息确定所述消防机器人的倾斜角度,其中,当自平衡单元确定所述消防机器人的倾斜角度大于与所述消防机器人的重心的位置对应的允许倾斜角度时,自平衡单元进行控制水炮运动和控制防爆相机运动中的至少一种,从而将所述消防机器人的重心调节为位于防翻倒位置,其中,与防翻倒位置对应的允许倾斜角度大于或等于所述消防机器人的倾斜角度。
  6. 如权利要求1所述的消防机器人,其特征在于,姿态感测装置包括惯性测量单元(IMU,Inertial Measurement Unit)。
  7. 消防机器人的控制方法,其特征在于,所述方法包括:
    感测所述消防机器人的姿态以得到与所述消防机器人的姿态相关的姿态信息;
    根据姿态信息将所述消防机器人的重心调节为位于防翻倒位置。
  8. 如权利要求7所述的方法,其特征在于,消防机器人包括主体、能够运动地安装在主体上的水炮和能够运动地安装在主体上的防爆相机,其中,重心调节步骤包括:
    根据主体的重心的位置、水炮的重心的位置和防爆相机的重心的位置来确定所述消防机器人的重心的位置。
  9. 如权利要求8所述的方法,其特征在于,重心调节步骤还包括:
    根据确定的所述消防机器人的重心的位置来确定所述消防机器人的允许倾斜角度,其中,允许倾斜角度小于等于所述消防机器人翻倒时与水平面所形成的最小角度。
  10. 如权利要求9所述的方法,其特征在于,重心调节步骤还包括:
    根据姿态信息确定所述消防机器人的倾斜角度,其中,当自平衡单元确定所述消防机器人的倾斜角度大于与所述消防机器人的重心的位置对应的允许倾斜角度时,自平衡单元进行控制水炮运动和控制防爆相机运动中的至少一种,从而将所述消防机器人的重心调节为位于防翻倒位置,其中,与防翻倒位置对应的允许倾斜角度大于或等于所述消防机器人的倾斜角度。
  11. 非暂时性机器可读介质,其特征在于,所述非暂时性机器可读介质上存储有计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行根据权利要求7至10中任一项所述的方法。
  12. 计算机程序,其特征在于,所述计算机程序包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行根据权利要求7至10中任一项所述的方法。
PCT/CN2020/074241 2019-01-31 2020-02-03 消防机器人及其控制方法 WO2020156582A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20747901.5A EP3904020A4 (en) 2019-01-31 2020-02-03 FIRE FIGHTING ROBOT AND CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910099512.0A CN111494845B (zh) 2019-01-31 2019-01-31 消防机器人及其控制方法
CN201910099512.0 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020156582A1 true WO2020156582A1 (zh) 2020-08-06

Family

ID=71840849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074241 WO2020156582A1 (zh) 2019-01-31 2020-02-03 消防机器人及其控制方法

Country Status (3)

Country Link
EP (1) EP3904020A4 (zh)
CN (1) CN111494845B (zh)
WO (1) WO2020156582A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112870614A (zh) * 2021-01-08 2021-06-01 浙江华消科技有限公司 机器人的控制方法、机器人和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168460A1 (en) * 2010-01-14 2011-07-14 Goldenberg Andrew A Mobile robot
CN202459915U (zh) * 2012-02-14 2012-10-03 上海务进消防安全设备有限公司 一种消防灭火机器人的履带装置
CN106272564A (zh) * 2015-05-29 2017-01-04 鸿富锦精密工业(深圳)有限公司 机器人防跌倒系统
CN107932470A (zh) * 2017-11-17 2018-04-20 泰州市海博汽车科技有限公司 一种消防机器人的重量支撑装置
CN108189918A (zh) * 2018-01-03 2018-06-22 京东方科技集团股份有限公司 一种机器人防跌倒装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7654348B2 (en) * 2006-10-06 2010-02-02 Irobot Corporation Maneuvering robotic vehicles having a positionable sensor head
DE102006050941B3 (de) * 2006-10-28 2008-07-10 Diehl Bgt Defence Gmbh & Co. Kg Steuerbarer Landroboter
TW201446561A (zh) * 2013-06-05 2014-12-16 Cal Comp Electronics & Comm Co 載具
CN106394711B (zh) * 2016-11-10 2019-07-02 安徽工程大学 一种基于重心调节机构的运载装置
CN107127745B (zh) * 2017-06-16 2023-04-18 哈尔滨工大特种机器人有限公司 一种智能安防机器人
CN107875550A (zh) * 2017-11-07 2018-04-06 山东阿图机器人科技有限公司 一种面向复杂地面环境的消防灭火机器人
CN107875549B (zh) * 2017-11-07 2021-05-25 山东国兴智能科技股份有限公司 防爆消防侦察灭火机器人及工作方法
CN207841314U (zh) * 2018-02-08 2018-09-11 成都科维思科技有限公司 防倾倒机器人移动底座

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168460A1 (en) * 2010-01-14 2011-07-14 Goldenberg Andrew A Mobile robot
CN202459915U (zh) * 2012-02-14 2012-10-03 上海务进消防安全设备有限公司 一种消防灭火机器人的履带装置
CN106272564A (zh) * 2015-05-29 2017-01-04 鸿富锦精密工业(深圳)有限公司 机器人防跌倒系统
CN107932470A (zh) * 2017-11-17 2018-04-20 泰州市海博汽车科技有限公司 一种消防机器人的重量支撑装置
CN108189918A (zh) * 2018-01-03 2018-06-22 京东方科技集团股份有限公司 一种机器人防跌倒装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904020A4 *

Also Published As

Publication number Publication date
EP3904020A1 (en) 2021-11-03
CN111494845B (zh) 2021-12-14
CN111494845A (zh) 2020-08-07
EP3904020A4 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
US8041456B1 (en) Self-balancing robot including an ultracapacitor power source
US8731720B1 (en) Remotely controlled self-balancing robot including kinematic image stabilization
US20200213518A1 (en) Method for controlling gimbal, gimbal controller, and gimbal
EP3118508B1 (en) Control method for pan tilt and control system of pan tilt
US8001837B2 (en) Balancing device
US11975787B2 (en) Control device for mobile body
US9423795B2 (en) Inverted pendulum type vehicle
US10168715B2 (en) Ball-balancing robot
WO2020156582A1 (zh) 消防机器人及其控制方法
CN111316029B (zh) 云台重心配平的方法、云台及客户端
WO2020042134A1 (zh) 云台的控制方法、云台和移动平台
TW201643579A (zh) 無人飛行載具自動啟動系統及方法
CN112644599B (zh) 双足机器人的姿态调整方法、装置、设备及存储介质
WO2020042064A1 (zh) 云台的控制方法与装置、云台系统和无人机
JP3628826B2 (ja) 脚式移動ロボットの遠隔制御システム
JP2016224654A (ja) 自律走行ロボット
Li et al. Stabilizing humanoids on slopes using terrain inclination estimation
JP7155562B2 (ja) 姿勢角演算装置、移動装置、姿勢角演算方法、およびプログラム
JP2008119763A (ja) 二足歩行ロボットの制御装置
JP5752565B2 (ja) ロボットアーム
JP7295654B2 (ja) 自走式ロボット
JP2009184035A (ja) 脚式ロボット、及びその制御方法
JP2005193727A (ja) 飛翔ロボット
JP6225869B2 (ja) 倒立二輪型移動体システム
US10871785B2 (en) Method and system for controlling attitude of rotor unmanned aerial vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020747901

Country of ref document: EP

Effective date: 20210728