WO2020156228A1 - 一种钛合金的丝材电弧增材制造方法 - Google Patents

一种钛合金的丝材电弧增材制造方法 Download PDF

Info

Publication number
WO2020156228A1
WO2020156228A1 PCT/CN2020/072673 CN2020072673W WO2020156228A1 WO 2020156228 A1 WO2020156228 A1 WO 2020156228A1 CN 2020072673 W CN2020072673 W CN 2020072673W WO 2020156228 A1 WO2020156228 A1 WO 2020156228A1
Authority
WO
WIPO (PCT)
Prior art keywords
deposited metal
cooling
arc additive
friction stir
multilayer
Prior art date
Application number
PCT/CN2020/072673
Other languages
English (en)
French (fr)
Inventor
何长树
韦景勋
李颖
张志强
田妮
秦高梧
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to US17/289,168 priority Critical patent/US11951560B2/en
Publication of WO2020156228A1 publication Critical patent/WO2020156228A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/1255Tools therefor, e.g. characterised by the shape of the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/042Built-up welding on planar surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Definitions

  • the invention belongs to the technical field of metal additive manufacturing, and relates to a titanium alloy wire arc additive manufacturing method, in particular to a titanium alloy wire arc additive manufacturing method assisted by cooling roll pressing and friction stir processing.
  • WAAM Wire and Arc Additive Manufacture
  • GMAW gas metal arc welding
  • GTAW argon tungsten arc welding
  • PAW plasma arc welding
  • the size of the manufactured parts is not limited by the size of the equipment forming cylinder and the vacuum chamber, and it is easy to realize the manufacture of large-size components.
  • Titanium alloys have low density, high specific strength and specific stiffness, good corrosion resistance, high temperature mechanical properties, fatigue and creep resistance, and are increasingly used in the aerospace field, warships and weapons and other military products.
  • Forming accuracy mainly includes two indicators: geometrical size accuracy and surface roughness.
  • the multiple thermal cycles in the additive process result in higher thermal stress, which causes deformation of the formed part and substrate, and brings more difficulties to the control of dimensional accuracy.
  • due to the serious heat accumulation and poor heat dissipation during the wire arc additive forming process it is easy to cause collapse and "sagging" at the joint between layers, and the forming surface is prone to unevenness, which eventually leads to an increase in the surface roughness of the formed part. .
  • the formed parts are prone to form coarse columnar crystals and uneven chemical composition caused by segregation, which in turn leads to performance deterioration (grain boundary brittleness, intergranular corrosion, etc.).
  • shape control and controllability problems are common problems faced by the metal wire arc additive manufacturing technology, and are also the current research hotspots in this field.
  • heat input methods such as surfacing welding process parameter optimization and path planning are mainly used to solve the problem of flow and collapse; in addition, other methods are used to solve the surface roughness of the formed part by finishing after forming or introducing other methods during the forming process. It can be solved by adopting finishing after forming or introducing other processing methods during forming.
  • the grain size is reduced to less than 30 ⁇ m, of which the 0-5 ⁇ m crystal grains account for about 49%, the 5-10 ⁇ m crystal grains account for about 30%, and the remaining crystal grain size is 10-30 ⁇ m.
  • the effect of "in-situ rolling" and “interlayer rolling” in improving the solidification structure is related to the strain introduced during the forming process, that is to say, the larger the applied rolling force, the denser and finer the structure, but This also leads to its obvious limitations in the forming of complex shapes and thin-walled components.
  • Chinese Patent CN106735967A discloses a method of ultrasonic vibration-assisted arc additive manufacturing controllability. The method proposes to apply non-contact ultrasonic vibration to the molten pool synchronously during the arc additive manufacturing process to break the crystal grains in the molten pool. , Inhibit the growth of grains, and then achieve grain refinement, but this method has no significant effect in solving the problems of pores and grain boundary liquefaction that occur during the wire arc additive forming process.
  • Friction Stir Processing (FSP) technology is a technology developed on the basis of Friction Stir Welding (FSW) for the modification of the microstructure of materials and the preparation of new materials.
  • the basic principle is similar to that of FSW.
  • the high-speed rotating stirring needle is pressed into the material, and the material to be processed undergoes violent plastic deformation, mixing and crushing through the strong stirring action of the stirring head, so as to achieve the densification, homogenization and fineness of the material microstructure To improve the performance of the material.
  • FSP technology has achieved good results in the preparation of fine-grain/ultra-fine-grain materials and surface/bulk composite materials, the modification of the microstructure of heterogeneous materials, and the local hardening/defect repair of workpieces.
  • FSP is a solid-state processing technology with low heat input and low thermal deformation and residual stress of the material after processing.
  • the interlayer friction stir processing modification is combined in the arc additive manufacturing process of titanium alloy wire, it will not only help refine the internal microstructure of the additive body, but also eliminate defects such as pores and cracks, and obtain a structure
  • the dense and uniform chemical composition can reduce thermal deformation, reduce residual stress, and improve the mechanical properties of the additive body.
  • the area of action of the stirring pin is limited, and the metal on the sidewall of the additive is difficult to be processed, and the metal on the sidewall still retains the characteristics of the casting structure; in addition, the front layer is stirred
  • the microstructure of the deposited metal modified by friction processing will be coarsened due to the action of multiple thermal cycles, resulting in a decrease in the performance of the additive body.
  • the present invention provides an arc additive manufacturing method of titanium alloy wire.
  • the technical solution is as follows:
  • a titanium alloy wire arc additive manufacturing method includes the following steps:
  • Step 1 Use the 3D drawing software to draw the part model, use the slicing software to slice the part model to obtain the layered slice data, use the simulation software to simulate the layered slice data and optimize the forming path to generate robot control Code, the robot control code is imported into the welding robot, and the welding robot is used to perform arc additive forming of titanium alloy wire on a pre-prepared substrate, co-depositing 2 to 4 layers to form multilayer deposited metal, and cooling is used in the forming process
  • the rolling device applies cooling rolling to the side wall of the multilayer deposited metal. During the cooling and rolling process, the temperature of the cooling water is 10-40°C, and the flow of the cooling water is 1000-3000L/h.
  • the rolling stress of the multilayer deposited metal 50 ⁇ 400MPa;
  • Step 2 Milling the side and top surface of the multilayer deposited metal
  • Step 3 Use friction stir processing equipment to perform friction stir processing on the multi-layer deposited metal after milling, and use a cooling roller device to apply cooling roll pressure to the side wall of the multi-layer deposited metal during the friction stir processing process, and cool during the cooling roll process
  • the temperature of the water is 10-40°C
  • the flow rate of the cooling water is 1000-3000L/h
  • the rolling stress of the multilayer deposited metal is 100-800MPa
  • Step 4 Perform fine milling on the upper surface of the multilayer deposited metal to make the machined surface smooth for the next step of arc additive forming;
  • Step 5 Repeat the above steps repeatedly until the multilayer deposited metal reaches the preset shape and size, and the additive body is obtained;
  • the cooling roller pressing device includes a roller, a heat-conducting cylinder and a heat-conducting outer ring, the heat-conducting outer ring is rotatably assembled on the outer wall of the heat-conducting cylinder, the heat-conducting cylinder is provided with an inner cavity, and the upper surface of the heat-conducting cylinder is provided with a communication with the inner cavity.
  • the cooling water inlet of the heat-conducting cylinder is provided with a cooling water outlet communicating with the inner cavity on the lower surface of the heat-conducting cylinder.
  • the roller is vertically fixed and assembled in the center of the upper surface of the heat-conducting cylinder, and the roller is stirred with the welding gun of the welding robot or the friction stir processing equipment Synchronize your head.
  • step 1 the welding current used in the arc additive forming process is 66-300A, the welding voltage is 15.0-25.0V, the wire swing amplitude is 2.0-6.5mm, the wire swing speed is 600-1600mm/min, and the forming speed is 100- 400mm/min, the lifting height of each layer of welding torch is 1.0 ⁇ 2.5mm.
  • the width of the multilayer metal deposited in the arc additive forming in step 1 is 7-50 mm.
  • the multilayer metal deposition described in step 1 is obtained by single-pass multilayer deposition or multiple-pass multilayer deposition.
  • step 2 the milling amount of the side surface of the multilayer deposited metal is 0.1-0.5 mm, and the milling amount of the top surface is 0.3-2.2 mm.
  • step 3 the shaft needle length of the stirring head of the friction stir processing equipment is greater than the height of the multilayer deposited metal after milling, and the shaft shoulder diameter of the stirring head is slightly smaller than the width of the multilayer deposited metal after milling.
  • the shaft shoulder diameter of the stirring head used in the friction stir processing equipment is 6 ⁇ 46mm
  • the length of the stirring needle is 2 ⁇ 5mm
  • the rotation speed of the stirring head is 800 ⁇ 2000r/min
  • the traveling speed is 40 ⁇ 200mm/min
  • the inclination angle of the stirring head is 1.5 ⁇ 3°.
  • the invention provides an arc additive manufacturing method of titanium alloy wire assisted by cooling rolling and friction stir processing.
  • arc additive forming titanium alloy assisted by cooling rolling after every 2 to 4 layers of titanium alloy are deposited, Cooling rolling and friction stir processing modification for multilayer deposited metals;
  • cooling roll assisted arc additive forming refers to the use of a cooling roll device to roll down the sidewall of the multilayer deposited metal during the process of depositing titanium alloy layer by layer in the arc, which helps to reduce the impact of the deposition process on the previous layer of metal.
  • the geometric size of the multilayer deposited metal can be controlled by the rolling action; in the process of cooling, rolling and friction stir processing modification of the deposited metal, the rolling device and the shaft shoulder of the stirring head are used to form a partial shape
  • the cavity ensures that the multilayer deposited metal surrounded by the cavity forms a defect-free forging structure under the action of the pressure roller and the stirring head.
  • the cooling device on the pressure roller can avoid the structure caused by the overheating of the friction stir processing area and the front layer metal Coarsen.
  • a multi-layer deposited metal with excellent organization is obtained, and the mechanical properties of the multi-layer deposited metal are improved.
  • the problem of poor dimensional accuracy and roughness of additively manufactured parts can also be improved.
  • the present invention has obvious advantages in improving the dimensional accuracy of the component and improving its roughness.
  • the most important thing is that it can completely eliminate the dendritic growth during the titanium alloy additive forming process and refine the grains, and effectively repair Defects such as pores and cracks.
  • cooling is applied to prevent the overheating of the multilayer deposited metal and the resulting coarsening of the microstructure, which greatly improves the mechanical properties of the multilayer deposited metal. Especially plasticity and fatigue properties.
  • the cooling roller pressing device of the present invention has high flexibility, and is not only suitable for wire arc additive manufacturing of straight-walled structural parts, but also suitable for wire arc additive manufacturing of curved structural parts.
  • Fig. 1 is a schematic diagram of arc additive forming with the aid of cooling roll pressing in the present invention
  • FIG. 2 is a schematic cross-sectional view of the cooling roller pressing device of the present invention.
  • FIG. 3 is a schematic diagram of milling the side and top surface of a multilayer deposited metal according to the present invention.
  • Fig. 4 is a schematic diagram of friction stir processing with the aid of cooling roll pressing in the present invention.
  • substrate 1 multilayer deposited metal 2; cooling roller pressing device 3; roller 31; thermally conductive cylinder 32; thermally conductive outer ring 33; inner cavity 34; cooling water inlet 35; cooling water outlet 36; ball 37; stirring head 4; Welding gun 5; Milling cutter 6.
  • this embodiment provides a method for manufacturing a straight wall with a 1.6mm ⁇ 1.6mm Ti-6Al-4V wire arc additive, which includes the following steps:
  • Step 1 Use the cooling roller to assist in arc additive forming: use three-dimensional drawing software to draw a straight wall model with a size of 300mm (length) ⁇ 100mm (height) ⁇ 13mm (width), and use slice software to layer the part model Slicing process to obtain layered slice data, use simulation software to simulate the layered slice data and optimize the forming path, generate robot control code (or numerical control code), import the robot control code into the welding robot, and use the welding robot to use
  • the arc generated by the TIG welder is the heat source, and the Ti-6Al-4V wire arc additive forming is performed on the T-shaped substrate 1 prepared in advance, and 2 to 4 layers are co-deposited to form a multi-layer deposition metal 2.
  • the width of the deposited metal 2 is 13mm, and the multilayer deposited metal 2 is obtained by single-pass multilayer deposition; the welding current used in the arc additive forming process is 110A, the welding voltage is 21.5V, and the forming speed is 250mm/min.
  • the wire speed is 2.5m/min, the lifting height of each layer of welding gun is 2mm, the wire swing amplitude is 2.75mm, the interval between layers is 3min, and the wire swing speed is 800mm/min.
  • the cooling rolling device 3 is used to apply cooling rolling to the side wall of the multilayer deposited metal 2; the cooling rolling device 3 is used to roll cooling the side wall of the multilayer deposited metal 2, which helps to reduce the impact of the deposition process.
  • the thermal influence of layered metal, and secondly, the geometric size of multilayer deposited metal 2 can also be controlled by rolling action.
  • the temperature of cooling water during the cooling rolling process is 10°C, the flow rate of cooling water is 1500L/h, and the multilayer deposited metal The rolling stress received was 150 MPa.
  • Step 2 Use the milling cutter 6 of the milling robot to mill the side and top surface of the multilayer deposited metal 2; on the one hand, to control the dimensional accuracy of the multilayer deposited metal 2, and on the other hand, it can provide for the subsequent friction stir processing process Smooth the surface to prevent the occurrence of friction stir processing defects.
  • the milling amount on both sides of the multilayer deposited metal 2 is 0.3mm, and the milling amount on the top surface is 2mm.
  • the milling amount and feed are set according to the accuracy required by the final part size. Process parameters such as speed;
  • Step 3 Use friction stir processing equipment to perform friction stir processing on the multi-layer deposited metal 2 after milling.
  • the shaft needle length of the stirring head 4 of the friction stir processing equipment is greater than the height of the multilayer deposited metal 2 after milling.
  • the friction stir processing equipment The shaft shoulder diameter of the mixing head 4 is slightly smaller than the width of the multilayer deposited metal 2 after milling, which can refine the microstructure of the multilayer deposited metal 2 to the greatest extent and eliminate defects.
  • the shaft shoulder diameter of the mixing head 4 is 12.5 mm
  • the length of the stirring needle is 5mm
  • the rotating speed of the stirring head 4 is 800r/min
  • the traveling speed is 60mm/min
  • the inclination angle of the stirring head 4 is 2.5°;
  • the cooling rolling device 3 is used to apply cooling rolling to the side wall of the multilayer deposited metal 2; the roller pressing device and the stirring head 4 are used to form a partial cavity to ensure the multilayer deposited metal 2 surrounded by the cavity. Under the action of rolling and stirring head 4, a defect-free forging structure is formed.
  • the cooling water introduced into the cooling rolling device 3 can avoid overheating of the friction stir processing area and multilayer metal, resulting in coarsening of the structure.
  • the temperature of the cooling water was 15°C
  • the flow rate of the cooling water was 1800L/h
  • the rolling stress of the multilayer deposited metal was 300MPa.
  • Step 4 Use a milling robot or a milling cutter 6 of a milling machine tool to finish milling the upper surface of the multilayer deposited metal 2 by 0.3 mm to make the machined surface flat for the next step of arc additive forming;
  • Step 5 Repeat the above steps repeatedly until the multilayer deposited metal 2 reaches the preset shape and size, and the additive body is obtained.
  • the cooling roller pressing device 3 includes a roller 31, a heat-conducting cylinder 32, and a heat-conducting outer ring 33.
  • the heat-conducting outer ring 33 is rotated and assembled on the outer wall of the heat-conducting cylinder 32 through balls 37.
  • the heat-conducting cylinder 32 is provided with an inner cavity 34
  • the upper surface of the heat-conducting cylinder 32 is provided with a cooling water inlet 35 communicating with the inner cavity 34
  • the lower surface of the heat-conducting cylinder 32 is provided with a cooling water outlet 36 communicating with the inner cavity 34
  • the roller 31 is vertically fixed and assembled on the heat-conducting cylinder 32 The center of the surface, and the roller 31 moves synchronously with the welding gun 5 of the welding robot or the stirring head 4 of the friction stir processing equipment.
  • the heat-conducting cylinder 32 and the heat-conducting outer ring 33 can be made of a metal material with good heat conduction.
  • the regional structure after cooling rolling and friction stir processing is composed of fine equiaxed grains, and it eliminates the defects such as pores, holes and liquefaction cracks that are easily formed in the ordinary wire arc additive manufacturing process, and improves the formed body Mechanical properties.
  • Table 1 shows the comparative data of mechanical properties of Ti-6Al-4V titanium alloy thin-walled wall formed by cooling roll pressing and friction stir processing assisted arc additive forming, ordinary arc additive forming and casting.
  • This embodiment provides a method for manufacturing a straight wall by arc additive manufacturing with a ⁇ 1.6mm Ti-6Al-4V wire material, which includes the following steps:
  • Step 1 Arc additive forming with the aid of cooling roll pressing: use three-dimensional drawing software to draw a straight wall model with a size of 300mm (length) ⁇ 100mm (height) ⁇ 42mm (width), and use slice software to layer the part model Slicing process to obtain layered slice data, use simulation software to simulate the layered slice data and optimize the forming path, generate robot control code (or numerical control code), import the robot control code into the welding robot, and use the welding robot to use
  • the arc generated by the TIG welder is the heat source, and the Ti-6Al-4V wire arc additive forming is performed on the T-shaped substrate 1 prepared in advance, and 2 to 4 layers are co-deposited to form a multi-layer deposition metal 2.
  • the width of the deposited metal 2 is 42mm, and the multilayer deposited metal 2 is obtained by multiple layers of deposition; the welding current used in the arc additive forming process is 300A, the welding voltage is 25.0V, and the forming speed is 150mm/min.
  • the wire speed is 2.5m/min, the lifting height of each layer of welding torch is 1mm, the wire swing amplitude is 2.5mm, the interval between layers is 3min, and the wire swing speed is 600mm/min.
  • the cooling rolling device 3 is used to apply cooling rolling to the side wall of the multilayer deposited metal 2; the cooling rolling device 3 is used to roll cooling the side wall of the multilayer deposited metal 2, which helps to reduce the impact of the deposition process.
  • the thermal influence of the layered metal, and secondly, the geometrical size of the multilayer deposited metal 2 can also be controlled by rolling.
  • the temperature of the cooling water during the cooling rolling process is 10°C, the flow rate of the cooling water is 800L/h, and the multilayer deposited metal
  • the rolling stress received was 380MPa.
  • Step 2 Use the milling cutter 6 of the milling robot to mill the side and top surface of the multilayer deposited metal 2; on the one hand, to control the dimensional accuracy of the multilayer deposited metal 2, and on the other hand, it can provide for the subsequent friction stir processing process Smooth the surface to prevent the occurrence of friction stir processing defects.
  • the milling amount on both sides of the multilayer deposited metal 2 is 0.3mm, and the milling amount on the top surface is 2mm.
  • the milling amount and feed are set according to the accuracy required by the final part size. Process parameters such as speed;
  • Step 3 Use friction stir processing equipment to perform friction stir processing on the multi-layer deposited metal 2 after milling.
  • the shaft needle length of the stirring head 4 of the friction stir processing equipment is greater than the height of the multilayer deposited metal 2 after milling.
  • the friction stir processing equipment The shoulder diameter of the mixing head 4 is slightly smaller than the width of the multilayer deposited metal 2 after milling, which can refine the microstructure of the multilayer deposited metal 2 to the greatest extent and eliminate defects.
  • the shoulder diameter of the mixing head 4 is 40mm
  • the length of the stirring needle is 3mm
  • the speed of the stirring head 4 is 2000r/min
  • the traveling speed is 60mm/min
  • the inclination angle of the stirring head 4 is 2.5°;
  • the cooling rolling device 3 is used to apply cooling rolling to the side wall of the multilayer deposited metal 2; the roller pressing device and the stirring head 4 are used to form a partial cavity to ensure the multilayer deposited metal 2 surrounded by the cavity. Under the action of rolling and stirring head 4, a defect-free forging structure is formed.
  • the cooling water introduced into the cooling rolling device 3 can avoid overheating of the friction stir processing area and multilayer metal, resulting in coarsening of the structure.
  • the temperature of the cooling water was 30°C
  • the flow rate of the cooling water was 2000L/h
  • the rolling stress of the multilayer deposited metal was 750MPa.
  • Step 4 Use a milling robot or a milling cutter 6 of a milling machine tool to finish milling the upper surface of the multilayer deposited metal 2 by 0.3 mm to make the machined surface flat for the next step of arc additive forming;
  • Step 5 Repeat the above steps repeatedly until the multilayer deposited metal 2 reaches the preset shape and size, and the additive body is obtained.
  • the cooling roller pressing device 3 includes a roller 31, a heat-conducting cylinder 32, and a heat-conducting outer ring 33.
  • the heat-conducting outer ring 33 is rotated and assembled on the outer wall of the heat-conducting cylinder 32 through balls 37.
  • the heat-conducting cylinder 32 is provided with an inner cavity 34
  • the upper surface of the heat-conducting cylinder 32 is provided with a cooling water inlet 35 communicating with the inner cavity 34
  • the lower surface of the heat-conducting cylinder 32 is provided with a cooling water outlet 36 communicating with the inner cavity 34
  • the roller 31 is vertically fixed and assembled on the heat-conducting cylinder 32 The center of the surface, and the roller 31 moves synchronously with the welding gun 5 of the welding robot or the stirring head 4 of the friction stir processing equipment.
  • the heat-conducting cylinder 32 and the heat-conducting outer ring 33 can be made of a metal material with good heat conduction.
  • This embodiment provides a method for manufacturing a straight wall by arc additive manufacturing with a ⁇ 1.6mm Ti-6Al-4V wire material, which includes the following steps:
  • Step 1 Use the cooling roller to assist in arc additive forming: use three-dimensional drawing software to draw a straight wall model with a size of 300mm (length) ⁇ 100mm (height) ⁇ 25mm (width), and use slice software to layer the part model Slicing process to obtain layered slice data, use simulation software to simulate the layered slice data and optimize the forming path, generate robot control code (or numerical control code), import the robot control code into the welding robot, and use the welding robot to use
  • the arc generated by the TIG welder is the heat source, and the Ti-6Al-4V wire arc additive forming is performed on the T-shaped substrate 1 prepared in advance, and 2 to 4 layers are co-deposited to form a multi-layer deposition metal 2.
  • the width of the deposited metal 2 is 25mm, and the multilayer deposited metal 2 is obtained by multiple layers of deposition; the welding current used in the arc additive forming process is 120A, the welding voltage is 23.5V, and the forming speed is 350mm/min.
  • the wire speed is 2.5m/min, the lifting height of each layer of welding torch is 2mm, the wire swing amplitude is 4mm, the interval between layers is 3min, and the wire swing speed is 1400mm/min.
  • the cooling rolling device 3 is used to apply cooling rolling to the side wall of the multilayer deposited metal 2; the cooling rolling device 3 is used to roll cooling the side wall of the multilayer deposited metal 2, which helps to reduce the impact of the deposition process.
  • the thermal influence of the layered metal, and secondly, the geometrical size of the multilayer deposited metal 2 can also be controlled by rolling.
  • the temperature of the cooling water during the cooling rolling process is 10°C, and the flow rate of the cooling water is 1000L/h.
  • the rolling stress received was 200 MPa.
  • Step 2 Use the milling cutter 6 of the milling robot to mill the side and top surface of the multilayer deposited metal 2; on the one hand, to control the dimensional accuracy of the multilayer deposited metal 2, and on the other hand, it can provide for the subsequent friction stir processing process Smooth the surface to prevent the occurrence of friction stir processing defects.
  • the milling amount on both sides of the multilayer deposited metal 2 is 0.3mm, and the milling amount on the top surface is 2mm.
  • the milling amount and feed are set according to the accuracy required by the final part size. Process parameters such as speed;
  • Step 3 Use friction stir processing equipment to perform friction stir processing on the multi-layer deposited metal 2 after milling.
  • the shaft needle length of the stirring head 4 of the friction stir processing equipment is greater than the height of the multilayer deposited metal 2 after milling.
  • the friction stir processing equipment The shaft shoulder diameter of the mixing head 4 is slightly smaller than the width of the multilayer deposited metal 2 after milling, which can refine the microstructure of the multilayer deposited metal 2 to the greatest extent and eliminate defects.
  • the shaft shoulder diameter of the mixing head 4 is 24mm
  • the length of the stirring needle is 4mm
  • the rotating speed of the stirring head 4 is 1600r/min
  • the traveling speed is 150mm/min
  • the inclination angle of the stirring head 4 is 1.5°;
  • the cooling rolling device 3 is used to apply cooling rolling to the side wall of the multilayer deposited metal 2; the roller pressing device and the stirring head 4 are used to form a partial cavity to ensure the multilayer deposited metal 2 surrounded by the cavity. Under the action of rolling and stirring head 4, a defect-free forging structure is formed.
  • the cooling water introduced into the cooling rolling device 3 can avoid overheating of the friction stir processing area and multilayer metal, resulting in coarsening of the structure.
  • the temperature of the cooling water was 35°C
  • the flow rate of the cooling water was 3000 L/h
  • the rolling stress of the multilayer deposited metal was 500 MPa.
  • Step 4 Use a milling robot or a milling cutter 6 of a milling machine tool to finish milling the upper surface of the multilayer deposited metal 2 by 0.3 mm to make the machined surface flat for the next step of arc additive forming;
  • Step 5 Repeat the above steps repeatedly until the multilayer deposited metal 2 reaches the preset shape and size, and the additive body is obtained.
  • the cooling roller pressing device 3 includes a roller 31, a heat-conducting cylinder 32, and a heat-conducting outer ring 33.
  • the heat-conducting outer ring 33 is rotated and assembled on the outer wall of the heat-conducting cylinder 32 through balls 37.
  • the heat-conducting cylinder 32 is provided with an inner cavity 34
  • the upper surface of the heat-conducting cylinder 32 is provided with a cooling water inlet 35 communicating with the inner cavity 34
  • the lower surface of the heat-conducting cylinder 32 is provided with a cooling water outlet 36 communicating with the inner cavity 34
  • the roller 31 is vertically fixed and assembled on the heat-conducting cylinder 32 The center of the surface, and the roller 31 moves synchronously with the welding gun 5 of the welding robot or the stirring head 4 of the friction stir processing equipment.
  • the heat-conducting cylinder 32 and the heat-conducting outer ring 33 can be made of a metal material with good heat conduction.
  • the advantage of the present invention is that in the process of wire arc additive manufacturing and its friction stir modification, cooling is applied by the cooling roller compaction device to prevent the overheating of the multilayer deposited metal and the resulting coarsening of the microstructure, which greatly improves The mechanical properties of the layer-deposited metal, and at the same time, the purpose of controlling the geometric size of the multilayer-deposited metal is achieved through the cooling roll device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Metal Rolling (AREA)
  • Arc Welding In General (AREA)

Abstract

一种钛合金的丝材电弧增材制造方法,包括以下步骤:步骤1、利用冷却辊压辅助进行电弧增材成形;步骤2、对增材体的侧面和顶面进行铣削加工;步骤3、利用搅拌摩擦加工设备对增材体进行搅拌摩擦加工,同时在搅拌摩擦加工过程利用冷却辊压装置对增材体侧壁施加冷却辊压;步骤4、对增材体上表面进行精铣,以备下一步的电弧增材成形;步骤5、循环重复执行以上步骤,直到完成零件的最终成形。该增材制造方法能够完全破除钛合金增材成形过程中的枝晶生长并细化晶粒,有效地修复气孔和裂纹等缺陷,同时在丝材电弧增材制造及其改性过程中,通过施加冷却防止增材体发生过热及因此导致的微观组织粗化,大大提高增材体的力学性能,特别是塑性和疲劳性能。

Description

一种钛合金的丝材电弧增材制造方法
本申请要求于2019年1月28日提交中国专利局、申请号为201910079333.0、发明名称为“一种钛合金的丝材电弧增材制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于金属增材制造技术领域,涉及一种钛合金的丝材电弧增材制造方法,具体涉及一种利用冷却辊压及搅拌摩擦加工辅助的钛合金的丝材电弧增材制造方法。
背景技术
金属的丝材电弧增材制造技术(Wire andArc Additive Manufacture,WAAM)是采用熔化极气体保护焊(GMAW)、钨极氩弧焊(GTAW)或等离子弧焊(PAW)为热源,利用离散、堆积原理,通过金属丝材的添加,在程序的控制下根据三维数字模型由线-面-体逐层堆焊出三维金属零件的先进制造技术。与以激光和电子束为热源的增材制造技术相比,具有以下优点:1)沉积速率高并且丝材利用率高,制造成本低;2)可以成形激光反射率高的材质(比如铝合金);3)制造零件尺寸不受设备成形缸和真空室尺寸限制,易于实现大尺寸构件的制造。
钛合金具有低密度,高比强度和比刚度,良好的耐蚀性能、高温力学性能,抗疲劳及蠕变性能,在航空航天领域、舰艇及兵器等军品制造中的应用日益广泛。然而,由于钛合金的熔点高,易氧化,导热性较低,化学活性较高,采用传统的铸造及锻造方法制备钛合金结构件较为困难。因此,采用成形效率高、制造成本低、制造形式灵活的电弧增材制造技术制备钛合金结构件具有重要的实际意义。但在钛合金的丝材电弧增材制造过程中仍存在以下问题亟待解决。
(1)成形精度控制问题(控形)
成形精度主要包括几何尺寸精度和表面粗糙度两个指标。增材过程中多重热循环导致产生较高的热应力引起成形件和基板变形,给尺寸精度控制带来更多困难。另外,由于丝材电弧增材成形过程中热积累严重、散热差等因素易导致层间结合处出现塌陷和“流淌”现象,成形面易产生高低 不平的现象,最终导致成形件表面粗糙度增加。
(2)成形组织和性能控制问题(控性)
①电弧增材制造过程中,成形件易形成粗大的柱状晶以及偏析导致的化学成分不均匀现象,进而导致性能恶化(晶界脆性、晶间腐蚀等)。
②在电弧增材制造过程中易出现气孔、热裂纹等缺陷问题,降低了沉积金属的致密度及耐蚀性,减小了增材零件的有效承载面积,易造成应力集中,从而降低了增材零件的强度和塑形。
上述的控形与控性问题是金属丝材电弧增材制造技术所面临的的共性难题,也是当前这一领域的研究热点。针对控形问题,目前主要通过堆焊工艺参数优化和路径规划等控制热输入手段以解决流淌和塌陷问题;另外,采用成形后精加工或者成形过程中引入其他办法解决成形件表面粗糙问题,主要采用成形后精加工或者成形过程中引入其他加工办法予以解决。而针对控性问题,近些年国内外学者提出在丝材电弧增材制造过程中引入锻造、辊压、轧制和超声振荡等手段以消除气孔、破碎枝晶、细化成形组织,进而达到改善性能之目的。其中华中科技大学和英国Cranfield大学都提出了在丝材电弧增材成形过程中利用轧制变形细化电弧沉积层微观组织的方法,所不同的是华中科技大学轧制变形更接近于“原位轧制”,即特殊设计的轧辊或者挤压装置位于焊枪的正后方,跟随焊枪移动(参见Haiou,Z.,Xiangping,W.,Guilan,W.,&Yang,Z..Hybrid direct manufacturing methodof metallic parts using deposition and micro continuous rolling.RapidPrototyping Journal,2013,19(6):387-394.);而英国Cranfield大学的方法属于层间轧制,即在电弧堆焊一层或几层后,等待沉积层冷却到环境温度后再进行轧制(参见Colegrove,P.A.,Coules,H.E.,Fairman,J.,Martina,F.,Kashoob,T.,Mamash,H.,&Cozzolino,L.D..Microstructure and residual stress improvement in wire and arcadditively manufactured parts through high-pressure rolling.Journal ofMaterials Processing Technology,2013,213(10):1782-1791.),该方法不仅有利于降低气孔率,而且使成形件的加工区域发生静态再结晶,晶粒尺寸减小至30μm以下,其中0~5μm的晶粒约占49%,5~10μm晶粒约占30%,剩余晶粒尺寸为10~30μm。“原位轧制”和“层间轧制”在改善凝固组织方面的效果与成 形过程中引入的应变大小有关,也就是说应用的轧制力越大,组织越致密也越细化,但这也导致其在复杂形状和薄壁构件的成形方面表现出明显的局限性。
此外,中国专利CN106735967A公开了一种超声振动辅助电弧增材制造控形控性的方法,该方法提出在电弧增材制造过程中对熔池同步施加非接触式超声振动,破碎熔池内的晶粒,抑制晶粒长大,进而实现晶粒细化,但该方法在解决丝材电弧增材成形过程中出现的气孔、晶界液化等问题上未见显著效果。
搅拌摩擦加工(Friction Stir Processing,FSP)技术是在搅拌摩擦焊(Friction Stir Welding,FSW)的基础上发展起来的一种用于材料微观组织改性和新材料制备的技术。其基本原理与FSW相似,将高速旋转的搅拌针压入材料内部,通过搅拌头强烈的搅拌作用使被加工材料发生剧烈塑性变形、混合和破碎,实现材料微观结构的致密化、均匀化和细化,从而改善材料的性能。目前,FSP技术已在细晶/超细晶材料和表面/块体复合材料制备、非均质材料微观结构改性、工件局部硬化/缺陷修补等方面取得了良好的效果。其优势具体表现在以下几个方面:(1)细化晶粒,提高材料性能。在搅拌摩擦加工过程中,在大应变+高温的复合条件下,搅拌区通过发生动态再结晶获得均匀细化的等轴晶粒,进而改善材料的力学性能。(2)消除材料组织结构缺陷,获得均匀、致密的组织结构。对铸造铝合金进行搅拌摩擦加工,铸造合金粗大的第二相颗粒和铝枝晶被破碎,铸造孔隙被弥合,基体晶粒被细化,材料的力学性能,特别是塑性和疲劳性能得到明显改善。T.S.Mahmoud利用FSP技术对共晶A390铝硅合金进行改性,研究表明通过FSP技术可以减少铸造缩松,对α-Al以及Si颗粒具有明显的细化作用(参见Mahmoud T S.Surface modification of A390hypereutecticAl–Si cast alloys using friction stir processing.Surface&Coatings Technology,2013,228(9):209-220.)。此外,有报道显示对熔焊接头的焊缝进行FSP处理,使焊缝发生动态再结晶,可以消除焊缝的枝晶偏析,气孔、热裂纹等焊接缺陷,从而提高接头的整体性能(参见G K Padhy.Friction stir based welding and processing technologies-processes,parameters,microstructures and applications:A  review.Journal ofMaterials Science&Technology,2018,34(9):1-38.)。(3)降低结构残余应力。FSP属于固态加工技术,热输入低,加工处理后材料热变形和残余应力小。
综上可见,如果在钛合金丝材的电弧增材制造过程中结合层间搅拌摩擦加工改性,不但有利于增材体内部的微观组织细化,还可以消除气孔和裂纹等缺陷,获得组织致密且化学成分均匀的组织结构,同时还能够减小热变形,降低残余应力,提高增材体的力学性能。但利用搅拌摩擦加工的方法对增材体进行改性时,搅拌针作用区域有限,增材体侧壁的金属很难被处理到,侧壁金属仍保留铸造组织特征;此外,前层经过搅拌摩擦加工改性的沉积金属在后续电弧增材制造或搅拌摩擦加工改性过程中,显微组织由于受多重热循环作用会发生粗化,导致增材体性能下降。
发明内容
为了解决现有技术存在的问题,本发明提供一种钛合金丝材电弧增材制造方法,技术方案如下:
一种钛合金的丝材电弧增材制造方法,包括以下步骤:
步骤1、利用三维绘图软件绘制零件模型,采用切片软件对零件模型进行分层切片处理,得到分层切片数据,利用仿真软件对分层切片数据进行仿真模拟并对成形路径进行优化,生成机器人控制代码,将机器人控制代码导入焊接机器人,利用焊接机器人,在事先准备好的基板上进行钛合金丝材电弧增材成形,共沉积2~4层,形成多层沉积金属,并在成形过程利用冷却辊压装置对多层沉积金属侧壁施加冷却辊压,冷却辊压过程中冷却水的温度为10~40℃,冷却水的流量为1000~3000L/h,多层沉积金属受到的辊压应力为50~400MPa;
步骤2、对多层沉积金属的侧面和顶面进行铣削加工;
步骤3、利用搅拌摩擦加工设备对铣削后的多层沉积金属进行搅拌摩擦加工,并在搅拌摩擦加工过程利用冷却辊压装置对多层沉积金属侧壁施加冷却辊压,冷却辊压过程中冷却水的温度为10~40℃,冷却水的流量为1000~3000L/h,多层沉积金属受到的辊压应力为100~800MPa;
步骤4、对多层沉积金属上表面进行精铣,使加工表面平整,以备下一步的电弧增材成形;
步骤5、循环重复执行以上步骤,直至多层沉积金属达到预设的形状和尺寸,得到增材体;
所述冷却辊压装置包括滚柱、导热柱体和导热外圈,导热外圈转动装配在导热柱体的外壁上,导热柱体开设有内腔,导热柱体上表面设置有与内腔连通的冷却水进口,导热柱体下表面设置有与内腔连通的冷却水出口,滚柱垂直固定装配在导热柱体上表面的中心,且滚柱与焊接机器人的焊枪或搅拌摩擦加工设备的搅拌头同步动作。
步骤1中电弧增材成形过程中使用的焊接电流为66~300A,焊接电压为15.0~25.0V,焊丝摆动振幅为2.0~6.5mm,焊丝摆动速度为600~1600mm/min,成形速度为100~400mm/min,每层焊枪提升高度为1.0~2.5mm。
步骤1中电弧增材成形的多层沉积金属的宽度为7~50mm。
步骤1中所述的多层沉积金属由单道多层沉积或者多道多层沉积获得。
步骤2中多层沉积金属侧面的铣削量为0.1~0.5mm,顶面的铣削量为0.3~2.2mm。
步骤3中搅拌摩擦加工设备的搅拌头的轴针长度大于铣削加工后多层沉积金属的高度,搅拌头的轴肩直径略小于铣削加工后多层沉积金属的宽度。
搅拌摩擦加工设备所采用的搅拌头轴肩直径为6~46mm,搅拌针长度为2~5mm,搅拌头转速为800~2000r/min,行进速度为40~200mm/min,搅拌头倾角为1.5~3°。
本发明提供了一种冷却辊压及搅拌摩擦加工辅助的钛合金丝材电弧增材制造方法,在冷却辊压辅助的电弧增材成形钛合金过程中,每沉积2~4层钛合金后,对多层沉积金属进行冷却辊压及搅拌摩擦加工改性;
这里冷却辊压辅助的电弧增材成形是指在电弧逐层沉积钛合金的过程中,利用冷却辊压装置对多层沉积金属侧壁进行辊压冷却,有助于降低沉积过程对前层金属的热影响,其次,还可以利用辊压作用控制多层沉积金属的几何尺寸;在对沉积金属进行冷却辊压及搅拌摩擦加工改性过程中,利用辊压装置与搅拌头轴肩形成局部型腔,确保型腔包围的多层沉积 金属在压辊和搅拌头的作用下形成无缺陷的锻造组织,同时压辊上的冷却装置又可避免搅拌摩擦加工区及前层金属发生过热导致的组织粗化。从而获得组织优良的多层沉积金属,进而提高多层沉积金属的力学性能。另外,也可改善增材制造零件的尺寸精度与粗糙度较差的问题。
相对于现有技术,本发明在提高构件尺寸精度和改善其粗糙度方面的优势明显,最重要的是能够完全破除钛合金增材成形过程中的枝晶生长并细化晶粒,有效地修复气孔和裂纹等缺陷,同时在丝材电弧增材制造及其改性过程中,通过施加冷却防止多层沉积金属发生过热及因此导致的微观组织粗化,大大提高多层沉积金属的力学性能,特别是塑性和疲劳性能。此外,本发明的冷却辊压装置具有较高的灵活性,不仅适用于直壁结构件的丝材电弧增材制造,还适用于曲面结构件的丝材电弧增材制造。
说明书附图
图1为本发明利用冷却辊压辅助进行电弧增材成形的示意图;
图2为本发明冷却辊压装置的剖面示意图;
图3为本发明对多层沉积金属的侧面和顶面进行铣削加工的示意图;
图4为本发明利用冷却辊压辅助进行搅拌摩擦加工的示意图;
其中:基板1;多层沉积金属2;冷却辊压装置3;滚柱31;导热柱体32;导热外圈33;内腔34;冷却水进口35;冷却水出口36;滚珠37;搅拌头4;焊枪5;铣刀6。
具体实施方式
下面结合实施例和附图对本发明进一步说明。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
实施例1
如图1~图4所示,本实施例提供了φ1.6mm的Ti-6Al-4V丝材电弧增材制造直壁墙的方法,包括以下步骤:
步骤1、利用冷却辊压辅助进行电弧增材成形:利用三维绘图软件绘制尺寸为300mm(长)×100mm(高)×13mm(宽)的直壁墙模型,采用 切片软件对零件模型进行分层切片处理,得到分层切片数据,利用仿真软件对分层切片数据进行仿真模拟并对成形路径进行优化,生成机器人控制代码(或数控代码),将机器人控制代码导入焊接机器人,利用焊接机器人,采用TIG焊机产生的电弧为热源,在事先准备好的T型基板1上进行Ti-6Al-4V丝材电弧增材成形,共沉积2~4层,形成多层沉积金属2,形成的多层沉积金属2的宽度为13mm,所述的多层沉积金属2由单道多层沉积获得;电弧增材成形过程中使用的焊接电流为110A,焊接电压21.5V,成形速度为250mm/min,送丝速度2.5m/min,每层焊枪提升高度2mm,焊丝摆动振幅2.75mm,层间间隔时间3min,焊丝摆动速度800mm/min。
同时在成形过程利用冷却辊压装置3对多层沉积金属2侧壁施加冷却辊压;利用冷却辊压装置3对多层沉积金属2侧壁进行辊压冷却,有助于降低沉积过程对前层金属的热影响,其次,还可以利用辊压作用控制多层沉积金属2的几何尺寸,冷却辊压过程中冷却水的温度为10℃,冷却水的流量为1500L/h,多层沉积金属受到的辊压应力为150MPa。
步骤2、利用铣削机器人的铣刀6对多层沉积金属2的侧面和顶面进行铣削加工;一方面为了控制多层沉积金属2的尺寸精度,另一方面可为后续的搅拌摩擦加工工序提供平整表面,防止搅拌摩擦加工缺陷的产生,多层沉积金属2两侧面的铣削量为0.3mm,顶面的铣削量为2mm,铣削过程中按照最终零件尺寸要求的精度设定铣削量,进给速度等工艺参数;
步骤3、利用搅拌摩擦加工设备对铣削后的多层沉积金属2进行搅拌摩擦加工,搅拌摩擦加工设备的搅拌头4的轴针长度大于铣削加工后多层沉积金属2的高度,搅拌摩擦加工设备的搅拌头4的轴肩直径略小于铣削加工后多层沉积金属2的宽度,这样可以最大程度细化多层沉积金属2的微观组织,消除缺陷,具体的,搅拌头4轴肩直径为12.5mm,搅拌针长度为5mm,搅拌头4转速为800r/min,行进速度为60mm/min,搅拌头4倾角为2.5°;
同时在搅拌摩擦加工过程利用冷却辊压装置3对多层沉积金属2侧壁施加冷却辊压;利用辊压装置与搅拌头4轴肩形成局部型腔,确保型腔包围的多层沉积金属2在辊压和搅拌头4的作用下形成无缺陷的锻造组织,同时冷却辊压装置3中通入的冷却水又可避免搅拌摩擦加工区及多层金属发 生过热导致组织粗化,冷却辊压过程中冷却水的温度为15℃,冷却水的流量为1800L/h,多层沉积金属受到的辊压应力为300MPa。
步骤4、利用铣削机器人或铣削机床的铣刀6对多层沉积金属2上表面进行精铣0.3mm,使加工表面平整,以备下一步的电弧增材成形;
步骤5、循环重复执行以上步骤,直至多层沉积金属2达到预设的形状和尺寸,得到增材体。
所述冷却辊压装置3包括滚柱31、导热柱体32和导热外圈33,导热外圈33通过滚珠37转动装配在导热柱体32的外壁上,导热柱体32开设有内腔34,导热柱体32上表面设置有与内腔34连通的冷却水进口35,导热柱体32下表面设置有与内腔34连通的冷却水出口36,滚柱31垂直固定装配在导热柱体32上表面的中心,且滚柱31与焊接机器人的焊枪5或搅拌摩擦加工设备的搅拌头4同步动作。
导热柱体32和导热外圈33可采用导热较好的金属材料制成。
经过冷却辊压及搅拌摩擦加工处理的区域组织由细小的等轴晶粒组成,且消除普通丝材电弧增材制造过程中容易形成的的气孔,孔洞和液化裂纹等缺陷,提高了成形体的力学性能。表1为分别采用冷却辊压及搅拌摩擦加工辅助电弧增材成形、普通电弧增材成形以及铸造成形Ti-6Al-4V钛合金薄壁墙的力学性能对比数据。
表1力学性能对比数据表
Figure PCTCN2020072673-appb-000001
实施例2
本实施例提供了φ1.6mm的Ti-6Al-4V丝材电弧增材制造直壁墙的方法,包括以下步骤:
步骤1、利用冷却辊压辅助进行电弧增材成形:利用三维绘图软件绘制尺寸为300mm(长)×100mm(高)×42mm(宽)的直壁墙模型,采用切片软件对零件模型进行分层切片处理,得到分层切片数据,利用仿真软件对分层切片数据进行仿真模拟并对成形路径进行优化,生成机器人控制代码(或数控代码),将机器人控制代码导入焊接机器人,利用焊接机器人,采用TIG焊机产生的电弧为热源,在事先准备好的T型基板1上进行Ti-6Al-4V丝材电弧增材成形,共沉积2~4层,形成多层沉积金属2,形成的多层沉积金属2的宽度为42mm,所述的多层沉积金属2由多道多层沉积获得;电弧增材成形过程中使用的焊接电流为300A,焊接电压25.0V,成形速度为150mm/min,送丝速度2.5m/min,每层焊枪提升高度1mm,焊丝摆动振幅2.5mm,层间间隔时间3min,焊丝摆动速度600mm/min。
同时在成形过程利用冷却辊压装置3对多层沉积金属2侧壁施加冷却辊压;利用冷却辊压装置3对多层沉积金属2侧壁进行辊压冷却,有助于降低沉积过程对前层金属的热影响,其次,还可以利用辊压作用控制多层沉积金属2的几何尺寸,冷却辊压过程中冷却水的温度为10℃,冷却水的流量为800L/h,多层沉积金属受到的辊压应力为380MPa。
步骤2、利用铣削机器人的铣刀6对多层沉积金属2的侧面和顶面进行铣削加工;一方面为了控制多层沉积金属2的尺寸精度,另一方面可为后续的搅拌摩擦加工工序提供平整表面,防止搅拌摩擦加工缺陷的产生,多层沉积金属2两侧面的铣削量为0.3mm,顶面的铣削量为2mm,铣削过程中按照最终零件尺寸要求的精度设定铣削量,进给速度等工艺参数;
步骤3、利用搅拌摩擦加工设备对铣削后的多层沉积金属2进行搅拌摩擦加工,搅拌摩擦加工设备的搅拌头4的轴针长度大于铣削加工后多层沉积金属2的高度,搅拌摩擦加工设备的搅拌头4的轴肩直径略小于铣削加工后多层沉积金属2的宽度,这样可以最大程度细化多层沉积金属2的微观组织,消除缺陷,具体的,搅拌头4轴肩直径为40mm,搅拌针长度为3mm,搅拌头4转速为2000r/min,行进速度为60mm/min,搅拌头4倾角为2.5°;
同时在搅拌摩擦加工过程利用冷却辊压装置3对多层沉积金属2侧壁施加冷却辊压;利用辊压装置与搅拌头4轴肩形成局部型腔,确保型腔包围的多层沉积金属2在辊压和搅拌头4的作用下形成无缺陷的锻造组织,同时冷却辊压装置3中通入的冷却水又可避免搅拌摩擦加工区及多层金属发生过热导致组织粗化,冷却辊压过程中冷却水的温度为30℃,冷却水的流量为2000L/h,多层沉积金属受到的辊压应力为750MPa。
步骤4、利用铣削机器人或铣削机床的铣刀6对多层沉积金属2上表面进行精铣0.3mm,使加工表面平整,以备下一步的电弧增材成形;
步骤5、循环重复执行以上步骤,直至多层沉积金属2达到预设的形状和尺寸,得到增材体。
所述冷却辊压装置3包括滚柱31、导热柱体32和导热外圈33,导热外圈33通过滚珠37转动装配在导热柱体32的外壁上,导热柱体32开设有内腔34,导热柱体32上表面设置有与内腔34连通的冷却水进口35,导热柱体32下表面设置有与内腔34连通的冷却水出口36,滚柱31垂直固定装配在导热柱体32上表面的中心,且滚柱31与焊接机器人的焊枪5或搅拌摩擦加工设备的搅拌头4同步动作。
导热柱体32和导热外圈33可采用导热较好的金属材料制成。
实施例3
本实施例提供了φ1.6mm的Ti-6Al-4V丝材电弧增材制造直壁墙的方法,包括以下步骤:
步骤1、利用冷却辊压辅助进行电弧增材成形:利用三维绘图软件绘制尺寸为300mm(长)×100mm(高)×25mm(宽)的直壁墙模型,采用切片软件对零件模型进行分层切片处理,得到分层切片数据,利用仿真软件对分层切片数据进行仿真模拟并对成形路径进行优化,生成机器人控制代码(或数控代码),将机器人控制代码导入焊接机器人,利用焊接机器人,采用TIG焊机产生的电弧为热源,在事先准备好的T型基板1上进行Ti-6Al-4V丝材电弧增材成形,共沉积2~4层,形成多层沉积金属2,形成的多层沉积金属2的宽度为25mm,所述的多层沉积金属2由多道多层沉积获得;电弧增材成形过程中使用的焊接电流为120A,焊接电压23.5V,成 形速度为350mm/min,送丝速度2.5m/min,每层焊枪提升高度2mm,焊丝摆动振幅4mm,层间间隔时间3min,焊丝摆动速度1400mm/min。
同时在成形过程利用冷却辊压装置3对多层沉积金属2侧壁施加冷却辊压;利用冷却辊压装置3对多层沉积金属2侧壁进行辊压冷却,有助于降低沉积过程对前层金属的热影响,其次,还可以利用辊压作用控制多层沉积金属2的几何尺寸,冷却辊压过程中冷却水的温度为10℃,冷却水的流量为1000L/h,多层沉积金属受到的辊压应力为200MPa。
步骤2、利用铣削机器人的铣刀6对多层沉积金属2的侧面和顶面进行铣削加工;一方面为了控制多层沉积金属2的尺寸精度,另一方面可为后续的搅拌摩擦加工工序提供平整表面,防止搅拌摩擦加工缺陷的产生,多层沉积金属2两侧面的铣削量为0.3mm,顶面的铣削量为2mm,铣削过程中按照最终零件尺寸要求的精度设定铣削量,进给速度等工艺参数;
步骤3、利用搅拌摩擦加工设备对铣削后的多层沉积金属2进行搅拌摩擦加工,搅拌摩擦加工设备的搅拌头4的轴针长度大于铣削加工后多层沉积金属2的高度,搅拌摩擦加工设备的搅拌头4的轴肩直径略小于铣削加工后多层沉积金属2的宽度,这样可以最大程度细化多层沉积金属2的微观组织,消除缺陷,具体的,搅拌头4轴肩直径为24mm,搅拌针长度为4mm,搅拌头4转速为1600r/min,行进速度为150mm/min,搅拌头4倾角为1.5°;
同时在搅拌摩擦加工过程利用冷却辊压装置3对多层沉积金属2侧壁施加冷却辊压;利用辊压装置与搅拌头4轴肩形成局部型腔,确保型腔包围的多层沉积金属2在辊压和搅拌头4的作用下形成无缺陷的锻造组织,同时冷却辊压装置3中通入的冷却水又可避免搅拌摩擦加工区及多层金属发生过热导致组织粗化,冷却辊压过程中冷却水的温度为35℃,冷却水的流量为3000L/h,多层沉积金属受到的辊压应力为500MPa。
步骤4、利用铣削机器人或铣削机床的铣刀6对多层沉积金属2上表面进行精铣0.3mm,使加工表面平整,以备下一步的电弧增材成形;
步骤5、循环重复执行以上步骤,直至多层沉积金属2达到预设的形状和尺寸,得到增材体。
所述冷却辊压装置3包括滚柱31、导热柱体32和导热外圈33,导热外圈33通过滚珠37转动装配在导热柱体32的外壁上,导热柱体32开设有内腔 34,导热柱体32上表面设置有与内腔34连通的冷却水进口35,导热柱体32下表面设置有与内腔34连通的冷却水出口36,滚柱31垂直固定装配在导热柱体32上表面的中心,且滚柱31与焊接机器人的焊枪5或搅拌摩擦加工设备的搅拌头4同步动作。
导热柱体32和导热外圈33可采用导热较好的金属材料制成。
本发明的优异之处在于,在丝材电弧增材制造及其搅拌摩擦改性过程中,通过冷却辊压装置施加冷却防止多层沉积金属发生过热及因此导致的微观组织粗化,大大提高多层沉积金属的力学性能,同时通过冷却辊压装置实现了控制多层沉积金属几何尺寸的目的。
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细说明,领域的普通技术人员应当理解:如上所述,结合附图和实施例所给出的方案内容,可以衍生出类似的技术方法。对于利用MIG、TIG或PAW焊机产生电弧为热源,采用不同直径,不同合金元素含量的钛合金丝材为填充金属,进行增材成形的过程中均可以利用层间冷却辊压及搅拌摩擦加工方法来消除沉积金属的气孔、液化相和裂纹等缺陷,并细化组织,从而改善性能,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (7)

  1. 一种钛合金的丝材电弧增材制造方法,其特征在于,包括以下步骤:
    步骤1、利用三维绘图软件绘制零件模型,采用切片软件对零件模型进行分层切片处理,得到分层切片数据,利用仿真软件对分层切片数据进行仿真模拟,生成机器人控制代码,将机器人控制代码导入焊接机器人,利用焊接机器人,在事先准备好的基板上进行钛合金丝材电弧增材成形,共沉积2~4层,形成多层沉积金属,并在成形过程利用冷却辊压装置对多层沉积金属侧壁施加冷却辊压,冷却辊压过程中冷却水的温度为10~40℃,冷却水的流量为1000~3000L/h,多层沉积金属受到的辊压应力为50~400MPa;
    步骤2、对多层沉积金属的侧面和顶面进行铣削加工;
    步骤3、利用搅拌摩擦加工设备对铣削后的多层沉积金属进行搅拌摩擦加工,并在搅拌摩擦加工过程利用冷却辊压装置对多层沉积金属侧壁施加冷却辊压,冷却辊压过程中冷却水的温度为10~40℃,冷却水的流量为1000~3000L/h,多层沉积金属受到的辊压应力为100~800MPa;
    步骤4、对多层沉积金属上表面进行精铣,使加工表面平整,以备下一步的电弧增材成形;
    步骤5、循环重复执行以上步骤,直至多层沉积金属达到预设的形状和尺寸,得到增材体;所述冷却辊压装置包括滚柱、导热柱体和导热外圈,导热外圈转动装配在导热柱体的外壁上,导热柱体开设有内腔,导热柱体上表面设置有与内腔连通的冷却水进口,导热柱体下表面设置有与内腔连通的冷却水出口,滚柱垂直固定装配在导热柱体上表面的中心,且滚柱与焊接机器人的焊枪或搅拌摩擦加工设备的搅拌头同步动作。
  2. 根据权利要求1所述的一种钛合金的丝材电弧增材制造方法,其特征在于,步骤3中搅拌摩擦加工设备的搅拌头的轴针长度大于铣削加工后多层沉积金属的高度,搅拌头的轴肩直径略小于铣削加工后多层沉积金属的宽度。
  3. 根据权利要求1所述的一种钛合金的丝材电弧增材制造方法,其 特征在于,所述步骤1中电弧增材成形的多层沉积金属的宽度为7~50mm。
  4. 根据权利要求1所述的一种钛合金的丝材电弧增材制造方法,其特征在于,步骤1中所述的多层沉积金属由单道多层沉积或者多道多层沉积获得。
  5. 根据权利要求1所述的一种钛合金的丝材电弧增材制造方法,其特征在于,步骤1中电弧增材成形过程中使用的焊接电流为66~300A,焊接电压为15~25.0V,焊丝摆动振幅为2.1~6.5mm,焊丝摆动速度为600~1600mm/min,成形速度为100~400mm/min,每层焊枪提升高度为1.0~2.5mm。
  6. 根据权利要求1所述的一种钛合金的丝材电弧增材制造方法,其特征在于,步骤2中多层沉积金属侧面的铣削量为0.1~0.5mm,顶面的铣削量为0.3~2.2mm。
  7. 根据权利要求2所述的一种钛合金的丝材电弧增材制造方法,其特征在于,搅拌摩擦加工设备所采用的搅拌头轴肩直径为6~46mm,搅拌针长度为2~5mm,搅拌头转速为800~2000r/min,行进速度为40~200mm/min,搅拌头倾角为1.5~3°。
PCT/CN2020/072673 2019-01-28 2020-01-17 一种钛合金的丝材电弧增材制造方法 WO2020156228A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/289,168 US11951560B2 (en) 2019-01-28 2020-01-17 Wire and arc additive manufacturing method for titanium alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910079333.0 2019-01-28
CN201910079333.0A CN109807558B (zh) 2019-01-28 2019-01-28 一种钛合金的丝材电弧增材制造方法

Publications (1)

Publication Number Publication Date
WO2020156228A1 true WO2020156228A1 (zh) 2020-08-06

Family

ID=66605400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072673 WO2020156228A1 (zh) 2019-01-28 2020-01-17 一种钛合金的丝材电弧增材制造方法

Country Status (3)

Country Link
US (1) US11951560B2 (zh)
CN (1) CN109807558B (zh)
WO (1) WO2020156228A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113681011A (zh) * 2021-07-28 2021-11-23 西安建筑科技大学 一种具有孔径梯度结构的钛基功能材料、制备方法及应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11117213B2 (en) * 2018-12-14 2021-09-14 The Boeing Company Friction stir additive manufacturing systems
CN109807558B (zh) * 2019-01-28 2021-09-07 东北大学 一种钛合金的丝材电弧增材制造方法
CN110348072B (zh) * 2019-06-19 2021-09-07 西安交通大学 一种提高电弧增材构件热力分析有限元数值计算效率方法
CN112496499A (zh) * 2019-09-16 2021-03-16 天津大学 一种添加Si粉末改善钛合金电弧增材制造显微组织的方法
CN111215843B (zh) * 2019-10-16 2021-08-06 南京航空航天大学 一种电弧送丝增材斜辊组合轮热碾压制造方法及装置
CN111321363A (zh) * 2020-03-18 2020-06-23 武汉理工大学 钛合金构件孔隙缺陷的电冲击修复处理实验方法
CN111906431A (zh) * 2020-07-17 2020-11-10 北京工业大学 一种基于智能搅拌的增等材融合制造设备以及方法
CN111805105B (zh) * 2020-07-31 2022-03-29 贵州航天天马机电科技有限公司 电弧增材复合搅拌摩擦焊加工方法及其路径规划方法
CN112916874A (zh) * 2021-01-23 2021-06-08 大连理工大学 一种增材制造过程中熔池两侧夹持辅助成形装置和方法
CN114799480A (zh) * 2022-04-23 2022-07-29 哈尔滨工业大学 一种同步不间断送丝全固相搅拌摩擦增材制造方法与装置
CN115121980B (zh) * 2022-05-17 2023-08-01 南京工业大学 电弧熔丝搅拌复合薄壁复杂结构低应力增材制造方法
CN115319104B (zh) * 2022-07-25 2023-05-09 湖南大学 一种航空用tc18钛合金止动块组合式快速制造方法
CN116037962B (zh) * 2023-02-06 2023-08-11 北京航空航天大学 一种用于电弧增材制造的辊压设备
CN116038349A (zh) * 2023-03-01 2023-05-02 四川航天长征装备制造有限公司 一种电弧增材制造筋宽筋高稳定成形装置与方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817121A (zh) * 2010-04-15 2010-09-01 华中科技大学 零件与模具的熔积成形复合制造方法及其辅助装置
US20110293840A1 (en) * 2010-05-25 2011-12-01 The Curators Of The University Of Missouri Systems and methods for fabricating a direct metal deposition structure having fully forged structural qualities
CN106425288A (zh) * 2016-07-28 2017-02-22 北京工业大学 一种基于温度循环的增减等材一体化融合制造方法
CN106591824A (zh) * 2015-10-15 2017-04-26 中国航空工业集团公司北京航空制造工程研究所 一种钛合金零件的制备机及制备方法
CN107803568A (zh) * 2017-11-13 2018-03-16 山东建筑大学 一种提高丝材电弧增材制造精度及成形效率的方法
CN109108505A (zh) * 2018-08-20 2019-01-01 西安增材制造国家研究院有限公司 一种搅拌摩擦焊强化电弧增材制造铝合金工件的方法
CN109807558A (zh) * 2019-01-28 2019-05-28 东北大学 一种钛合金的丝材电弧增材制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616258A (en) * 1995-04-16 1997-04-01 Aerochem Research Laboratories Inc. Process and apparatus for micro-arc welding
US5933699A (en) * 1996-06-24 1999-08-03 General Electric Company Method of making double-walled turbine components from pre-consolidated assemblies
US9773429B2 (en) * 2009-07-08 2017-09-26 Lincoln Global, Inc. System and method for manual welder training
AT512081B1 (de) * 2011-10-28 2013-08-15 Fronius Int Gmbh Verfahren und vorrichtung zur herstellung einer schweissnaht oder einer dreidimensionalen struktur an der oberfläche eines metallischen werkstücks
CN102615419B (zh) * 2012-04-06 2014-04-16 江苏科技大学 一种搅拌摩擦焊缝干式冷却装置及冷却方法
CN104942543B (zh) * 2015-06-15 2017-03-29 中国石油大学(华东) 上游泵送机械密封的纳米增材制造方法
CN105014228B (zh) * 2015-08-03 2017-01-18 黄山学院 铝合金薄板搅拌摩擦连接用搅拌头及制造方法
US10994371B2 (en) * 2016-02-24 2021-05-04 Mitsubishi Electric Research Laboratories, Inc. System and method for depositing a metal to form a three-dimensional part
CN207929778U (zh) * 2017-12-27 2018-10-02 东莞市裕昌泰铝业有限公司 一种铝板加工用热轧机快速冷却装置
CN108637504A (zh) * 2018-04-23 2018-10-12 江苏大学 一种电弧填丝和滚压复合增材制造方法和装置
CN109623180B (zh) * 2019-01-28 2021-06-04 东北大学 一种镁合金的丝材电弧增材制造方法
US11858064B2 (en) * 2019-02-19 2024-01-02 Illinois Tool Works Inc. Path planning systems and methods for additive manufacturing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817121A (zh) * 2010-04-15 2010-09-01 华中科技大学 零件与模具的熔积成形复合制造方法及其辅助装置
US20110293840A1 (en) * 2010-05-25 2011-12-01 The Curators Of The University Of Missouri Systems and methods for fabricating a direct metal deposition structure having fully forged structural qualities
CN106591824A (zh) * 2015-10-15 2017-04-26 中国航空工业集团公司北京航空制造工程研究所 一种钛合金零件的制备机及制备方法
CN106425288A (zh) * 2016-07-28 2017-02-22 北京工业大学 一种基于温度循环的增减等材一体化融合制造方法
CN107803568A (zh) * 2017-11-13 2018-03-16 山东建筑大学 一种提高丝材电弧增材制造精度及成形效率的方法
CN109108505A (zh) * 2018-08-20 2019-01-01 西安增材制造国家研究院有限公司 一种搅拌摩擦焊强化电弧增材制造铝合金工件的方法
CN109807558A (zh) * 2019-01-28 2019-05-28 东北大学 一种钛合金的丝材电弧增材制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113681011A (zh) * 2021-07-28 2021-11-23 西安建筑科技大学 一种具有孔径梯度结构的钛基功能材料、制备方法及应用
CN113681011B (zh) * 2021-07-28 2023-08-11 西安建筑科技大学 一种具有孔径梯度结构的钛基功能材料、制备方法及应用

Also Published As

Publication number Publication date
CN109807558B (zh) 2021-09-07
US20210402507A1 (en) 2021-12-30
CN109807558A (zh) 2019-05-28
US11951560B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2020156228A1 (zh) 一种钛合金的丝材电弧增材制造方法
WO2020156224A1 (zh) 一种镁合金的丝材电弧增材制造方法
JP7002142B2 (ja) 付加製造過程で部品の変形及び精度を並行制御する方法
Tomar et al. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances
Pattanayak et al. Gas metal arc welding based additive manufacturing—a review
CN109807560B (zh) 一种铜合金的丝材电弧增材制造方法
CN109807559B (zh) 一种Al-Si合金的丝材电弧增材制造方法
CN102240860B (zh) 梯度材料模具制造方法及设备
CN102240861B (zh) 梯度功能结构制造方法及设备
CN109807562B (zh) 一种Al-Mg-Si合金的丝材电弧增材制造方法
Zeli et al. A review of aluminum alloy fabricated by different processes of wire arc additive manufacturing
WO2011127798A1 (zh) 零件与模具的熔积成形复合制造方法及其辅助装置
CN109807564B (zh) 一种Al-Zn-Mg-Cu合金的丝材电弧增材制造方法
CN107009039A (zh) 一种随焊超声振动装置及方法
CN110315082B (zh) 一种微铸激光冲击织构的金属零件制造系统及方法
CN109201982B (zh) 一种基于真空感应加热的成形装置及成形方法
Tawfik et al. Effect of travel speed on the properties of Al-Mg aluminum alloy fabricated by wire arc additive manufacturing
Sharma et al. Processing techniques, microstructural and mechanical properties of wire arc additive manufactured stainless steel: a review
CN109807561B (zh) 一种Al-Mg合金的丝材电弧增材制造方法
CN109807563B (zh) 一种Al-Cu合金的丝材电弧增材制造方法
CN114525508B (zh) 一种超声冲压复合电弧制备高熵合金熔覆层的方法
Chen et al. Stress and temperature distribution simulation for arc weld-based rapid prototyping of titanium alloy TC4
Liu et al. Research Progress of Arc Additive Manufacture Technology. Materials 2021, 14, 1415
Badheka et al. GTAW Application for Additive Manufacturing and Cladding of Steel Alloys
Bai et al. Improving Comprehensive Properties of Wire Arc Additively Manufactured Al-4043 Alloy by Bilateral Friction Stir Post-processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748617

Country of ref document: EP

Kind code of ref document: A1