WO2020155345A1 - 贴片天线单元以及封装天线结构 - Google Patents

贴片天线单元以及封装天线结构 Download PDF

Info

Publication number
WO2020155345A1
WO2020155345A1 PCT/CN2019/079606 CN2019079606W WO2020155345A1 WO 2020155345 A1 WO2020155345 A1 WO 2020155345A1 CN 2019079606 W CN2019079606 W CN 2019079606W WO 2020155345 A1 WO2020155345 A1 WO 2020155345A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch
function curve
shape
antenna unit
patch antenna
Prior art date
Application number
PCT/CN2019/079606
Other languages
English (en)
French (fr)
Inventor
康锴
郭舒生
赖玠玮
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US16/976,609 priority Critical patent/US11367943B2/en
Publication of WO2020155345A1 publication Critical patent/WO2020155345A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the present invention relates to the field of antenna technology, in particular to a patch antenna unit and a package antenna structure.
  • the fifth generation communication technology (5-th Generation, 5G) new air interface standard defines multiple millimeter wave frequency bands. For example, the sum of frequency bands N258 and N257 in China, the United States, Japan, Korea, Europe and other regions is 24.25-29.5 GHz, which is relative to the center frequency. The bandwidth is about 20%; if you want to be compatible with the specified frequency bands in different regions of the world, you need a broadband antenna.
  • the existing technology adopts the form of an antenna in package (Antenna in Package, AiP) integrated with a transceiver chip (TRX RFIC) and an antenna array, which is most conducive to the realization of a millimeter wave front end
  • AiP antenna in package
  • TRX RFIC transceiver chip
  • the functions and performance of a single chip or module are used in mobile terminals and various miniaturized devices.
  • the existing AiP technology uses a patch antenna as the unit of a planar array.
  • the existing package antenna structure includes a substrate, a multilayer patch (M1-M6) above the substrate, and a multilayer dielectric isolation layer (D1-D6) .
  • the relative bandwidth of the patch antenna is about 5%, and the bandwidth of the multi-layer thick substrate patch antenna is generally not more than 15%.
  • the existing package antenna structure is in the frequency band below 27GHz, and its return loss characteristics Poor, it is difficult to be compatible with frequency bands in different regions of the world.
  • the antenna bandwidth increases with the increase of the substrate thickness. Therefore, the prior art adopts a multi-layer complex substrate, and some package antennas also make air cavities under the antenna unit. This requires special processes, high cost and unsatisfactory radio frequency performance. It is difficult to meet the slim industrial design requirements of today's mobile terminals.
  • an embodiment of the present invention provides a patch antenna unit, including: a base substrate or a printed circuit board; a multilayer patch formed on the base substrate or the printed circuit board Above, there is an isolation layer between two adjacent layers of the multilayer patch, which is suitable for generating a radio frequency electromagnetic field; the edge shape of at least one layer of the multilayer patch is a function curve shape.
  • the edge shape of each side of the same patch is the same function curve shape.
  • the edge shapes of a pair of opposite sides of the same patch are the same function curve shape.
  • the shape of each side of the different laminated patches is a different function curve shape.
  • the function curve corresponding to the function curve shape is a trigonometric function curve.
  • the function curve corresponding to the function curve shape is a parabola.
  • the function curve corresponding to the function curve shape is a hyperbola.
  • An embodiment of the present invention also provides a package antenna structure, including the patch antenna unit, and further comprising: a probe adapted to feed power to the bottom patch of the plurality of patch antenna units; The probe is electrically connected to the plurality of patch antenna units, and is suitable for receiving or transmitting signals within a preset frequency range.
  • the patch antenna unit includes: a base substrate; a multi-layer patch formed on the base substrate, and an isolation layer is provided between two adjacent layers of the multi-layer patch , Suitable for generating radio frequency electromagnetic fields, the edge shape of at least one layer of the multilayer patch is a continuous and smooth function curve shape, and the shape of each side of the same patch is the same function curve shape, therefore,
  • the impedance bandwidth can be increased while maintaining the symmetry of the antenna structure, which meets the requirements of the substrate process, thereby increasing the working bandwidth of the packaged antenna structure.
  • each side of the different laminated patches is a different function curve shape, which can generate multiple resonance modes, increase the working bandwidth, and determine the shape of the patch edge in the form of a function also gives manufacturers more Design freedom to help optimize the performance of the antenna.
  • FIG. 1 is a schematic structural diagram of a package antenna structure in the prior art
  • FIG. 2 is a schematic diagram of broadband impedance characteristics of a packaged antenna structure in the prior art
  • FIG. 3 is a schematic diagram of the overall structure of a patch antenna unit provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a partial structure of a patch antenna unit provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a partial structure of a patch antenna unit provided by an embodiment of the present invention.
  • Fig. 6 is a partial structural diagram of a patch antenna unit provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a package antenna structure provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of broadband impedance characteristics of a patch antenna unit provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of broadband gain characteristics of a patch antenna unit provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the overall structure of a patch antenna unit provided by an embodiment of the present invention.
  • the patch antenna unit adopts a multi-layer patch stack, including: a base substrate or a printed circuit board; and a multi-layer patch, and the multi-layer patch stack is formed on the base substrate or the printed circuit board Above, there is an isolation layer between two adjacent layers of the multilayer patch, which is suitable for generating a radio frequency electromagnetic field, and the edge shape of at least one layer of the multilayer patch is a function curve shape.
  • description is made by taking as an example that the multilayered patches are stacked and formed on the base substrate 10.
  • the number of patch layers in the patch antenna unit shown in FIG. 3 is two, which are the first patch 11 and the second patch 12.
  • FIG. 3 also shows the first probe 21, the second probe 22, and the first feeder 31 and the second feeder 32 respectively connected thereto.
  • the configuration of the dual probes in this embodiment can meet the requirement of dual polarization of the antenna. Therefore, the edge shape of each side of the same patch is the same function curve shape. In some other embodiments, if only single polarization is required, only one probe needs to be provided in the package antenna structure, and the edge shapes of a pair of opposite sides of the same patch should be the same function curve shape. At the same time, the above design can also maintain the symmetry of the antenna structure and meet the requirements of the substrate process.
  • the impedance and radiation performance of the patch depend on the equivalent magnetic current formed by the electric field distribution at the radiation edge.
  • increasing the thickness of the substrate can effectively improve the antenna Impedance bandwidth.
  • a thick substrate in the millimeter wave frequency band may bring greater surface wave loss, and the substrate thickness h used as a substrate in AiP to meet the requirements of chip packaging generally must not exceed one-tenth of ⁇ 0 . Therefore, the method of increasing the thickness of the substrate to increase the bandwidth of the antenna is limited.
  • the edge shape of each side of the multilayer patch is designed as a function curve shape, and the function curve is a continuous and smooth function curve.
  • the radiation edge is effectively expanded.
  • the tangential electric field distribution enhances its contribution to radiation, thereby increasing the antenna bandwidth and increasing the impedance bandwidth of the patch antenna unit.
  • the field in the orthogonal direction of the radiation edge can be controlled so as not to produce a large cross-polarized component.
  • the above working mechanism changes the existing technology that simply relies on increasing the thickness of the substrate or using more expensive low-permittivity materials to increase the bandwidth, and does not add parasitic elements in the array plane to save area.
  • the function curve corresponding to the function curve shape is a trigonometric function curve.
  • the function curve corresponding to the function curve shape may also be a parabola or a hyperbola.
  • the shape of each side of the different laminated patches is a different function curve shape.
  • the patch antenna unit may include two layers of patches, and the edge shapes of the two layers of patches may be parabolic and hyperbolic respectively.
  • FIG. 4, FIG. 5, and FIG. 6 are schematic diagrams of a partial structure of a patch antenna unit provided by an embodiment of the present invention.
  • FIG. 4 shows the substrate 10 of the patch antenna unit, the first probe 21, the second probe 22, and the first feeder 31 and the second feeder 32 respectively connected to it.
  • the first feeder line 31 and the second feeder line 32 are connected to the ports of the transceiver chip in the package antenna structure and are arranged under the substrate 10; the upper surface of the substrate 10 is also provided with a metal ground plane, which can be As the ground reflection surface of the patch, it also functions to isolate the parasitic radiation of the feeder, reducing the impact on the array beam. At the same time, the metal ground plane also reduces the coupling interference of the antenna to the transceiver chip.
  • the first probe 21 and the second probe 22 are respectively electrically connected to the first patch 11 on the bottom layer, and feed power to the first patch 11 to excite a radio frequency electromagnetic field.
  • each side of the first patch 11 has the same shape, and the corresponding function curve is:
  • W is the side length of the original rectangular patch
  • A is the extension of the preset curve
  • n is the number of cycles that the curve changes with the edge of the patch.
  • Determining the shape of the patch edge in the form of a function can give the manufacturer more design freedom to help optimize the performance of the antenna.
  • each side of the second patch 12 on the upper layer has the same shape, and the corresponding function curve is:
  • W is the side length of the original rectangular patch
  • A is the extension of the preset curve
  • n is the number of cycles that the curve changes with the edge of the patch.
  • the second patch 12 is not directly connected to the first probe 21 and the second probe, but is coupled and fed by the first patch 11 in the lower layer.
  • an embodiment of the present invention also provides a package antenna structure, which includes a plurality of the patch antenna units (400-4nn), and further includes: a probe (400a-4nna), suitable for distributing a plurality of The bottom layer patch feed in the patch antenna unit (400-4nn); and the transceiver chip 500, which is electrically connected to a plurality of patch antenna units (400-4nn) through the probe (400a-4nna), and is suitable For receiving or sending signals within a preset frequency range.
  • the number of the bottom layer patch is not limited to one.
  • the transceiver chip 500 is placed at the bottom of the packaged antenna and connected to the substrate above it by solder bumps. In a specific implementation, the transceiver chip 500 can be placed on any side of the substrate in the package antenna, and its placement position can be the center of the substrate or other positions relative to the center of the substrate. The specific location is not limited.
  • FIG. 8 is a schematic diagram of broadband impedance characteristics of a patch antenna unit according to an embodiment of the present invention.
  • FIG. 8 shows the broadband impedance characteristics of the package antenna structure in the polarization directions corresponding to the first probe and the second probe.
  • the abscissa is the operation of the package antenna structure.
  • Frequency, ordinate is return loss.
  • the packaged antenna structure has better broadband impedance characteristics, and its return loss amplitude does not exceed -9dB.
  • FIG. 9 it is a schematic diagram of broadband gain characteristics of a patch antenna unit according to an embodiment of the present invention.
  • FIG. 9 shows the broadband gain characteristics of the package antenna structure in the polarization directions corresponding to the first probe and the second probe.
  • the abscissa is the operation of the package antenna structure Frequency
  • ordinate is return loss.
  • the packaged antenna structure has better broadband gain characteristics, and its radiation gain is not less than 5.6dB.
  • the packaged antenna structure has better broadband impedance characteristics and broadband gain characteristics in this frequency band, thereby increasing the working bandwidth, and can meet the communication requirements of user terminals in the frequency bands N258 and N257.
  • the packaged antenna structure can also meet the communication requirements in the 24-300 GHz frequency band, and has better performance than the prior art.
  • the number of layers of the multilayer substrate structure in the package antenna structure can be designed to be less than 6 layers, and the total thickness of the multilayer substrate structure in the package antenna structure can be designed to be less than 0.75 mm , which can meet the needs of thin packaging.
  • the function curve structure is used at the edge of the patch aperture to effectively expand the aperture field distribution in the plane direction, and different orders of functions are used in different layers of the stack. Curve, broaden the bandwidth of the antenna unit without increasing the thickness of the substrate; make the thin and low-cost package antenna structure reach about 20% of the working bandwidth and at the same time the dual-polarization working mode with high isolation, which satisfies the coverage of global frequency bands and Polarization diversity requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种波束接收失败的上报方法、用户设备、介质及系统,所述波束接收失败的上报方法包括:获取发生波束接收失败的辅小区标识;在所述发生波束接收失败的辅小区内,选择其他波束作为候选波束;将所述发生波束接收失败的辅小区标识和所述候选波束的标识封装为MAC层控制因子,并经由其他小区将所述MAC层控制因子发送至基站,所述其他小区为:主小区、主辅小区或者未发生波束接收失败的其他辅小区。应用上述方案,可以在不占用PRACH和PUCCH的情况下,上报发生波束接收失败的辅小区标识及其对应的备选波束至基站。

Description

贴片天线单元以及封装天线结构
本申请要求于2019年01月31日提交中国专利局、申请号为201910101625.X、发明名称为“贴片天线单元以及封装天线结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及天线技术领域,具体地,涉及一种贴片天线单元以及封装天线结构。
背景技术
[根据细则91更正 13.06.2019] 
第五代通信技术(5-th Generation, 5G)新空口标准定义了多个毫米波频段,例如频段N258和N257在中美日韩欧洲等地区的总和为24.25-29.5GHz,相对其中心频率的带宽约为20%;如果要兼容全球不同地区的规定频段就需要宽带天线。综合毫米波移动通信的各种技术需求,如图1所示,现有技术采用收发芯片(TRX RFIC)与天线阵列集成的封装天线(Antenna in Package,AiP)形式,最有利于实现毫米波前端单芯片或模组的功能与性能,并应用于移动终端和各种小型化设备。现有的AiP技术使用贴片(patch)天线作为平面阵列的单元,现有的封装天线结构包括基板、基板上方的多层贴片(M1-M6)和多层电介质隔离层(D1-D6)。
通常贴片天线相对带宽在5%左右,多层厚衬底贴片天线带宽一般也不超过15%,如图2所示,现有的封装天线结构在27GHz以下的频段,其回波损失特性较差,难以兼容全球不同地区的频段。此外天线带宽随衬底厚度增加而增加,因此现有技术采用多层复杂的衬底基板,有的封装天线还在天线单元下制作空气腔,这需要特殊工艺,成本高而且射频性能不理想,难以满足当今移动终端纤薄的工业设计要求。
因此,需要一种新的贴片天线单元以及封装天线结构,以提升天线带宽、并降低成本。
发明内容
为提升天线带宽、降低制造成本,本发明实施例提供一种贴片天线单元,包括:衬底基板或印刷电路板;多层贴片,堆叠形成于所述衬底基板或所述印刷电路板上,所述多层贴片的相邻两层贴片之间具有隔离层,适于产生射频电磁场;所述多层贴片中的至少一层的边缘形状为函数曲线形状。
可选地,同一贴片的每个边的边缘形状均为相同的函数曲线形状。
可选地,同一贴片的一对对边的边缘形状为相同的函数曲线形状。
可选地,不同叠层的贴片的每个边的形状为不同的函数曲线形状。
可选地,所述函数曲线形状对应的函数曲线为三角函数曲线。
可选地,所述函数曲线形状对应的函数曲线为:y=A cos(n·2π·x/W);其中,W为原矩形贴片的边长,A为预设曲线延伸的幅度,n为曲线随贴片边缘变化的周期数。
可选地,所述函数曲线形状对应的函数曲线为:y=A sin(n·2π·x/W);其中,W为原矩形贴片的边长,A为预设曲线延伸的幅度,n为曲线随贴片边缘变化的周期数。
可选地,所述函数曲线形状对应的函数曲线为抛物线。
可选地,所述函数曲线形状对应的函数曲线为双曲线。
本发明实施例还提供了一种封装天线结构,包括所述贴片天线单元,还包括:探针,适于向多个所述贴片天线单元中的底层贴片馈电; 收发芯片,通过所述探针与多个所述贴片天线单元电连接,适于接收或发送预设频率范围内的信号。
与现有技术相比,本发明实施例的技术方案具有以下优点:
在本发明实施例中,贴片天线单元包括:衬底基板;多层贴片,堆叠形成于所述衬底基板上,所述多层贴片的相邻两层贴片之间具有隔离层,适于产生射频电磁场,所述多层贴片中的至少一层的边缘形状为连续、平滑的函数曲线形状,且同一贴片的每个边的形状均为相同的函数曲线形状,因此,可以增加阻抗带宽的同时保持天线结构的对称性,符合基板工艺的要求,从而增加了封装天线结构的工作带宽。
进一步,不同叠层的贴片的每个边的形状为不同的函数曲线形状,由此可以产生多个谐振模式,增加工作带宽,通过函数的形式确定贴片边缘的形状也给制造商更多设计自由度以助于优化天线的各项性能。
附图说明
图1是现有技术中的一种封装天线结构的结构示意图;
图2是现有技术中的一种封装天线结构的宽带阻抗特性示意图;
图3是本发明实施例提供的一种贴片天线单元的总体结构示意图;
图4是本发明实施例提供的一种贴片天线单元的局部结构示意图;
图5是本发明实施例提供的一种贴片天线单元的局部结构示意图;
图6是本发明实施例提供的一种贴片天线单元的局部结构示意图;
图7是本发明实施例提供的一种封装天线结构的示意图;
图8是本发明实施例提供的一种贴片天线单元的宽带阻抗特性示意图;以及
图9是本发明实施例提供的一种贴片天线单元的宽带增益特性示意图。
具体实施方式
参考图3,图3是本发明实施例提供的一种贴片天线单元的总体结构示意图。
所述贴片天线单元采用多层贴片叠层,包括:衬底基板或印刷电路板;以及多层贴片,所述多层贴片堆叠形成于所述衬底基板或所述印刷电路板上,所述多层贴片的相邻两层贴片之间具有隔离层,适于产生射频电磁场,所述多层贴片中的至少一层的边缘形状为函数曲线形状。在本实施例中,以多层贴片所述多层贴片堆叠形成于衬底基板10上为例进行说明。
图3所示的贴片天线单元中的贴片层数为两层,为第一贴片11与第二贴片12。此外,图3还示出了第一探针21,第二探针22,以及分别与之相连的第一馈线31以及第二馈线32。
需要注意的是,本实施例中双探针的设置可以满足天线双极化的需求。因此,同一贴片的每个边的边缘形状均为相同的函数曲线形状。在另外一些实施例中,若仅需实现单极化,则在封装天线结构中仅需设置一个探针,且同一贴片的一对对边的边缘形状为相同的函数曲线形状即可。同时,上述设计也可以保持天线结构的对称性,符合基板工艺的要求。
在现有技术中,根据微带贴片天线的腔体或传输线模型,贴片的阻抗与辐射等性能取决于辐射边缘的电场分布形成的等效磁流,通常增加衬底厚度可以有效提高天线阻抗带宽。然而毫米波频段厚衬底可能带来较大的表面波损耗,并且在AiP中为满足芯片封装的各项要求 作为衬底的基板厚度h一般不得超过λ 0的十分之一。因此限制了使用增加衬底厚度增加天线带宽的方法。
在本发明实施例中,所述多层贴片的每个边的边缘形状被设计为函数曲线形状,所述函数曲线为连续、平滑的函数曲线,通过上述设计,有效地扩展了辐射边缘的切向电场分布,增强其对辐射的产生贡献,从而增加了天线带宽可以增加贴片天线单元的阻抗带宽。通过优化选取的函数参数可以控制辐射边缘正交方向的场使其不产生较大的交叉极化分量。而以上工作机理改变了单纯依靠增加衬底厚度或使用价格较贵的低介电常数材料增加带宽的现有技术,并且不在阵列平面内增加寄生单元而节省了面积。
在具体实施中,所述函数曲线形状对应的函数曲线为三角函数曲线。在一些实施例中,所述函数曲线形状对应的函数曲线还可以是抛物线或双曲线。
在一些实施例中,不同叠层的贴片的每个边的形状为不同的函数曲线形状。例如,在一个实施例中,所述贴片天线单元可以包括两层贴片,这两层贴片的边缘形状可以分别为抛物线和双曲线。
通过在不同的叠层上使用不同的函数曲线构成贴片边缘的形状,可以产生多重谐振模式,这些模式在较为平滑连续的曲线情况下接近简并,即谐振频率接近从而增加了贴片单元的带宽;同时这样的结构仍然可以保持很好的对称性,有利于同时双极化或圆极化的实现。
具体的,结合参考图4、图5以及图6,图4、图5及图6均为本发明实施例提供的一种贴片天线单元的局部结构示意图。
图4示出了所述贴片天线单元的基板10,第一探针21,第二探针22,以及分别与之相连的第一馈线31以及第二馈线32。
在具体实施中,所述第一馈线31以及所述第二馈线32与封装天线结构中的收发芯片的端口连接,设置于基板10的下方;基板10上表面还设置有一层金属地平面,可以作为贴片的接地反射面,此外, 还起到隔离馈线寄生辐射的作用,减小了对阵列波束的影响,同时,所述金属地平面也减小了天线对收发芯片的耦合干扰。
在图5中,所述第一探针21和第二探针22分别与位于底层的第一贴片11电连接,并向所述第一贴片11馈电,激励起射频电磁场。
在一些实施例中,所述第一贴片11的每个边的形状相同,对应的函数曲线为:
y=A cos(n·2π·x/W)
其中,W为原矩形贴片的边长,A为预设曲线延伸的幅度,n为曲线随贴片边缘变化的周期数。
通过函数的形式确定贴片边缘的形状可以给制造商更多设计自由度以助于优化天线的各项性能。
如图6所示,位于上层的第二贴片12的每个边的形状相同,对应的函数曲线为:
y=A sin(n·2π·x/W)
其中,W为原矩形贴片的边长,A为预设曲线延伸的幅度,n为曲线随贴片边缘变化的周期数。
在一些实施例中,所述第二贴片12不与所述第一探针21与所述第二探针直接连接,而是由下层的第一贴片11耦合馈电。
参考图7,本发明实施例还提供了一种封装天线结构,包括多个所述贴片天线单元(400-4nn),还包括:探针(400a-4nna),适于向多个所述贴片天线单元(400-4nn)中的底层贴片馈电;以及收发芯片500,通过所述探针(400a-4nna)与多个所述贴片天线单元(400-4nn)电连接,适于接收或发送预设频率范围内的信号。
在一些实施例中,所述底层贴片的数量并不限于1。在一些实施例中,所述收发芯片500放置于所述封装天线的最下方,通过焊块与其上方的基板连接。在具体实施中,所述收发芯片500可以放在封装 天线中基板的任意一侧,且其放置位置可以为基板中心,也可以为相对于基板中心的其他位置,本发明对所述收发芯片的具体位置不作限定。
参考图8,图8是本发明实施例提供的一种贴片天线单元的宽带阻抗特性示意图。
图8示出了所述封装天线结构在所述第一探针和所述第二探针对应的极化方向上的宽带阻抗特性,在图8中,横坐标为所述封装天线结构的工作频率,纵坐标为回波损耗。具体地,在24.25-29.5GHz的频段上,相较现有技术,所述封装天线结构有较好的宽带阻抗特性,其回波损耗幅值不超过-9dB。
参考图9,是本发明实施例提供的一种贴片天线单元的宽带增益特性示意图。
图9示出了所述封装天线结构在所述第一探针和所述第二探针对应的极化方向上的宽带增益特性,在图9中,横坐标为所述封装天线结构的工作频率,纵坐标为回波损耗。具体地,在24.25-29.5GHz的频段上,相较现有技术,所述封装天线结构有较好的宽带增益特性,其辐射增益不低于5.6dB。
因此,所述封装天线结构在该频段有较好的宽带阻抗特性和宽带增益特性,从而增加了工作带宽,可以满足用户终端在频段N258和N257上的通信需求。
在一些实施例中,所述封装天线结构也可以满足24-300GHz频段上的通信需求,并相较现有技术有更好的性能。
在满足上述性能指标的前提下,所述封装天线结构中的多层基板结构的层数可以设计为小于6层,所述封装天线结构中的多层基板结构的总厚度可以设计为小于0.75毫米,从而可以满足纤薄封装需求。
如上文所述,在本发明实施例所提供的封装天线结构,在贴片口径边缘使用函数曲线结构有效地在平面方向扩展了口径场分布,并在 叠层的不同层口径使用不同阶的函数曲线,在不增加衬底基板厚度的情况下展宽了天线单元的带宽;使纤薄低成本封装天线结构达到约20%工作带宽且同时高隔离度的双极化工作模式,满足覆盖全球频段与极化分集的要求。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (10)

  1. 一种贴片天线单元,包括:
    衬底基板或印刷电路板;
    多层贴片,堆叠形成于所述衬底基板或所述印刷电路板上,所述多层贴片的相邻两层贴片之间具有隔离层,适于产生射频电磁场;
    其特征在于,所述多层贴片中的至少一层的边缘形状为函数曲线形状。
  2. 根据权利要求1所述的贴片天线单元,其特征在于,同一贴片的每个边的边缘形状均为相同的函数曲线形状。
  3. 根据权利要求1所述的贴片天线单元,其特征在于,同一贴片的一对对边的边缘形状为相同的函数曲线形状。
  4. 根据权利要求2所述的贴片天线单元,其特征在于,不同叠层的贴片的每个边的形状为不同的函数曲线形状。
  5. 根据权利要求2所述的贴片天线单元,其特征在于,所述函数曲线形状对应的函数曲线为三角函数曲线。
  6. 根据权利要求5所述的贴片天线单元,其特征在于,所述函数曲线形状对应的函数曲线为:y=A cos(n·2π·x/W);
    其中,W为原矩形贴片的边长,A为预设曲线延伸的幅度,n为曲线随贴片边缘变化的周期数。
  7. 根据权利要求5所述的贴片天线单元,其特征在于,所述函数曲线形状对应的函数曲线为:y=A sin(n·2π·x/W);
    其中,W为原矩形贴片的边长,A为预设曲线延伸的幅度,n为曲线随贴片边缘变化的周期数。
  8. 根据权利要求2所述的贴片天线单元,其特征在于,所述函数曲线形状对应的函数曲线为抛物线。
  9. 根据权利要求2所述的贴片天线单元,其特征在于,所述函数曲线形状对应的函数曲线为双曲线。
  10. 一种封装天线结构,其特征在于,包括多个权利要求1-9中任一项所述的贴片天线单元,还包括:
    探针,适于向多个所述贴片天线单元中的底层贴片馈电;
    收发芯片,通过所述探针与多个所述贴片天线单元电连接,适于接收或发送预设频率范围内的信号。
PCT/CN2019/079606 2019-01-31 2019-03-26 贴片天线单元以及封装天线结构 WO2020155345A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/976,609 US11367943B2 (en) 2019-01-31 2019-03-26 Patch antenna unit and antenna in package structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910101625.X 2019-01-31
CN201910101625.XA CN111293428B (zh) 2019-01-31 2019-01-31 贴片天线单元以及封装天线结构

Publications (1)

Publication Number Publication Date
WO2020155345A1 true WO2020155345A1 (zh) 2020-08-06

Family

ID=71026309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079606 WO2020155345A1 (zh) 2019-01-31 2019-03-26 贴片天线单元以及封装天线结构

Country Status (3)

Country Link
US (1) US11367943B2 (zh)
CN (3) CN112952365B (zh)
WO (1) WO2020155345A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201119B2 (en) 2018-06-06 2021-12-14 At&S Austria Technologie & Systemtechnik Aktiengesellschaft RF functionality and electromagnetic radiation shielding in a component carrier

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952365B (zh) * 2019-01-31 2022-09-02 展讯通信(上海)有限公司 贴片天线单元以及封装天线结构
CN114389018B (zh) * 2020-10-22 2023-01-31 展讯通信(上海)有限公司 贴片天线单元以及封装天线阵列
CN112242606B (zh) * 2020-12-18 2021-03-26 展讯通信(上海)有限公司 通信天线阵列及电子设备
CN113571859B (zh) * 2021-07-23 2022-05-13 北京邮电大学 一种基于腔体耦合的微带线-微带线垂直过渡结构
CN114024134B (zh) * 2021-10-26 2024-02-06 安徽蓝讯无线通信有限公司 一种用于通讯天线的ltcc封装结构
CN114552169B (zh) * 2022-04-25 2022-07-05 中国电子科技集团公司第二十九研究所 一种宽带曲面随形射频功能电路组件的构建方法
CN116154478B (zh) * 2023-04-19 2023-06-20 湖南大学 小型化mimo天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270722A (en) * 1990-12-27 1993-12-14 Thomson-Csf Patch-type microwave antenna
US6104347A (en) * 1997-05-07 2000-08-15 Telefonaktiebolaget Lm Ericsson Antenna device
CN1905276A (zh) * 2005-07-27 2007-01-31 Agc汽车美洲研发公司 紧凑型圆极化贴片天线
WO2008148569A2 (en) * 2007-06-06 2008-12-11 Fractus, S.A. Dual-polarized radiating element, dual-band dual-polarized antenna assembly and dual-polarized antenna array
US20120212376A1 (en) * 2011-02-22 2012-08-23 Cheng-Geng Jan Planar Dual Polarization Antenna
CN106887682A (zh) * 2017-02-21 2017-06-23 东南大学 一种圆弧角和弯曲辐射边的微带贴片
CN206412483U (zh) * 2017-01-05 2017-08-15 深圳超级数据链技术有限公司 阵列天线

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060822A (ja) * 1999-08-20 2001-03-06 Tdk Corp マイクロストリップアンテナ
BR0116866A (pt) * 2001-02-07 2004-06-22 Fractus Sa Antena extra plana de banda larga miniatura
US7109926B2 (en) * 2003-08-08 2006-09-19 Paratek Microwave, Inc. Stacked patch antenna
US8155682B2 (en) 2006-05-05 2012-04-10 Research In Motion Limited Handheld electronic device including automatic mobile phone number management, and associated method
US8373597B2 (en) * 2006-08-09 2013-02-12 Spx Corporation High-power-capable circularly polarized patch antenna apparatus and method
US7427957B2 (en) * 2007-02-23 2008-09-23 Mark Iv Ivhs, Inc. Patch antenna
FR2919432B1 (fr) 2007-07-27 2009-10-23 Thales Sa Module d'antenne comportant un radome integre.
CN101136503B (zh) * 2007-08-30 2011-09-28 北京航空航天大学 一种提高低仰角增益的环形卫星导航天线及其制备方法
DE102011122039B3 (de) * 2011-12-22 2013-01-31 Kathrein-Werke Kg Patch-Antennen-Anordnung
EP2631991B1 (en) * 2012-02-24 2015-01-21 Tata Consultancy Services Limited Microstrip antenna
CN204067574U (zh) * 2014-07-10 2014-12-31 重庆大学 一种紧凑型宽带八角形槽天线
CN105226390B (zh) * 2015-10-16 2017-11-17 大连海事大学 一种840/920MHz双频圆极化射频识别读写器天线及其阻抗匹配方法
CN206040981U (zh) * 2016-08-31 2017-03-22 重庆大学 圆极化微带天线
CN108879114A (zh) 2017-05-16 2018-11-23 华为技术有限公司 集成天线封装结构和终端
US10651555B2 (en) * 2017-07-14 2020-05-12 Apple Inc. Multi-band millimeter wave patch antennas
US10763589B2 (en) * 2018-07-10 2020-09-01 Apple Inc. Millimeter wave patch antennas with parasitic elements
CN112952365B (zh) * 2019-01-31 2022-09-02 展讯通信(上海)有限公司 贴片天线单元以及封装天线结构
CN110048224B (zh) * 2019-03-28 2021-05-11 Oppo广东移动通信有限公司 天线模组和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270722A (en) * 1990-12-27 1993-12-14 Thomson-Csf Patch-type microwave antenna
US6104347A (en) * 1997-05-07 2000-08-15 Telefonaktiebolaget Lm Ericsson Antenna device
CN1905276A (zh) * 2005-07-27 2007-01-31 Agc汽车美洲研发公司 紧凑型圆极化贴片天线
WO2008148569A2 (en) * 2007-06-06 2008-12-11 Fractus, S.A. Dual-polarized radiating element, dual-band dual-polarized antenna assembly and dual-polarized antenna array
US20120212376A1 (en) * 2011-02-22 2012-08-23 Cheng-Geng Jan Planar Dual Polarization Antenna
CN206412483U (zh) * 2017-01-05 2017-08-15 深圳超级数据链技术有限公司 阵列天线
CN106887682A (zh) * 2017-02-21 2017-06-23 东南大学 一种圆弧角和弯曲辐射边的微带贴片

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201119B2 (en) 2018-06-06 2021-12-14 At&S Austria Technologie & Systemtechnik Aktiengesellschaft RF functionality and electromagnetic radiation shielding in a component carrier

Also Published As

Publication number Publication date
CN112952365A (zh) 2021-06-11
CN111293428A (zh) 2020-06-16
US20210367323A1 (en) 2021-11-25
CN112952366A (zh) 2021-06-11
CN112952365B (zh) 2022-09-02
CN112952366B (zh) 2022-09-02
CN111293428B (zh) 2021-03-16
US11367943B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2020155345A1 (zh) 贴片天线单元以及封装天线结构
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
US11545761B2 (en) Dual-band cross-polarized 5G mm-wave phased array antenna
KR102614892B1 (ko) 안테나 유닛 및 단말 장비
JP7313479B2 (ja) アンテナユニット及び端末機器
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2020134473A1 (zh) 封装天线系统及移动终端
EP3688840B1 (en) Perpendicular end fire antennas
US11201394B2 (en) Antenna device and electronic device
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
WO2020119228A1 (zh) 天线系统及通讯终端
CN109560387B (zh) 一种用于移动终端的毫米波双极化天线
EP3965538A1 (en) Housing assembly, antenna apparatus and electronic device
EP4290688A1 (en) Antenna assemblies and antenna modules for use in wireless communication systems
CN110707420B (zh) 一种双极化天线振子及包含该天线振子的天线
CN110571523B (zh) 一种大频率比三线极化天线
CN217134687U (zh) 一种双极化辐射单元、一种天线以及一种天线系统
WO2022083107A1 (zh) 贴片天线单元以及封装天线阵列
CN110649384B (zh) 一种天线及电子设备
CN111615775B (zh) 垂直极化天线和终端设备
CN112968271A (zh) 一种宽带双极化天线
CN108172993B (zh) 一种双极化频率可重构天线
CN219086244U (zh) 一种2.4GHz频段的PCB平板定向天线
US12080943B2 (en) Antenna module
US20240313406A1 (en) Antenna assembly and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912441

Country of ref document: EP

Kind code of ref document: A1