WO2020155329A1 - 一种带伺服缸的矢量回转机构 - Google Patents

一种带伺服缸的矢量回转机构 Download PDF

Info

Publication number
WO2020155329A1
WO2020155329A1 PCT/CN2019/078453 CN2019078453W WO2020155329A1 WO 2020155329 A1 WO2020155329 A1 WO 2020155329A1 CN 2019078453 W CN2019078453 W CN 2019078453W WO 2020155329 A1 WO2020155329 A1 WO 2020155329A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear servo
cylinder
output
linear
servo cylinder
Prior art date
Application number
PCT/CN2019/078453
Other languages
English (en)
French (fr)
Inventor
李建伟
左昱昱
陈立辉
Original Assignee
江苏钧微动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏钧微动力科技有限公司 filed Critical 江苏钧微动力科技有限公司
Publication of WO2020155329A1 publication Critical patent/WO2020155329A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/02Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith

Definitions

  • the invention relates to the technical field of servo cylinders, in particular to a vector turning mechanism with servo cylinders.
  • Piston type swing servo cylinders including rack and pinion type, spiral piston type, chain type, crank type and reciprocating type
  • rack and pinion type, spiral piston type, chain type, crank type and reciprocating type all adopt mechanical structure to realize the rotation movement of the load.
  • the inherent friction, dead zone, and life span of the mechanical structure greatly affect its use.
  • Vane type swing servo cylinder without any speed change mechanism, can realize load rotation.
  • the sealing of the moving parts is difficult, the processing is complicated, and the price is expensive.
  • the present invention provides a vector rotation mechanism with a servo cylinder, which has a simple structure, an output rotation angle of 360°, and has high mechanical efficiency and high reliability.
  • a vector slewing mechanism with servo cylinders is characterized in that it includes two linear servo cylinders, specifically a first linear servo cylinder and a second linear servo cylinder.
  • the two linear servo cylinders are spaced at 90° Arrangement, it also includes a slewing mechanism housing, the slewing mechanism housing is provided with an input rotating arm shaft and an output rotating shaft, the input rotating arm shaft is inserted into a radial positioning structure of the output rotating shaft, the output rotating shaft.
  • the inner ring of the bearing inserted into the output shaft hole of the slewing mechanism housing, the distance between the input shaft and the center axis of the output shaft is r, and two linear servo cylinders are both arranged on the slewing mechanism housing In the inner cavity, the two linear servo cylinders are fixedly connected by the first connecting seat.
  • One linear servo cylinder output terminal controls the lateral movement to form the horizontal axis of the rectangular coordinate system; the other linear servo cylinder output terminal controls the longitudinal movement, Form the vertical axis of the Cartesian coordinate system; the movement of two linear servo cylinders is combined to form a plane of the Cartesian coordinate system, one linear servo cylinder is fixed in position, and the other linear servo cylinder is fixed to the fixed linear servo through the first connecting seat
  • the output end of the cylinder, the controller connects the input ends of the two linear servo cylinders through independent solenoid valves, the end of the output end of the other linear servo cylinder is the output point, and the output point is connected to the connecting end of the input arm shaft
  • the controller controls the input shaft arm to make a circular motion with a radius r with the central axis of the output shaft as the center, and the movable distance of the output ends of the two linear servo cylinders is not less than 2r.
  • the movement direction of the first output end of the first linear servo cylinder forms the horizontal axis of the Cartesian coordinate system
  • the movement direction of the second output end of the second linear servo cylinder forms the vertical axis of the Cartesian coordinate system.
  • the movement of the two linear servo cylinders is combined to form one On the plane of the rectangular coordinate system, the longitudinal ends of the first piston rod of the first linear servo cylinder are respectively positioned at the corresponding positions of the housing of the slewing mechanism, and the first cylinder body of the first linear servo cylinder is located along the
  • the first cylinder is fixed to the second linear servo cylinder through the first connecting seat, and the second cylinder of the second linear servo cylinder is The body performs longitudinal movement in a rectangular coordinate system along the length of the second piston rod, and the position of the second cylinder body corresponding to the connection end of the input boom shaft is fixedly connected to the connection end of the input boom shaft;
  • the first cylinder is connected to one end of the second piston rod in the longitudinal direction through a first connecting seat, and the other end of the second piston rod in the longitudinal direction is positioned at a corresponding position of the second connecting seat.
  • a first linear bearing is provided on the first linear bearing, a first guide rail is inserted in the through hole of the first linear bearing, and both ends of the first guide rail are respectively fixedly fixed to the corresponding positions of the slewing mechanism housing.
  • the first guide rail is arranged parallel to the first piston rod;
  • a second linear bearing is fixedly connected to one side of the second cylinder, a second guide rail is inserted in the through hole of the second linear bearing, and both ends of the second guide rail in the longitudinal direction are respectively fixed to the Corresponding positions of the first connecting seat and the second connecting seat, the second guide rail is arranged parallel to the second piston rod, the second linear bearing and the second guide rail ensure that the Y-axis movement of the second cylinder is stable and reliable ;
  • the first connecting seat includes but is not limited to a mounting seat, a linear fixing frame, an L-shaped fixing frame, a Z-shaped fixing frame, and a space fixing frame;
  • the controller is connected to the input end of the first solenoid valve through a first line, the output end of the first solenoid valve is connected to the input end of the first linear servo cylinder, and the controller is connected through a second line
  • the input end of the second solenoid valve, and the output end of the second solenoid valve is connected to the input end of the second linear servo cylinder;
  • the rectangular coordinate system is an XY coordinate system
  • the controller calculates the coordinate difference between the coordinate of the next movement point of the output point on the circumference and the coordinate at this time in real time in the working state, and then decomposes it to the corresponding
  • the first cylinder and the second cylinder are then driven to perform corresponding vector actions, so that the output point makes a circular motion with a radius r.
  • the controller sends instructions to drive the solenoid valve to control the movement of the output horizontal axis of one of the linear servo cylinders, while the controller sends instructions to drive the corresponding solenoid valve to control the output vertical axis of the other linear servo cylinder.
  • the output movement of the two linear servo cylinders forms a vector action, which makes the input arm shaft move circularly with a radius r, and finally makes the output shaft rotate. Its structure is simple, the output angle reaches 360°, and its mechanical efficiency is high. High reliability.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a specific embodiment of the present invention.
  • Fig. 2 is a schematic sectional view of the side view of Fig. 1;
  • Figure 3 is a schematic cross-sectional view of the top view of Figure 1;
  • Figure 4 is the XY coordinate plane established by the present invention.
  • a vector slewing mechanism with servo cylinders see Figure 1 to Figure 4: It includes two linear servo cylinders, specifically the first linear servo cylinder 1, the second linear servo cylinder 2, and the two linear servo cylinders are in space Arranged at 90°, it also includes a slewing mechanism housing 3 on which an input rotating arm shaft 4 and an output rotating shaft 5 are provided.
  • the input rotating arm shaft 4 is inserted into a radial positioning structure 51 of the output rotating shaft 5.
  • the output shaft 5 is inserted into the inner ring of the bearing 32 of the output shaft hole 31 of the slewing mechanism housing 3.
  • the distance between the center axis of the input shaft 4 and the output shaft 5 is r, and the two linear servo cylinders are both arranged in the slewing mechanism housing In the inner cavity of 3, two linear servo cylinders are fixedly connected by the first connecting seat 6.
  • the movement direction of the output end of one linear servo cylinder is the transverse movement of the rectangular coordinate system, and the movement direction of the output end of the other linear servo cylinder is In the longitudinal movement of the Cartesian coordinate system, the movement of two linear servo cylinders is combined to form a plane of the Cartesian coordinate system.
  • One linear servo cylinder is fixed in position, and the other linear servo cylinder is fixed to the fixed position linear servo cylinder through the first connecting seat 6.
  • the controller connects the input ends of the two linear servo cylinders through independent solenoid valves (not shown in the figure, belonging to the existing mature connection structure).
  • the output end of the other linear servo cylinder is the output point, and the output point is connected to the input
  • the controller controls the input rotating shaft arm 4 to make a circular motion with the center axis of the output rotating shaft 5 as the center and a radius of r.
  • the movable distance of the output ends of the two linear servo cylinders is not less than 2r.
  • the rectangular coordinate system is an XY coordinate system
  • the movement direction of the first output end of the first linear servo cylinder 1 is the lateral movement of the X coordinate system
  • the second linear servo cylinder 2 is the second
  • the movement direction of the output end is the longitudinal movement of the Y coordinate system.
  • the movement of the two linear servo cylinders is combined to form a plane of the XY coordinate system.
  • the longitudinal ends of the first piston rod 101 of the first linear servo cylinder 1 are respectively positioned on the rotating mechanism Corresponding position of the housing 3, the first cylinder 102 of the first linear servo cylinder 1 moves laterally in the X coordinate system along the length direction of the first piston rod 101, and the first cylinder 102 is fixedly connected by the first connecting seat 6
  • the second linear servo cylinder 2, the second cylinder body 202 of the second linear servo cylinder 2 makes a longitudinal movement of the Y coordinate system along the length direction of the second piston rod 201, and the second cylinder body 202 corresponds to the input arm axis 4
  • the position of the connecting end is fixedly connected to the connecting end of the input arm shaft 4;
  • the first cylinder 102 is connected to one end of the second piston rod 201 in the longitudinal direction through the first connecting seat 6, and the other end of the second piston rod 201 in the longitudinal direction is positioned at the corresponding position of the second connecting seat 7 on the second connecting seat 7.
  • a first linear bearing 8 is provided, and a first guide rail 9 is inserted into the through hole of the first linear bearing 8.
  • the two ends of the first guide rail 9 are respectively fixed at the corresponding positions of the slewing mechanism housing 3.
  • the first guide rail 9 Arranged parallel to the first piston rod 101;
  • a second linear bearing 10 is fixedly connected to one side of the second cylinder body 201, a second guide rail 11 is inserted into the through hole of the second linear bearing 10, and both ends of the second guide rail 11 in the longitudinal direction are respectively fixed to the first connection
  • the second guide rail 11 is arranged parallel to the second piston rod 201, and the second linear bearing 10 and the second guide rail 11 ensure that the Y-axis movement of the second cylinder block 202 is stable and reliable;
  • the first connecting seat 6 includes, but is not limited to, an ordinary connecting seat, a linear fixing frame, an L-shaped fixing frame, a Z-shaped fixing frame, and a space fixing frame.
  • the specific form of the first connecting seat 6 is determined according to the spatial position;
  • the controller is connected to the input end of the first solenoid valve through the first line, the output end of the first solenoid valve is connected to the input end of the first linear servo cylinder, and the controller is connected to the input end of the second solenoid valve through the second line.
  • the output end of the solenoid valve is connected to the input end of the second linear servo cylinder;
  • the controller calculates the vector difference between the coordinates of the next moving point of the output point on the circumference and the coordinates at this time in real time under working conditions, and then decomposes them to the corresponding X and Y coordinate axes, and then drives the first cylinder. , The second cylinder does the corresponding vector action, making the output point make a circular motion with the radius r.
  • any point on the circle can be decomposed into a point on the X coordinate system and a point on the Y coordinate system, and vice versa, through a point on the X coordinate system and a point on the Y coordinate system.
  • Point can get any point on the circle.
  • a circle can be formed by the combination of several points, as shown in Figure 4, point 1 (X1, Y1), point 2 (X2, Y2), point 3 (X3, Y3), point 4 (X4, Y4); controlled by The controller sends out instructions to drive the solenoid valve to control the movement of the first cylinder in the X-axis direction.
  • the controller sends instructions to drive the corresponding solenoid valve to control the movement in the Y-axis direction of the first cylinder.
  • the output motion of the body forms a vector effect, which makes the input arm shaft move circularly with a radius r, and finally makes the output shaft rotate.
  • the structure is simple, the output angle reaches 360°, and its mechanical efficiency and reliability are high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Servomotors (AREA)
  • Transmission Devices (AREA)

Abstract

一种带伺服缸的矢量回转机构,其结构简单,输出转角达到360°,其机械效率高、可靠性高。其包括两个直线伺服缸,具体为第一直线伺服缸(1)、第二直线伺服缸(2),两个所述直线伺服缸在空间上成90°布置,其还包括回转机构外壳(3),所述回转机构外壳(3)上设置有输入转臂轴(4)、输出转轴(5),输入转臂轴(4)插装于输出转轴(5)的径向一定位结构内,输出转轴(5)插装于所述回转机构外壳(3)的输出转轴孔(31)的轴承内圈,输入转臂轴(4)和输出转轴(5)的中心轴的间距为r,两个直线伺服缸均布置于回转机构外壳(3)的内腔内,两个直线伺服缸通过第一连接座(6)固接连接,其中一个直线伺服缸输出端控制横向运动,形成直角坐标系的横轴;另一个直线伺服缸输出端控制纵向运动,形成直角坐标系的纵轴。

Description

一种带伺服缸的矢量回转机构 技术领域
本发明涉及伺服缸的技术领域,具体为一种带伺服缸的矢量回转机构。
背景技术
目前,能实现负载的旋转运动的伺服缸有以下两大类:
1)活塞式摆动伺服缸(包括齿轮齿条式、螺旋活塞式、链式、曲柄式及来复式)均是采用机械结构实现负载的旋转运动。但机械结构自身所固有的摩擦力、死区、寿命都极大的影响它的使用。
2)叶片式摆动伺服缸,无需任何变速机构,可实现负载的旋转运动。但运动部位的密封困难,加工复杂,价格昂贵。
发明内容
针对上述问题,本发明提供了一种带伺服缸的矢量回转机构,其结构简单,输出转角达到360°,其机械效率高、可靠性高。
一种带伺服缸的矢量回转机构,其特征在于:其包括两个直线伺服缸,具体为第一直线伺服缸、第二直线伺服缸,两个所述直线伺服缸在空间上成90°布置,其还包括回转机构外壳,所述回转机构外壳上设置有输入转臂轴、输出转轴,所述输入转臂轴插装于所述输出转轴的径向一定位结构内,所述输出转轴插装于所述回转机构外壳的输出转轴孔的轴承内圈,所述输入转臂轴和所述输出转轴的中心轴的间距为r,两个直线伺服缸均布置于所述回转机构外壳的内腔内,两个所述直线伺服缸通过第一连接座固接连接,其中一个直线伺服缸输出端控制横向运动,形成直角坐标系的横轴;另一个直线伺服 缸输出端控制纵向运动,形成直角坐标系的纵轴;两个直线伺服缸运动组合形成一个直角坐标系的平面,一个直线伺服缸位置固定,另一个直线伺服缸通过所述第一连接座固接于位置固定的直线伺服缸的输出端,控制器分别通过独立的电磁阀连接两个所述直线伺服缸的输入端,另一个直线伺服缸的输出端的末端为输出点,所述输出点连接输入转臂轴的连接端,所述控制器控制输入转轴臂以输出转轴的中心轴为圆心、做半径为r的圆周运动,两个所述直线伺服缸的输出端的活动距离均不小于2r。
其进一步特征在于:
第一直线伺服缸的第一输出端的运动方向形成直角坐标系的横轴、第二直线伺服缸的第二输出端的运动方向形成直角坐标系的纵轴,两个直线伺服缸运动组合形成一个直角坐标系的平面,所述第一直线伺服缸的第一活塞杆的长度方向两端分别定位于所述回转机构外壳的对应位置,所述第一直线伺服缸的第一缸体沿着第一活塞杆的长度方向做直角坐标系的横向运动,所述第一缸体通过所述第一连接座固接所述第二直线伺服缸,所述第二直线伺服缸的第二缸体沿着第二活塞杆的长度方向做直角坐标系的纵向运动,所述第二缸体的对应于所述输入转臂轴的连接端的位置固接所述输入转臂轴的连接端;
所述第一缸体通过第一连接座连接所述第二活塞杆的长度方向一端,所述第二活塞杆的长度方向另一端定位于第二连接座的对应位置,所述第二连接座上设置有第一直线轴承,所述第一直线轴承的贯穿孔内插装有第一导轨,所述第一导轨的两端分别固装于所述回转机构外壳的对应位置,所述第一导轨平行于所述第一活塞杆布置设置;
所述第二缸体的一侧固接有第二直线轴承,所述第二直线轴承的贯穿孔内插装有第二导轨,所述第二导轨的长度方向两端分别固接于所述第一连接座、第二连接座的对应位置,所述第二导轨平行于所述第二活塞杆布置,所述第二直线轴承、第二导轨确保第二缸体的Y轴向运动稳固可靠;
所述第一连接座包括但不限于为安装座、直线固定架、L型固定架、Z型固定架以及空间固定架;
所述控制器通过第一线路连接所述第一电磁阀的输入端,所述第一电磁阀的输出端连接所述第一直线伺服缸的输入端,所述控制器通过第二线路连接所述第二电磁阀的输入端,所述第二电磁阀的输出端连接所述第二直线伺服缸的输入端;
优选地,所述直角坐标系为XY坐标系,所述控制器在工作状态下实时计算圆周上的输出点的下一运动点的坐标和此时的坐标的矢量差值,然后分解到对应的X坐标轴和Y坐标轴上,之后驱动第一缸体、第二缸体做对应的矢量动作,使得输出点以半径r做圆周运动。
采用本发明后,由控制器发出指令,驱动电磁阀控制其中一个直线伺服缸的输出横轴方向的运动,同时由控制器发出指令,驱动对应的电磁阀控制另外一个直线伺服缸输出纵轴方向的运动,两个直线伺服缸的输出运形成矢量作用,使输入转臂轴以半径r做圆周运动,最终使输出转轴做旋转运动,其结构简单,输出转角达到360°,其机械效率高、可靠性高。
附图说明
图1为本发明的具体实施例的立体图结构示意图;
图2为图1的侧视图剖视结构示意图;
图3为图1的俯视图剖视结构示意图;;
图4为本发明所建立XY坐标平面;
图中序号所对应的名称如下:
第一直线伺服缸1、第一活塞杆101、第一缸体102、第二直线伺服缸2、第二活塞杆201、第二缸体202、回转机构外壳3、输出转轴孔31、轴承32、输入转臂轴4、输出转轴5、定位结构51、第一连接座6、第二连接座7、第一直线轴承8、第一导轨9、第二直线轴承10、第二导轨11。
具体实施方式
一种带伺服缸的矢量回转机构,见图1-图4:其包括两个直线伺服缸,具体为第一直线伺服缸1、第二直线伺服缸2,两个直线伺服缸在空间上成90°布置,其还包括回转机构外壳3,回转机构外壳3上设置有输入转臂轴4、输出转轴5,输入转臂轴4插装于输出转轴5的径向一定位结构51内,输出转轴5插装于回转机构外壳3的输出转轴孔31的轴承32的内圈,输入转臂轴4和输出转轴5的中心轴的间距为r,两个直线伺服缸均布置于回转机构外壳3的内腔内,两个直线伺服缸通过第一连接座6固接连接,其中一个直线伺服缸的输出端的运动方向为直角坐标系的横向运动、另一个直线伺服缸的输出端的运动方向为直角坐标系的纵向运动,两个直线伺服缸运动组合形成一个直角坐标系的平面,一个直线伺服缸位置固定,另一个直线伺服缸通过第一连接座6固接于位置固定的直线伺服缸,控制器分别通过独立的电磁阀连接两个直线伺服缸的输入端(图中未画出、属于现有成熟的连接结构),另一个直线伺服缸的输出端的末端为输出点,输出点连接输入转臂轴4的连接端, 控制器控制输入转轴臂4以输出转轴5的中心轴为圆心、做半径为r的圆周运动,两个直线伺服缸的输出端的活动距离均不小于2r。
具体实施例、见图1-图3:直角坐标系为XY坐标系,第一直线伺服缸1的第一输出端的运动方向为X坐标系的横向运动、第二直线伺服缸2的第二输出端的运动方向为Y坐标系的纵向运动,两个直线伺服缸运动组合形成一个XY坐标系的平面,第一直线伺服缸1的第一活塞杆101的长度方向两端分别定位于回转机构外壳3的对应位置,第一直线伺服缸1的第一缸体102沿着第一活塞杆101的长度方向做X坐标系的横向运动,第一缸体102通过第一连接座6固接第二直线伺服缸2,第二直线伺服缸2的第二缸体202沿着第二活塞杆201的长度方向做Y坐标系的纵向运动,第二缸体202的对应于输入转臂轴4的连接端的位置固接输入转臂轴4的连接端;
第一缸体102通过第一连接座6连接第二活塞杆201的长度方向一端,第二活塞杆201的长度方向另一端定位额于第二连接座7的对应位置,第二连接座7上设置有第一直线轴承8,第一直线轴承8的贯穿孔内插装有第一导轨9,第一导轨9的两端分别固装于回转机构外壳3的对应位置,第一导轨9平行于第一活塞杆101布置设置;
第二缸体201的一侧固接有第二直线轴承10,第二直线轴承10的贯穿孔内插装有第二导轨11,第二导轨11的长度方向两端分别固接于第一连接座6、第二连接座7的对应位置,第二导轨11平行于第二活塞杆201布置,第二直线轴承10、第二导轨11确保第二缸体202的Y轴向运动稳固可靠;
第一连接座6包括但不限于为普通连接座、直线固定架、L型固定架、Z型固定架以及空间固定架,第一连接座6的具体形态根据空间位置确定;
控制器通过第一线路连接第一电磁阀的输入端,第一电磁阀的输出端连接第一直线伺服缸的输入端,控制器通过第二线路连接第二电磁阀的输入端,第二电磁阀的输出端连接第二直线伺服缸的输入端;
控制器在工作状态下实时计算圆周上的输出点的下一运动点的坐标和此时的坐标的矢量差值,然后分解到对应的X坐标轴和Y坐标轴上,之后驱动第一缸体、第二缸体做对应的矢量动作,使得输出点以半径r做圆周运动。
具体实施例的工作原理如下:圆周上的任意一点都可分解为X坐标系上的一个点和Y坐标系上的一个点,反之,通过X坐标系上的一个点和Y坐标系上的一个点就可得到圆周上的任意一个点。通过若干个点的组合就可形成一个圆,见图4中点1(X1、Y1)、点2(X2、Y2)、点3(X3、Y3)、点4(X4、Y4);由控制器发出指令,驱动电磁阀控制第一缸体输出X轴方向的运动,同时由控制器发出指令,驱动对应的电磁阀控制第缸体输出Y轴方向的运动,第一缸体和第二缸体输出运动形成矢量作用,使输入转臂轴以半径r做圆周运动,最终使输出转轴做旋转运动,其结构简单,输出转角达到360°,其机械效率高、可靠性高。
以上对本发明的具体实施例进行了详细说明,但内容仅为本发明创造的较佳实施例,不能被认为用于限定本发明创造的实施范围。凡依本发明创造申请范围所作的均等变化与改进等,均应仍归属于本专利涵盖范围之内。

Claims (7)

  1. 一种带伺服缸的矢量回转机构,其特征在于:其包括两个直线伺服缸,具体为第一直线伺服缸、第二直线伺服缸,两个所述直线伺服缸在空间上成90°布置,其还包括回转机构外壳,所述回转机构外壳上设置有输入转臂轴、输出转轴,所述输入转臂轴插装于所述输出转轴的径向一定位结构内,所述输出转轴插装于所述回转机构外壳的输出转轴孔的轴承内圈,所述输入转臂轴和所述输出转轴的中心轴的间距为r,两个直线伺服缸均布置于所述回转机构外壳的内腔内,两个所述直线伺服缸通过第一连接座固接连接,其中一个直线伺服缸输出端控制横向运动,形成直角坐标系的横轴;另一个直线伺服缸输出端控制纵向运动,形成直角坐标系的纵轴;两个直线伺服缸运动组合形成一个直角坐标系的平面,一个直线伺服缸位置固定,另一个直线伺服缸通过所述第一连接座固接于位置固定的直线伺服缸的输出端,控制器分别通过独立的电磁阀连接两个所述直线伺服缸的输入端,另一个直线伺服缸的输出端的末端为输出点,所述输出点连接输入转臂轴的连接端,所述控制器控制输入转轴臂以输出转轴的中心轴为圆心、做半径为r的圆周运动,两个所述直线伺服缸的输出端的活动距离均不小于2r。
  2. 如权利要求1所述的一种带伺服缸的矢量回转机构,其特征在于:第一直线伺服缸的第一输出端的运动方向形成直角坐标系的横轴、第二直线伺服缸的第二输出端的运动方向形成直角坐标系的纵轴,两个直线伺服缸运动组合形成一个直角坐标系的平面,所述第一直线伺服缸的第一活塞杆的长度方向两端分别定位于所述回转机构外壳的对应位置,所述第一直线伺服缸的第一缸体沿着第一活塞杆的长度方向做直角坐标系的横向运动,所述第一缸体通过所述第一连接座固接所述第二直线伺服缸,所述第二直线伺服缸的第 二缸体沿着第二活塞杆的长度方向做直角坐标系的纵向运动,所述第二缸体的对应于所述输入转臂轴的连接端的位置固接所述输入转臂轴的连接端。
  3. 如权利要求2所述的一种带伺服缸的矢量回转机构,其特征在于:所述第一缸体通过第一连接座连接所述第二活塞杆的长度方向一端,所述第二活塞杆的长度方向另一端定位于第二连接座的对应位置,所述第二连接座上设置有第一直线轴承,所述第一直线轴承的贯穿孔内插装有第一导轨,所述第一导轨的两端分别固装于所述回转机构外壳的对应位置,所述第一导轨平行于所述第一活塞杆布置设置。
  4. 如权利要求3所述的一种带伺服缸的矢量回转机构,其特征在于:所述第二缸体的一侧固接有第二直线轴承,所述第二直线轴承的贯穿孔内插装有第二导轨,所述第二导轨的长度方向两端分别固接于所述第一连接座、第二连接座的对应位置,所述第二导轨平行于所述第二活塞杆布置。
  5. 如权利要求1所述的一种带伺服缸的矢量回转机构,其特征在于:所述第一连接座包括但不限于为安装座、直线固定架、L型固定架、Z型固定架以及空间固定架。
  6. 如权利要求1所述的一种带伺服缸的矢量回转机构,其特征在于:所述控制器通过第一线路连接所述第一电磁阀的输入端,所述第一电磁阀的输出端连接所述第一直线伺服缸的输入端,所述控制器通过第二线路连接所述第二电磁阀的输入端,所述第二电磁阀的输出端连接所述第二直线伺服缸的输入端。
  7. 如权利要求2所述的一种带伺服缸的矢量回转机构,其特征在于:所述直角坐标系为XY坐标系,所述控制器在工作状态下实时计算圆周上的输出 点的下一运动点的坐标和此时的坐标的矢量差值,然后分解到对应的X坐标轴和Y坐标轴上,之后驱动第一缸体、第二缸体做对应的矢量动作,使得输出点以半径r做圆周运动。
PCT/CN2019/078453 2019-01-29 2019-03-18 一种带伺服缸的矢量回转机构 WO2020155329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910109836.8 2019-01-29
CN201910109836.8A CN109681486B (zh) 2019-01-29 2019-01-29 一种带伺服缸的矢量回转机构

Publications (1)

Publication Number Publication Date
WO2020155329A1 true WO2020155329A1 (zh) 2020-08-06

Family

ID=66195772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078453 WO2020155329A1 (zh) 2019-01-29 2019-03-18 一种带伺服缸的矢量回转机构

Country Status (2)

Country Link
CN (1) CN109681486B (zh)
WO (1) WO2020155329A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852291A (zh) * 2022-12-20 2023-03-28 安徽汇源镀锌有限公司 一种热镀锌工艺用风冷机构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2919435A1 (de) * 1978-05-29 1979-12-13 Ife Gmbh Drehantrieb fuer tueren, kraftscharniere u.dgl.
CN101372992A (zh) * 2008-06-04 2009-02-25 郭玉恒 一种流体输入转化为扭矩和摆角输出的方法及专用油缸
CN201225348Y (zh) * 2008-06-04 2009-04-22 郭玉恒 一种液压两级螺旋摆动油缸
CN104595468A (zh) * 2015-03-05 2015-05-06 刘硕珣 矢量回转传动装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729038Y2 (ja) * 1992-03-19 1995-07-05 川崎重工業株式会社 流体圧サーボ式可変ピッチプロペラの変節箱構造
JP3465201B2 (ja) * 1994-11-02 2003-11-10 スガワアクチュエータ合資会社 油圧ロッドレスシリンダ型アクチュエータ
JP4152123B2 (ja) * 2002-05-20 2008-09-17 ナブテスコ株式会社 サーボシリンダの制御装置
WO2012031611A1 (en) * 2010-09-08 2012-03-15 Kongsberg Automotive As Servo assisted actuating system for a multispeed gearbox of a vehicle
US9303741B2 (en) * 2013-12-06 2016-04-05 Kan Cui Linear-to-rotary actuator
CN203702720U (zh) * 2014-01-22 2014-07-09 深圳市威廉姆自动化设备有限公司 一种旋转机构
CN104675803B (zh) * 2015-02-15 2017-01-04 浙江理工大学 一种连杆式油缸活塞行程测量装置
CN105668430B (zh) * 2016-03-01 2018-11-09 江苏科技大学 具有多自由度主动波浪补偿功能的吊机装置及补偿方法
CN106678413A (zh) * 2017-01-07 2017-05-17 上海卡威机械技术有限公司 一种极慢速多回转电液执行机构
CN206801992U (zh) * 2017-04-17 2017-12-26 燕山大学 一种用于机器人的一体化液压驱动器
CN108145699B (zh) * 2018-02-09 2024-04-05 闽江学院 管式直线电机驱动的六自由度并联机器臂及其控制方法
CN108626203B (zh) * 2018-05-14 2019-08-27 大连海事大学 一种六自由度运动平台电液伺服系统的低频干扰补偿方法
CN210013879U (zh) * 2019-01-29 2020-02-04 江苏钧微动力科技有限公司 一种带伺服缸的矢量回转机构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2919435A1 (de) * 1978-05-29 1979-12-13 Ife Gmbh Drehantrieb fuer tueren, kraftscharniere u.dgl.
CN101372992A (zh) * 2008-06-04 2009-02-25 郭玉恒 一种流体输入转化为扭矩和摆角输出的方法及专用油缸
CN201225348Y (zh) * 2008-06-04 2009-04-22 郭玉恒 一种液压两级螺旋摆动油缸
CN104595468A (zh) * 2015-03-05 2015-05-06 刘硕珣 矢量回转传动装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852291A (zh) * 2022-12-20 2023-03-28 安徽汇源镀锌有限公司 一种热镀锌工艺用风冷机构

Also Published As

Publication number Publication date
CN109681486B (zh) 2024-02-02
CN109681486A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
CN106584440A (zh) 姿态可调整、坐标解耦的七自由度机器人及控制方法
CN107283405B (zh) 一种机械臂
CN103538070A (zh) 一种五自由度液压伺服机械手
CN108818502B (zh) 具有球面转动自由度的两移动一转动的并联机构
CN206343909U (zh) 气动三轴双工位变位机
CN104476535A (zh) 一种多自由度可控轮式移动码垛机器人机构
WO2020155329A1 (zh) 一种带伺服缸的矢量回转机构
CN203635427U (zh) 六轴联动点胶机
CN102275161A (zh) 一种三转动球面运动机构
CN108544532B (zh) 一种仿人机械臂
CN109578392A (zh) 一种矢量控制旋转缸
CN210013879U (zh) 一种带伺服缸的矢量回转机构
CN210343906U (zh) 一种带组合液压缸的紧凑型矢量回转机构
CN105364917A (zh) 一种垂直关节的伪四自由度并联机器人
CN101530969B (zh) 具备动态稳定性的冗余驱动机构
CN107989849A (zh) 一种集成化自行摆动式齿轮齿条液压缸
CN212225665U (zh) 一种电动液压作动装置
CN108825546B (zh) 一种应用于燃气轮机的可转导叶执行机构及其传动方法
CN107351064A (zh) 一种仿人手腕关节的新型二自由度并联机器人
CN209394663U (zh) 一种能够升降及转动的平面关节型机器人
CN110480601B (zh) 四分支的交叉型三自由度并联机构
CN106695766B (zh) 一种基于抓取并联机构的六自由度并联装置
CN205207577U (zh) 一种准双曲齿轮机构的二轴姿势部装置
CN102601801B (zh) 单轴回转式机械手臂
CN203272314U (zh) 行程换向阀控制的顺序运动回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913968

Country of ref document: EP

Kind code of ref document: A1