WO2020155315A1 - 一种高压软硬管路连接密封系统 - Google Patents

一种高压软硬管路连接密封系统 Download PDF

Info

Publication number
WO2020155315A1
WO2020155315A1 PCT/CN2019/077740 CN2019077740W WO2020155315A1 WO 2020155315 A1 WO2020155315 A1 WO 2020155315A1 CN 2019077740 W CN2019077740 W CN 2019077740W WO 2020155315 A1 WO2020155315 A1 WO 2020155315A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition joint
sealing system
pipeline connection
hard
connection sealing
Prior art date
Application number
PCT/CN2019/077740
Other languages
English (en)
French (fr)
Inventor
谈士力
卢春鸿
宋晓伟
Original Assignee
上海众源燃油分配器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海众源燃油分配器制造有限公司 filed Critical 上海众源燃油分配器制造有限公司
Priority to CA3059157A priority Critical patent/CA3059157C/en
Priority to JP2019560394A priority patent/JP6942432B2/ja
Priority to US16/691,206 priority patent/US11293572B2/en
Publication of WO2020155315A1 publication Critical patent/WO2020155315A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/02Hose-clips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/08Adjustable joints, Joints allowing movement allowing adjustment or movement only about the axis of one pipe
    • F16L27/0861Arrangements of joints with one another and with pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/26Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses specially adapted for hoses of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00571Details of ducts or cables of liquid ducts, e.g. for coolant liquids or refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/02Welded joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/10Adjustable joints, Joints allowing movement comprising a flexible connection only, e.g. for damping vibrations
    • F16L27/107Adjustable joints, Joints allowing movement comprising a flexible connection only, e.g. for damping vibrations the ends of the pipe being interconnected by a flexible sleeve
    • F16L27/11Adjustable joints, Joints allowing movement comprising a flexible connection only, e.g. for damping vibrations the ends of the pipe being interconnected by a flexible sleeve the sleeve having the form of a bellows with multiple corrugations
    • F16L27/111Adjustable joints, Joints allowing movement comprising a flexible connection only, e.g. for damping vibrations the ends of the pipe being interconnected by a flexible sleeve the sleeve having the form of a bellows with multiple corrugations the bellows being reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/01Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses adapted for hoses having a multi-layer wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/20Undivided rings, sleeves or like members contracted on the hose or expanded in the hose by means of tools; Arrangements using such members
    • F16L33/207Undivided rings, sleeves or like members contracted on the hose or expanded in the hose by means of tools; Arrangements using such members only a sleeve being contracted on the hose
    • F16L33/2071Undivided rings, sleeves or like members contracted on the hose or expanded in the hose by means of tools; Arrangements using such members only a sleeve being contracted on the hose the sleeve being a separate connecting member
    • F16L33/2073Undivided rings, sleeves or like members contracted on the hose or expanded in the hose by means of tools; Arrangements using such members only a sleeve being contracted on the hose the sleeve being a separate connecting member directly connected to the rigid member
    • F16L33/2076Undivided rings, sleeves or like members contracted on the hose or expanded in the hose by means of tools; Arrangements using such members only a sleeve being contracted on the hose the sleeve being a separate connecting member directly connected to the rigid member by plastic deformation

Definitions

  • the invention relates to a connection mechanism, in particular to a high-pressure soft and hard pipeline connection sealing system.
  • New energy electric vehicles have increased the mileage requirements, and thermal management plays a key role in the popularization of urban electric transportation, the extension of battery life, the improvement of endurance and the improvement of drive system performance.
  • heat pump air conditioners are an effective solution for heating pure electric vehicles. In the absence of breakthroughs in power batteries, low energy consumption heating must be ensured. Heat pump air conditioning is one of the few feasible technologies. The efficiency coefficient is much higher than PTC heating, which can effectively extend the cruising range.
  • the traditional air-conditioning refrigerant is R134a, and the air-conditioning system pressure can be divided into high pressure and low pressure according to the working conditions, among which: high pressure is about 13bar and low pressure is 1bar-3bar. Therefore, R134a is only used as a substitute in the transition to environmentally friendly products, and it is only a matter of time before it is completely eliminated.
  • the heat pump air-conditioning refrigerant uses R744 (CO 2 ) carbon dioxide refrigerant, the working pressure of the high-pressure pipe is 170bar, and the maximum pressure in the pipe can reach 300bar under extreme high temperature climate conditions.
  • the working pressure of the low-pressure pipe is 130bar. Similarly, the pressure in the pipe will also rise sharply under extreme high temperature climate conditions.
  • the traditional automotive air conditioning hose assembly cannot withstand the ambient temperature of -40°C to 180°C and the system pressure of 130-170bar (the ultimate pressure of 300bar). If it cannot withstand high temperature and pressure, when used in new energy vehicles, only electric heating wires can be used for air conditioning heating, and heat pump technology cannot be used for heating. The use of electric heating wire for heating will greatly reduce the car’s cruising range; if all hard pipes are used to connect, although the sealing problem of the pipeline can be solved, due to the limitation of the car’s internal space, hard pipes cannot be used completely, and hoses and hard pipes must be used. The pipe assembly of the pipe combination.
  • Chinese patent CN102478139B discloses a pipe joint including a soft pipe, a hard pipe and a sleeve.
  • the hard tube includes an insertion part that is inserted into the soft tube from the end of the soft tube.
  • the sleeve is arranged radially outside the insertion part and the soft tube, and presses the soft tube against the insertion part.
  • the insertion portion includes a corrugated surface provided on the outer surface of the insertion portion and a cylindrical surface provided on the outer surface on the tip side of the insertion portion.
  • the sleeve includes a first small diameter part and a second small diameter part.
  • the first small diameter part is arranged radially outside the corrugated surface and presses the soft tube against the corrugated surface, and the second small diameter part is arranged in the radial direction of the cylindrical surface. Externally and press the flexible tube to the cylindrical surface.
  • Chinese patent CN108916498A discloses a connection structure of R744 air-conditioning pipe and conversion connection assembly, which includes R744 air-conditioning pipe and conversion connection assembly.
  • the R744 air-conditioning pipe consists of a barrier layer, a first rubber layer, a reinforcement layer and a second rubber in order from the inside to the outside.
  • the conversion connection assembly includes a connector, a conversion connection tube, an outer tube, one end of the connector is fixedly connected to one end of the barrier layer, the conversion connection tube is composed of a socket part and a pipe connection part, and the socket part is configured in
  • the connector After the outer sleeve is disposed on the second rubber layer and the sleeve part, the outer sleeve is fixed with the second rubber layer and the sleeve part, and the peripheral surface of the connector is provided with an assembly groove, so A boss corresponding to the assembling groove is provided on the inner peripheral surface of the socket part. After the boss on the socket part is fitted into the assembling groove under the buckling force, the socket part and the connector Fixed into one.
  • the patent uses a sealing ring for sealing, and the aging characteristics of the sealing ring and other parts of the rubber material will cause air leakage in the high and low temperature atmosphere under working conditions.
  • the connection structure is crimped, deformed martensite or austenite twins are generated due to the deformation of the stainless steel material, and cracks are likely to occur in the region containing the deformed martensite or austenite twins, leading to leakage.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a high-pressure soft and hard pipeline connection sealing system, which has the characteristics of bearing high pressure, high temperature resistance and vibration resistance, so that it can be applied in high pressure air conditioning pipelines, which is convenient Used in new energy electric vehicles.
  • a high-pressure soft and hard pipeline connection sealing system includes a hose, a hard pipe, a transition joint and a buckle sleeve.
  • the wall thickness of the transition joint is 5-20 times the thickness of the hose.
  • the two ends of the transition joint are respectively connected with the hose and the hard tube.
  • the outer side of the hose and the transition joint is rubberized.
  • a buckle sleeve is buckled on the outer rubber layer.
  • the hose used is a metal bellows.
  • the metal bellows used above is a metal bellows made of stainless steel.
  • the metal corrugated pipe is first cut to a specified length and then connected to the transition joint, so that it can be avoided that the metal corrugated pipe is encapsulated first, then the pipe fittings are cut, and then the transition joint is welded.
  • the outside is not covered by a rubber layer, and the clamping position of the buckle sleeve cannot be positioned outside the transition joint. If the rubber layer on the outside of the metal bellows is crimped, the bellows in the stressed area will deform, and the material structure will be deformed martensite or austenite twins. Under high pressure, the deformed area of the bellows is prone to cracking and causing leakage.
  • the rubber layer includes: an inner rubber layer wrapped around the metal bellows, a reinforcing layer wound and braided outside the inner rubber layer, and an outer rubber layer wrapped outside the reinforcing layer.
  • the hose is connected to the transition joint by welding, or can be connected by riveting.
  • the interference riveting connection of the hose and the transition joint can be realized by squeezing.
  • the hose can be inserted into the transition joint and then welded through the contact surface, or the hose can be welded to the end face of the transition joint.
  • the metal bellows and the transition joint are connected by laser welding, copper brazing or plasma arc welding.
  • the reinforcement layer used after the metal bellows and the transition joint are welded is a high-strength aramid wire, polyester wire or a metal wire braid.
  • a metal wire braid can be used to ensure the strength and strength of the hose. Bending resilience.
  • the metal bellows and the transition joint are brazed by copper.
  • the metal bellows has actually undergone a solution treatment. This welding method can eliminate the metal bellows.
  • Martensite or austenite twins in the material, the reinforcing layer used at this time is high-strength aramid thread, polyester thread or metal wire braid, preferably high-strength aramid thread, polyester thread can be used to ensure the hose strength.
  • the material of the wire braided layer is brass-plated alloy steel.
  • the outer side surface of the transition joint is provided with mutually parallel annular protrusions, so that the joint has a stronger axial pull-off resistance after encapsulation, and the outer end surface of the transition joint protrudes out of the rubber layer and reaches the hard tube. connection.
  • the buckle sleeve is connected to the transition joint by riveting
  • the inner side of the buckle sleeve is provided with mutually parallel annular tooth-like protrusions and the end has a boss
  • the buckle sleeve boss is riveted into the end of the transition joint during crimping
  • the ring-shaped tooth-like protrusion is clamped into the outer rubber of the joint, which can greatly increase the axial pull-off resistance of the transition joint.
  • the hard tube used may be a stainless steel tube or an aluminum alloy material, which is connected by welding or interference riveting to the transition joint.
  • the hard tube and the transition joint are connected by laser welding, copper brazing, plasma arc welding, argon arc welding or induction welding.
  • the outer surface of the transition joint protruding out of the rubber layer is inlaid with an aluminum alloy joint, and the aluminum alloy joint and the transition joint are connected by a fit fit, and the outer surface of the transition joint is still provided with annular tooth-like protrusions, thereby
  • the aluminum alloy joints have stronger axial pull-off resistance and improve the high-pressure sealing ability during the crimp connection.
  • a copper ring is further provided between the outer surface of the transition joint and the inner side of the aluminum alloy joint, and the use of the copper ring makes the sealing effect between the transition joint and the aluminum alloy joint better.
  • the outer surface of the aluminum alloy joint is crimped with an outer buckle sleeve, and the inner surface of the outer buckle sleeve is a convex ring-shaped tooth structure, so that the aluminum alloy joint is clamped during crimping, which can greatly increase the axial pull-off resistance. And improve the high pressure sealing ability, and there is a circle of positioning groove on the aluminum alloy joint, the outer buckle sleeve can be easily buckled in the positioning groove, and the position of the outer buckle sleeve in the axial direction is fixed.
  • the outer end surface of the aluminum alloy pipe is welded and connected to each other through the buckle sleeve and the hard pipe of the same material, which further reduces the environmental impact of the connecting end under high, low temperature and high pressure conditions.
  • the possibility of leakage due to different deformations caused by changes is more convenient for use in the field of new energy vehicles.
  • the traditional structure buckle is crimped on the hose, the inner bellows is deformed by the radial force, and the material structure has deformed martensite or austenite twins Reduce the strength of the material and affect the pressure performance of the product.
  • the crimping position is at the outer rubber of the transition joint to avoid radial force on the inner layer of the bellows when crimping the rubber hose, without causing deformation of the bellows, and no deformed martensite in the organization Or austenite twins, which can greatly improve the pressure-bearing performance between the soft and hard tubes, so that the application can be used in the actual working conditions of high and low temperature changes, high pressure conditions, and high-strength impact, and can be used in new energy vehicles. Used in air conditioning pipelines. After using the connection system of the present invention, since its pressure bearing capacity is greatly improved, the new energy vehicle can be heated by a heat pump, which can significantly increase the cruising range.
  • the present invention has the following advantages:
  • Withholding force is located at the outer rubber of the transition joint to avoid stress on the corrugated pipe and increase the strength of the metal inner layer of the hose;
  • the boss at the end of the buckle sleeve and the groove at the end of the transition joint are riveted into each other.
  • the inner side of the buckle sleeve is provided with a ring-shaped protrusion that is parallel to each other and snaps into the rubber outside of the joint to increase the axial tension of the soft and hard pipe Detach ability.
  • Figure 1 is a schematic diagram of the structure before the metal bellows and the transition joint are connected;
  • Figure 2 is a schematic diagram of the structure of the metal bellows connected to the transition joint
  • Figure 3 is a schematic diagram of the structure after encapsulation treatment
  • Figure 4 is a schematic diagram of the structure after the buckle sleeve is crimped
  • Figure 5 is a schematic diagram of the structure after connecting the hard tube
  • FIG. 6 is a schematic diagram of the structure of the transition joint with the aluminum alloy joint connected to the embodiment 4;
  • FIG. 7 is a schematic view of the structure of the transition joint with the aluminum alloy joint in Embodiment 5;
  • Figure 8 is an SEM photograph of austenite twins produced by the deformation of the metal bellows
  • FIG. 9 is an SEM photograph of the metal bellows in Example 1 where there is no deformation and no austenite twins.
  • a high-pressure soft and hard pipeline connection and sealing system The structure of the system is shown in Fig. 5, including: a hose formed by a metal corrugated pipe 1 covered with a rubber layer 3, a transition joint 2 connected to the metal corrugated pipe 1, and The wall thickness of the transition joint 2 is greater than that of the hose.
  • the wall thickness of the transition joint 2 is 5-20 times the wall thickness of the metal bellows 1.
  • the outer side of the transition joint 2 is also covered with a rubber layer 3.
  • a buckle sleeve 4 is buckled outside the rubber layer 3 of the layer, and a hard tube 5 is also connected to the outer end of the transition joint 2.
  • the metal bellows 1 used is a stainless steel metal bellows, and its specifications are determined according to the application system. For example, metal bellows of different lengths and different inner diameters can be selected as hoses according to system requirements. Both ends of the metal bellows 3 can be connected to the transition joint 2, and the structure before connection is shown in FIG. 1.
  • the metal bellows 3 and the transition joint 2 are connected first, as shown in FIG. 2, and then the rubber layer 1 is encapsulated on the outside, as shown in FIG. 3.
  • the metal bellows 3 is first cut to a specified length and then connected to the transition joint 2, so that it can be avoided that the rubber is covered first, and then the pipe is intercepted and then the transition joint is welded.
  • the rubber layer 1 used When encapsulating, the rubber layer 1 used includes: an inner rubber layer wrapped around the metal bellows 3, a reinforcing layer wound and braided outside the rubber inner layer, and an outer rubber layer wrapped outside the reinforcing layer.
  • the reinforcing layer used can be selected according to different connection modes of the metal bellows 3 and the transition joint 2.
  • the metal bellows 3 is welded to the transition joint 2. If welding connection is adopted, different methods such as laser welding, copper brazing, plasma arc welding and so on can be further used for connection. For the specific connection form, it can also be divided into welding after inserting the metal bellows into the transition joint, or The stainless steel bellows is welded to the end face of the transition joint.
  • Metal bellows and transition joints need to have a reinforcement layer after welding in different ways.
  • the reinforcement layer used is high-strength aramid wire, polyester wire or metal wire braid.
  • the material of the metal wire can be brass-plated alloy steel , To ensure the strength and bending resilience of the hose.
  • the transition joint 2 used is a hollow tubular structure, and the inner diameter is the same as the inner diameter of the connected metal bellows and hard pipe.
  • the outer side of the transition joint 2 is provided with a ring-shaped toothed convex encapsulation parallel to each other
  • the rear joint has stronger axial pull-off resistance, and the outer end surface of the transition joint 2 extends out of the rubber layer to connect with the hard tube.
  • the buckle sleeve 4 is buckled outside the rubber layer covered on the outer side of the transition joint 2, as shown in FIG. 4.
  • the inner surface of the buckle sleeve 4 is provided with mutually parallel annular tooth-shaped protrusions and the end has a boss.
  • the buckle sleeve boss is riveted into the end groove of the transition joint, and the annular tooth-shaped protrusion is clamped into the outside of the joint. rubber.
  • the hard pipe 5 used in this system is a stainless steel pipe, and aluminum alloy pipes or pipes of other materials can also be used, which are selected according to actual needs.
  • the hard tube 5 is welded to the outer end of the transition joint 2. If you use welding connection, you can use laser welding, argon arc welding and other methods to connect.
  • an aluminum alloy joint can also be inlaid on the outer surface of the transition joint protruding out of the rubber layer.
  • the aluminum alloy joint and the transition joint are connected by interference fit.
  • the outer surface is still provided with annular tooth-like protrusions, so that the aluminum alloy joint has stronger axial pull-off resistance during crimp connection.
  • copper can also be arranged between the outer surface of the transition joint and the inner side of the aluminum alloy joint. The use of copper rings makes the sealing effect between the transition joint and the aluminum alloy joint better.
  • the outer surface of the aluminum alloy joint is crimped with an outer buckle sleeve, and the inner surface of the outer buckle sleeve is a protruding ring-shaped tooth structure, so that the aluminum alloy joint is clamped during the crimping, which can greatly increase the axial pull-out resistance, and A circle of positioning grooves is also provided on the aluminum alloy joint, and the outer buckle sleeve can be easily buckled in the positioning groove to fix its axial position.
  • the outer end surface is welded and connected to the aluminum alloy hard pipe, and the buckle sleeve and the hard pipe of the same material are connected to each other, which further reduces the actual working conditions of the connecting end under high, low temperature and high pressure conditions.
  • the resulting inconsistent deformation and the possibility of leakage are more convenient for use in the field of new energy vehicles.
  • the present invention can greatly improve the pressure-bearing and sealing performance between the soft and hard pipes, so that the present application can be used in a high-pressure state, and thus can be used in new Used in the air-conditioning pipeline of energy vehicles.
  • a high-pressure air-conditioning pipeline soft and hard pipe connection sealing system comprising: a rubber tube containing an inner layer of a metal bellows, and a transition joint connected with the metal bellows. The outer side of the transition joint is also covered with a rubber layer. A buckle sleeve is buckled outside the rubber layer, and a hard tube is also connected to the outer end of the transition joint.
  • the metal bellows used is a stainless steel metal bellows, and both ends of the metal bellows can be connected with transition joints.
  • the metal bellows and the transition joint are connected first, and then the rubber layer is encapsulated on the outside. And during production, first cut the metal bellows to the specified length and then connect it with the transition joint, so that it can avoid the metal bellows first encapsulation, then cut the pipe fittings and then weld the transition joint without rubber coating outside the joint.
  • the problem that the buckle sleeve crimping position cannot be on the outside of the transition joint.
  • the rubber layer on the outer side of the stainless steel bellows is crimped.
  • the wall thickness of the stainless steel bellows is relatively thin, generally only 0.2mm, after the above crimping force, the crimping force region bellows will be deformed.
  • the material structure forms deformed martensite or austenite twins.
  • the bellows is prone to cracking in the above-mentioned deformed area under high pressure, leading to leakage.
  • a metal corrugated pipe with a thicker wall thickness is used, its function as a hose is lost due to its higher hardness. Therefore, this problem cannot be solved by increasing the thickness of the metal corrugated pipe.
  • the wall thickness of the transition joint is greater than that of the metal bellows.
  • the wall thickness of the transition joint is 5 times the wall thickness of the metal bellows, so it can withstand the aforementioned crimping force. There will be no deformed martensite or austenite twins at the transition joint.
  • the SEM photo is shown in Figure 9.
  • the rubber layer used When encapsulating the rubber, the rubber layer used includes: an inner rubber layer wrapped around the metal bellows, a reinforcing layer wrapped and braided outside the rubber inner layer, and an outer rubber layer wrapped outside the reinforcing layer.
  • the reinforcement layer used is a braided layer of aramid yarn to ensure the strength and bending resilience of the hose.
  • the outer side of the used transition joint is provided with mutually parallel annular tooth-shaped protrusions, and the outer end surface of the transition joint extends out of the rubber layer and is connected to the hard tube.
  • the buckle sleeve is crimped on the outer rubber layer of the transition joint.
  • the inner side of the buckle sleeve is provided with mutually parallel annular tooth-shaped protrusions and the end has a boss. When crimping, the buckle sleeve boss is riveted into the end groove of the transition joint, and the annular tooth-shaped protrusion is clamped into the outer rubber of the joint. .
  • the crimping position of the buckle sleeve 4 is at the transition joint, so as to avoid the problem of directly crimping it on the outside of the metal bellows, causing the inner metal bellows to be radially stressed, reducing the pressure performance of the hose, and also It can further increase the axial pull-off resistance of the soft and hard pipe.
  • the hard pipe used in this system is a stainless steel pipe, and the outer end of the transition joint is also connected by laser welding.
  • the sealing performance of the high-pressure air-conditioning pipe soft and hard pipe connection sealing system produced in this embodiment is tested.
  • the burst pressure of the existing ordinary air-conditioning hose is only about 100 bar.
  • the use pressure of the technology is an order of magnitude higher than the existing technology.
  • its burst pressure is 340 bar, and the actual measured value of the burst pressure of the present invention has reached twice that.
  • the present invention can be used in the air-conditioning pipelines of new energy vehicles. Because it can withstand high pressure, it can be heated by heat pumps, thereby avoiding the use of electric heating wires for heating due to excessive power consumption, resulting in a large range of electric vehicles. Reduce the problem.
  • a sealing system for connecting soft and hard pipes of high-pressure air-conditioning pipelines comprising: a hose formed by a metal corrugated pipe covered with a rubber layer, and a transition joint connected with the metal corrugated pipe, the wall thickness of which is 20 times that of the metal corrugated pipe
  • the outer side of the transition joint is also covered with a rubber layer, a buckle sleeve is crimped outside the rubber layer of the outer layer of the transition joint, and a hard tube is also connected to the outer end of the transition joint.
  • the metal corrugated pipe used is a stainless steel metal corrugated pipe with a wall thickness of 0.2 mm, and both ends of the metal corrugated pipe can be connected to a transition joint.
  • the metal bellows and the transition joint are connected first, and then the rubber layer is encapsulated on the outside. And during production, first cut the metal bellows to the specified length and then connect it with the transition joint, so that it can avoid new deformation martensite or austenite when encapsulating, then cutting the pipe, and then welding.
  • Twin crystals have an impact on the performance of the metal bellows, and are prone to deformation under high pressure, resulting in poor air tightness and inability to use under high pressure.
  • the rubber layer used When encapsulating the rubber, the rubber layer used includes: an inner rubber layer wrapped around the metal bellows, a reinforcing layer wrapped and braided outside the rubber inner layer, and an outer rubber layer wrapped outside the reinforcing layer.
  • the reinforcement layer used can be selected according to the different connection modes of the metal bellows and the transition joint. In this embodiment, when the metal bellows and the transition joint are brazed by copper, this welding method can eliminate the martensite or austenite twins in the metal bellows material. At this time, the reinforcement layer used is a wire braid layer , To ensure the strength of the hose.
  • the outer side of the used transition joint is provided with mutually parallel annular protrusions, and the outer end surface of the transition joint extends out of the rubber layer and is connected to the hard tube.
  • the buckle sleeve is crimped on the outer rubber layer of the transition joint.
  • the inner side of the buckle sleeve is provided with mutually parallel annular tooth-shaped protrusions and the end has a boss. When crimping, the buckle sleeve boss is riveted into the end groove of the transition joint, and the annular tooth-shaped protrusion is clamped into the outer rubber of the joint. .
  • the clamping position of the buckle sleeve is set at the transition joint, so as to avoid the problem of directly buckling it on the outside of the metal bellows, causing the inner metal bellows to be radially stressed, reducing the pressure performance of the hose, and also It can further increase the axial pull-off resistance of the soft and hard pipe.
  • the hard tube used in this system is a stainless steel tube, which is connected with the outer end of the transition joint by laser welding, argon arc welding, plasma arc welding, induction welding, etc.
  • a high-pressure air-conditioning pipeline soft and hard pipe connection and sealing system Its structure is roughly the same as that of Embodiment 1. The difference is that in this embodiment, a polyester wire braid is used to improve the resilience of the hose. .
  • a sealing system for connecting soft and hard pipes of high-pressure air-conditioning pipelines Its structure is roughly the same as that of Embodiment 1. It includes a hose composed of a metal corrugated pipe covered with a rubber layer. The wall thickness of the metal corrugated pipe is 0.2mm, which is similar to that of the metal The wall thickness of the transition joint 2 of the pipe connection is 10 times the wall thickness of the metal corrugated pipe. The outer side of the transition joint 2 is also covered with a rubber layer 3, a buckle sleeve 4 is crimped outside the rubber layer 3 of the outer layer of the transition joint 2, and a hard tube 5 is also connected to the outer end of the transition joint 2.
  • an aluminum alloy joint 6 is inlaid on the outer surface of the transition joint 2 protruding out of the rubber layer.
  • the aluminum alloy joint 6 and the transition joint 2 are riveted In the interference fit connection, the outer surface of the transition joint 2 is still provided with annular tooth-like protrusions, so that the aluminum alloy joint 6 has a stronger axial pull-off resistance during the crimping connection, and the outer surface of the aluminum alloy joint 6 is crimped with an outer side Buckle sleeve 7, the inner surface of the outer buckle sleeve 7 is a protruding ring-shaped tooth structure, so that the aluminum alloy joint 6 is clamped during crimping, which can greatly increase the axial tensile strength, and is also provided on the aluminum alloy joint There is a circle of positioning grooves 8, and the outer buckle sleeve 7 can be easily buckled in the positioning groove 8 to fix its axial position, as shown in FIG.
  • the aluminum alloy joint can be easily connected with the aluminum alloy hard pipe, and the buckle sleeve and the hard pipe of the same material are connected to each other, which further reduces the actual working conditions of the connecting end under high, low temperature and high pressure conditions.
  • the possibility of leakage due to different deformations makes it more convenient to use in the field of new energy vehicles.
  • a high-pressure air-conditioning pipeline soft and hard pipe connection sealing system Its structure is roughly the same as that of Embodiment 4. The difference is that in order to improve the sealing performance, a copper ring can also be arranged between the outer surface of the transition joint and the inner side of the aluminum alloy joint 9, as shown in Figure 7. The use of the copper ring 9 makes the sealing effect between the transition joint 2 and the aluminum alloy joint 6 better.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Joints That Cut Off Fluids, And Hose Joints (AREA)

Abstract

一种高压软硬管路连接密封系统被公开。该系统包括软管(1)、硬管(5)、过渡接头(2),过渡接头(2)的两端分别与软管(1)及硬管(5)连接,在软管(1)及过渡接头(2)的外侧进行橡胶层(3)包胶,过渡接头(2)外包覆的橡胶层(3)上扣压有扣套(4)。该系统能够大大提升软硬管之间的密封性能,从而能够在高低温及高压气氛中使用,进而可以在新能源汽车的空调管路中使用。

Description

一种高压软硬管路连接密封系统 技术领域
本发明涉及一种连接机构,尤其是涉及一种高压软硬管路连接密封系统。
背景技术
随着消费者对舒适性体验的需求不断提升,国家对环境保护的日益重视,新能源电动交通已经成为一种趋势。新能源电动汽车对于续航里程要求的提高,热管理在城市电动交通的普及、电池寿命的延长、续航能力的提升和驱动系统性能改善上起着关键的作用。
目前热泵空调是纯电动汽车制热有效解决方案。在动力电池没有突破性进展的情况下要保证低能耗制热,热泵空调是为数不多的可行技术,效能系数比PTC加热高出很多,可以有效延长续航里程。
传统空调制冷剂为R134a,空调系统压力根据工况可分为高压、低压两种,其中:高压13bar左右,低压1bar-3bar。所以R134a只是作为向环保产品过渡中的替代品,全面淘汰只是时间问题。热泵空调制冷剂采用的是R744(CO 2)二氧化碳制冷剂,高压管工作压力170bar,极限高温气候条件下管路内最高压力可达300bar。低压管工作压力130bar,同理,在极限高温气候条件下管路内压强也会大幅上升。同时工作温度最低-40℃,最高180℃。因此传统汽车空调软管总成无法承受环境温度-40℃至180℃,系统压力130-170bar(极限压力300bar)的要求。如果无法承受高温高压的话,在新能源汽车中使用时,只能采用电热丝进行空调加热,无法采用热泵技术进行制热。采用电热丝进行加热将大大降低汽车的续航里程;若全部用硬管连接,虽然可以解决管路的密封问题,但是由于汽车内部空间的局限性,无法全部采用硬管,必须采用软管和硬管结合的管路总成。因此,提供一种能够使用二氧化碳冷媒、适应高低温交变以及高压工况的空调管路,需要严格确保连接件的密封性以适应高低温、高压气氛,这是现在亟待解决的技术问题。
中国专利CN102478139B公开了一种导管接头,包括软质管、硬质管和套管。硬质管包括插入部,插入部从软质管的端部插入软质管的内部。套管配置 在插入部和软质管的径向外部,并将软质管压向插入部。插入部包括设置在插入部的外表面上的波纹面和设置在位于插入部的顶端侧的外表面上的柱面。套管包括第一小直径部和第二小直径部,第一小直径部配置在波纹面的径向外部并将软质管压向波纹面,第二小直径部设置在柱面的径向外部并将软质管压向柱面。虽然该专利也可以实现软硬管之间的连接,但是该种导管接头无法在高压条件下使用,因此无法应用于新能源电动汽车中。
中国专利CN108916498A公开了一种R744空调管与转换连接组件的连接结构,包括R744空调管以及转换连接组件,R744空调管由内至外依次为阻隔层、第一橡胶层、增强层及第二橡胶层;所述转换连接组件包括连接头、转换连接管、外套管,连接头的一端与阻隔层的一端固定连接,转换连接管由套接部和管道连接部组成,所述套接部配置在所述连接头上,所述外套管配置在第二橡胶层以及套接部上后,外套管与第二橡胶层和套接部固定,所述连接头的周面上设有装配槽,所述套接部的内周面上设有与所述装配槽对应的凸台,在扣压作用力下使套接部上的凸台配合到所述装配槽中后,使得套接部与连接头固定成一体。但是该专利由于采用密封圈进行密封,在工作条件下的高低温气氛中由于密封圈和其它部分的橡胶材料的老化特性会导致漏气。而且该连接结构在进行扣压时由于不锈钢材料的形变产生形变马氏体或奥氏体孪晶,在含有形变马氏体或奥氏体孪晶的区域容易产生开裂导致泄漏发生。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种高压软硬管路连接密封系统,具有承高压、耐高温、耐振动的特性,从而可以应用在高压空调管路中,方便在新能源电动汽车中使用。
本发明的目的可以通过以下技术方案来实现:
一种高压软硬管路连接密封系统,该系统包括软管、硬管、过渡接头、扣套。
所述过渡接头的壁厚为软管壁厚的5-20倍,过渡接头的两端分别与软管及硬管连接,在软管及过渡接头的外侧进行橡胶层包胶,所述过渡接头外包覆的橡胶层上扣压有扣套。
优选地,使用的软管为金属波纹管。
更加优选地,上述使用的金属波纹管为不锈钢材质的金属波纹管。
优选地,在生产时,先将所述金属波纹管截取成规定长度后与所述过渡接头连接,这样就能够很好的避免金属波纹管先包胶、然后截取管件再进行过渡接头焊接后接头外侧没有橡胶层包覆,扣套扣压位置无法定位在过渡接头外侧。如果扣压在金属波纹管外侧的橡胶层,扣压受力区域波纹管会产生形变,材料组织会有形变马氏体或奥氏体孪晶,在高压下波纹管形变区域容易产生开裂导致泄漏发生。
优选地,所述橡胶层包括:包在所述金属波纹管外的橡胶内层、缠绕编织在所述橡胶内层外的增强层、包在所述增强层外的橡胶外层。
优选地,所述软管与所述过渡接头焊接连接,或者可以采用铆合连接。
在铆合连接时,可以通过挤压实现软管和过渡接头的过盈铆合连接。
在焊接连接时,软管可以插入过渡接头后,通过接触面进行焊接,也可以将软管与过渡接头端面对端面焊接连接。
更加优选地,所述金属波纹管与所述过渡接头经激光焊接、铜钎焊或等离子弧焊进行连接。
更加优选地,所述金属波纹管与所述过渡接头经焊接后使用的增强层为高强度芳纶线、涤纶线或金属丝编织层,优选可以采用金属丝编织层,保证软管的强度及弯曲回弹性。
更加优选地,所述金属波纹管与所述过渡接头经铜钎焊,在铜钎焊进行处理的过程中金属波纹管实际上就已经进行了固溶处理,该种焊接方式可以消除金属波纹管材料中的马氏体或奥氏体孪晶,此时使用的增强层为高强度芳纶线、涤纶线或金属丝编织层,优选可以采用高强度芳纶线、涤纶线,保证软管的强度。
更加优选地,金属丝编织层的材质为镀黄铜的合金钢。
优选地,所述过渡接头的外侧面设有相互平行的环状凸起,从而能够使得包胶后接头轴向抗拉脱力更强,过渡接头的外端面伸出橡胶层外与所述硬管连接。
优选地,扣套与所述过渡接头铆扣连接,扣套的内侧面设有相互平行的环 形齿状凸起且端部有凸台,扣压时扣套凸台铆扣卡入过渡接头端部凹槽内,环形齿状凸起卡入接头外侧橡胶,可以大大增加过渡接头轴向抗拉脱力。
优选地,使用的硬管可以采用不锈钢材质管材,或者采用铝合金材质,与所述过渡接头焊接连接或过盈铆合连接。
更加优选地,硬管与所述过渡接头经激光焊接、铜钎焊、等离子弧焊、氩弧焊或感应焊进行连接。
优选地,伸出橡胶层外的过渡接头的外表面上镶嵌有铝合金接头,该铝合金接头与过渡接头之间经过盈配合连接,过渡接头的外表面仍然设有环形齿状凸起,从而铝合金接头在进行扣压连接时轴向抗拉脱力更强并提升耐高压密封能力。
更加优选地,所述过渡接头的外表面与铝合金接头内侧之间还设有铜圈,利用铜圈使得过渡接头和铝合金接头之间的密封效果更好。
所述铝合金接头的外表面上扣压有外侧扣套,该外侧扣套的内表面为凸出的环状齿形结构,从而在扣压时卡入铝合金接头,可以大大增加轴向抗拉脱力并提升耐高压密封能力,并且在铝合金接头上还设置有一圈定位槽,外侧扣套可以很方便得卡扣在定位槽内,固定外侧扣套在轴向方向上的位置。
在设置所述铝合金接头时,其外端面焊接连接铝合金材质的硬管,通过同种材质的扣套和硬管之间相互连接,进一步降低了在高低温以及高压条件下连接端由于环境变化造成的形变不一从而发生泄漏的可能性,更加方便在新能源汽车领域中使用。
由于金属波纹管所构成的软管无法承受轴向方向受力,传统结构扣套扣压在胶管上,内层波纹管径向受力导致形变,材料组织有形变马氏体或奥氏体孪晶降低了材料强度,影响产品承压性能。本发明通过金属波纹管与过渡接头焊接连接后,扣压位置在过渡接头外侧橡胶处,避免扣压胶管时内层波纹管径向受力,没有使波纹管产生形变,组织内未有形变马氏体或奥氏体孪晶,能够大大提升软硬管之间的承压性能,从而使得本申请能够在高低温变化以及高压状态以及高强度冲击的实际工况中使用,进而可以在新能源汽车的空调管路中使用。在使用本发明的连接系统后,由于其承压能力大大提高,在新能源汽车中可以通过热泵进行加热,可以显著提升续航里程。
与现有技术相比,本发明具有以下优点:
一、增加过渡接头,接头与波纹管焊接连接后包胶,增加软硬管轴向抗拉脱能力;
二、扣压受力位置在过渡接头外侧橡胶处,避免波纹管受力,使得软管的金属内层强度增加;
三、扣套端部凸台与过渡接头端部凹槽相互铆扣卡入,同时扣套内侧面设有相互平行的环形齿状凸起卡入接头外侧橡胶,增加软硬管轴向抗拉脱能力。
附图说明
图1为金属波纹管与过渡接头连接前的结构示意图;
图2为金属波纹管与过渡接头连接后的结构示意图;
图3为经过包胶处理后的结构示意图;
图4为扣压了扣套后的结构示意图;
图5为连接好硬管后的结构示意图;
图6为实施例4连接有铝合金接头的过渡接头处的结构示意图;
图7为实施例5连接有铝合金接头的过渡接头处的结构示意图;
图8为金属波纹管经形变产生了奥氏体孪晶的SEM照片;
图9为实施例1中对金属波纹管处检测没有形变没有奥氏体孪晶的SEM照片。
图中,1-金属波纹管,2-过渡接头,3-橡胶层,4-扣套,5-硬管,6-铝合金接头,7-外侧扣套,8-定位槽,9-铜环。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
一种高压软硬管路连接密封系统,该系统的结构如图5所示,包括:包有橡胶层3的金属波纹管1所构成的软管,与金属波纹管1连接的过渡接头2, 过渡接头2的壁厚大于软管的壁厚,过渡接头2的壁厚为金属波纹管1壁厚的5-20倍,该过渡接头2的外侧也包有橡胶层3,在过渡接头2外层的橡胶层3外扣压有扣套4,并且过渡接头2的外侧端还连接有硬管5。
在上述系统中,使用的金属波纹管1为不锈钢材质的金属波纹管,其规格根据应用的体系确定,例如根据系统需求可以选择不同长度、不同内径的金属波纹管作为软管使用。金属波纹管3的两端都可以连接过渡接头2,在连接前的结构如图1所示。连接时,金属波纹管3与过渡接头2首先进行连接,如图2所示,然后在外侧进行橡胶层1包胶,如图3所示。并且在生产时,先将金属波纹管3截取成规定长度后与过渡接头2连接,这样就能够很好的避免先包胶、然后截取管件再进行过渡接头焊接后接头外侧没有橡胶层包覆,扣套扣压位置无法定位在过渡接头外侧。如果扣套扣压在不锈钢波纹管外侧橡胶层,扣压受力区域波纹管会产生形变,材料组织形成形变马氏体或奥氏体孪晶,在高压下波纹管形变区域容易产生开裂导致泄漏发生。
包胶时,使用的橡胶层1包括:包在金属波纹管3外的橡胶内层、缠绕编织在橡胶内层外的增强层、包在增强层外的橡胶外层。所使用的增强层可以根据金属波纹管3与过渡接头2的不同连接方式来进行选择。金属波纹管3与过渡接头2焊接连接。如果采用焊接连接的话,又可以进一步采用激光焊接、铜钎焊、等离子弧焊等不同的方式进行连接,对于具体的连接形式,还可以分为将金属波纹管插入过渡接头后进行焊接,也可以不锈钢波纹管与所述过渡接头端面对端面焊接连接。
金属波纹管与过渡接头经不同方式焊接后包胶均需要有增强层,使用的增强层为高强度芳纶线、涤纶线或金属丝编织层,金属丝的材质可以采用镀黄铜的合金钢,保证软管的强度及弯曲回弹性。
在本系统中,使用的过渡接头2为中空的管状结构,内径与所连接的金属波纹管以及硬管的内径相同,在过渡接头2的外侧面设有相互平行的环形齿状凸起包胶后接头轴向抗拉脱力更强,过渡接头2的外端面伸出橡胶层外与硬管连接。
在完成包胶处理后,将扣套4扣压在过渡接头2外侧包覆的橡胶层外,如图4所示。扣套4的内侧面设有相互平行的环形齿状凸起且端部有凸台,扣压 时扣套凸台铆扣卡入过渡接头端部凹槽内,环形齿状凸起卡入接头外侧橡胶。一方面,将扣套4的扣压位置定在过渡接头处,这样就能够避免将其直接扣压在金属波纹管外侧造成内层金属波纹管径向受力,降低软管承压性能的问题,同时还可以进一步增加软硬管轴向抗拉脱能力。
本系统中使用的硬管5为不锈钢材质管材,也可以采用铝合金管材或者其他材质的管道,根据实际需要选取。硬管5与过渡接头2的外侧端进行焊接连接。如果使用焊接连接的方式的话,可以采用激光焊接、氩弧焊等多种方式进行连接。
当使用的硬管为铝合金材质时,还可以在伸出橡胶层外的过渡接头的外表面上镶嵌有铝合金接头,该铝合金接头与过渡接头之间通过过盈配合连接,过渡接头的外表面仍然设有环形齿状凸起,从而铝合金接头在进行扣压连接时轴向抗拉脱力更强,为了提升密封性能,还可以在过渡接头的外表面与铝合金接头内侧之间设置铜圈,利用铜圈使得过渡接头和铝合金接头之间的密封效果更好。
铝合金接头的外表面上扣压有外侧扣套,该外侧扣套的内表面为凸出的环状齿形结构,从而在扣压时卡入铝合金接头,可以大大增加轴向抗拉脱力,并且在铝合金接头上还设置有一圈定位槽,外侧扣套可以很方便得卡扣在定位槽内,固定其轴向的位置。在设置铝合金接头时,其外端面焊接连接铝合金材质的硬管,通过同种材质的扣套和硬管之间相互连接,进一步降低了在高低温以及高压条件下连接端由于实际工况造成的形变不一从而发生泄漏的可能性,更加方便在新能源汽车领域中使用。
通过上述对各组件的特殊处理以及各组件之间连接方式的选择,使得本发明能够大大提升软硬管之间的承压密封性能,从而使得本申请能够在高压状态中使用,进而可以在新能源汽车的空调管路中使用。
以下是更加详细的实施案例,通过以下实施案例进一步说明本发明的技术方案以及所能够获得的技术效果。
实施例1
一种高压空调管路软硬管连接密封系统,包括:含有金属波纹管内层的橡胶管,与金属波纹管连接的过渡接头,该过渡接头的外侧也包有橡胶层,在过 渡接头外层的橡胶层外扣压有扣套,并且过渡接头的外侧端还连接有硬管。
在上述系统中,使用的金属波纹管为不锈钢材质的金属波纹管,金属波纹管的两端都可以连接过渡接头。连接时,金属波纹管与过渡接头首先进行连接,然后在外侧进行橡胶层包胶。并且在生产时,先将金属波纹管截取成规定长度后与过渡接头连接,这样就能够很好的避免金属波纹管先包胶、然后截取管件再进行过渡接头焊接后接头外侧没有橡胶层包覆,扣套扣压位置无法在过渡接头外侧的问题。而且现有技术是扣压在不锈钢波纹管外侧橡胶层,由于不锈钢波纹管的壁厚较薄,一般来说只有0.2mm,因此在经过上述扣压受力后,扣压受力区域波纹管会产生形变,材料组织形成形变马氏体或奥氏体孪晶,如图8所示,在高压下波纹管在上述形变区域容易产生开裂导致泄漏发生。而如果采用壁厚较厚的金属波纹管的话,由于硬度较高,就丧失了其作为软管的作用,因此不能通过采用提高金属波纹管的厚度来解决这一问题。
但是本申请由于采用上述工艺步骤,过渡接头的壁厚要大于金属波纹管的厚度,本实施例中过渡接头的壁厚为金属波纹管壁厚的5倍,因此能够承受上述扣压受力,这样在过渡接头处不会产生形变马氏体或奥氏体孪晶,其SEM照片如图9所示。
包胶时,使用的橡胶层包括:包在金属波纹管外的橡胶内层、缠绕编织在橡胶内层外的增强层、包在增强层外的橡胶外层。所使用的增强层为芳纶线编织层,保证软管的强度及弯曲回弹性。
使用的过渡接头的外侧面设有相互平行的环形齿状凸起,过渡接头的外端面伸出橡胶层外与硬管连接。在完成包胶硫化处理后,将扣套扣压在过渡接头外侧包覆的橡胶层外。扣套的内侧面设有相互平行的环形齿状凸起且端部有凸台,扣压时扣套凸台铆扣卡入过渡接头端部凹槽内,环形齿状凸起卡入接头外侧橡胶。一方面,将扣套4的扣压位置在过渡接头处,这样就能够避免将其直接扣压在金属波纹管外侧造成内层金属波纹管径向受力,降低软管承压性能的问题,同时还可以进一步增加软硬管轴向抗拉脱能力。
本系统中使用的硬管为不锈钢材质管材,与过渡接头的外侧端也通过激光焊接进行连接。
对本实施例制作得到的高压空调管路软硬管连接密封系统进行密封性能测 试,在爆破压力达到780bar时,仍然可以使用没有发生泄漏,现有普通空调软管的爆破压力只有100bar左右,本申请的使用压力比现有技术提升了一个数量级。现有R744空调管路的技术要求中,其爆破压力340bar,本发明的爆破压力实测值已达到其两倍。这样本发明就可以在新能源汽车的空调管路中使用,由于可以承受高压,因此可以利用热泵进行加热,从而避免了使用电热丝进行加热时由于耗电量过大,导致电动汽车续航里程大大降低的问题。
实施例2
一种高压空调管路软硬管连接密封系统,包括:包有橡胶层的金属波纹管所构成的软管,与金属波纹管连接的过渡接头,其壁厚为金属波纹管壁厚的20倍,该过渡接头的外侧也包有橡胶层,在过渡接头外层的橡胶层外扣压有扣套,并且过渡接头的外侧端还连接有硬管。
在上述系统中,使用的金属波纹管为壁厚0.2mm的不锈钢材质的金属波纹管,金属波纹管的两端都可以连接过渡接头。连接时,金属波纹管与过渡接头首先进行连接,然后在外侧进行橡胶层包胶。并且在生产时,先将金属波纹管截取成规定长度后与过渡接头连接,这样就能够很好的避免先包胶、然后截取管件、再进行焊接时产生新的形变马氏体或奥氏体孪晶,从而对金属波纹管的性能产生影响,在高压下容易产生变形导致气密性变差以及无法在高压下使用。
包胶时,使用的橡胶层包括:包在金属波纹管外的橡胶内层、缠绕编织在橡胶内层外的增强层、包在增强层外的橡胶外层。所使用的增强层可以根据金属波纹管与过渡接头的不同连接方式来进行选择。本实施例中,金属波纹管与过渡接头经铜钎焊时,该种焊接方式可以消除金属波纹管材料中的马氏体或奥氏体孪晶,此时使用的增强层为金属丝编织层,保证软管的强度。
使用的过渡接头的外侧面设有相互平行的环状凸起,过渡接头的外端面伸出橡胶层外与硬管连接。在完成包胶处理后,将扣套扣压在过渡接头外侧包覆的橡胶层外。扣套的内侧面设有相互平行的环形齿状凸起且端部有凸台,扣压时扣套凸台铆扣卡入过渡接头端部凹槽内,环形齿状凸起卡入接头外侧橡胶。一方面,将扣套的扣压位置定在过渡接头处,这样就能够避免将其直接扣压在金属波纹管外侧造成内层金属波纹管径向受力,降低软管承压性能的问题,同时还可以进一步增加软硬管轴向抗拉脱能力。
本系统中使用的硬管为不锈钢材质管材,与过渡接头的外侧端通过激光焊或氩弧焊、等离子弧焊、感应焊等焊接方式进行连接。
实施例3
一种高压空调管路软硬管连接密封系统,其结构与实施例1大致相同,不同之处在于,本实施例中包胶的橡胶层中,使用涤纶线编织层来提高软管的回弹性。
实施例4
一种高压空调管路软硬管连接密封系统,其结构与实施例1大致相同,包括包有橡胶层的金属波纹管所构成的软管,金属波纹管的壁厚为0.2mm,与金属波纹管连接的过渡接头2,其壁厚为金属波纹管壁厚的10倍。该过渡接头2的外侧也包有橡胶层3,在过渡接头2外层的橡胶层3外扣压有扣套4,并且过渡接头2的外侧端还连接有硬管5。本实施例中由于使用的硬管5为铝合金材质,因此在伸出橡胶层外的过渡接头2的外表面上镶嵌有铝合金接头6,该铝合金接头6与过渡接头2之间通过铆合过盈配合连接,过渡接头2的外表面仍然设有环形齿状凸起,从而铝合金接头6在进行扣压连接时轴向抗拉脱力更强,铝合金接头6的外表面上扣压有外侧扣套7,该外侧扣套7的内表面为凸出的环状齿形结构,从而在扣压时卡入铝合金接头6,可以大大增加轴向抗拉脱力,并且在铝合金接头上还设置有一圈定位槽8,外侧扣套7可以很方便得卡扣在定位槽8内,固定其轴向的位置,如图6所示。通过设置铝合金接头能够方便地与铝合金材质的硬管进行连接,通过同种材质的扣套和硬管之间相互连接,进一步降低了在高低温以及高压条件下连接端由于实际工况造成的形变不一从而发生泄漏的可能性,更加方便在新能源汽车领域中使用。
实施例5
一种高压空调管路软硬管连接密封系统,其结构与实施例4大致相同,不同之处在于,为了提升密封性能,还可以在过渡接头的外表面与铝合金接头内侧之间设置铜圈9,如图7所示。利用铜圈9使得过渡接头2和铝合金接头6之间的密封效果更好。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并 把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (24)

  1. 一种高压软硬管路连接密封系统,该系统包括软管、硬管,其特征在于,还包括过渡接头,该过渡接头的壁厚为软管壁厚的5-20倍,
    所述过渡接头的两端分别与软管及硬管连接,在软管及过渡接头的外侧进行橡胶层包胶,
    所述过渡接头外包覆的橡胶层上扣压有扣套。
  2. 根据权利要求1所述的一种高压软硬管路连接密封系统,其特征在于,所述软管为金属波纹管。
  3. 根据权利要求2所述的一种高压软硬管路连接密封系统,其特征在于,所述软管为不锈钢材质的金属波纹管。
  4. 根据权利要求1-3中任一项所述的一种高压软硬管路连接密封系统,其特征在于,所述软管截取成规定长度后与所述过渡接头连接。
  5. 根据权利要求1所述的一种高压软硬管路连接密封系统,其特征在于,所述橡胶层包括:
    包在所述金属波纹管外的橡胶内层、缠绕编织在所述橡胶内层外的增强层、包在所述增强层外的橡胶外层。
  6. 根据权利要求5所述的一种高压软硬管路连接密封系统,其特征在于,所述软管与所述过渡接头采用焊接连接或过盈铆合连接。
  7. 根据权利要求6所述的一种高压软硬管路连接密封系统,其特征在于,所述软管插入所述过渡接头后端面之间进行焊接连接。
  8. 根据权利要求6所述的一种高压软硬管路连接密封系统,其特征在于,所述软管与所述过渡接头经接触面焊接连接。
  9. 根据权利要求5-8中任一项所述的一种高压软硬管路连接密封系统,其特征在于,所述软管与所述过渡接头经激光焊接、铜钎焊或等离子弧焊进行连接。
  10. 根据权利要求9所述的一种高压软硬管路连接密封系统,其特征在于,所述软管与所述过渡接头经激光焊接,所述增强层为芳纶丝编织层、涤纶编织层或金属丝编织层。
  11. 根据权利要求9所述的一种高压软硬管路连接密封系统,其特征在于, 所述软管与所述过渡接头经铜钎焊连接,所述增强层为芳纶丝编织层、涤纶编织层或金属丝编织层。
  12. 根据权利要求10或11所述的一种高压软硬管路连接密封系统,其特征在于,所述金属丝编织层采用镀黄铜的合金钢制作得到。
  13. 根据权利要求1所述的一种高压软硬管路连接密封系统,其特征在于,所述过渡接头为不锈钢材质,外侧面设有相互平行的环状凸起。
  14. 根据权利要求1或13所述的一种高压软硬管路连接密封系统,其特征在于,所述过渡接头的外端面伸出橡胶层外与所述硬管连接。
  15. 根据权利要求1所述的一种高压软硬管路连接密封系统,其特征在于,所述扣套与所述过渡接头铆扣连接。
  16. 根据权利要求1或15所述的一种高压软硬管路连接密封系统,其特征在于,所述扣套的内侧面设有相互平行的环状凸起。
  17. 根据权利要求1所述的一种高压软硬管路连接密封系统,其特征在于,所述硬管与所述过渡接头焊接连接或过盈铆合连接。
  18. 根据权利要求1或17所述的一种高压软硬管路连接密封系统,其特征在于,所述硬管与所述过渡接头经激光焊接、铜钎焊、等离子弧焊、氩弧焊或感应焊进行连接。
  19. 根据权利要求1或17所述的一种高压软硬管路连接密封系统,其特征在于,所述硬管为不锈钢材质管材。
  20. 根据权利要求1或13所述的一种高压软硬管路连接密封系统,其特征在于,伸出橡胶层外的过渡接头的外表面上镶嵌有铝合金接头。
  21. 根据权利要求20所述的一种高压软硬管路连接密封系统,其特征在于,所述过渡接头的外表面与所述铝合金接头的内侧面之间还设有铜圈。
  22. 根据权利要求20所述的一种高压软硬管路连接密封系统,其特征在于,所述铝合金接头的外表面上扣压有外侧扣套。
  23. 根据权利要求20所述的一种高压软硬管路连接密封系统,其特征在于,所述铝合金接头的外端面连接铝合金材质的硬管。
  24. 根据权利要求22所述的一种高压软硬管路连接密封系统,其特征在于,所述铝合金接头与铝合金材质的硬管经焊接连接。
PCT/CN2019/077740 2019-01-30 2019-03-12 一种高压软硬管路连接密封系统 WO2020155315A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3059157A CA3059157C (en) 2019-01-30 2019-03-12 System for connecting and sealing flexible and rigid pipes under high pressure
JP2019560394A JP6942432B2 (ja) 2019-01-30 2019-03-12 高圧硬質フレキ管路接続密封システム
US16/691,206 US11293572B2 (en) 2019-01-30 2019-11-21 System for connecting and sealing flexible and rigid pipes under high pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910093331.7A CN111503396A (zh) 2019-01-30 2019-01-30 一种高压软硬管路连接密封系统
CN201910093331.7 2019-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/691,206 Continuation US11293572B2 (en) 2019-01-30 2019-11-21 System for connecting and sealing flexible and rigid pipes under high pressure

Publications (1)

Publication Number Publication Date
WO2020155315A1 true WO2020155315A1 (zh) 2020-08-06

Family

ID=71840763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077740 WO2020155315A1 (zh) 2019-01-30 2019-03-12 一种高压软硬管路连接密封系统

Country Status (4)

Country Link
US (1) US11293572B2 (zh)
JP (1) JP6942432B2 (zh)
CN (1) CN111503396A (zh)
WO (1) WO2020155315A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7426221B2 (ja) * 2019-12-13 2024-02-01 住友理工株式会社 樹脂チューブと樹脂ジョイントの連結構造及び連結方法
US11852389B2 (en) * 2020-03-12 2023-12-26 Hill Phoenix, Inc. Refrigeration system with flexible high pressure hose assembly
CN112993894B (zh) * 2021-03-24 2022-08-09 来安县友鹏交通设备有限公司 一种高密封性电力保护管及其生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719088A (zh) * 2004-07-08 2006-01-11 株式会社电装 抗压吸振软管及其制造方法
DE102005028689A1 (de) * 2004-06-21 2006-02-23 Bridgestone Corp. Befestigungsstruktur für ein Mundstück für einen Wasserzufuhrschlauch
CN201982826U (zh) * 2011-04-02 2011-09-21 天津市大千管业有限公司 带缠绕薄壁金属管内衬的加强型挠性金属软管
CN202484493U (zh) * 2012-02-10 2012-10-10 天津市大千管业有限公司 机械扣压装配式金属软管
US9255657B2 (en) * 2010-11-29 2016-02-09 Denso Corporation Pipe joint
CN107956942A (zh) * 2017-10-27 2018-04-24 宁波天鑫金属软管有限公司 一种机械套筒及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288110A (en) * 1979-10-09 1981-09-08 Allen-Stevens Corp. End fittings for flexible metallic conduits
JPH06281083A (ja) * 1993-03-30 1994-10-07 Kiipaa Kk 機素間振動絶縁可撓チューブ
US5413147A (en) * 1993-04-29 1995-05-09 Parker-Hannifin Corporation Flexible hose and fitting assembly
US6354332B1 (en) * 1999-04-30 2002-03-12 Witzenmann Gmbh, Metallschlauch-Fabrik Pforzheim Coolant line for air conditioning systems
DE10104449C2 (de) * 2001-02-01 2003-11-13 Eaton Fluid Power Gmbh Wellrohrschlaucharmatur
DE10104448C2 (de) * 2001-02-01 2003-10-30 Eaton Fluid Power Gmbh Wellrohrschlauchleitung und Anschlussverfahren
JP2004052812A (ja) * 2002-07-16 2004-02-19 Tokai Rubber Ind Ltd 蛇腹金属管付ホースの端部締結構造
JP4082119B2 (ja) * 2002-07-24 2008-04-30 東海ゴム工業株式会社 蛇腹金属管付ホースの端部固定構造
JP2005282703A (ja) * 2004-03-29 2005-10-13 Tokai Rubber Ind Ltd 金属蛇腹管複合ホース
US20080245434A1 (en) * 2005-03-28 2008-10-09 Motoshige Hibino Composite Hose with a Corrugated Metal Tube and Method for Making the Same
FR2885398A1 (fr) * 2005-05-03 2006-11-10 Hutchinson Sa Flexible, en particulier pour circuit de climatisation, equipe d'un systeme de raccordement etanche entre un element tubulaire rigide et un element tubulaire souple du flexible
JP2007092777A (ja) * 2005-09-27 2007-04-12 Yokohama Rubber Co Ltd:The フレキシブルチューブ
JP2008064187A (ja) * 2006-09-06 2008-03-21 Yokohama Rubber Co Ltd:The フレキシブルチューブの継手部材接続構造
JP2013204741A (ja) * 2012-03-29 2013-10-07 Nisshin Steel Co Ltd ステンレス鋼管継ぎ手
EP3740710A4 (en) * 2018-01-19 2021-10-20 Omega Flex, Inc. RIBBED MEDICAL TUBE SYSTEM FEATURING A FITTING WITH A TIGHT SLEEVE
EP3743646A1 (en) * 2018-01-23 2020-12-02 Boryszew S.A. Oddzial Maflow W Tychach A coolant line of a refrigerant circuit and method of manufacturing thereof
CN108916498B (zh) 2018-08-30 2020-02-14 常州市盛士达汽车空调有限公司 R744空调管与转换连接组件的连接结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005028689A1 (de) * 2004-06-21 2006-02-23 Bridgestone Corp. Befestigungsstruktur für ein Mundstück für einen Wasserzufuhrschlauch
CN1719088A (zh) * 2004-07-08 2006-01-11 株式会社电装 抗压吸振软管及其制造方法
US9255657B2 (en) * 2010-11-29 2016-02-09 Denso Corporation Pipe joint
CN201982826U (zh) * 2011-04-02 2011-09-21 天津市大千管业有限公司 带缠绕薄壁金属管内衬的加强型挠性金属软管
CN202484493U (zh) * 2012-02-10 2012-10-10 天津市大千管业有限公司 机械扣压装配式金属软管
CN107956942A (zh) * 2017-10-27 2018-04-24 宁波天鑫金属软管有限公司 一种机械套筒及其制备方法

Also Published As

Publication number Publication date
US11293572B2 (en) 2022-04-05
CN111503396A (zh) 2020-08-07
US20200240561A1 (en) 2020-07-30
JP6942432B2 (ja) 2021-09-29
JP2021515140A (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
CN209743846U (zh) 一种高压软硬管路连接密封系统
JP4062325B2 (ja) 異種金属管の接続構造
WO2020155315A1 (zh) 一种高压软硬管路连接密封系统
JP2004060672A (ja) 蛇腹金属管付ホースの接続構造
EP3743646A1 (en) A coolant line of a refrigerant circuit and method of manufacturing thereof
JP2004524482A (ja) 可撓性波形ホース組立体および連結方法
US11906088B2 (en) Hose and rigid pipe connecting system used in high pressure system
WO2021114195A1 (zh) 一种在高压体系下使用的软硬管连接系统
CN210800352U (zh) 一种适用于高压的软硬管连接系统
WO2021035908A1 (zh) 一种适用于高压的软硬管连接系统
CA3059157C (en) System for connecting and sealing flexible and rigid pipes under high pressure
CN212273358U (zh) 一种在高压体系下使用的软硬管连接系统
JPH0260730A (ja) プラスチック管の接続部およびその接続方法
CN220060873U (zh) 车用二氧化碳冷媒空调高压高温管路总成
JP5238347B2 (ja) 異種金属管の接続構造及び接合方法
JP5385434B2 (ja) 口金具とホースの締結構造
CN219866813U (zh) 一种r744空调软管端部接头的连接结构
JP2004052812A (ja) 蛇腹金属管付ホースの端部締結構造
CN219933221U (zh) 一种汽车空调防漏水橡胶管
CN220706644U (zh) 管结构及制冷设备
CN211901897U (zh) 一种空调管总成和汽车空调系统
CN115807887A (zh) 一种r744空调软管端部接头的连接结构及其制备方法
JP2008286365A (ja) 口金具とホースの締結構造
JP4855705B2 (ja) フレキシブルチューブの継手部材接続方法
JP2002235876A (ja) 冷媒輸送用チューブおよびその接続構造

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019560394

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912497

Country of ref document: EP

Kind code of ref document: A1