WO2020155193A1 - 一种新型的触觉传感器 - Google Patents

一种新型的触觉传感器 Download PDF

Info

Publication number
WO2020155193A1
WO2020155193A1 PCT/CN2019/074936 CN2019074936W WO2020155193A1 WO 2020155193 A1 WO2020155193 A1 WO 2020155193A1 CN 2019074936 W CN2019074936 W CN 2019074936W WO 2020155193 A1 WO2020155193 A1 WO 2020155193A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive fiber
temperature
sensing unit
flexible
stress
Prior art date
Application number
PCT/CN2019/074936
Other languages
English (en)
French (fr)
Inventor
罗坚义
黄景诚
陈国宁
李松晖
胡晓燕
梁宝文
温锦秀
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Priority to US16/753,228 priority Critical patent/US11313743B2/en
Publication of WO2020155193A1 publication Critical patent/WO2020155193A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/143Supports; Fastening devices; Arrangements for mounting thermometers in particular locations for measuring surface temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges

Definitions

  • the present invention relates to the technical field of sensors, in particular to a new type of tactile sensor.
  • the existing woven tactile sensor basically uses micro-nano materials to modify the functional layer of textile fibers. Although this can effectively improve the sensitivity of the sensor, it is difficult for micro-nano materials to achieve good uniformity and structural stability.
  • This type of tactile sensor is difficult to be compatible with the existing textile technology, and needs to be encapsulated in an elastomer such as silica gel to protect the micro-nano materials, which leads to a large area of a single sensor and it is difficult to achieve high integration and high resolution.
  • the purpose of the present invention is to provide a new type of tactile sensor that can simultaneously detect stress and temperature independently, and has the advantages of high stability, high sensitivity, flexibility, light weight, and arraying.
  • a new type of tactile sensor including a sensing layer, the sensing layer including a flexible substrate, at least one stress sensing unit and at least one temperature sensing unit;
  • the stress sensing unit includes a flexible conductive fiber, a top electrode, and a bottom electrode.
  • the flexible conductive fiber is spread on the flexible substrate.
  • the top electrode is bendable and is connected to the top of the flexible conductive fiber.
  • Electrical contact, the bottom electrode is in electrical contact with the bottom of the flexible conductive fiber, and when there is a potential difference between the top electrode and the bottom electrode, current flows along the radial direction of the flexible conductive fiber;
  • the temperature sensing unit includes a temperature-sensitive conductive fiber and two terminal electrodes.
  • the temperature-sensitive conductive fiber is spread on the flexible substrate.
  • the two terminal electrodes are connected to two ends of the temperature-sensitive conductive fiber. Electrical connection, when there is a potential difference between the two terminal electrodes, current flows along the axial direction of the temperature-sensitive conductive fiber.
  • the working principle of the tactile sensor of the present invention is:
  • the flexible conductive fiber of the stress sensing unit When external stress (for example, in a direction perpendicular to the flexible substrate) is applied to the flexible conductive fiber of the stress sensing unit, the flexible conductive fiber will undergo corresponding structural deformation with the action of the stress, resulting in the flexible conductive fiber in the radial direction.
  • the resistance also changes.
  • the stress can be detected; the resistance of the temperature-sensitive conductive fiber of the temperature sensing unit will change with the change of temperature Change, by detecting the resistance value of the temperature-sensitive conductive fiber (for example, detecting the resistance value between the two ends of the temperature-sensitive conductive fiber), to achieve temperature detection.
  • the resistance change caused by the stress acting on the flexible conductive fiber is caused by structural deformation, and there is no need to modify the surface of the flexible conductive fiber with an additional functional layer, so the poor stability of the functional layer in the prior art can be avoided.
  • the use of a single flexible conductive fiber as a stress response element can also avoid the problem that the existing cross junction formed by two flexible fibers is prone to displacement and failure under the action of stress, which is beneficial to the stability and miniaturization of the sensor , While ensuring compatibility with existing textile technology.
  • a bendable top electrode electrically contacted with the top of the flexible conductive fiber and a bottom electrode electrically contacted with the bottom of the flexible conductive fiber can be used under stress, especially perpendicular to the direction of the flexible substrate. Under stress, always keep the top electrode and bottom electrode in electrical contact with the flexible conductive fiber.
  • a stress sensing unit and a temperature sensing unit are arranged in the tactile sensor, and the contact positions of the top electrode and the bottom electrode with the flexible conductive fiber, and the contact positions of the two end electrodes with the temperature-sensitive conductive fiber are designed to ensure The current direction in the flexible conductive fiber and the temperature-sensing conductive fiber are different, so that the stress and temperature can be detected independently at the same time, and the conductive fiber is used as the response element of the stress sensing unit and the temperature sensing unit, which is beneficial to the flexibility and lightness of the sensor.
  • Quantify and improve detection sensitivity adopting a solution compatible with textile technology, can realize the distribution of multiple tactile sensors in a small area, and have the characteristics of miniaturization, integration and arraying.
  • the resistance value of the temperature-sensitive conductive fiber exhibits a negative temperature coefficient characteristic.
  • the temperature-sensitive conductive fiber is carbon fiber doped with impurity ions, or a composite fiber obtained by blending carbon fiber with impurity ions and aramid fiber.
  • Ion doping the textile fiber material (this type of ion doping means that impurity ions are inevitably brought into the material, or more doped into the material after additional doping treatment), and then subjected to high temperature carbonization treatment, Carbon fibers doped with impurity ions can be obtained as temperature-sensitive conductive fibers; alternatively, carbon fibers doped with impurity ions are blended with aramid fibers to obtain composite fibers with stronger tensile resistance and good conductivity as temperature-sensitive conductive fibers.
  • Using carbon fiber doped with impurity ions because the impurity ions are uniformly doped inside the temperature-sensitive conductive fiber, the transport of electrons is scattered by the impurity ions in the material, which affects the electron mobility at different temperatures.
  • the macroscopic performance is The resistance of the material has a certain corresponding relationship with the temperature, so that the temperature-sensitive conductive fiber can realize the temperature sensing.
  • the flexible conductive fibers of all stress sensing units and the temperature sensing conductive fibers of all temperature sensing units use the same conductive fiber. Since the current directions in the stress sensing unit and the temperature sensing unit are different, the two can work independently of each other.
  • the sensing layer includes a stress sensing unit and a temperature sensing unit, and the flexible conductive fiber of the stress sensing unit and the temperature sensing conductive fiber of the temperature sensing unit are respectively selected from the same conductive fiber
  • the two sections separated in the middle are arranged here to improve the integration of the stress sensing unit and the temperature sensing unit on the flexible substrate, thereby facilitating the miniaturization of the sensor, and further ensuring that the stress sensing unit and the temperature sensing unit can interact with each other Work independently; in the stress sensing unit, the top electrode is arranged on the middle of the flexible conductive fiber and is in contact with the top surface of the flexible conductive fiber, and the bottom electrode is connected to the two sides of the flexible conductive fiber The bottom surface of the end is in contact, and the arrangement here can avoid the displacement and contact of the top electrode and the bottom electrode under stress, and prevent short circuit.
  • the ratio of the length of the temperature-sensitive conductive fiber of the temperature sensing unit to the diameter of the flexible conductive fiber of the stress sensing unit is greater than 20:1.
  • the current in the flexible conductive fiber flows along its radial direction, its electron transport direction is different from the electron transport direction in the temperature-sensitive conductive fiber, and its electron transmission path is much shorter than that in the temperature-sensitive conductive fiber.
  • the scattering of impurity ions has little effect, so its resistance is not affected by temperature, and independent detection of temperature and stress can be achieved through peripheral circuits without interfering with each other.
  • the temperature-sensitive conductive fiber is hardened to prevent the resistance of the temperature-sensitive conductive fiber from being affected by stress. No matter the surface undergoes various physical shocks, it will not affect the temperature sensing of the temperature-sensitive conductive fiber material. The performance improves the accuracy of its temperature measurement.
  • the top electrode is a metal shrapnel, liquid metal or conductive silver paste, so it can bend and deform with the flexible conductive fiber under stress, and maintain electrical contact with the top of the flexible conductive fiber.
  • the stress sensing unit and the temperature sensing unit are not in contact with each other; in the stress sensing unit, the flexible conductive fibers themselves have no crossover or contact points, and the top electrode and the bottom electrode are mutually No contact; In the temperature sensing unit, the temperature-sensing conductive fiber itself has no cross or contact parts, and the two terminal electrodes are not in contact with each other.
  • the setting here ensures that the stress sensing unit and the temperature sensing unit work independently of each other, while preventing short circuits from occurring.
  • the new type of tactile sensor further includes an elastic layer and a force-bearing layer arranged on the sensing layer, the elastic layer is ring-shaped and arranged along the edge of the flexible substrate, and the force-bearing layer is arranged On the elastic layer and covering the flexible substrate.
  • the elastic layer and the force-bearing layer are used to protect the sensor and avoid external interference.
  • Fig. 1 is a schematic cross-sectional view of the whole new type of tactile sensor of the present invention
  • Figure 2 is a schematic diagram of the structure of the sensing layer
  • Figure 3 is a schematic structural diagram of a stress sensing unit
  • Figure 4 is a side view of the stress sensing unit
  • Figure 5 is a schematic diagram of the structure of the temperature sensing unit
  • Figure 6 is a side view of the temperature sensing unit
  • Figure 7 shows the performance test results of the stress sensing unit
  • Figure 8 shows the performance test results of the temperature sensing unit.
  • orientation words if there are the terms “center”, “horizontal (X)”, “longitudinal (Y)”, “vertical (Z)", “length”, “width” “, “thickness”, “upper”, “lower”, “front”, “rear”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inner” , “Outer”, “Clockwise”, “Counterclockwise” and other indicating orientations and positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying what is meant.
  • the device or element must have a specific orientation, be constructed and operated in a specific orientation, and cannot be understood as limiting the specific protection scope of the present invention.
  • the novel tactile sensor provided by the present invention includes a sensing layer including a flexible substrate, at least one stress sensing unit and at least one temperature sensing unit;
  • the stress sensing unit includes a flexible conductive fiber, a top electrode, and a bottom electrode.
  • the flexible conductive fiber is spread on the flexible substrate.
  • the top electrode is bendable and is connected to the top of the flexible conductive fiber.
  • Electrical contact, the bottom electrode is in electrical contact with the bottom of the flexible conductive fiber, and when there is a potential difference between the top electrode and the bottom electrode, current flows along the radial direction of the flexible conductive fiber;
  • the temperature sensing unit includes a temperature-sensitive conductive fiber and two terminal electrodes.
  • the temperature-sensitive conductive fiber is spread on the flexible substrate.
  • the two terminal electrodes are connected to two ends of the temperature-sensitive conductive fiber. Electrical connection, when there is a potential difference between the two terminal electrodes, current flows along the axial direction of the temperature-sensitive conductive fiber.
  • the working principle of the tactile sensor of the present invention is:
  • the flexible conductive fiber of the stress sensing unit When external stress (for example, in a direction perpendicular to the flexible substrate) is applied to the flexible conductive fiber of the stress sensing unit, the flexible conductive fiber will undergo corresponding structural deformation with the action of the stress, resulting in the flexible conductive fiber in the radial direction.
  • the resistance also changes.
  • the stress can be detected; the resistance of the temperature-sensitive conductive fiber of the temperature sensing unit will change with the change of temperature Change, by detecting the resistance value of the temperature-sensitive conductive fiber (for example, detecting the resistance value between the two ends of the temperature-sensitive conductive fiber), to achieve temperature detection.
  • the new type of tactile sensor of this embodiment includes a force-receiving layer 10, an elastic layer 20 and a sensing layer 30 which are sequentially stacked from top to bottom.
  • the sensing layer 30 includes a flexible substrate 31, a stress sensing unit and a temperature sensing unit, the stress sensing unit and the temperature sensing unit are respectively provided in the Mentioned on the flexible substrate 31.
  • the flexible substrate 31 is made of flexible film materials, such as PET (polyethylene terephthalate), PI (polyimide), PDMS (polydimethylsiloxane) and other conventional film materials.
  • PET polyethylene terephthalate
  • PI polyimide
  • PDMS polydimethylsiloxane
  • the stress sensing unit includes a flexible conductive fiber, a top electrode 33 and a bottom electrode 36, the flexible conductive fiber is spread on the flexible substrate 31, the top electrode 33 is bendable and is in electrical contact with the top of the flexible conductive fiber, and the bottom electrode 36 is in electrical contact with the bottom of the flexible conductive fiber.
  • the current flows along The radial flow of the flexible conductive fiber, that is, the current flows from the top of the flexible conductive fiber along its diameter to the bottom (at this time, the potential of the top electrode 33 is higher than that of the bottom electrode 36), or from the flexible conductive fiber
  • the bottom of the ⁇ flows toward the top along its diameter (the potential of the top electrode 33 is lower than that of the bottom electrode 36 at this time).
  • the top electrode 33 is a bendable conductive material such as a metal shrapnel, liquid metal or conductive silver paste, which can be bent as the flexible conductive fiber deforms.
  • the temperature sensing unit includes a temperature-sensitive conductive fiber and two terminal electrodes 34, 35.
  • the temperature-sensitive conductive fiber is spread on the flexible substrate 31, and the two The terminal electrodes 34, 35 are respectively electrically connected to the two ends of the temperature-sensitive conductive fiber.
  • current flows along the axial direction of the temperature-sensitive conductive fiber.
  • the surface of the temperature-sensitive conductive fiber is hardened. Specifically, it can be treated with a hardener so that the temperature-sensitive conductive fiber will not be deformed when subjected to stress. The resistance value changes, so the resistance value of the temperature-sensitive conductive fiber is only affected by temperature, which improves the accuracy of its temperature measurement.
  • the flexible conductive fiber of the stress sensing unit and the temperature-sensitive conductive fiber of the temperature sensing unit are respectively selected from two separate sections of the same conductive fiber 32, specifically selected from the same conductive fiber.
  • the two end sections of 32 as shown in FIG.
  • the flexible conductive fiber of the stress sensing unit and the temperature sensing conductive fiber of the temperature sensing unit are separated by a middle section (the BC section) to further ensure that the flexible conductive fiber and the temperature sensing conductive fiber
  • the currents in the fibers are independent of each other, thereby ensuring that the stress sensing unit and the temperature sensing unit can work independently of each other.
  • the conductive fiber 32 is spread flat on the surface of the flexible substrate 31, that is, its axial direction is parallel to the surface of the flexible substrate 31, and there is no cross or knotted part therein, so as to prevent short circuit from occurring.
  • the conductive fiber 32 is bent and arranged in the middle of the flexible substrate 32, which is beneficial to the miniaturization of the sensor.
  • the conductive fiber 32 is flexible, and is preferably a carbon fiber doped with impurity ions, or a composite fiber obtained by blending a carbon fiber doped with impurity ions and aramid fiber; wherein, the impurity ions are of multiple types, which are in the carbon fiber material. It is inevitably brought into the prepared carbon fiber during the preparation process, or more into the carbon fiber after doping treatment. Specifically, the resistance of the conductive fiber 32 has a negative temperature coefficient characteristic,
  • the ratio of the length of the temperature-sensitive conductive fiber (CD section) of the temperature sensing unit to the diameter of the flexible conductive fiber (AB section) of the stress sensing unit is greater than 20:1 .
  • the length of the conductive fiber 32 is preferably 10 cm.
  • the top electrode 33 is provided on the middle of the flexible conductive fiber and is in contact with the top surface of the flexible conductive fiber; the bottom electrode 36 It is arranged between the surface of the flexible substrate 31 and the flexible conductive fiber, and is in contact with the bottom surfaces of both ends of the flexible conductive fiber.
  • the stress sensing unit further includes a substrate conductive layer 37, the substrate conductive layer 37 is provided between the top electrode 33 and the surface of the flexible substrate 31, for supporting the top electrode 33, and The bottom of the top electrode 33 is in electrical contact. More preferably, the bottom electrode 36 extends to the edge of the flexible substrate 31, and the substrate conductive layer 37 extends to the edge of the flexible substrate 31, so as to facilitate electrical connection between the stress sensing unit and an external power supply system.
  • the flexible conductive fiber itself has no crossover or mutual contact parts, the top electrode 33 and the bottom electrode 36 do not contact each other, and the substrate conductive layer 37 and the bottom electrode 36 do not contact each other; more preferably Ground, the top electrode 33 and the bottom electrode 36 have no staggered positions in the direction perpendicular to the flexible substrate 31, and the substrate conductive layer 37 and the bottom electrode 3 have no staggered positions in the direction perpendicular to the flexible substrate 31. It reduces the possibility of short circuit caused by displacement of the top electrode 33, the bottom electrode 36 or the substrate conductive layer 37 caused by the external force of the sensing layer 30.
  • the two terminal electrodes 34, 35 are provided between the surface of the flexible substrate 31 and the temperature-sensitive conductive fiber, and they are respectively connected to the sensor The two ends of the warm conductive fiber are in contact with the bottom surface. More preferably, the two terminal electrodes 34 and 35 respectively extend to the edge of the flexible substrate 31 to facilitate electrical connection between the temperature sensing unit and the external power supply system.
  • the temperature-sensitive conductive fiber itself has no crossover or mutual contact part, and the two terminal electrodes 34, 35 are not in contact with each other; more preferably, the two terminal electrodes 34, 35 are perpendicular to the flexible substrate 31 There are no staggered parts in the direction, which reduces the possibility of short circuit caused by displacement of the two terminal electrodes 34 and 35 caused by the external force of the sensing layer 30.
  • the top electrode 33, the substrate conductive layer 37, and the two terminal electrodes 34, 35 can be made of conventional electrode materials, and are printed on the surface of the flexible substrate 31 according to the corresponding lines and shapes shown in FIGS. 2, 3, and 5. .
  • the stress sensing unit and the temperature sensing unit are not in contact with each other, ensuring that the two can work independently of each other.
  • the elastic layer 20 has a ring shape, which is arranged along the edge of the flexible substrate 31 and surrounds the conductive fibers 32.
  • the stressed layer 10 is arranged on the elastic layer 20 and covers the flexible substrate 31.
  • the force-receiving layer 10 is made of a flexible insulating material, such as a flexible film material
  • the elastic layer 20 is made of an elastic insulating material
  • the force-receiving layer 10 and the elastic layer 20 form an encapsulation protection for the sensing layer 30,
  • a buffer space is formed between the force-bearing layer 10 and the sensing layer 30, so that when the micro-stress of a non-measurement target acts on the force-bearing layer 10, the sensing layer 30 will not be affected by the micro-stress and avoid stress transmission.
  • the sensing unit generates unnecessary detection signals.
  • the top electrode 33 and the bottom electrode 36 are respectively connected to the external power supply system, so that the top electrode 33, the bottom electrode 36, the flexible conductive fiber and the external power supply system form a complete conductive loop, and the current flows along the
  • the stress sensing unit can detect the stress applied to the flexible conductive fiber. Specifically, the resistance of the flexible conductive fiber will change with the change of the stress.
  • the voltage between the electrodes 36 can be used to obtain the magnitude of the stress applied to the flexible conductive fiber; the two terminal electrodes 34, 35 are connected to the external power supply system respectively, so that the two terminal electrodes 34, 35 and the temperature-sensitive conductive fiber can be powered by the external
  • the system forms a complete conductive loop, and the current passes along the axial direction of the temperature-sensitive conductive fiber.
  • the temperature sensor unit can detect the temperature near the temperature-sensitive conductive fiber. Specifically, the resistance of the temperature-sensitive conductive fiber varies with The temperature changes and changes, and the immediate temperature near the temperature-sensitive conductive fiber can be obtained by detecting the resistance between the two ends of the temperature-sensitive conductive fiber.
  • the stress sensing unit and the temperature sensing unit can detect stress and temperature at the same time, and the detection of stress and temperature is independent of each other, and does not affect or interfere with each other.
  • the two conductive loops formed by the stress sensing unit, the temperature sensing unit and the external power supply system are independent of each other, and the single-chip microcomputer can be used to control the on and off of the two conductive loops respectively, so as to selectively detect the stress or temperature.
  • the tactile sensor of the present invention also has multiple implementation modes, for example: another example: the flexible conductive fiber of the stress sensing unit and the temperature sensing conductive fiber of the temperature sensing unit are selected from the same conductive fiber. There are two separate sections in the middle of the fiber 32 instead of the end section; another example: the flexible conductive fiber of the stress sensing unit and the temperature sensing conductive fiber of the temperature sensing unit use two different conductive fibers; For example, the number of stress sensing units and temperature sensing units is more than one, and the flexible conductive fibers of all stress sensing units and the temperature sensing conductive fibers of all temperature sensing units use the same conductive fiber, or use each Different conductive fibers, etc.
  • Figure 7 is the performance test data diagram of the stress sensing unit.
  • a stress with a peak size of 2N was applied to the touch sensor of Example 1, and a dynamic stress loading test from 0N to 2N was performed on the stress sensing unit.
  • the test results are shown in Figure 7.
  • the upper curve in the figure shows the stress versus time
  • the change curve, the lower curve is the change curve of the voltage between the bottom electrode 36 and the substrate conductive layer 37 (that is, the voltage between the bottom and the bottom of the flexible conductive fiber) over time. It can be seen from the figure that in a cyclic test, the voltage output by the stress sensing unit increases with the continuous increase of stress.
  • the voltage When the stress reaches the peak value, the voltage also reaches the peak value, which fully shows that the touch sensor of the present invention has Fast response ability to dynamic stress and excellent dynamic resolution ability; and in 5 cycles of tests, the stress sensing unit showed good consistency, indicating that the touch sensor of the present invention has good stability for stress detection.
  • FIG 8 is a performance test data diagram of the temperature sensing unit. Change the temperature of the environment where the touch sensor of embodiment 1 is located, and test the resistance value of the temperature sensor unit at different temperatures.
  • the test result shows that the resistance of the temperature sensor unit (that is, the resistance between the two ends of the temperature-sensitive conductive fiber ) Decrease as the temperature increases, that is, the resistance is negatively correlated with the temperature.
  • the temperature sensing unit has a good linearity in the temperature range of 30°C ⁇ 45°C, as shown in Figure 8. As shown in the curve. Therefore, the temperature measurement range of the touch sensor of the present invention can be selected from 30°C to 45°C, which is closer to the range of human body temperature. It has great application prospects in industrial and daily applications, especially for dynamic body temperature detection. Technical advantages.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明涉及一种新型的触觉传感器,所述触觉传感器包括传感层,所述传感层包括柔性基底、至少一个应力传感单元和至少一个温度传感单元;所述应力传感单元包括一柔性导电纤维、一顶电极和一底电极,所述柔性导电纤维平铺在所述柔性基底上,所述顶电极可弯曲,当所述顶电极与底电极之间存在电势差时,电流沿所述柔性导电纤维的径向流通;所述温度传感单元包括一感温导电纤维和两个端电极,所述感温导电纤维平铺在所述柔性基底上,当所述两个端电极之间存在电势差时,电流沿所述感温导电纤维的轴向流通。本发明的触觉传感器可以同时独立检测应力和温度,并具备稳定性高、高灵敏度、柔性化、轻量化、阵列化等优点。

Description

一种新型的触觉传感器 技术领域
本发明涉及传感器技术领域,特别是涉及一种新型的触觉传感器。
背景技术
随着科学技术的发展和人们追求美好生活的需求,可穿戴式电子产品、人工智能与机器人领域得到飞速发展,为了实现更加优异的人机交互体验,机器人需要对外界刺激实现高灵敏的快速响应,而作为机器人的“皮肤”的触觉传感器已经成为了一项现实的技术需求。触觉传感器需要能够对外界的温度和应力实现高灵敏度响应,并且具备柔性化、轻量化、阵列化的功能。
现有的可编织的触觉传感器基本上是利用微纳米材料对纺织纤维进行功能层修饰,虽然这能够有效提高传感器的灵敏度,但由于微纳米材料较难实现良好的均一性和结构稳定性,使得这类触觉传感器难以与现有的纺织技术兼容,并且需要封装在硅胶等弹性体内对微纳米材料进行保护,从而导致了单个传感器面积过大,难以真正实现高集成度和高分辨率,这些问题成为这一技术推广至市场的掣肘之处。除此之外,目前有部分专利提及在传感器中采用两根柔性纤维形成的交叉结作为传感单元,这类传感器虽然具备良好的应力传感性能并且可以与纺织技术兼容,但是在面对非垂直应力作用的加载时容易造成交叉结中的纤维发生偏移、错位,甚至断裂,从而引起传感器的性能不稳定、初始电阻漂移等问题,无法进一步集成温度传感功能,继而无法有效实现触觉传感。
因此,发明一种稳定性高、高灵敏度、可编织的触觉传感器是智能可穿戴式电子产品发展的迫切需求。
发明内容
针对现有技术的缺陷,本发明的目的是提供一种新型的触觉传感器,其可以同时独立检测应力和温度,并具备稳定性高、高灵敏度、柔性化、轻量化、阵列化等优点。
本发明采取的技术方案如下:
一种新型的触觉传感器,包括传感层,所述传感层包括柔性基底、至少一个应力传感单 元和至少一个温度传感单元;
所述应力传感单元包括一柔性导电纤维、一顶电极和一底电极,所述柔性导电纤维平铺在所述柔性基底上,所述顶电极可弯曲,并与所述柔性导电纤维的顶部电接触,所述底电极与所述柔性导电纤维的底部电接触,当所述顶电极与底电极之间存在电势差时,电流沿所述柔性导电纤维的径向流通;
所述温度传感单元包括一感温导电纤维和两个端电极,所述感温导电纤维平铺在所述柔性基底上,所述两个端电极分别与所述感温导电纤维的两端电连接,当所述两个端电极之间存在电势差时,电流沿所述感温导电纤维的轴向流通。
本发明的触觉传感器的工作原理为:
当外界应力(例如以垂直于柔性基底的方向)施加于应力传感单元的柔性导电纤维时,柔性导电纤维会随着应力的作用而发生相应的结构形变,从而导致柔性导电纤维在径向的电阻也发生变化,通过检测这种电阻变化(例如检测顶电极与底电极之间的电压变化),实现对应力的检测;温度传感单元的感温导电纤维的电阻会随温度的改变而发生变化,通过检测感温导电纤维的电阻值(例如检测感温导电纤维两端之间的电阻值),实现对温度的检测。
由于应力作用于柔性导电纤维而产生的电阻变化是基于结构形变所引起的,不需要对柔性导电纤维的表面进行额外的功能层修饰,因此能够很好地避免现有技术中功能层稳定性差的问题,并且,采用单根柔性导电纤维作为应力响应元件,还能避免现有两根柔性纤维形成的交叉结在应力作用下容易发生位移而失效的问题,从而有利于传感器的稳定性和小型化,同时保证与现有纺织技术的兼容性。此外,所述应力传感单元中,采用与柔性导电纤维顶部电接触的可弯曲顶电极、及与柔性导电纤维底部电接触的底电极,能在应力作用下,特别是垂直于柔性基底方向的应力作用下,始终保持顶电极和底电极与柔性导电纤维电接触。
本发明在触觉传感器中同时设置应力传感单元和温度传感单元,并设计顶电极和底电极分别与柔性导电纤维的接触位置、以及两个端电极分别与感温导电纤维的接触位置,保证柔性导电纤维与感温导电纤维中的电流方向不同,从而可以同时独立检测应力与温度,并利用导电纤维分别作为应力传感单元和温度传感单元的响应元件,有利于传感器的柔性化和轻量化,并提高检测灵敏度,采用与纺织技术兼容的方案,可以实现在小面积区域内分布多个触觉传感器,且具备小型化、集成化化、阵列化的特点。
进一步地,所述感温导电纤维的阻值呈负温度系数特性。
进一步地,所述感温导电纤维为掺入杂质离子的碳纤维,或者为掺入杂质离子的碳纤维与芳纶混纺得到的复合纤维。
对纺织纤维材料进行离子掺杂(这种离子掺杂是指,杂质离子不可避免地带入到材料中,或者还经过额外的掺杂处理更多地掺入材料中),再经过高温碳化处理,可获得掺入杂质离子的碳纤维作为感温导电纤维;或者,将掺入杂质离子的碳纤维与芳纶混纺,得到抗拉伸能力更强且导电性良好的复合纤维作为感温导电纤维。采用掺入杂质离子的碳纤维,由于杂质离子均匀掺杂在感温导电纤维内部,电子的输运受到材料体内的杂质离子的散射,从而影响了在不同温度下的电子的迁移率,宏观表现为材料的电阻与温度呈现了一定的对应关系,由此使感温导电纤维能够实现对温度的传感。
进一步地,所有应力传感单元的柔性导电纤维与所有温度传感单元的感温导电纤维共同采用同一根导电纤维。由于应力传感单元和温度传感单元中的电流方向不同,因而两者可以相互独立工作。
进一步地,所述传感层包括一个应力传感单元和一个温度传感单元,所述应力传感单元的柔性导电纤维与所述温度传感单元的感温导电纤维分别选自同一根导电纤维中隔开的两段,此处设置利于提高应力传感单元与温度传感单元在柔性基底上的集成度,从而利于传感器的小型化,并进一步保证应力传感单元与温度传感单元能相互独立工作;所述应力传感单元中,所述顶电极设在所述柔性导电纤维的中部上,并与所述柔性导电纤维的顶部表面接触,所述底电极与所述柔性导电纤维的两端底部表面接触,此处设置能避免应力作用下顶电极与底电极发生位移而相接触,防止短路。
进一步地,所述温度传感单元的感温导电纤维的长度与所述应力传感单元的柔性导电纤维的直径之比大于20:1。
由于柔性导电纤维中的电流沿其径向流通,其电子运输方向与感温导电纤维中的电子运输方向不同,而且其电子传输路径要比感温导电纤维中的电子传输路径短得多,受到杂质离子的散射影响不大,所以其电阻大小不受温度影响,可以通过外围电路来实现温度和应力的独立探测,互不干扰。
进一步地,所述感温导电纤维经过硬化处理,防止感温导电纤维的阻值受应力影响而改 变,无论表面经历各种物理上的冲击,也不会影响感温导电纤维材料对温度传感的性能,提高其测量温度的准确性。
进一步地,所述顶电极为金属弹片、液态金属或导电银浆,因此其在应力作用下可以随柔性导电纤维发生弯曲形变,保持与柔性导电纤维顶部电接触。
进一步地,所述应力传感单元与温度传感单元之间互不接触;所述应力传感单元中,所述柔性导电纤维自身无交叉或相互接触的部位,所述顶电极与底电极互不接触;所述温度传感单元中,所述感温导电纤维自身无交叉或相互接触的部位,所述两个端电极互不接触。此处设置保证应力传感单元与温度传感单元相互独立工作,同时防止短路发生。
进一步地,所述新型的触觉传感器还包括设于所述传感层上的弹性层和受力层,所述弹性层为环形,其沿所述柔性基底的边缘布置,所述受力层设于所述弹性层上,并覆盖所述柔性基底。该弹性层和受力层用于保护传感器,避免传感器受外界干扰。
为了更好地理解和实施,下面结合附图详细说明本发明。
附图说明
图1为本发明的新型的触觉传感器整体截面示意图;
图2为传感层的结构示意图;
图3为应力传感单元的结构示意图;
图4为应力传感单元的侧视图;
图5为温度传感单元的结构示意图;
图6为温度传感单元的侧视图;
图7为应力传感单元的性能测试结果;
图8为温度传感单元的性能测试结果。
附图标记说明:
10–受力层;20-弹性层;30-传感层;31-柔性基底;32-导电纤维;33-顶电极;34、35-端电极;36-底电极;37-衬底导电层。
具体实施方式
在本发明的描述中,需要说明的是,对于方位词,如有术语“中心”,“横向(X)”、“纵 向(Y)”、“竖向(Z)”“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示方位和位置关系为基于附图所示的方位或位置关系,仅是为了便于叙述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定方位构造和操作,不能理解为限制本发明的具体保护范围。
本发明提供的新型的触觉传感器包括传感层,所述传感层包括柔性基底、至少一个应力传感单元和至少一个温度传感单元;
所述应力传感单元包括一柔性导电纤维、一顶电极和一底电极,所述柔性导电纤维平铺在所述柔性基底上,所述顶电极可弯曲,并与所述柔性导电纤维的顶部电接触,所述底电极与所述柔性导电纤维的底部电接触,当所述顶电极与底电极之间存在电势差时,电流沿所述柔性导电纤维的径向流通;
所述温度传感单元包括一感温导电纤维和两个端电极,所述感温导电纤维平铺在所述柔性基底上,所述两个端电极分别与所述感温导电纤维的两端电连接,当所述两个端电极之间存在电势差时,电流沿所述感温导电纤维的轴向流通。
本发明的触觉传感器的工作原理为:
当外界应力(例如以垂直于柔性基底的方向)施加在应力传感单元的柔性导电纤维时,柔性导电纤维会随着应力的作用而发生相应的结构形变,从而导致柔性导电纤维在径向的电阻也发生变化,通过检测这种电阻变化(例如检测顶电极与底电极之间的电压变化),实现对应力的检测;温度传感单元的感温导电纤维的电阻会随温度的改变而发生变化,通过检测感温导电纤维的电阻值(例如检测感温导电纤维两端之间的电阻值),实现对温度的检测。
实施例1
请参阅图1,本实施例的新型的触觉传感器包括由上至下依次层叠的受力层10、弹性层20和传感层30。
请参阅图2-6,本实施例中,所述传感层30包括柔性基底31、一个应力传感单元和一个温度传感单元,所述应力传感单元和温度传感单元分别设于所述柔性基底31上。
所述柔性基底31采用柔性薄膜材料,例如PET(聚对苯二甲酸乙二酯)、PI(聚酰亚胺)、 PDMS(聚二甲基硅氧烷)等常规薄膜材料。
如图3和图4所示,所述应力传感单元包括一柔性导电纤维、一顶电极33和一底电极36,所述柔性导电纤维平铺在所述柔性基底31上,所述顶电极33可弯曲,并与所述柔性导电纤维的顶部电接触,所述底电极36与所述柔性导电纤维的底部电接触,当所述顶电极33与底电极36之间存在电势差时,电流沿所述柔性导电纤维的径向流通,即电流从所述柔性导电纤维的顶部沿其直径方向流向底部(此时顶电极33的电势高于底电极36的电势),或从所述柔性导电纤维的底部沿其直径方向流向顶部(此时顶电极33的电势低于底电极36的电势)。
所述顶电极33为金属弹片、液态金属或导电银浆等可弯曲变形的导电材料,其可以随柔性导电纤维形变而发生弯曲。
如图5和图6所示,所述温度传感单元包括一感温导电纤维和两个端电极34、35,所述感温导电纤维平铺在所述柔性基底31上,所述两个端电极34、35分别与所述感温导电纤维的两端电连接,当所述两个端电极34、35之间存在电势差时,电流沿所述感温导电纤维的轴向流通。
为了防止感温导电纤维的阻值受应力影响而改变,所述感温导电纤维表面经过硬化处理,具体可采用硬化剂进行处理,使感温导电纤维在受到应力时不会发生形变而导致其阻值发生变化,由此感温导电纤维的阻值仅受温度影响,提高其测量温度的准确性。
本实施例中,所述应力传感单元的柔性导电纤维与所述温度传感单元的感温导电纤维分别选自同一根导电纤维32中隔开的两段,具体分别选自同一根导电纤维32的两个末端段,如图2所示,选取所述导电纤维32中的A点和B点之间的一段(AB段)作为所述应力传感单元的柔性导电纤维,且A点位于所述导电纤维32的一末端,选取所述导电纤维32中的C点和D点之间的一段(CD段)作为所述温度传感单元的感温导电纤维,且D点位于所述导电纤维32的另一末端,所述应力传感单元的柔性导电纤维与所述温度传感单元的感温导电纤维之间由中间段(BC段)隔开,进一步保证柔性导电纤维与感温导电纤维中的电流相互独立,从而保证应力传感单元与温度传感单元能相互独立工作。
所述导电纤维32平铺在所述柔性基底31表面上,即其轴向与所述柔性基底31表面平行,且其中无交叉或打结的部分,防止短路发生。优选地,所述导电纤维32弯曲布置于所 述柔性基底32的中部,利于传感器小型化。
所述导电纤维32是柔性的,优选为掺入杂质离子的碳纤维,或者为掺入杂离子的碳纤维与芳纶混纺得到的复合纤维;其中,所述杂质离子为多种,其在碳纤维材料的制备过程中不可避免地带入到制得的碳纤维中,或者经过掺杂处理更多地掺入碳纤维中。具体地,所述导电纤维32的阻值呈负温度系数特性,
进一步地,所述导电纤维32中,所述温度传感单元的感温导电纤维(CD段)的长度与所述应力传感单元的柔性导电纤维(AB段)的直径之比大于20:1。具体地,所述导电纤维32的长度优选为10cm。
如图3和图4所示,所述应力传感单元中,所述顶电极33设在所述柔性导电纤维的中部上,并与所述柔性导电纤维的顶部表面接触;所述底电极36设于所述柔性基底31表面与所述柔性导电纤维之间,并与所述柔性导电纤维的两端底部表面接触。进一步地,所述应力传感单元还包括衬底导电层37,所述衬底导电层37设于所述顶电极33与柔性基底31表面之间,用于支承所述顶电极33,并与所述顶电极33的底部电接触。更优地,所述底电极36延伸至所述柔性基底31的边缘,所述衬底导电层37延伸至所述柔性基底31的边缘,便于将应力传感单元与外部供电系统实现电连接。
而且,所述柔性导电纤维自身无交叉或相互接触的部位,所述顶电极33与底电极36之间互不接触,所述衬底导电层37与底电极36之间互不接触;更优地,所述顶电极33与底电极36之间在垂直于柔性基底31的方向上无交错的部位,所述衬底导电层37与底电极3在垂直于柔性基底31的方向上无交错的部位,降低传感层30受外力作用造成顶电极33、底电极36或衬底导电层37位移而发生短路的可能性。
如图5和图6所示,所述温度传感单元中,所述两个端电极34、35设于所述柔性基底31表面与所述感温导电纤维之间,其分别与所述感温导电纤维的两端底部表面接触。更优地,所述两个端电极34、35分别延伸至所述柔性基底31的边缘,便于将温度传感单元与外部供电系统实现电连接。
而且,所述感温导电纤维自身无交叉或相互接触的部位,所述两个端电极34、35互不接触;更优地,所述两个端电极34、35在垂直于柔性基底31的方向上无交错的部位,降低传感层30受外力作用造成两个端电极34、35位移而发生短路的可能性。
所述顶电极33、衬底导电层37和两个端电极34、35可以采用常规电极材料制备,按照图2、图3和图5所示的相应线路和形状分别印刷在柔性基底31表面上。
所述应力传感单元与温度传感单元之间互不接触,保证两者能相互独立工作。
所述弹性层20为环形,其沿所述柔性基底31的边缘布置,包围所述导电纤维32。所述受力层10设于所述弹性层20上,并覆盖所述柔性基底31。所述受力层10采用柔性的绝缘材料制备,例如采用柔性薄膜材料,所述弹性层20采用弹性的绝缘材料制备,所述受力层10和弹性层20对传感层30形成封装保护,且受力层10与传感层30之间形成缓冲空间,从而在非测量目标的微小应力作用在受力层10上时,使传感层30不会受到该微小应力的作用,避免应力传感单元产生不必要的检测信号。
所述触觉传感器工作时,将顶电极33和底电极36分别与外部供电系统连接,使顶电极33、底电极36、柔性导电纤维和外部供电系统构成一个完整的导电回路,则电流沿所述柔性导电纤维的径向通过,此时应力传感单元可检测到施加在柔性导电纤维上的应力,具体地,柔性导电纤维的阻值会随应力变化而发生改变,通过检测顶电极33与底电极36之间的电压可得出施加到柔性导电纤维上的应力大小;将两个端电极34、35分别与外部供电系统连接,使两个端电极34、35和感温导电纤维和外部供电系统构成一个完整的导电回路,则电流沿所述感温导电纤维的轴向通过,此时温度传感单元可检测到感温导电纤维附近的温度,具体地,感温导电纤维的阻值随温度变化而发生改变,通过检测感温导电纤维两端之间的阻值可得出感温导电纤维上附近的即时温度。
所述应力传感单元与温度传感单元可以同时检测应力和温度,而且对应力和温度的检测相互独立,互不影响和干扰。具体地,应力传感单元与温度传感单元与外部供电系统构成的两个导电回路相互独立,可利用单片机来分别控制这两个导电回路的通断,从而选择性地检测应力或温度。
除本实施例外,本发明的触觉传感器还具有多种实施方式,例如:又如:所述应力传感单元的柔性导电纤维与所述温度传感单元的感温导电纤维分别选自同一根导电纤维32的中间的相隔的两段,而非末端段;又如:所述应力传感单元的柔性导电纤维与所述温度传感单元的感温导电纤维分别采用两根不同的导电纤维;再如:所述应力传感单元和温度传感单元的数量都多于一个,所有应力传感单元的柔性导电纤维与所有温度传感单元的感温导电纤维 共同采用同一根导电纤维,或各自采用不同的导电纤维,等等。
实施例2
请参阅图7,其为应力传感单元的性能测试数据图。对实施例1的触感传感器施加峰值大小为2N的应力,对其应力传感单元进行从0N到2N的动态应力加载测试,测试结果如图7所示,图中上方的曲线为应力随时间的变化曲线,下方的曲线为底电极36和衬底导电层37之间的电压(即柔性导电纤维的底部与底部之间的电压)随时间的变化曲线。从该图中可见,在一个循环测试中,应力传感单元输出的电压随着应力的不断增大而增大,当应力达到峰值时,电压也同时达到峰值,充分表明本发明的触感传感器具备对动态应力的快速的响应能力和优秀的动态分辨能力;而在5个循环测试中,应力传感单元表现出良好的一致性,表明本发明的触感传感器具备对应力检测的良好稳定性。
请参阅图8,其为温度传感单元的性能测试数据图。改变实施例1的触感传感器所处环境的温度,测试温度传感单元在不同温度下所体现的阻值,测试结果表明,温度传感单元的电阻(即感温导电纤维两端之间的电阻)随着温度的增加而下降,即电阻与温度成负相关,后续进一步对数据进行拟合,发现温度传感单元在30℃~45℃的温度范围内具备很好的线性度,如图8中的曲线所示。因此,本发明的触感传感器的测温范围可以选取30℃~45℃,与人体体温变化范围较为接近,在工业应用与生活应用有很大的应用前景,尤其针对体温动态检测更是具有很大的技术优势。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

  1. 一种新型的触觉传感器,其特征在于:包括传感层,所述传感层包括柔性基底、至少一个应力传感单元和至少一个温度传感单元;
    所述应力传感单元包括一柔性导电纤维、一顶电极和一底电极,所述柔性导电纤维平铺在所述柔性基底上,所述顶电极可弯曲,并与所述柔性导电纤维的顶部电接触,所述底电极与所述柔性导电纤维的底部电接触,当所述顶电极与底电极之间存在电势差时,电流沿所述柔性导电纤维的径向流通;
    所述温度传感单元包括一感温导电纤维和两个端电极,所述感温导电纤维平铺在所述柔性基底上,所述两个端电极分别与所述感温导电纤维的两端电连接,当所述两个端电极之间存在电势差时,电流沿所述感温导电纤维的轴向流通。
  2. 根据权利要求1所述的新型的触觉传感器,其特征在于:所述感温导电纤维的电阻值呈负温度系数特性。
  3. 根据权利要求2所述的新型的触觉传感器,其特征在于:所述感温导电纤维为掺入杂质离子的碳纤维,或者为掺入杂质离子的碳纤维与芳纶混纺得到的复合纤维。
  4. 根据权利要求3所述的新型的触觉传感器,其特征在于:所有应力传感单元的柔性导电纤维与所有温度传感单元的感温导电纤维共同采用同一根导电纤维。
  5. 根据权利要求4所述的新型的触觉传感器,其特征在于:所述传感层包括一个应力传感单元和一个温度传感单元,所述应力传感单元的柔性导电纤维与所述温度传感单元的感温导电纤维分别选自同一根导电纤维中隔开的两段;所述应力传感单元中,所述顶电极设在所述柔性导电纤维的中部上,并与所述柔性导电纤维的顶部表面接触,所述底电极与所述柔性导电纤维的两端底部表面接触。
  6. 根据权利要求5所述的新型的触觉传感器,其特征在于:所述温度传感单元的感温导电纤维的长度与所述应力传感单元的柔性导电纤维的直径之比大于20:1。
  7. 根据权利要求1所述的新型的触觉传感器,其特征在于:所述感温导电纤维经过硬化处理。
  8. 根据权利要求1所述的新型的触觉传感器,其特征在于:所述顶电极为金属弹片、液态金属或导电银浆。
  9. 根据权利要求1所述的新型的触觉传感器,其特征在于:所述应力传感单元与温度传感单元之间互不接触;所述应力传感单元中,所述柔性导电纤维自身无交叉或相互接触的部位,所述顶电极与底电极互不接触;所述温度传感单元中,所述感温导电纤维自身无交叉或相互接触的部位,所述两个端电极互不接触。
  10. 根据权利要求1所述的新型的触觉传感器,其特征在于:还包括设于所述传感层上的弹性层和受力层,所述弹性层为环形,其沿所述柔性基底的边缘布置,所述受力层设于所述弹性层上,并覆盖所述柔性基底。
PCT/CN2019/074936 2019-02-02 2019-02-13 一种新型的触觉传感器 WO2020155193A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/753,228 US11313743B2 (en) 2019-02-02 2019-02-13 Tactile sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910106800.4A CN109781315B (zh) 2019-02-02 2019-02-02 一种触觉传感器
CN201910106800.4 2019-02-02

Publications (1)

Publication Number Publication Date
WO2020155193A1 true WO2020155193A1 (zh) 2020-08-06

Family

ID=66504109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074936 WO2020155193A1 (zh) 2019-02-02 2019-02-13 一种新型的触觉传感器

Country Status (3)

Country Link
US (1) US11313743B2 (zh)
CN (1) CN109781315B (zh)
WO (1) WO2020155193A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088287B2 (ja) * 2018-06-22 2022-06-21 ソニーグループ株式会社 制御装置、制御方法及びプログラム
CN109781315B (zh) * 2019-02-02 2020-08-25 五邑大学 一种触觉传感器
CN110375895B (zh) * 2019-07-18 2020-05-08 浙江大学 多功能全柔性指纹状触觉传感器
CN110477928B (zh) * 2019-09-19 2024-02-06 五邑大学 拉伸型应力传感器和弯曲传感装置
CN110702304B (zh) * 2019-10-17 2021-01-15 中国科学院长春光学精密机械与物理研究所 一种基于温度的智能皮肤力触觉信息标定方法
CN111044184A (zh) * 2019-12-30 2020-04-21 苏州大学 基于硅微/纳米线的微型化大量程应变传感器及其应用
CN112097946B (zh) * 2020-09-15 2021-09-28 大连理工大学 一体化柔性温度和压力传感器及其制备方法和用于非平面温度测量的系统
CN112161738B (zh) * 2020-09-17 2022-04-08 五邑大学 气压传感器及制作方法
CN113028967B (zh) * 2021-03-25 2023-02-28 广州碳思科技有限公司 柔性微位移传感器和柔性微位移传感装置
CN113959605A (zh) * 2021-10-19 2022-01-21 广州碳思科技有限公司 一种应力传感器及应力传感装置
CN114152357B (zh) * 2021-10-25 2022-11-25 北京科技大学 用于感应温度与触摸的柔性自驱动传感器及其制备方法
CN114486011B (zh) * 2022-01-29 2023-07-25 重庆文理学院 一种液态金属触碰压力传感器的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033262A (ja) * 2001-07-23 2003-02-04 Naoto Kobayashi センサーシーツ
US9052775B1 (en) * 2012-07-24 2015-06-09 Sandia Corporation Optical based tactile shear and normal load sensor
CN106568539A (zh) * 2016-10-20 2017-04-19 上海交通大学 基于聚合物衬底的单片集成温湿压柔性传感器及制备方法
CN106595940A (zh) * 2016-12-30 2017-04-26 电子科技大学 一种柔性多功能传感器及其制备方法
CN107462343A (zh) * 2017-08-10 2017-12-12 上海幂方电子科技有限公司 一种全打印柔性传感器及其制备工艺
CN207619571U (zh) * 2017-06-28 2018-07-17 费伯(上海)网络科技有限公司 一种压阻纤维、纱线及压阻传感器和织物
CN109141687A (zh) * 2017-06-15 2019-01-04 北京纳米能源与系统研究所 透明的柔性触觉传感器、感测方法及触觉传感器阵列

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503416A (en) * 1982-12-13 1985-03-05 General Electric Company Graphite fiber tactile sensor
GB8411480D0 (en) * 1984-05-04 1984-06-13 Raychem Corp Sensor array
US7463040B2 (en) * 2003-08-01 2008-12-09 Santa Fe Science And Technology, Inc. Multifunctional conducting polymer structures
US7430925B2 (en) * 2005-05-18 2008-10-07 Pressure Profile Systems, Inc. Hybrid tactile sensor
US8127623B2 (en) * 2005-05-18 2012-03-06 Pressure Profile Systems Inc. Capacitive tactile tile sensor
US8272278B2 (en) * 2007-03-28 2012-09-25 University Of Southern California Enhancements to improve the function of a biomimetic tactile sensor
DE102007022871A1 (de) * 2007-05-14 2008-11-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Taktilsensor mit entkoppelten Sensorzellen
US8020456B2 (en) * 2008-05-30 2011-09-20 Florida State University Research Foundation Sensor and a method of making a sensor
KR101312553B1 (ko) * 2011-12-28 2013-10-14 한국표준과학연구원 촉각 센서의 곡면 부착구조 및 촉각 센서의 곡면 부착방법
US9176587B2 (en) * 2012-06-29 2015-11-03 Panasonic Intellectual Property Management Co., Ltd. Tactile sense presentation device and tactile sense presentation method
JP6424408B2 (ja) * 2014-02-06 2018-11-21 国立研究開発法人科学技術振興機構 圧力センサー用シート、圧力センサーおよび圧力センサー用シートの製造方法
WO2015143307A1 (en) * 2014-03-20 2015-09-24 The University Of Akron Flexible tactile sensors and method of making
WO2016073655A2 (en) * 2014-11-04 2016-05-12 North Carolina State University Smart sensing systems and related methods
KR101707002B1 (ko) * 2015-03-04 2017-02-15 숭실대학교산학협력단 복합 감지형 센서 및 제조방법
WO2017026611A1 (ko) * 2015-08-07 2017-02-16 전자부품연구원 스마트 베드, 이를 이용한 사용자 상태 모니터링 시스템 및 사용자 상태 모니터링 방법
KR101817966B1 (ko) * 2015-08-07 2018-01-11 전자부품연구원 플렉서블 촉각 센서 및 이의 제조 방법
KR101738256B1 (ko) * 2015-09-09 2017-05-23 성균관대학교산학협력단 촉각 센서
US10824282B2 (en) * 2015-11-30 2020-11-03 Drexel University Fabric touch sensor
US10401241B2 (en) * 2016-06-08 2019-09-03 The University Of British Columbia Surface sensor arrays using ionically conducting material
US20200180264A1 (en) * 2017-04-19 2020-06-11 University Of Delaware Carbon nanotube based sensor
US10481021B2 (en) * 2017-05-25 2019-11-19 TacSense, Inc. Supercapacitive iontronic nanofabric sensing assemblies
CN109781315B (zh) * 2019-02-02 2020-08-25 五邑大学 一种触觉传感器
CN111006802B (zh) * 2019-12-17 2021-07-27 华中科技大学 一种多模态可变胞柔性传感器及信号采集系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033262A (ja) * 2001-07-23 2003-02-04 Naoto Kobayashi センサーシーツ
US9052775B1 (en) * 2012-07-24 2015-06-09 Sandia Corporation Optical based tactile shear and normal load sensor
CN106568539A (zh) * 2016-10-20 2017-04-19 上海交通大学 基于聚合物衬底的单片集成温湿压柔性传感器及制备方法
CN106595940A (zh) * 2016-12-30 2017-04-26 电子科技大学 一种柔性多功能传感器及其制备方法
CN109141687A (zh) * 2017-06-15 2019-01-04 北京纳米能源与系统研究所 透明的柔性触觉传感器、感测方法及触觉传感器阵列
CN207619571U (zh) * 2017-06-28 2018-07-17 费伯(上海)网络科技有限公司 一种压阻纤维、纱线及压阻传感器和织物
CN107462343A (zh) * 2017-08-10 2017-12-12 上海幂方电子科技有限公司 一种全打印柔性传感器及其制备工艺

Also Published As

Publication number Publication date
US20210215553A1 (en) 2021-07-15
CN109781315A (zh) 2019-05-21
CN109781315B (zh) 2020-08-25
US11313743B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2020155193A1 (zh) 一种新型的触觉传感器
TWI607356B (zh) 一種三維觸控裝置
Gong et al. A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers
US10386248B2 (en) Stretchable electrically-conductive circuit and manufacturing method therefor
CN102770742B (zh) 柔性压力传感器及柔性压力传感列阵
CN110375895B (zh) 多功能全柔性指纹状触觉传感器
US8079272B2 (en) Tactile sensor
SG174496A1 (en) Sensor
CN108362410A (zh) 一种三维力柔性传感器
Park et al. Low-hysteresis and low-interference soft tactile sensor using a conductive coated porous elastomer and a structure for interference reduction
WO2017039350A1 (ko) 민감도가 향상된 변형감지센서
Kim et al. Stretchable power-generating sensor array in textile structure using piezoelectric functional threads with hemispherical dome structures
Zhou et al. Design and evaluation of a skin-like sensor with high stretchability for contact pressure measurement
CN206339255U (zh) 一种石墨烯分布式多物理量传感器阵列系统
CN110095223A (zh) 一种压力传感器
Rahimi et al. A low-cost fabrication technique for direct sewing stretchable interconnetions for wearable electronics
US11313734B2 (en) Flexible temperature sensor
Wang et al. A solution to reduce the time dependence of the output resistance of a viscoelastic and piezoresistive element
CN110057478B (zh) 一种电阻式高灵敏柔性压力传感器件
Shao et al. Flexible force sensor with micro-pyramid arrays based on 3D printing
TWI442035B (zh) 壓力感測器及感測陣列
CN112798154A (zh) 柔性透气的触觉传感器及使用触觉传感器的感测方法
EP4193134B1 (en) Force sensing device
CN116147796A (zh) 基于压力和温度的自供电柔性传感器及其制作方法和应用
KR20190125711A (ko) 고 신축성 압저항 와이어 센서 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912247

Country of ref document: EP

Kind code of ref document: A1