WO2020155006A1 - 电容式触控电极结构、触控感应系统及触控面板 - Google Patents

电容式触控电极结构、触控感应系统及触控面板 Download PDF

Info

Publication number
WO2020155006A1
WO2020155006A1 PCT/CN2019/074126 CN2019074126W WO2020155006A1 WO 2020155006 A1 WO2020155006 A1 WO 2020155006A1 CN 2019074126 W CN2019074126 W CN 2019074126W WO 2020155006 A1 WO2020155006 A1 WO 2020155006A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
touch
axis direction
blocks
capacitive touch
Prior art date
Application number
PCT/CN2019/074126
Other languages
English (en)
French (fr)
Inventor
包春贵
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201980073405.9A priority Critical patent/CN113260961A/zh
Priority to PCT/CN2019/074126 priority patent/WO2020155006A1/zh
Publication of WO2020155006A1 publication Critical patent/WO2020155006A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • This application relates to the field of touch technology, in particular to a capacitive touch electrode structure, a touch sensing system and a touch panel.
  • touch screen technology brings convenience to people's life and work.
  • Touch screens can be divided into resistive, capacitive, optical, and sonic types according to different sensing technologies.
  • the current mainstream touch technology is capacitive.
  • the capacitive touch screen has the advantages of low power consumption, long life and smooth operation, which makes it popular in the market.
  • various capacitive touch screen products have appeared one after another. With the advancement of technology and mass production, the cost of capacitive touch screens continues to drop , Gradually replacing resistive touch screens.
  • the touch function of the capacitive touch screen is realized by a capacitive touch electrode structure.
  • An existing capacitive touch electrode structure is composed of a first electrode layer 100 and a second electrode layer disposed oppositely.
  • the An electrode layer 100 includes several electrode patterns 101 arranged in a matrix and several wires 102 electrically connected to the several electrode patterns 101 respectively. Since each electrode pattern 101 is connected to a wire 102, the electrode pattern The more 101, the more the number of wires 102, which brings about the following problems: (1) As shown in Figs. 1 and 2, since the wires 102 occupy a larger space on the panel, a functional blind zone 300 ( That is, the space occupied by the wire 102 is relatively large; (2), as shown in FIGS. 3A and 3B, the more the number of wires 102, the easier it is to open or short circuit the wires 102.
  • the purpose of this application includes providing a capacitive touch electrode structure, which has a small functional blind area and a small probability of short-circuit or open-circuit of the wire.
  • the purpose of the present application also includes providing a touch sensing system with high sensing sensitivity and capable of quickly and accurately determining the coordinate position of a touch point.
  • the purpose of the present application also includes providing a touch panel with the advantages of sensitive response, stable quality, long service life and the like.
  • the present application first provides a capacitive touch electrode structure, which includes a first electrode layer and a second electrode layer disposed oppositely;
  • the first electrode layer includes a plurality of touch electrode units arranged at intervals along the X-axis direction, and the touch electrode unit includes a first wire and a second wire that extend along the Y-axis direction and are arranged at intervals.
  • the plurality of first electrode blocks and the plurality of second electrode blocks between the first wire and the second wire, the plurality of first electrode blocks are electrically connected to the first wire, and the plurality of The two electrode blocks are respectively electrically connected to the second wire, and in the Y-axis direction, the first electrode blocks and the second electrode blocks are alternately arranged;
  • the second electrode layer includes a plurality of sensing electrode units arranged at intervals along the Y axis direction;
  • each sensing electrode unit covers several touch electrode units arranged in sequence along the X-axis direction; in the Y-axis direction, each sensing electrode unit covers at least one of the first electrode block or the The second electrode block.
  • the arrangement positions of the first electrode blocks in the plurality of touch electrode units correspond, and the arrangement of the second electrode blocks in the plurality of touch electrode units
  • all the first electrode blocks in the first electrode layer are neatly arranged in several rows
  • all the second electrode blocks in the first electrode layer are neatly arranged in several rows.
  • a row of first electrode blocks and a row of second electrode blocks are alternately arranged.
  • each sensing electrode unit covers only one of the first electrode block or the second electrode block.
  • each sensing electrode unit covers one first electrode block and one second electrode block.
  • the second electrode layer further includes a plurality of third wires respectively electrically connected to the plurality of sensing electrode units.
  • the first electrode block and the second electrode block are both monolithic electrodes.
  • one of the first electrode block and the second electrode block has a hollow pattern, and the other is a monolithic electrode.
  • the shapes of the first electrode block and the second electrode block are both rectangular, circular or regular polygonal.
  • the materials of the first electrode layer and the second electrode layer are both metal or transparent metal conductive oxide.
  • the metal includes one or more of molybdenum, aluminum, copper, titanium, and chromium; and the transparent metal conductive oxide includes indium tin oxide.
  • the first electrode layer and the second electrode layer there is a gap between the first electrode layer and the second electrode layer, or an elastic insulating material is provided between the first electrode layer and the second electrode layer.
  • the present application also provides a touch sensing system, including the aforementioned capacitive touch electrode structure and a processor. All first wires, all second wires, and all sensing electrode units in the capacitive touch electrode structure are respectively connected to all The processor is electrically connected.
  • the present application also provides a touch panel including the above-mentioned touch sensing system.
  • the capacitive touch electrode structure of the present application significantly reduces the number of wires compared with the prior art through the special structure design of the first electrode layer, thereby reducing the functional blind area in the touch panel Area, and reduce the occurrence of wire short circuit or open circuit.
  • the touch sensing system of the present application has high sensing sensitivity and can quickly and accurately determine the coordinate position of the touch point.
  • the touch panel of the present application has the advantages of sensitive response, stable quality, and long service life.
  • FIG. 1 is a schematic diagram of the structure of a first electrode layer in a conventional capacitive touch electrode structure
  • Fig. 2 is an enlarged schematic diagram of a functional blind zone in the first electrode layer of Fig. 1;
  • FIG. 3A is a schematic diagram of a disconnection of a wire in the first electrode layer of FIG. 1;
  • FIG. 3B is a schematic diagram of a short-circuit condition of the wires in the first electrode layer of FIG. 1;
  • FIG. 4A is a schematic structural diagram of the first embodiment of the capacitive touch electrode structure of this application.
  • 4B is a schematic structural diagram of the second embodiment of the capacitive touch electrode structure of this application.
  • 6A is a schematic structural diagram of the first embodiment of the first electrode layer in the capacitive touch electrode structure of this application;
  • 6B is a schematic structural diagram of a second embodiment of the first electrode layer in the capacitive touch electrode structure of this application;
  • FIG. 7A is a schematic structural diagram of a second electrode layer in the capacitive touch electrode structure of FIG. 4A;
  • FIG. 7B is a schematic diagram of the second electrode layer in the capacitive touch electrode structure of FIG. 4B;
  • 8A to 8F are schematic diagrams of the situation where the touch points are located at different positions when the capacitive touch electrode structure of the present application is in use.
  • First electrode layer 101. Electrode pattern; 102. Wire; 300. Functional blind area; 11. Touch electrode unit; 31. First wire; 32. Second wire; 41. First electrode block; 42 20. The second electrode layer; 21. The sensing electrode unit; 22. The third wire; 50. Touch point; 60. Hollow pattern.
  • the expression "A or/and B” includes any or all combinations of the words listed at the same time, and may include A, B, or both A and B.
  • the present application provides a capacitive touch electrode structure, which includes a first electrode layer 10 and a second electrode layer 20 disposed oppositely.
  • An X-axis direction and a Y-axis direction perpendicular to each other are defined in a plane parallel to the first electrode layer 10 and the second electrode layer 20.
  • the first electrode layer 10 includes a number of touch electrode units 11 arranged at intervals along the X-axis direction.
  • the touch electrode unit 11 includes a first wire 31 and a second wire 32 that extend along the Y-axis direction and are arranged at intervals. And a plurality of first electrode blocks 41 and a plurality of second electrode blocks 42 arranged between the first wire 31 and the second wire 32, the plurality of first electrode blocks 41 and the first The wires 31 are electrically connected, and the plurality of second electrode blocks 42 are electrically connected to the second wires 32 respectively.
  • the first electrode blocks 41 and the second electrode blocks 42 are alternately arranged ;
  • the second electrode layer 20 includes a plurality of sensing electrode units 21 arranged at intervals along the Y-axis direction.
  • each sensing electrode unit 21 covers several touch electrode units 11 arranged in sequence along the X-axis direction; in the Y-axis direction, each sensing electrode unit 21 covers at least one first electrode block 41 or The second electrode block 42.
  • the arrangement positions of the first electrode blocks 41 in the plurality of touch electrode units 11 correspond,
  • the arrangement positions of the second electrode blocks 42 in the several touch electrode units 11 correspond to each other.
  • all the first electrode blocks 41 in the first electrode layer 10 are neatly arranged in several rows.
  • All the second electrode blocks 42 in the first electrode layer 10 are neatly arranged in several rows.
  • a row of first electrode blocks 41 and a row of second electrode blocks 42 are alternately arranged.
  • each sensing electrode unit 21 covers only one first electrode block 41 or second electrode block 42.
  • each sensing electrode unit 21 covers one first electrode block 41 and one second electrode block 42.
  • the second electrode layer 20 further includes a plurality of third wires 22 electrically connected to the plurality of sensing electrode units 21, and the third wires 22 are used for The connection between the sensing electrode unit 21 and the processor is realized.
  • the first electrode block 41 and the second electrode block 42 are both monolithic electrodes.
  • one of the first electrode block 41 and the second electrode block 42 has a hollow pattern 60, and the other is a monolithic electrode.
  • the shapes of the first electrode block 41 and the second electrode block 42 are both rectangular, circular or regular polygonal.
  • the first electrode block 41 has a hollow pattern 60
  • the second electrode block 42 is a monolithic electrode
  • the first electrode block 41 and the second electrode block 42 All are rectangular
  • the hollow pattern 60 of the first electrode block 41 is rectangular.
  • a touch body for example, a finger
  • the touched area on the electrode block will dent downward, Cause the capacitance of the touched area to change, which in turn causes the capacitance of the entire electrode block to change;
  • the touched area on the multiple electrode blocks and the corresponding electrode layer ie The amount of change in the distance (d) between the second electrode layers 20
  • the processor can compare the capacitance change of multiple electrode blocks.
  • the coordinate position of an electrode block with the largest capacitance change (that is, the largest area of the touched area) is determined as the coordinate position of the touch point 50.
  • the processing The device can determine the X-axis coordinate position of the touch point 50 according to the X-axis coordinate position of the electrode block.
  • a touch body such as a finger
  • the electrode blocks sense the touch signal, and the plurality of electrode blocks respectively transmit the touch signal to the processor via the wire, then the processor will respond to the capacitance signal (that is, the capacitance change of the plurality of electrode blocks).
  • the position of the electrode block with the largest capacitance signal is determined as the location of the touch point 50. Since the X-axis coordinate position of the electrode block has been determined, the processor can use the X-axis coordinate of the electrode block. The position determines the coordinate position of the touch point 50 in the X-axis direction.
  • each sensing electrode unit 21 covers only one electrode block.
  • the sensing electrode unit 21 corresponding to the electrode block transmits the capacitance signal ( After the capacitance change) is transmitted to the processor, since the Y-axis coordinate position of the sensing electrode unit 21 has been determined, the processor can determine the Y-axis of the touch signal according to the Y-axis coordinate position of the sensing electrode unit 21 The direction coordinate position.
  • the processor compares the capacitance signals of the plurality of sensing electrode units 21, and determines the position of the sensing electrode unit 21 with the largest capacitance signal as the position of the touch signal.
  • the coordinate position in the Y-axis direction of is determined, so the coordinate position in the Y-axis direction of the touch signal can be determined according to the coordinate position in the Y-axis direction of the sensing electrode unit 21.
  • each sensing electrode unit 21 covers one first electrode block 41 and one second electrode block 42:
  • the processor when the touch point 50 is located on a sensing electrode unit 21 and corresponds to an electrode block (the first electrode block 41 or the second electrode block 42), the processor first detects the touch signal according to the sensing electrode The Y-axis coordinate of the unit 21 determines the approximate coordinate position of the touch signal in the Y-axis direction. Since the upper and lower positions of the first electrode block 41 and the second electrode block 42 in each sensing electrode unit 21 have been determined, the processor can The accurate position of the touch point 50 in the Y-axis direction is determined according to whether the first electrode block 41 or the second electrode block 42 senses the touch signal.
  • the processor will detect the touch
  • the Y-axis coordinate of the sensing electrode unit 21 of the signal is used to determine the approximate coordinate position of the touch signal in the Y-axis direction.
  • the processor will detect the touch signal according to the two electrode blocks (the first electrode block 41 and In the second electrode block 42) which electrode block has a larger capacitance signal (that is, the amount of capacitance change), it is determined which electrode block (first electrode block 41 or second electrode block 42) as the touch point 50 in the Y-axis direction Since the upper and lower positions of the first electrode block 41 and the second electrode block 42 in each sensing electrode unit 21 have been determined, the position of the touch point 50 can be determined according to the Y-axis coordinate position of the electrode block as the positioning mark The exact position in the Y-axis direction.
  • the processor first performs a measurement on the capacitance signals (that is, the amount of capacitance change) of the plurality of sensing electrode units 21.
  • the sensing electrode unit 21 with the largest capacitance signal is selected to determine the approximate coordinate position of the touch signal in the Y-axis direction, and then according to which electrode block (first electrode block 41 or second electrode block 41) the sensing electrode unit 21 corresponds to.
  • the capacitance signal of block 42) is larger to determine the accurate position of the touch point 50 in the Y-axis direction.
  • the materials of the first electrode layer 10 and the second electrode layer 20 are both metal or transparent metal conductive oxide.
  • the metal may include one or more of molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti), and chromium (Cr).
  • Mo molybdenum
  • Al aluminum
  • Cu copper
  • Ti titanium
  • Cr chromium
  • the transparent metal conductive oxide is indium tin oxide (ITO).
  • first electrode layer 10 and the second electrode layer 20 are spaced apart, or an elastic insulating material is provided between the first electrode layer 10 and the second electrode layer 20.
  • the elastic insulating material is rubber.
  • the capacitive touch electrode structure of the present application significantly reduces the number of wires through the special structural design of the first electrode layer 10, thereby reducing the area of the functional blind area in the touch panel, and reducing The occurrence of short circuit or open circuit of the wire.
  • the present application also provides a touch sensing system, including the above-mentioned capacitive touch electrode structure and a processor. All first wires 31, all second wires 32 and all sensing electrode units 21 in the capacitive touch electrode structure Are electrically connected to the processors respectively.
  • the touch sensing system of the present application has high sensing sensitivity and can quickly and accurately determine the coordinate position of the touch point 50.
  • processor is a conventional device in the field, and the specific structure of the processor is not limited in this application.
  • the present application also provides a touch panel, including the above-mentioned touch-sensing system, capable of realizing the touch function of the panel through the above-mentioned touch-sensing system, and the touch panel has the advantages of sensitive response, stable quality, and long service life.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种电容式触控电极结构、触控感应系统及触控面板,该电容式触控电极结构通过对第一电极层(10)进行特殊的结构设计,相比于现有技术显著减少了导线(102)的数量,从而减少了触控面板中功能盲区(300)的面积,并且减少了导线(102)短路或者断路等情况的发生。该触控感应系统的感应灵敏度高,能够快速且准确的判定触摸点的坐标位置。该触控面板具有反应灵敏、质量稳定、使用寿命长等优点。

Description

电容式触控电极结构、触控感应系统及触控面板 技术领域
本申请涉及触控技术领域,尤其涉及一种电容式触控电极结构、触控感应系统及触控面板。
背景技术
目前能够实现人机交互的屏幕基本都采用触摸屏技术,触摸屏技术作为一种简单方便快捷的人机交互方式,给人们的生活和工作带来便捷。
触摸屏依感应技术不同可分为电阻式、电容式、光学式、音波式四种,目前主流的触控技术为电容式。电容式触摸屏具有功耗低、寿命长以及操作流畅等优点,使其受到了市场的追捧,目前各种电容式触摸屏产品纷纷面世,随着工艺进步和生产批量化,电容式触摸屏的成本不断下降,逐步取代电阻式触摸屏。
电容式触摸屏的触控功能通过电容式触控电极结构实现,现有一种电容式触控电极结构由相对设置的第一电极层100与第二电极层组成,如图1所示,所述第一电极层100包括呈矩阵式排列的数个电极图案101以及与所述数个电极图案101分别电性连接的数根导线102,由于每个电极图案101都连接一根导线102,因此电极图案101越多,导线102的数量也越多,带来的问题是:(1)、如图1与图2所示,由于所述导线102在面板上占用的空间较大,造成功能盲区300(即所述导线102占用的空间)较大;(2)、如图3A与图3B所示,导线102的数量越多,越容易出现导线102开路或者短路的情况。
发明内容
本申请的目的包括提供一种电容式触控电极结构,功能盲区的面积较小,导线短路或者断路等情况发生的概率较小。
本申请的目的还包括提供一种触控感应系统,感应灵敏度高,能够快速且准确的判定触摸点的坐标位置。
本申请的目的还包括提供一种触控面板,具有反应灵敏、质量稳定、使用寿命长等优点。
为实现以上目的,本申请首先提供一种电容式触控电极结构,包括相对设置的第一电极层与第二电极层;
在平行于所述第一电极层与第二电极层的平面内定义出相互垂直的X轴方向与Y轴方向;
所述第一电极层包括沿X轴方向依次间隔排列的数个触控电极单元,所述触控电极单元包括沿Y轴方向延伸且间隔设置的第一导线与第二导线以及设于所述第一导线与所述第二导线之间的数个第一电极块与数个第二电极块,所述数个第一电极块分别与所述第一导线电性连接,所述数个第二电极块分别与所述第二导线电性连接,在Y轴方向上,所述第一电极块与所述第二电极块交替排列;
所述第二电极层包括沿Y轴方向依次间隔排列的数个感应电极单元;
在X轴方向上,每个感应电极单元均覆盖沿X轴方向依次排列的数个触控电极单元;在Y轴方向上,每个感应电极单元至少覆盖一个所述第一电极块或所述第二电极块。
所述第一电极层中,在Y轴方向上,所述数个触控电极单元中的第一电极块的排列位置相对应,所述数个触控电极单元中的第二电极块的排列位置相对应,沿X轴方向,所述第一电极层中的所有第一电极块整齐排列成数排,所述第一电极层中的所有第二电极块整齐排列成数排,在Y轴方向上,一排第一电极块与一排第二电极块交替设置。
可选的,在Y轴方向上,每个感应电极单元仅覆盖一个所述第一电极块或所述第二电极块。
可选的,在Y轴方向上,每个感应电极单元覆盖一个所述第一电极块与一个所述第二电极块。
可选的,所述第二电极层还包括分别与所述数个感应电极单元电性连接的数根第三导线。
可选的,所述第一电极块与第二电极块均为整块电极。
可选的,所述第一电极块与第二电极块中的一个具有镂空图案,另一个为整块电极。
可选的,所述第一电极块与第二电极块的形状均为长方形、圆形或者正多边形。
可选的,所述第一电极层与第二电极层的材料均为金属或透明金属导电氧化物。
可选的,所述金属包括钼、铝、铜、钛、铬中的一种或多种;所述透明金属导电氧化物包括氧化铟锡。
可选的,所述第一电极层与第二电极层之间隔空,或者所述第一电极层与第二电极层之间设有弹性绝缘材料。
本申请还提供一种触控感应系统,包括上述电容式触控电极结构与处理器,所述电容式触控电极结构中的所有第一导线、所有第二导线以及所有感应电极单元分别与所述处理器电性连接。
本申请还提供一种触控面板,包含上述触控感应系统。
本申请的有益效果:本申请的电容式触控电极结构通过对第一电极层进行特殊的结构设计,相比于现有技术显著减少了导线的数量,从而减少了触控面板中功能盲区的面积,并且减少了导线短路或者断路等情况的发生。本申请的触控感应系统的感应灵敏度高,能够快速且准确的判定触摸点的坐标位置。本申请的触控面板具有反应灵敏、质量稳定、使用寿命长等优点。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对本申请范围的限定。
图1为现有的电容式触控电极结构中的第一电极层的结构示意图;
图2为图1的第一电极层中的功能盲区的放大示意图;
图3A为图1的第一电极层中的导线出现断路情况的示意图;
图3B为图1的第一电极层中的导线出现短路情况的示意图;
图4A为本申请电容式触控电极结构的第一实施例的结构示意图;
图4B为本申请电容式触控电极结构的第二实施例的结构示意图;
图5为本申请电容式触控电极结构的工作原理示意图;
图6A为本申请电容式触控电极结构中的第一电极层的第一实施例的结构示意图;
图6B为本申请电容式触控电极结构中的第一电极层的第二实施例的结构示意图;
图7A为图4A的电容式触控电极结构中的第二电极层的结构示意图;
图7B为图4B的电容式触控电极结构中的第二电极层的结构示意图;
图8A至图8F为本申请电容式触控电极结构在使用时触摸点位于不同位置的情况示意图。
主要元件符号说明:
10/100、第一电极层;101、电极图案;102、导线;300、功能盲区;11、触控电极单元;31、第一导线;32、第二导线;41、第一电极块;42、第二电极块;20、第二电极层;21、感应电极单元;22、第三导线;50、触摸点;60、镂空图案。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在下文中,可在本申请的各种实施例中使用的术语“包括”、“具有”及其同源词仅意在表示特定特征、数字、步骤、操作、元件、组件或前述项的组合,并且不应被理解为首先排除一个或更多个其它特征、数字、步骤、操作、元件、组件或前述项的组合的存在或增加一个或更多个特征、数字、步骤、操作、元件、组件或前述项的组合的可能性。
在本申请的各种实施例中,表述“A或/和B”包括同时列出的文字的任何组合或所有组合,可包括A、可包括B或可包括A和B二者。
在本申请的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“横向”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本申请的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本申请的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本申请的各种实施例中被清楚地限定。
请参阅图4A至图7B,本申请提供一种电容式触控电极结构,包括相对设置的第一电极层10与第二电极层20。
在平行于所述第一电极层10与第二电极层20的平面内定义出相互垂直的X轴方向与Y轴方向。
所述第一电极层10包括沿X轴方向依次间隔排列的数个触控电极单元11,所述触控电极单元11包括沿Y轴方向延伸且间隔设置的第一导线31与第二导线32以及设于所述第一导线31与所述第二导线32之间的数个第一电极块41与数个第二电极块42,所述数个第一电极块41分别与所述第一导线31电性连接,所述数个第二电极块42分别与所述第二导线32电性连接,在Y轴方向上,所述第一电极块41与所述第二电极块42交替排列;
所述第二电极层20包括沿Y轴方向依次间隔排列的数个感应电极单元21。
在X轴方向上,每个感应电极单元21均覆盖沿X轴方向依次排列的数个触控电极单元11;在Y轴方向上,每个感应电极单元21至少覆盖一个第一电极块41或第二电极块42。
可选的,如图6A与图6B所示,所述第一电极层10中,在Y轴方向上,所述数个触控电极单元11中的第一电极块41的排列位置相对应,所述数个触控电极单元11中的第二电极块42的排列位置相对应,沿X轴方向,所述第一电极层10中的所有第一电极块41整齐排列成数排,所述第一电极层10中的所有第二电极块42整齐排列成数排,在Y轴方向上,一排第一电极块41与一排第二电极块42交替设置。
可选的,如图4A所示,在Y轴方向上,每个感应电极单元21仅覆盖一个第一电极块41或第二电极块42。
可选的,如图4B所示,在Y轴方向上,每个感应电极单元21覆盖一个第一电极块41与一个第二电极块42。
具体的,如图7A与图7B所示,所述第二电极层20还包括分别与所述数个感应电极单元21电性连接的数根第三导线22,所述第三导线22用于实现所述感应电极单元21与处理器之间的连接。
可以理解的是,本申请的电容式触控电极结构在使用时,所述第一电极层10是靠近触控体(例如手指)的。如图5所示,当触控体(如手指)作用于第一电极层10上时,所述第一电极层10通常会向下弯曲,导致第一电极层10与第二电极层20之间的距离d减小,由于电容的计算公式为C=ε r0*S/d,因此当第一电极层10与第二电极层20之间的距离d减小时,电容C随即增大。
如图6A所示,在本申请的一个实施例中,所述第一电极块41与第二电极块42均为整块电极。
如阅6B所示,在本申请的另一实施例中,所述第一电极块41与第二电极块42中的一个具有镂空图案60,另一个为整块电极。
可选的,所述第一电极块41与第二电极块42的形状均为长方形、圆形或者正多边形。
具体的,在图6B所示的实施例中,所述第一电极块41具有镂空图案60,所述第二电极块42为整块电极,所述第一电极块41与第二电极块42均呈长方形,所述第一电极块41的镂空图案60呈长方形。
下面对本申请的电容式触控电极结构的工作原理进行说明:
本领域技术人员能够理解的是,当触控体(例如手指)触摸到电极块(第一电极块41或第二电极块42)时,所述电极块上的被触摸区域会向下凹陷,导致所述被触摸区域的电容产生变化,进而使整个电极块的电容发生变化;
当触控体同时触摸到多个电极块时,由于所述多个电极块上的被触摸区域承受的按压力度基本相同,因此所述多个电极块上的被触摸区域与对应电极层(即第二电极层20)之间的距离(d)变化量基本相同,在这种情况下,根据电容计算公式C=ε r0*S/d可以看出,当一个电极块上的被触摸区域的面积越大时,该电极块的被触摸区域的电容变化量越大,从而整个电极块的电容变化量也最大,因此,处理器能够通过对多个电极块的电容变化量进行比较,将电容变化量最大(即被触摸区域的面积最大)的一个电极块的坐标位置判定为触摸点50的坐标位置。
(一)触摸点50的X轴方向坐标位置的判定:
如图8A所示,当触控体(如手指)作用于第一电极层10上时,在X轴方向上如果只有一根导线(第一导线31或第二导线32)上的电极块(第一电极块41或第二电极块42)感测到触控信号,并且将触控信号传输至处理器,由于与每根导线连接的电极块在X轴方向的坐标位置已定,因此处理器可以根据所述电极块的X轴方向坐标位置来判定触摸点50的X轴方向坐标位置。
如图8B所示,当触控体(如手指)作用于第一电极层10上时,在X轴方向上如果有多根(例如2根或者3根)导线上的多个(例如2个或者3个)电极块感测到触控信号,并且所述多个电极块分别将触控信号经导线传输至处理器,那么处理器会对所述多个电极块的电容信号(即电容变化量)进行比较,将电容信号最大的一个电极块的位置判定为触摸点50的所在位置,由于该电极块的X轴方向坐标位置已定,因此处理器可以根据该电极块的X轴方向坐标位置来判定触摸点50的X轴方向坐标位置。
(二)触摸点50的Y轴方向坐标位置的判定:
(1)针对在Y轴方向上每个感应电极单元21仅覆盖一个电极块的情况进行说明:
如图8A所示,当Y轴方向上只有一个电极块(第一电极块41或者第二电极块42)感测到触控信号时,与该电极块对应的感应电极单元21将电容信号(即电容变化量)传输至处理器后,由于该感应电极单元21的Y轴方向坐标位置已定,因此处理器可以根据该感应电极单元21的Y轴方向坐标位置来确定触控信号的Y轴方向坐标位置。
如图8C所示,当Y轴方向上有多个电极块感测到触控信号时,分别与所述多个电极块对应的多个感应电极单元21将电容信号(即电容变化量)传输至处理器后,处理器会对所述多个感应电极单元21的电容信号进行比较,将电容信号最大的一个感应电极单元21的位置判定为触控信号的所在位置,由于该感应电极单元21的Y轴方向坐标位置已定,因此可以根据该感应电极单元21的Y轴方向坐标位置来判定触控信号的Y轴方向坐标位置。
(2)针对在Y轴方向上,每个感应电极单元21覆盖一个第一电极块41与一个第二电极块42的情况进行说明:
如图8D所示,当触摸点50位于一个感应电极单元21上且对应一个电极块(第一电极块41或者第二电极块42)时,首先处理器根据感测到触控信号的感应电极单元21的Y轴方向坐标确定触控信号在Y轴方向上的大致坐标位置,由于每个感应电极单元21中第一电极块41与第二电极块42的上下位置已定,因此处理器可以根据感测到触控信号的是第一电极块41还是第二电极块42来判定触摸点50在Y轴方向上的准确位置。
如图8E所示,当触摸点50位于一个感应电极单元21上且同时对应两个电极块(第一电极块41与第二电极块42)时,首先,处理器会根据感测到触控信号的感应电极单元21的Y轴方向坐标来确定触控信号在Y轴方向上的大致坐标位置,其次,处理器会根据感测到触控信号的两个电极块(第一电极块41与第二电极块42)中哪个电极块上的电容信号(即电容变化量)较大,来判定哪个电极块(第一电极块41或者第二电极块42)作为触摸点50在Y轴方向上的定位标志,由于每个感应电极单元21中第一电极块41与第二电极块42的上下位置已定,因此可以根据作为定位标志的电极块的Y轴方向坐标位置来确定触摸点50在Y轴方向上的准确位置。
如图8F所示,当触摸点50位于多个(两个或者两个以上)感应电极单元21上时,处理器首先对多个感应电极单元21的电容信号(即电容变化量)的大小进行比较,选择电容信号最大的一个感应电极单元21来判定触控信号在Y轴方向上的大致坐标位置,之后再根据该感应电极单元21对应的哪个电极块(第一电极块41或者第二电极块42)的电容信号较大来确定触摸点50在Y轴方向上的准确位置。
可选的,所述第一电极层10与第二电极层20的材料均为金属或透明金属导电氧化物。
具体的,所述金属可以包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)、铬(Cr)中的一种或多种。
可选的,所述透明金属导电氧化物为氧化铟锡(ITO)。
可选的,所述第一电极层10与第二电极层20之间隔空,或者所述第一电极层10与第二电极层20之间设有弹性绝缘材料。
可选的,所述弹性绝缘材料为橡胶。
本申请的电容式触控电极结构通过对第一电极层10进行特殊的结构设计,相比于现有技术显著减少了导线的数量,从而减少了触控面板中功能盲区的面积,并且减少了导线短路或者断路等情况的发生。
本申请还提供一种触控感应系统,包括上述电容式触控电极结构与处理器,所述电容式触控电极结构中的所有第一导线31、所有第二导线32以及所有感应电极单元21分别与所述处理器电性连接。
本申请的触控感应系统的感应灵敏度高,能够快速且准确的判定触摸点50的坐标位置。
可以理解的是,处理器为本领域的常规器件,本申请不对其具体结构进行限定。
可以理解的是,上文介绍的本申请的电容式触控电极结构的工作原理即为本申请触控感应系统的工作原理。
本申请还提供一种触控面板,包含上述触控感应系统,能够通过上述触控感应系统实现面板的触控功能,该触控面板具有反应灵敏、质量稳定、使用寿命长等优点。
由于本申请中所涉及的各参数的数值范围在上述实施例中不可能全部体现,但本领域的技术人员完全可以想象到只要落入上述各数值范围内的任何数值均可实施本申请,当然也包括若干项数值范围内具体值的任意组合。此处,出于篇幅的考虑,省略了给出某一项或多项数值范围内具体值的实施例,此不应当视为本申请的技术方案的公开不充分。
以上所述仅为本申请的较佳实施事例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种电容式触控电极结构,其特征在于,包括相对设置的第一电极层与第二电极层;
    在平行于所述第一电极层与第二电极层的平面内定义出相互垂直的X轴方向与Y轴方向;
    所述第一电极层包括沿X轴方向依次间隔排列的数个触控电极单元,所述触控电极单元包括沿Y轴方向延伸且间隔设置的第一导线与第二导线以及设于所述第一导线与所述第二导线之间的数个第一电极块与数个第二电极块,所述数个第一电极块分别与所述第一导线电性连接,所述数个第二电极块分别与所述第二导线电性连接,在Y轴方向上,所述第一电极块与所述第二电极块交替排列;
    所述第二电极层包括沿Y轴方向依次间隔排列的数个感应电极单元;
    在X轴方向上,每个感应电极单元均覆盖沿X轴方向依次排列的数个触控电极单元;在Y轴方向上,每个感应电极单元至少覆盖一个所述第一电极块或所述第二电极块。
  2. 如权利要求1所述的电容式触控电极结构,其特征在于,所述第一电极层中,在Y轴方向上,所述数个触控电极单元中的第一电极块的排列位置相对应,所述数个触控电极单元中的第二电极块的排列位置相对应,沿X轴方向,所述第一电极层中的所有第一电极块整齐排列成数排,所述第一电极层中的所有第二电极块整齐排列成数排,在Y轴方向上,一排第一电极块与一排第二电极块交替设置。
  3. 如权利要求2所述的电容式触控电极结构,其特征在于,在Y轴方向上,每个感应电极单元仅覆盖一个所述第一电极块或所述第二电极块。
  4. 如权利要求2所述的电容式触控电极结构,其特征在于,在Y轴方向上,每个感应电极单元覆盖一个所述第一电极块与一个所述第二电极块。
  5. 如权利要求1所述的电容式触控电极结构,其特征在于,所述第二电极层还包括分别与所述数个感应电极单元电性连接的数根第三导线。
  6. 如权利要求1所述的电容式触控电极结构,其特征在于,所述第一电极块与第二电极块均为整块电极。
  7. 如权利要求1所述的电容式触控电极结构,其特征在于,所述第一电极块与第二电极块中的一个具有镂空图案,另一个为整块电极。
  8. 如权利要求1所述的电容式触控电极结构,其特征在于,所述第一电极块与第二电极块的形状均为长方形、圆形或者正多边形。
  9. 如权利要求1所述的电容式触控电极结构,其特征在于,所述第一电极层与第二电 极层的材料均为金属或透明金属导电氧化物。
  10. 如权利要求9所述的电容式触控电极结构,其特征在于,所述金属包括钼、铝、铜、钛、铬中的一种或多种;所述透明金属导电氧化物包括氧化铟锡。
  11. 如权利要求1所述的电容式触控电极结构,其特征在于,所述第一电极层与第二电极层之间隔空,或者所述第一电极层与第二电极层之间设有弹性绝缘材料。
  12. 一种触控感应系统,其特征在于,包括如权利要求1至11任一项所述的电容式触控电极结构与处理器,所述电容式触控电极结构中的所有第一导线、所有第二导线以及所有感应电极单元分别与所述处理器电性连接。
  13. 一种触控面板,其特征在于,包含如权利要求12所述的触控感应系统。
PCT/CN2019/074126 2019-01-31 2019-01-31 电容式触控电极结构、触控感应系统及触控面板 WO2020155006A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980073405.9A CN113260961A (zh) 2019-01-31 2019-01-31 电容式触控电极结构、触控感应系统及触控面板
PCT/CN2019/074126 WO2020155006A1 (zh) 2019-01-31 2019-01-31 电容式触控电极结构、触控感应系统及触控面板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074126 WO2020155006A1 (zh) 2019-01-31 2019-01-31 电容式触控电极结构、触控感应系统及触控面板

Publications (1)

Publication Number Publication Date
WO2020155006A1 true WO2020155006A1 (zh) 2020-08-06

Family

ID=71840733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074126 WO2020155006A1 (zh) 2019-01-31 2019-01-31 电容式触控电极结构、触控感应系统及触控面板

Country Status (2)

Country Link
CN (1) CN113260961A (zh)
WO (1) WO2020155006A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140285466A1 (en) * 2013-03-22 2014-09-25 Japan Display Inc. Display device and electronic device
CN106816460A (zh) * 2017-03-01 2017-06-09 上海天马微电子有限公司 一种柔性触控显示面板及柔性触控显示装置
CN107179622A (zh) * 2017-07-28 2017-09-19 上海中航光电子有限公司 触控显示面板及触控显示装置
CN108491109A (zh) * 2018-03-28 2018-09-04 厦门天马微电子有限公司 显示面板、显示装置及其显示面板的驱动方法
CN108509097A (zh) * 2018-03-01 2018-09-07 上海天马微电子有限公司 触控显示面板及触控显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8593413B2 (en) * 2010-03-01 2013-11-26 Cando Corporation Sensory structure of capacitive touch panel and capacitive touch panel having the same
TWI605375B (zh) * 2017-01-26 2017-11-11 晨星半導體股份有限公司 雙層互容式觸控面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140285466A1 (en) * 2013-03-22 2014-09-25 Japan Display Inc. Display device and electronic device
CN106816460A (zh) * 2017-03-01 2017-06-09 上海天马微电子有限公司 一种柔性触控显示面板及柔性触控显示装置
CN107179622A (zh) * 2017-07-28 2017-09-19 上海中航光电子有限公司 触控显示面板及触控显示装置
CN108509097A (zh) * 2018-03-01 2018-09-07 上海天马微电子有限公司 触控显示面板及触控显示装置
CN108491109A (zh) * 2018-03-28 2018-09-04 厦门天马微电子有限公司 显示面板、显示装置及其显示面板的驱动方法

Also Published As

Publication number Publication date
CN113260961A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
JP3154829U (ja) タッチ機能を備えたips方式の液晶ディスプレイ
JP5420709B2 (ja) タッチパネルの電極構造、その方法およびタッチパネル
CN102467290B (zh) 触控面板结构及其制造方法
KR101479376B1 (ko) 용량성 터치 패널 및 이의 제조 방법
US8558805B2 (en) Touch screen panel
JP5439565B2 (ja) タッチパネル及びその製造方法
WO2016065800A1 (zh) 触摸屏及其制造方法和显示面板
TWI505335B (zh) 觸控感應電極結構
US20120169626A1 (en) Touch panel and touch display panel
KR20140001710U (ko) 감지 전극들과 연결하기 위하여 금속 와이어를 사용한 인셀 터치 디스플레이 패널 시스템
KR20120000565A (ko) 정전용량형 터치 장치와 결합된 액정 표시 장치
US9250492B2 (en) In-cell touch panel structure of narrow border
US8907919B2 (en) Sensing structure of touch panel
US9791985B2 (en) Cross hatch ITO sensor pattern for touchscreens
KR20160116494A (ko) 터치 센서
TWI663538B (zh) 電容式觸控面板及包含該電容式觸控面板之顯示器裝置
CN112639706A (zh) 触控电极结构、触摸屏和触控显示装置
KR20160012690A (ko) 정전용량방식의 터치 패널
WO2020155006A1 (zh) 电容式触控电极结构、触控感应系统及触控面板
TW201439833A (zh) 觸控面板
JP2013156949A (ja) タッチパネル
CN111045552A (zh) 触控面板及触控显示屏
KR102146460B1 (ko) 터치 센서 및 이를 포함하는 화상 표시 장치
US20140168158A1 (en) Touch Panel Structure of Narrow Border
EP3599543A1 (en) Capacitive touch screen module and electronic terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913343

Country of ref document: EP

Kind code of ref document: A1