WO2016065800A1 - 触摸屏及其制造方法和显示面板 - Google Patents

触摸屏及其制造方法和显示面板 Download PDF

Info

Publication number
WO2016065800A1
WO2016065800A1 PCT/CN2015/074353 CN2015074353W WO2016065800A1 WO 2016065800 A1 WO2016065800 A1 WO 2016065800A1 CN 2015074353 W CN2015074353 W CN 2015074353W WO 2016065800 A1 WO2016065800 A1 WO 2016065800A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
touch screen
sub
piezoelectric
sensing layer
Prior art date
Application number
PCT/CN2015/074353
Other languages
English (en)
French (fr)
Inventor
王庆浦
胡明
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/771,558 priority Critical patent/US10254874B2/en
Publication of WO2016065800A1 publication Critical patent/WO2016065800A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3262Power saving in digitizer or tablet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to a touch screen and a manufacturing method thereof, and a display panel including the touch screen.
  • the most widely used touch screens include resistive touch screens and capacitive touch screens.
  • the resistive touch screen is simple in design and low in cost, but the touch of the resistive touch screen is limited by its physical limitations, and its light transmittance is low.
  • the large detection area of the high line number causes the processor to bear the burden. It is expensive and its application characteristics make it easy to age and affect the service life.
  • Capacitive touch screen supports multi-touch function, has higher transmittance, lower overall power consumption, high contact surface hardness, no pressing, long service life, but insufficient precision, and requires conductor or capacitive pen Can be manipulated.
  • the object of the present invention is to provide a touch screen, a manufacturing method thereof and a display panel, which are formed by using a transparent material having a piezoelectric effect, and the preparation process is simple, and the pressure sensing of any object is realized. And can effectively reduce the overall power consumption of the screen.
  • a touch screen includes a first electrode disposed opposite to each other, a second electrode, and a sensing layer between the first electrode and the second electrode, wherein the sensing layer is A transparent material having a piezoelectric effect is formed.
  • the touch screen further includes a transmission line and a processor, wherein the first electrode and the second electrode are electrically connected to the processor through the transmission line, respectively, wherein the first electrode and the second electrode are used Collecting the sensing layer due to external force An electrical signal is generated, the transmission line is configured to transmit the electrical signal to the processor; the processor is configured to perform an analysis process on the electrical signal, and obtain a position coordinate of the external force action point.
  • the sensing layer includes a plurality of piezoelectric sensing modules disposed in an isolated manner
  • the first electrode includes a plurality of first sub-electrodes
  • the second electrode includes a plurality of second sub-electrodes
  • the first sub- An electrode is disposed in pairs with the second sub-electrode
  • an electrode pair formed by each of the first sub-electrode and the second sub-electrode corresponds to one of the piezoelectric sensing modules
  • each of the first The sub-electrode and each of the second sub-electrodes are electrically connected to the processor through the transmission line, respectively.
  • the piezoelectric induction module has a cross-sectional shape of any one of a circular shape, a square shape, and a diamond shape, and the cross-sectional shapes of the first sub-electrode and the second sub-electrode are circular, square, and diamond-shaped. Any one of the shapes, and a cross-sectional area of each of the first sub-electrodes and each of the second sub-electrodes is not less than a cross-sectional area of the corresponding piezoelectric sensing module.
  • the sensing layer comprises a grid-shaped piezoelectric sensing module formed by a plurality of strip-shaped sensors arranged vertically intersecting, the first electrode comprising a plurality of first strip electrodes, the second electrode a plurality of second strip electrodes, wherein the first strip electrodes and the second strip electrodes are vertically disposed, and are respectively disposed corresponding to the strip sensors having the same array direction, each of the first strips An electrode and each of the second strip electrodes are electrically connected to the processor through the transmission line, respectively.
  • the transparent material having a piezoelectric effect forming the sensing layer comprises a polylactic acid piezoelectric film and/or a piezoelectric ceramic film
  • the first electrode is made of indium gallium zinc oxide, indium zinc oxide, indium tin oxide, and At least one of indium gallium tin oxide is formed
  • the second electrode is formed using at least one of indium gallium zinc oxide, indium zinc oxide, indium tin oxide, and indium gallium tin oxide.
  • the outer side of the second electrode is further provided with a protective layer formed of glass or using an organic transparent material.
  • a method of manufacturing a touch screen includes a first electrode, a second electrode, and a sensing layer between the first electrode and the second electrode.
  • the sensing layer has a piezoelectric effect Forming a transparent material, the method comprising the steps of:
  • the first electrode and the second electrode are respectively bonded to both sides of the sensing layer by bonding.
  • a method of manufacturing a touch screen includes a first electrode disposed opposite to each other, a second electrode, and a sensing layer between the first electrode and the second electrode.
  • the sensing layer is formed by a transparent material having a piezoelectric effect, and the outer side of the second electrode is provided with a protective layer, and the method comprises the following steps:
  • a display panel includes a display screen and a touch screen disposed outside the display screen, the touch screen employing the touch screen described above.
  • the display screen and the touch screen are bonded together to form a unitary body.
  • the display screen is any one of a liquid crystal display, an OLED display, and a plasma display.
  • the touch screen according to the present invention can sense the pressure exerted on the touch screen by any object, so that not only the position of the contact but also the magnitude of the force and the changing characteristics can be sensed. Moreover, the touch screen according to the present invention directly converts the pressure applied by the object on the touch screen into an electrical signal, thereby achieving a greatly reduced power consumption, effectively reducing the overall power consumption of the screen, and further having a touch response sensitivity and supporting multiple points. Touch and other advantages.
  • the touch operation of the display panel using the touch screen is not limited by the insulation of the touch object, and the power consumption is low, and the visual and tactile enjoyment of the person is preferably satisfied.
  • FIG. 1 is a schematic structural diagram of a touch screen according to Embodiment 1 of the present invention.
  • FIG. 2A is a schematic view showing an arrangement structure of a sensing layer in Embodiment 1 of the present invention.
  • FIG. 2B is a schematic structural view of the first electrode of FIG. 2A;
  • FIG. 2C is a schematic structural view of the second electrode of FIG. 2A;
  • FIG. 3A is a schematic view showing an arrangement structure of a sensing layer in Embodiment 2 of the present invention.
  • FIG. 3B is a schematic structural view of the first electrode of FIG. 3A;
  • 3C is a schematic structural view of the second electrode of FIG. 3A;
  • FIG. 4 is a schematic structural diagram of a display panel according to Embodiment 3 of the present invention.
  • the touch screen 2 includes a first electrode 21 , a second electrode 23 , and a sensing layer 22 between the first electrode 21 and the second electrode 23 .
  • 22 is formed using a transparent material having a piezoelectric effect.
  • the piezoelectric effect means that when some dielectrics are deformed by an external force in a certain direction (including bending deformation and telescopic deformation), polarization occurs inside, and at the opposite surfaces thereof There are positive and negative electrical signals on the opposite side. When the external force is removed, it will return to the uncharged state. This phenomenon is called the positive piezoelectric effect. When the direction of the force changes, the polarity of the electrical signal also changes.
  • the sensing layer 22 in the touch screen of this embodiment is a piezoelectric sensing layer designed according to the piezoelectric effect of the dielectric.
  • a piezoelectric material to form a touch screen not only senses positional information, but also senses the amount of force acting on the touch screen, and at the same time, it can be applied to any touch object (not required for insulation, including conductors or non-conductors)
  • the touch The force on the screen is sensed, and the power consumption is low and the touch sensitivity is sensitive.
  • the touch screen 2 further includes a transmission line 25 and a processor (neither shown in FIG. 2B and FIG. 2C), and the transmission line 25 is used for respectively
  • the first electrode 21 and the second electrode 23 are electrically connected to the processor, that is, in the touch screen, the first electrode 21 and the second electrode 23 are connected to the processor through a transmission line 25 and form a loop.
  • the first electrode 21 and the second electrode 23 are used to collect electrical signals caused by the external force of the sensing layer 22, and the transmission line 25 transmits the collected electrical signals to the processor, and the processor collects the collected electrical signals from the transmission line 25. Analytical processing is performed, and the position coordinates of the external force acting point corresponding to the electrical signal are obtained.
  • the sensing layer 22 includes a plurality of piezoelectric sensing modules 220 disposed in an isolated manner.
  • the first electrode 21 includes a plurality of first sub-electrodes 211
  • the second electrode 23 includes a plurality of second sub-electrodes 231.
  • a sub-electrode 211 is disposed in pairs with the second sub-electrode 231, and an electrode pair formed by each of the first sub-electrode 211 and the second sub-electrode 231 corresponds to one piezoelectric sensing module 220, and each of the first sub-electrodes 211
  • Each of the second sub-electrodes 231 is electrically connected to the processor through a transmission line 25 connected thereto.
  • the “isolated” means that the plurality of piezoelectric sensing modules 220 are separated from each other in position and are not electrically connected to each other; correspondingly, the first sub-electrodes are respectively disposed on both sides of the thickness direction of the piezoelectric sensing module 220.
  • the combination of the isolated piezoelectric sensing module 220 and the first sub-electrode 211 and the second sub-electrode 231 on both sides thereof are also isolated from each other in position and have no electrical connection relationship with each other. Only by electrically connecting the first sub-electrode 211 and the second sub-electrode 231 to the transmission line 25 can form a loop with the processor.
  • the isolated piezoelectric sensing module 220 Through the isolated piezoelectric sensing module 220, true multi-touch can be realized and has high sensitivity. In theory, there is no limit to the number of isolated piezoelectric sensing modules 220, but since the setting of the transmission line 25 is limited by the process conditions, the isolated piezoelectric sensing module 220 is often used in conjunction with a small-sized display, for example, for about 10 inches. In the display.
  • the piezoelectric sensor module 220 disposed in an isolated manner has a cross-sectional shape of any one of a circular shape, a square shape, and a diamond shape, and the first sub-electrode 211 and the second sub-electricity
  • the cross-sectional shape of the pole 231 is any one of a circular shape, a square shape, and a diamond shape, and the cross-sectional area of each of the first sub-electrodes 211 and each of the second sub-electrodes 231 is not less than the cross-section of the corresponding piezoelectric sensing module 220.
  • the area ie, the area of the area of the first sub-electrode 211 and the second sub-electrode 231 is equal to or larger than the area of the area of the piezoelectric sensing module 220).
  • a circular piezoelectric sensing module 220 is taken as an example
  • FIGS. 2B and 2C are exemplified by a square first sub-electrode 211 and a second sub-electrode 231.
  • the shapes of the piezoelectric sensing module 220, the first sub-electrode 211, and the second sub-electrode 231 may be set to be the same or may be set to be different as long as the first sub-electrode 211 and the second are made.
  • the cross-sectional area of the sub-electrode 231 is not less than the cross-sectional area of the corresponding piezoelectric sensing module 220, and the electrical signal generated by the piezoelectric sensing module 220 can be completely transmitted to the processor.
  • the specific shape is not limited herein.
  • the transparent material having the piezoelectric effect forming the sensing layer 22 includes a polylactic acid piezoelectric film and/or a piezoelectric ceramic film.
  • “and/or” means that when the sensing layer includes a plurality of piezoelectric sensing modules 220, the piezoelectric sensing modules 220 may all be made of a polylactic acid piezoelectric film, or may be entirely made of a piezoelectric ceramic film. Alternatively, part of the piezoelectric sensing module 220 is made of a polylactic acid piezoelectric film, and a part of the piezoelectric sensing module 220 is made of a piezoelectric ceramic film.
  • a transparent piezoelectric material and a touch technology are combined to form a piezoelectric touch technology.
  • Piezoelectric touch technology is between resistive touch technology and capacitive touch technology.
  • the piezoelectric touch screen supports multi-touch like the capacitive touch screen, and supports the use of any object for touch operation. Unlike the capacitive touch screen, it only supports the use of a conductor or a capacitive pen for touch operation.
  • the piezoelectric touch screen can also be used. Perceive the magnitude of the pressure exerted by the object and the changing characteristics.
  • the first electrode 21 and the second electrode 23 are at least indium gallium zinc oxide, indium zinc oxide (IZO), indium tin oxide (ITO), or indium gallium tin oxide.
  • IZO indium zinc oxide
  • ITO indium tin oxide
  • the above materials are all transparent materials and do not display the display panel or display device using the touch screen. The effect has any effect.
  • the outer side of the second electrode 23 is further provided with a protective layer 24, the protective layer 24 is formed of glass or an organic transparent material, and the protective layer 24 can be applied to the second electrode 23 Layer 22 and first electrode 21 provide better support and protection.
  • the touch screen of the embodiment can be formed by the following steps:
  • a first electrode 21 is formed on the other side of the sensing layer 22.
  • the touch screen of the embodiment can be formed by the following steps:
  • the first electrode 21 and the second electrode 23 are bonded to both sides of the sensing layer 22 by bonding, thereby being formed integrally.
  • the manner in which the second electrode is formed on the protective layer is not limited to sputter deposition, and other methods may be employed as long as the second electrode can be formed on the protective layer.
  • the working principle of the touch screen in this embodiment is that the force applied to the touch screen first acts on the protective layer 24, and the protective layer 24 will be deformed when the force is applied (the magnitude of the deformation depends on the magnitude of the force), The deformation will in turn force the piezoelectric sensing module 220 at the corresponding position to deform.
  • the force acting on the touch screen causes the piezoelectric sensing module 220 to generate an electrical signal, and the generated electrical signal passes through the corresponding first sub-electrode 211 and
  • the second sub-electrode 231 collects and is transmitted to the processor by a transmission line 25 electrically connected to the first sub-electrode 211 and the second sub-electrode 231, and the processor determines the force by detecting the position of the electrical signal and the magnitude of the electrical signal.
  • the position of the action point and the magnitude of the force can be used to accurately and quickly achieve touch sensing.
  • the touch screen in this embodiment belongs to a pure piezoelectric sensing touch screen that senses touch force and precise positioning, and has the essence of the current resistive touch screen or capacitive touch screen.
  • the difference has the following advantages:
  • Non-binary sensing no need to drive the signal, can directly convert the pressure of the touch object into an electrical signal, not only can sense the position of the contact, but also can sense the magnitude of the force and the changing characteristics, and has the advantages of sensitive touch response and multi-touch support. For a better user experience;
  • the sensing layer is based on the positive piezoelectric effect, it does not require the contour of the object and whether it is insulated, and can sense any object;
  • the piezoelectric sensing module can directly convert the pressure of the touch object into an electrical signal, which reduces the power consumption of the driving signal compared with the capacitive touch screen, thereby achieving a reduction in power consumption and effectively reducing the screen. Overall power consumption.
  • This embodiment provides a touch screen.
  • the shape or arrangement of the sensing layers 22 in the touch screen is different from that in the first embodiment.
  • the sensing layer 22 includes a grid-shaped piezoelectric sensing module 220 formed by fusing a plurality of strip-shaped sensors disposed vertically
  • the first electrode 21 includes a plurality of first strip electrodes. 212.
  • the second electrode 23 includes a plurality of second strip electrodes 232.
  • the first strip electrodes 212 and the second strip electrodes 232 are vertically disposed, and are respectively disposed corresponding to the strip sensors having the same array direction.
  • the strip electrodes 212 and each of the second strip electrodes 232 are electrically connected to the processor via a transmission line 25, respectively. Wherein, the intersection area of the strip sensor in FIG.
  • 3A does not need a bridging structure (ie, there is no insulating layer in the middle), but a simple single layer pattern overlaps and overlaps.
  • the horizontal signal transmission line 25 and the longitudinal signal transmission line 25 simultaneously receive an electrical signal, and coordinates of the touch position can be obtained by coordinate calculation.
  • the touch screen in the present embodiment has a simple preparation process, realizes pressure sensing of any object, and can effectively reduce the overall power consumption of the screen.
  • the embodiment provides a display panel including the touch screen in Embodiment 1 or Embodiment 2.
  • the display panel includes a display screen 1 and a touch screen 2 disposed outside the display screen 1.
  • the display screen 1 and the touch screen 2 are bonded and integrally formed by bonding.
  • the display screen 1 is any one of a liquid crystal display, an OLED display, and a plasma display.
  • the touch screen in the first embodiment or the second embodiment can be combined with different types of display screens to form a touch display module, a display panel or a display device, which is simple in process and low in cost.
  • the display panel can be: a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like, or any product or component having a display function.
  • the touch operation of the display panel is not limited by the insulation of the touch object, and the power consumption is low, and the user's visual and tactile enjoyment is preferably satisfied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触摸屏及其制造方法和显示面板。该触摸屏包括相对设置的第一电极(21)、第二电极(23)以及位于所述第一电极(21)和所述第二电极(23)之间的感应层(22),所述感应层(22)采用具有压电效应的透明材料形成。该触摸屏可感应任何物体的压力,从而不仅可以感知触点的位置,还可以感知作用力的大小以及变化特征。并且,该触摸屏将物体施加在触摸屏上的压力直接转换为电信号,实现了功耗的大大降低,可以有效地降低屏幕的整体功耗,此外,还具有触摸反应灵敏、支持多点触摸等优点。相应的,采用该触摸屏的显示面板的触控操作不受触摸物体的绝缘性限制、功耗低,较佳地满足了人们的视觉和触觉的享受。

Description

触摸屏及其制造方法和显示面板 技术领域
本发明属于显示技术领域,具体涉及一种触摸屏及其制造方法以及一种包括该触摸屏的显示面板。
背景技术
目前,应用最广泛的触摸屏包括电阻式触摸屏和电容式触摸屏。其中,电阻式触摸屏设计简单,成本低,但电阻式触摸屏的触控受制于其物理局限性,并且其透光率较低,此外,其高线数的大侦测面积造成处理器负担,功耗较大,并且其应用特性使之易老化从而影响使用寿命。电容式触摸屏支持多点触控功能,拥有更高的透光率、更低的整体功耗,其接触面硬度高,无需按压,使用寿命较长,但精准度不足,并且需要导体或者电容笔才能操控。
设计一种不受触摸物体的绝缘性限制、功耗低、触控灵敏的触摸屏成为目前亟待解决的技术问题。
发明内容
本发明的目的在于针对现有技术中存在的上述不足,提供一种触摸屏及其制造方法和显示面板,该触摸屏利用具有压电效应的透明材料形成,制备工艺简单,实现了任何物体的压力感应,并且能够有效地降低屏幕的整体功耗。
根据本发明的一个方面,提供了一种触摸屏,该触摸屏包括相对设置的第一电极、第二电极以及位于所述第一电极和所述第二电极之间的感应层,所述感应层采用具有压电效应的透明材料形成。
优选的是,所述触摸屏还包括传输线以及处理器,所述第一电极和所述第二电极分别通过所述传输线与所述处理器电连接,所述第一电极和所述第二电极用于收集所述感应层因外力作用而 引起的电信号,所述传输线用于将所述电信号传送到所述处理器;所述处理器用于对所述电信号进行分析处理,并获得所述外力作用点的位置坐标。
优选的是,所述感应层包括多个孤立设置的压电感应模块,所述第一电极包括多个第一子电极,所述第二电极包括多个第二子电极,所述第一子电极与所述第二子电极成对地设置,且每个所述第一子电极和所述第二子电极形成的电极对与一个所述压电感应模块相对应,每一所述第一子电极与每一所述第二子电极分别通过所述传输线与所述处理器电连接。
优选的是,所述压电感应模块的截面形状为圆形、方形和菱形中的任一种形状,所述第一子电极和所述第二子电极的截面形状为圆形、方形和菱形中的任一种形状,且每一所述第一子电极和每一所述第二子电极的截面面积均不小于对应的所述压电感应模块的截面面积。
优选的是,所述感应层包括由多个垂直交叉设置的条状传感器融合形成的网格状的压电感应模块,所述第一电极包括多个第一条状电极,所述第二电极包括多个第二条状电极,所述第一条状电极和所述第二条状电极垂直交叉设置、且分别与具有同一排列方向的条状传感器对应设置,每一所述第一条状电极与每一所述第二条状电极分别通过所述传输线与所述处理器电连接。
优选的是,形成所述感应层的具有压电效应的透明材料包括聚乳酸压电薄膜和/或压电陶瓷薄膜,所述第一电极采用氧化铟镓锌、氧化铟锌、氧化铟锡和氧化铟镓锡中的至少一种形成,所述第二电极采用氧化铟镓锌、氧化铟锌、氧化铟锡和氧化铟镓锡中的至少一种形成。
优选的是,所述第二电极的外侧还设置有保护层,所述保护层采用玻璃或者采用有机透明材料形成。
根据本发明的另一方面,提供了一种触摸屏的制造方法,该触摸屏包括相对设置的第一电极、第二电极以及位于所述第一电极和所述第二电极之间的感应层,所述感应层采用具有压电效应 的透明材料形成,所述方法包括以下步骤:
分别形成所述第一电极、所述第二电极以及所述感应层;以及
通过粘结方式将所述第一电极和所述第二电极分别粘合在所述感应层的两侧。
根据本发明的再一方面,提供了一种触摸屏的制造方法,该触摸屏包括相对设置的第一电极、第二电极以及位于所述第一电极和所述第二电极之间的感应层,所述感应层采用具有压电效应的透明材料形成,所述第二电极外侧设置有保护层,所述方法包括以下步骤:
将所述第二电极形成在所述保护层上;
在所述第二电极上粘合所述感应层的一侧;以及
在所述感应层的另一侧形成所述第一电极;
根据本发明的又一方面,提供了一种显示面板,包括显示屏以及设置于所述显示屏外侧的触摸屏,所述触摸屏采用上述的触摸屏。
优选的是,所述显示屏和所述触摸屏通过粘结方式粘合形成整体。
优选的是,所述显示屏为液晶显示屏、OLED显示屏和等离子显示屏中的任意一种。
本发明的有益效果如下:
根据本发明的触摸屏可感应任何物体施加在该触摸屏上的压力,从而不仅可以感知触点的位置,还可以感知作用力的大小以及变化特征。并且,根据本发明的触摸屏将物体施加在触摸屏上的压力直接转换为电信号,实现了功耗的大大降低,可以有效地降低屏幕的整体功耗,此外,还具有触摸反应灵敏、支持多点触摸等优点。
相应的,采用该触摸屏的显示面板的触控操作不受触摸物体的绝缘性限制、功耗低,较佳地满足了人们的视觉和触觉的享受。
附图说明
图1为本发明实施例1中触摸屏的结构示意图;
图2A为本发明实施例1中感应层的排列结构示意图;
图2B为图2A中第一电极的结构示意图;
图2C为图2A中第二电极的结构示意图;
图3A为本发明实施例2中感应层的排列结构示意图;
图3B为图3A中第一电极的结构示意图;
图3C为图3A中第二电极的结构示意图;
图4为本发明实施例3中显示面板的结构示意图;
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明触摸屏及其制造方法和显示面板作进一步详细描述。
实施例1:
本实施例提供一种触摸屏,如图1所示,该触摸屏2包括相对设置的第一电极21、第二电极23以及位于第一电极21和第二电极23之间的感应层22,感应层22采用具有压电效应的透明材料形成。
其中,所谓压电效应指的是:某些电介质在沿一定方向上受到外力的作用而形变(包括弯曲形变和伸缩形变)时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电信号。当外力去掉后,又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电信号的极性也随之改变。本实施例触摸屏中的感应层22即依据电介质压电效应设计的压电感应层。
采用压电材料形成触摸屏,不仅可以感知位置信息,并且能感知作用在触摸屏上的作用力的大小,同时,其可以对任何触摸物体(对绝缘性无要求,可以包括导体或非导体)施加在该触摸 屏上的作用力作出感应,并且功耗较低、触摸感应灵敏迅速。
在本实施例中,为了实现触摸位置的坐标检测,如图2B和图2C所示,触摸屏2还包括传输线25以及处理器(图2B和图2C中均未示出),传输线25用于分别将第一电极21和第二电极23与所述处理器电连接,即在所述触摸屏中,第一电极21和第二电极23通过传输线25与所述处理器连接并形成回路。第一电极21和第二电极23用于收集感应层22因外力作用而引起的电信号,传输线25将收集到的电信号传送到处理器,处理器对从传输线25输入的收集到的电信号进行分析处理,并获得与电信号相对应的外力作用点的位置坐标。
如图2A-2C所示,感应层22包括多个孤立设置的压电感应模块220,第一电极21包括多个第一子电极211,第二电极23包括多个第二子电极231,第一子电极211与第二子电极231成对地设置,且每个第一子电极211和第二子电极231形成的电极对与一个压电感应模块220相对应,每一第一子电极211与每一第二子电极231分别通过与其相连的传输线25与处理器电连接。其中,“孤立”即指多个压电感应模块220之间在位置上彼此隔离、且无互相电连接关系;相应的,在压电感应模块220的厚度方向的两侧分别设置第一子电极211和第二子电极231后,由各孤立的压电感应模块220与其两侧的第一子电极211和第二子电极231形成的组合也是在位置上彼此隔离、且无互相电连接关系,而只有通过第一子电极211和第二子电极231与传输线25的电连接,才能和处理器形成回路。
通过孤立的压电感应模块220,可以实现真正的多点触控,并且具有较高的灵敏度。理论上,对孤立的压电感应模块220数量没有限制,但由于传输线25的设置受工艺条件限制,因此孤立的压电感应模块220常应用于与小尺寸显示屏配合,例如应用于10寸左右的显示屏中。
在本实施例中,孤立设置的压电感应模块220的截面形状为圆形、方形和菱形中的任一种形状,第一子电极211和第二子电 极231的截面形状为圆形、方形和菱形中的任一种形状,且每一第一子电极211和每一第二子电极231的截面面积均不小于对应的压电感应模块220的截面面积(即第一子电极211和第二子电极231的区域面积均等于或大于压电感应模块220的区域面积)。图2A中以圆形的压电感应模块220作为示例,图2B和图2C以方形的第一子电极211和第二子电极231作为示例。
这里应该理解的是,根据需要,压电感应模块220、第一子电极211和第二子电极231的形状可以设置为相同,也可以设置为不相同,只要使得第一子电极211和第二子电极231的截面面积均不小于对应的压电感应模块220的截面面积,保证压电感应模块220感应产生的电信号能完全传送到处理器即可,对具体形状这里不做限定。
在本实施例中,形成感应层22的具有压电效应的透明材料包括聚乳酸压电薄膜和/或压电陶瓷薄膜。此处,“和/或”的意思是,当感应层包括多个压电感应模块220时,压电感应模块220可以全部由聚乳酸压电薄膜制成,也可以全部由压电陶瓷薄膜制成,或者,部分压电感应模块220由聚乳酸压电薄膜制成,部分压电感应模块220由压电陶瓷薄膜制成。随着近年来透明压电材料的发展,透明压电材料的光学性能逐渐提高,能较好地应用于显示领域,并保证不影响显示屏的显示效果。本实施例即将透明压电材料与触控技术相结合形成压电式触控技术。压电式触控技术介于电阻式触控技术与电容式触控技术之间。压电式触摸屏同电容式触摸屏一样支持多点触控,而且支持使用任何物体进行触控操作,不像电容式触摸屏只支持使用导体或电容笔进行触控操作,此外,压电式触摸屏还可以感知物体施加其上的压力的大小以及变化特征。
优选的是,第一电极21和第二电极23采用氧化铟镓锌、氧化铟锌(Indium Zinc Oxide,简称IZO)、氧化铟锡(Indium Tin Oxide,简称ITO)、氧化铟镓锡中的至少一种形成。上述材料均为透明材料,不会对采用该触摸屏的显示面板或显示装置的显示 效果造成任何影响。
为了保证触摸屏的正常工作以及延长触摸屏的使用寿命,优选第二电极23的外侧还设置有保护层24,保护层24采用玻璃或者采用有机透明材料形成,保护层24能对第二电极23、感应层22和第一电极21起到较好的支撑和保护作用。
当设置有保护层时,可通过以下步骤形成本实施例的触摸屏:
通过溅射沉积(sputter)方式将第二电极23形成在保护层24上;
在第二电极23上粘合感应层22的一侧;以及
在感应层22的另一侧形成第一电极21。
或者,当未设置保护层时,可通过以下步骤形成本实施例的触摸屏:
分别形成第一电极21、第二电极23和感应层22;以及
通过粘结方式将第一电极21和第二电极23分别粘结在感应层22的两侧,从而形成为整体。
在本发明中,将第二电极形成在保护层上的方式不限于溅射沉积,也可以采用其他方式,只要能将第二电极形成在保护层上即可。
本实施例中触摸屏的工作原理为:施加于触摸屏上的作用力首先作用在保护层24上,当保护层24受到作用力时将发生变形(变形幅度的大小取决于作用力的大小),该变形将进而迫使相应位置的压电感应模块220发生变形,由于正压电效应,作用于触摸屏上的力使压电感应模块220产生电信号,产生的电信号通过相应的第一子电极211和第二子电极231收集,并由与第一子电极211和第二子电极231电连接的传输线25传送至处理器,处理器通过对电信号产生位置和电信号大小的检测来判断作用力的作用点的位置和作用力的大小,从而可以准确、快速的实现触摸感应。
本实施例中的触摸屏,属于感知触摸力度和精准定位的纯压电传感触摸屏,与目前的电阻式触摸屏或电容式触摸屏具有本质 的区别,其具有以下优点:
非二进制感应:无须驱动信号,可以将触摸物体的压力直接转换为电信号,不仅可以感知触点的位置,还可以感知作用力的大小以及变化特征,具有触摸反应灵敏、支持多点触摸等优点,具有更佳的用户体验;
能感应任何物体:由于感应层基于正压电效应,对物体外形轮廓以及是否绝缘没有要求,可感应任何物体;
低功耗:压电感应模块可以将触摸物体的压力直接转换为电信号,这与电容式触摸屏相比就减少了驱动信号的功耗,从而实现了功耗的降低,可以有效地降低屏幕的整体功耗。
实施例2:
本实施例提供一种触摸屏,与实施例1相比,该触摸屏中的感应层22的形状或者说排列方式不同。
具体的,如图3A-3C所示,感应层22包括由多个垂直交叉设置的条状传感器融合形成的网格状的压电感应模块220,第一电极21包括多个第一条状电极212,第二电极23包括多个第二条状电极232,第一条状电极212和第二条状电极232垂直交叉设置、且分别与具有同一排列方向的条状传感器对应设置,每一第一条状电极212与每一第二条状电极232分别通过传输线25与处理器电连接。其中,图3A中条状传感器的交叉区域不需要架桥结构(即中间无绝缘层),只是简单的单层图形交叠重合。当有物体触控压电触摸屏时,横向的信号传输线25与纵向的信号传输线25同时接收到电信号,通过坐标计算便可得出触控位置的坐标。
与实施例1相同,本实施例中的触摸屏制备工艺简单,实现了任何物体的压力感知,还能够有效地降低屏幕的整体功耗。
实施例3:
本实施例提供一种显示面板,该显示面板包括实施例1或实施例2中的触摸屏。
如图4所示,该显示面板包括显示屏1以及设置于显示屏1外侧的触摸屏2。在该显示面板的制备工艺中,显示屏1和触摸屏2通过粘结方式粘合形成整体。
在本实施例中,优选的是,显示屏1为液晶显示屏、OLED显示屏和等离子显示屏中的任意一种。利用实施例1或实施例2中的触摸屏,可将其与不同类型的显示屏贴合形成触控显示模组、显示面板或显示装置,制程简单,成本低。
该显示面板可以为:液晶面板、电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
该显示面板的触控操作不受触摸物体的绝缘性限制、功耗低,较佳地满足了人们的视觉和触觉的享受。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (12)

  1. 一种触摸屏,其特征在于,所述触摸屏包括相对设置的第一电极、第二电极以及位于所述第一电极和所述第二电极之间的感应层,所述感应层采用具有压电效应的透明材料形成。
  2. 根据权利要求1所述的触摸屏,其特征在于,所述触摸屏还包括传输线以及处理器,所述第一电极和所述第二电极分别通过所述传输线与所述处理器电连接,所述第一电极和所述第二电极用于收集所述感应层因外力作用而引起的电信号,所述传输线将所述电信号传送到所述处理器;所述处理器用于对所述电信号进行分析处理,并获得外力作用点的位置坐标。
  3. 根据权利要求2所述的触摸屏,其特征在于,所述感应层包括多个孤立设置的压电感应模块,所述第一电极包括多个第一子电极,所述第二电极包括多个第二子电极,所述第一子电极与所述第二子电极成对地设置,且每个所述第一子电极和所述第二子电极形成的电极对与一个所述压电感应模块相对应,每一所述第一子电极与每一所述第二子电极分别通过所述传输线与所述处理器电连接。
  4. 根据权利要求3所述的触摸屏,其特征在于,所述压电感应模块的截面形状为圆形、方形和菱形中的任一种形状,所述第一子电极和所述第二子电极的截面形状为圆形、方形和菱形中的任一种形状,且每一所述第一电极和每一所述第二电极的截面面积均不小于对应的所述压电感应模块的截面面积。
  5. 根据权利要求2所述的触摸屏,其特征在于,所述感应层包括由多个垂直交叉设置的条状传感器融合形成的网格状的压电感应模块,所述第一电极包括多个第一条状电极,所述第二电极 包括多个第二条状电极,所述第一条状电极和所述第二条状电极垂直交叉设置、且分别与具有同一排列方向的条状传感器对应设置,每一所述第一条状电极与每一所述第二条状电极分别通过所述传输线与所述处理器电连接。
  6. 根据权利要求1-5任一项所述的触摸屏,其特征在于,形成所述感应层的具有压电效应的透明材料包括聚乳酸压电薄膜和/或压电陶瓷薄膜,所述第一电极采用氧化铟镓锌、氧化铟锌、氧化铟锡和氧化铟镓锡中的至少一种形成,所述第二电极采用氧化铟镓锌、氧化铟锌、氧化铟锡和氧化铟镓锡中的至少一种形成。
  7. 根据权利要求1-5任一项所述的触摸屏,其特征在于,所述第二电极的外侧还设置有保护层,所述保护层采用玻璃或者采用有机透明材料形成。
  8. 一种触摸屏的制造方法,所述触摸屏包括相对设置的第一电极、第二电极以及位于所述第一电极和所述第二电极之间的感应层,所述感应层采用具有压电效应的透明材料形成,所述制造方法包括以下步骤:
    分别形成所述第一电极、所述第二电极以及所述感应层;以及
    通过粘结方式将所述第一电极和所述第二电极分别粘合在所述感应层的两侧。
  9. 一种触摸屏的制造方法,所述触摸屏包括相对设置的第一电极、第二电极以及位于所述第一电极和所述第二电极之间的感应层,所述感应层采用具有压电效应的透明材料形成,所述第二电极外侧设置有保护层,所述方法包括以下步骤:
    将所述第二电极形成在所述保护层上;
    在所述第二电极上粘合所述感应层的一侧;以及
    在所述感应层的另一侧上形成所述第一电极。
  10. 一种显示面板,包括显示屏以及设置于所述显示屏外侧的触摸屏,其特征在于,所述触摸屏采用权利要求1-7任一项所述的触摸屏。
  11. 根据权利要求10所述的显示面板,其特征在于,所述显示屏和所述触摸屏通过粘结方式粘合形成整体。
  12. 根据权利要求11所述的显示面板,其特征在于,所述显示屏为液晶显示屏、OLED显示屏和等离子显示屏中的任意一种。
PCT/CN2015/074353 2014-10-31 2015-03-17 触摸屏及其制造方法和显示面板 WO2016065800A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/771,558 US10254874B2 (en) 2014-10-31 2015-03-17 Touch screen, method of manufacturing the same and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410609650.6 2014-10-31
CN201410609650.6A CN104281328A (zh) 2014-10-31 2014-10-31 一种触摸屏和显示面板

Publications (1)

Publication Number Publication Date
WO2016065800A1 true WO2016065800A1 (zh) 2016-05-06

Family

ID=52256270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074353 WO2016065800A1 (zh) 2014-10-31 2015-03-17 触摸屏及其制造方法和显示面板

Country Status (3)

Country Link
US (1) US10254874B2 (zh)
CN (1) CN104281328A (zh)
WO (1) WO2016065800A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887407A (zh) * 2016-09-30 2018-04-06 乐金显示有限公司 有机发光显示装置
CN111104659A (zh) * 2018-10-26 2020-05-05 北京纳米能源与系统研究所 用于智能识别的薄膜及智能识别系统

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104281328A (zh) * 2014-10-31 2015-01-14 合肥鑫晟光电科技有限公司 一种触摸屏和显示面板
CN106325578B (zh) * 2015-07-10 2023-07-25 宸鸿科技(厦门)有限公司 压力感应触控面板
CN107924647A (zh) * 2015-08-07 2018-04-17 株式会社村田制作所 显示装置
CN105653098B (zh) 2015-08-14 2019-09-17 京东方科技集团股份有限公司 一种触摸屏、显示面板、显示装置和存储电能的方法
CN106648266B (zh) * 2015-11-09 2023-08-11 京东方科技集团股份有限公司 一种具有压感触控功能的显示装置及驱动方法
CN105405958B (zh) * 2015-12-23 2018-05-08 昆山国显光电有限公司 压电薄膜封装结构及自发电柔性显示屏
CN105807474A (zh) * 2015-12-31 2016-07-27 纳智源科技(唐山)有限责任公司 具有压力感应功能的彩色滤光片及显示屏
CN105807988A (zh) * 2016-02-25 2016-07-27 京东方科技集团股份有限公司 触控显示基板、触控显示屏及触控显示基板的制作方法
CN105930001B (zh) * 2016-04-19 2019-03-01 京东方科技集团股份有限公司 触控面板及其制作方法和显示装置
CN107340897A (zh) * 2016-04-29 2017-11-10 鸿富锦精密工业(深圳)有限公司 压力感测模组与触控显示基板
CN106020553B (zh) * 2016-06-03 2021-01-12 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
CN107643843A (zh) * 2016-07-20 2018-01-30 中兴通讯股份有限公司 压力的识别方法及装置,触摸屏和终端
CN106129091A (zh) * 2016-07-22 2016-11-16 京东方科技集团股份有限公司 一种电致发光显示面板及电致发光显示装置
CN106293235A (zh) * 2016-08-12 2017-01-04 京东方科技集团股份有限公司 传感结构、显示面板、驱动方法和显示装置
JP6468403B2 (ja) * 2016-09-21 2019-02-13 株式会社村田製作所 圧電センサ、タッチ式入力装置
KR102568386B1 (ko) * 2016-09-30 2023-08-21 삼성디스플레이 주식회사 터치 센서를 포함하는 표시 장치
CN106775055B (zh) * 2016-11-23 2022-05-10 安徽精卓光显技术有限责任公司 柔性触摸屏及柔性触摸显示屏
CN106681578B (zh) * 2016-12-21 2020-02-07 北京集创北方科技股份有限公司 触摸面板、触摸检测装置和触摸检测方法
CN106933424A (zh) * 2017-03-28 2017-07-07 京东方科技集团股份有限公司 一种触控面板及显示装置
CN107562271A (zh) * 2017-08-30 2018-01-09 广东深越光电技术有限公司 一种能检测多点触摸的压力信号的触摸显示装置
CN108563368A (zh) * 2018-06-28 2018-09-21 信利光电股份有限公司 一种压电触摸屏及电子产品
CN108845710B (zh) 2018-07-27 2021-09-07 上海天马微电子有限公司 触控面板及其驱动方法、触控装置
CN109491550B (zh) * 2019-01-03 2022-05-10 京东方科技集团股份有限公司 一种触控基板及其检测方法、显示装置
CN109829419B (zh) * 2019-01-28 2021-08-24 京东方科技集团股份有限公司 指纹识别模组及其驱动方法和制作方法、显示装置
US11269461B2 (en) * 2019-02-28 2022-03-08 Boe Technology Group Co., Ltd. Touch panel, driving method thereof, and display device
CN113504842A (zh) * 2021-06-11 2021-10-15 电子科技大学 一种触摸屏及其生产工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067448A1 (en) * 2001-10-10 2003-04-10 Samsung Sdi Co., Ltd. Touch panel
CN101615091A (zh) * 2009-07-28 2009-12-30 上海广电光电子有限公司 触摸显示屏
CN102236447A (zh) * 2010-05-06 2011-11-09 北京京东方光电科技有限公司 触摸屏及触摸屏液晶显示器
CN102460351A (zh) * 2009-06-11 2012-05-16 株式会社村田制作所 触摸面板以及触摸式输入装置
CN102819351A (zh) * 2012-08-09 2012-12-12 昆山攀特电陶科技有限公司 夹心型压电触摸屏
CN202771390U (zh) * 2012-08-09 2013-03-06 昆山攀特电陶科技有限公司 夹心型压电触摸屏
CN204087159U (zh) * 2014-10-31 2015-01-07 合肥鑫晟光电科技有限公司 一种触摸屏和显示面板
CN104281328A (zh) * 2014-10-31 2015-01-14 合肥鑫晟光电科技有限公司 一种触摸屏和显示面板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784041B2 (ja) * 2003-11-07 2011-09-28 パナソニック株式会社 タッチパネルを用いた入力装置
KR101400287B1 (ko) * 2008-06-17 2014-05-30 삼성전자주식회사 나노 와이어를 이용한 터치 패널
JP2011242386A (ja) * 2010-04-23 2011-12-01 Immersion Corp 接触センサと触覚アクチュエータとの透明複合圧電材結合体
US9081460B2 (en) * 2011-05-20 2015-07-14 Gwangju Institute Of Science And Technology Electronic device, method for manufacturing the same and touch panel including the same
WO2013021835A1 (ja) * 2011-08-11 2013-02-14 株式会社村田製作所 タッチパネル
CN103513801B (zh) * 2012-06-18 2016-08-10 宸鸿科技(厦门)有限公司 触控装置及其检测方法
CN203204583U (zh) * 2013-02-23 2013-09-18 凯奇集团有限公司 新型触摸式电子白板
CN203217542U (zh) 2013-04-03 2013-09-25 清华大学 一种感知触控力度和精准定位的电容-压电复合式触摸屏
JPWO2015041195A1 (ja) * 2013-09-17 2017-03-02 株式会社村田製作所 押圧センサ
US9824254B1 (en) * 2014-09-30 2017-11-21 Apple Inc. Biometric sensing device with discrete ultrasonic transducers
US9501167B2 (en) * 2014-10-22 2016-11-22 Synaptics Incorporated Scanned piezoelectric touch sensor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067448A1 (en) * 2001-10-10 2003-04-10 Samsung Sdi Co., Ltd. Touch panel
CN102460351A (zh) * 2009-06-11 2012-05-16 株式会社村田制作所 触摸面板以及触摸式输入装置
CN101615091A (zh) * 2009-07-28 2009-12-30 上海广电光电子有限公司 触摸显示屏
CN102236447A (zh) * 2010-05-06 2011-11-09 北京京东方光电科技有限公司 触摸屏及触摸屏液晶显示器
CN102819351A (zh) * 2012-08-09 2012-12-12 昆山攀特电陶科技有限公司 夹心型压电触摸屏
CN202771390U (zh) * 2012-08-09 2013-03-06 昆山攀特电陶科技有限公司 夹心型压电触摸屏
CN204087159U (zh) * 2014-10-31 2015-01-07 合肥鑫晟光电科技有限公司 一种触摸屏和显示面板
CN104281328A (zh) * 2014-10-31 2015-01-14 合肥鑫晟光电科技有限公司 一种触摸屏和显示面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887407A (zh) * 2016-09-30 2018-04-06 乐金显示有限公司 有机发光显示装置
CN111104659A (zh) * 2018-10-26 2020-05-05 北京纳米能源与系统研究所 用于智能识别的薄膜及智能识别系统

Also Published As

Publication number Publication date
CN104281328A (zh) 2015-01-14
US20160364063A1 (en) 2016-12-15
US10254874B2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2016065800A1 (zh) 触摸屏及其制造方法和显示面板
US10025411B2 (en) Touch screen and pressure touch detection method thereof
US20170357346A1 (en) Touch screen and pressure touch detection method
US10788914B2 (en) Touch panel, method for driving same and touch display device
KR101428568B1 (ko) 터치스크린을 포함하는 표시장치 및 그 구동 방법
CN106775055B (zh) 柔性触摸屏及柔性触摸显示屏
JP5420709B2 (ja) タッチパネルの電極構造、その方法およびタッチパネル
CN204087159U (zh) 一种触摸屏和显示面板
CN101341605A (zh) 用于组合式压力传感器和致动器的经济元件及其操作方法
WO2013163882A1 (zh) 3d触控液晶透镜光栅、其制造方法以及3d触控显示装置
WO2016106840A1 (zh) 单层电容式触摸屏以及触摸显示装置
JP5827972B2 (ja) タッチセンサ一体型表示装置
CN201607591U (zh) 一种内嵌触感式显示装置
WO2017012294A1 (zh) 触控模组、触摸屏、其触摸定位方法及显示装置
CN102279677B (zh) 触控面板的结构及其制造方法
WO2014183393A1 (zh) 触摸定位结构及其制造方法、触摸屏和显示装置
JP6431610B2 (ja) 静電容量式入力装置
EP3336670B1 (en) Touch sensor and display device including the same
TW200941323A (en) Sensing structure of touch panel and touch panel having the same
CN113176837B (zh) 三维触控传感器及显示装置
CN102053743A (zh) 单层触控感测装置
CN107577367A (zh) 一种能轻易发生弹性变形的触摸显示装置
TWI607359B (zh) 三維觸控總成
TWI451317B (zh) 觸摸屏
CN102004343A (zh) 集成触摸屏的液晶显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14771558

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.10.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15855938

Country of ref document: EP

Kind code of ref document: A1