WO2020153547A1 - 초전도 코일의 u자형 특성 평가 장치 및 이를 이용한 특성 평가 방법 - Google Patents

초전도 코일의 u자형 특성 평가 장치 및 이를 이용한 특성 평가 방법 Download PDF

Info

Publication number
WO2020153547A1
WO2020153547A1 PCT/KR2019/007334 KR2019007334W WO2020153547A1 WO 2020153547 A1 WO2020153547 A1 WO 2020153547A1 KR 2019007334 W KR2019007334 W KR 2019007334W WO 2020153547 A1 WO2020153547 A1 WO 2020153547A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting coil
section
module
transfer
superconducting
Prior art date
Application number
PCT/KR2019/007334
Other languages
English (en)
French (fr)
Inventor
박민원
유인근
성해진
김창현
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Publication of WO2020153547A1 publication Critical patent/WO2020153547A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/346Testing of armature or field windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/20Measuring number of turns; Measuring transformation ratio or coupling factor of windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/72Testing of electric windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1238Measuring superconductive properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Definitions

  • the present invention relates to a device for evaluating properties of a superconducting coil and a method for evaluating properties using the same, and more particularly, to a U-shaped property evaluation device minimizing the device scale and a property evaluation method using the same.
  • superconducting motors can use a superconductor with zero electrical resistance instead of copper wires used in conventional rotors to generate high current and high magnetic fields, thereby removing weight, volume, and various losses by removing the iron core used in the stator and rotor.
  • a superconductor with zero electrical resistance instead of copper wires used in conventional rotors to generate high current and high magnetic fields, thereby removing weight, volume, and various losses by removing the iron core used in the stator and rotor.
  • the superconducting field coil used in the superconducting motor developed so far is formed by winding a superconducting wire in the form of a tape into a wound ray-stretch type or a pancake coil, and using several coils as described above to obtain a desired magnetic field and strength. Laminated to form a superconducting field coil of a single pole, and connected to two poles, four poles, 12 poles, 24 poles, or more.
  • FIG. 1 shows a superconducting rotator including a superconducting coil.
  • the superconducting rotator accommodates a rotor body having a predetermined radius around a rotation axis, a plurality of superconducting coils (HTS coil) arranged at predetermined intervals on the outer surface of the rotor, and each superconducting coil on the outer surface of the rotor Cryostat, a stator body having a radius separated by a predetermined distance (air gap) from the rotating body, and a plurality of armature coils arranged and inserted at predetermined intervals on the inner surface of the stator , Includes a magnetic shield layer surrounding the outer surface of the stator.
  • HTS coil superconducting coils
  • the superconducting rotator as illustrated has a problem in that the superconducting coil is vulnerable to a force generated from the coil or external force due to high magnetic field and large current, and in the case of a large-capacity rotator, it is difficult to apply a conventional rotator design.
  • the research period and accumulated technology are relatively low compared to general phase-conducting generators, so the research and development period is slow, especially because of the cost risk of using expensive superconductors and the design production process that has not been optimized yet. It is difficult to manufacture superconducting generators.
  • An object of the present invention is to minimize and implement a U-shaped performance evaluation device designed for a superconducting coil designed before manufacturing the entire system of a superconducting rotator.
  • Another object of the present invention is to provide a property evaluation method using a U-shaped property evaluation device of a superconducting coil designed before manufacturing the entire system of a superconducting rotator.
  • the U-shaped characteristic evaluation device of the superconducting coil includes a transfer motor module for driving a transfer belt on the upper portion; Lower cradle; A transfer part provided on the upper surface of the cradle; An armature module mounted on the transfer unit and sliding; And a subject module mounted on the mounting groove portion of the cradle.
  • the transfer part is spaced apart from the cradle and arranged in a U-shape, and a transfer support having a guide rail on the upper surface; And it is mounted on the lower portion of the armature module, the wheel is coupled to the guide rail; characterized in that it further comprises.
  • the transfer support part has a predetermined inclination angle and first section for initially mounting the armature module; A second section horizontally connected to the first section and parallel to the cradle; And a third section symmetrical to the first section and having a braking inclination angle ⁇ and being inclined to the second section.
  • the transfer belt is characterized in that it has an uneven surface that is engaged with the uneven surface of the upper surface of the armature module.
  • the braking inclination angle ⁇ is characterized in that it has an angle greater than that of the first section.
  • the method for evaluating the characteristics of the U-shaped characteristic evaluation device of a superconducting coil includes: (A) preparing an armature module in a standby state mounted obliquely in a first section of a transfer support; (B) transferring the armature module along the second section of the transfer support and accelerating to a rated speed Vr by a transfer belt rotated by the transfer motor module; And (C) automatically braking the armature module in the third section of the transfer support.
  • step (B) is rated by the conveyance belt rotated by the conveyance motor module together with two rollers provided at the top. It is characterized by being accelerated at a speed Vr.
  • step (B) includes the armature module having a subject module provided below the second section at a rated speed (Vr). It is characterized by measuring the electromagnetic force torque generated in the superconducting coil of the subject as it crosses.
  • step (C) includes a braking inclination angle ⁇ in which the third section of the transfer support has an angle greater than the inclination angle of the first section It is characterized by automatic braking.
  • the moving section of the armature can be reduced to minimize the device scale.
  • the U-shaped characteristic evaluation device of the superconducting coil of the present invention it is possible to grasp the performance test, damage, and parameters of the superconducting coil of the subject.
  • the U-shaped characteristic evaluation device of the superconducting coil of the present invention it is possible to verify the generator design result through the armature torque and the output waveform corresponding to the generator 2 pole.
  • the U-shaped characteristic evaluation device of the superconducting coil of the present invention it is possible to verify the design of each designed superconducting coil without making an entire system, thereby reducing manufacturing time and development cost.
  • design verification and characteristic parameters of the designed superconducting motor are secured by using a device that simulates an environment in which the designed superconducting motor is operated and a partial module of the designed motor. It is possible to provide a device for evaluating U-shaped characteristics.
  • FIG. 1 shows a superconducting rotator including a superconducting coil.
  • FIG. 2 is a conceptual diagram illustrating a structure between a subject superconducting coil and an armature module according to embodiments of the present invention.
  • FIG. 3 is a conceptual diagram illustrating an operation between a subject superconducting coil and an armature module according to embodiments of the present invention.
  • FIG. 4 is a detailed illustration of a subject module of a U-shaped characteristic evaluation device according to embodiments of the present invention.
  • Figure 5 shows the initial state of operation of the apparatus for evaluating the characteristics of a superconducting coil according to an embodiment of the present invention.
  • Figure 6 shows the intermediate state of the operation of the U-shaped characteristic evaluation device of the superconducting coil according to an embodiment of the present invention.
  • FIG. 7 shows the armature shape and the motor belt of the U-shaped characteristic evaluation device of the superconducting coil according to an embodiment of the present invention.
  • a superconducting coil whose design is secured for testing rather than a superconducting coil of a superconducting rotator is referred to as a superconducting coil of a subject.
  • FIG. 2 is a conceptual diagram for explaining the structure between a subject superconducting coil and an armature module according to embodiments of the present invention
  • FIG. 3 illustrates an operation between a subject superconducting coil and an armature module according to embodiments of the present invention It is a conceptual diagram for.
  • the designed superconducting motor is designed using a U-shaped characteristic evaluation device that simulates an environment in which a superconducting coil is operated and a partial module of the designed superconducting coil. Performance verification and characteristic parameters can be secured.
  • the superconducting coil used for the superconducting rotator is designed to test the superconducting coil.
  • the subject superconducting coil 410 is a superconducting coil corresponding to 3 poles of a superconducting rotator having a design result secured in one embodiment.
  • the subject superconducting coil 410 may be embodied as, for example, a race track shape, but the shape is not limited thereto, and may be implemented in other forms as long as it is an actual shape accommodated in the superconducting rotator.
  • the subject superconducting coil 410 may include three race track-shaped superconducting coils to realize 3 poles, and may be implemented as 1 pole or 2 poles according to performance evaluation conditions.
  • the apparatus for evaluating characteristics of the present invention may include an armature module 210 that intersects to check the performance of the subject superconducting coil 410.
  • the test armature module 210 is similar to the armature form of the superconducting rotator shown in FIG. 1.
  • the armature module 210 includes a stator 211, an armature coil 213, and a magnetic shielding layer 215.
  • the armature coil 213 is inserted and arranged at a predetermined equal interval on one surface of the stator facing the subject superconducting coil, and the magnetic shielding layer 215 is formed to surround the other surface of the stator that does not face the subject superconducting coil.
  • the superconducting coil corresponding to 3 poles is located adjacent to both sides of the first superconducting coil corresponding to 1 pole of the superconducting rotator with secured design results, and the superconducting with secured design results It includes two second superconducting coils corresponding to 2 poles of the rotator.
  • the armature module 210 is spaced by a predetermined distance from the subject superconducting coil 410 and moves at a rated speed in a direction parallel to one surface of the subject superconducting coils 410. At this time, the rated speed is set as the speed in the environment in which the actual superconducting rotator is operated.
  • the U-shaped performance evaluation apparatus of the present invention can detect the presence or absence of damage to the subject superconducting coil 410 by sensing the electromagnetic force torque generated when the armature module 210 intersects the subject superconducting coil 410. .
  • FIG. 4 is a diagram specifically showing a subject module of a U-shaped horizontal characteristic evaluation apparatus according to embodiments of the present invention.
  • the subject module 400 includes a subject superconducting coil 410, a cryostat 420, a cooling plate 431, an insulating plate 432, and a subject support 440.
  • the subject superconducting coil 410 may include at least one superconducting coil according to a performance evaluation environment.
  • three superconducting coils 411, 412 and 413 are included for evaluating the performance of three poles, and each superconducting coil 411, 412, 413 is spaced at a predetermined interval and arranged on one plane.
  • the cooling plate 431 is for cooling the subject superconducting coil and is disposed under the subject superconducting coils 411,412,413. Although not specifically illustrated, a structure in which a refrigerant is supplied may be further included.
  • the cryostat 420 cools the subject superconducting coil at cryogenic temperature using a separate cooling system while receiving the subject superconducting coil 410 in a vacuum state.
  • the insulating plate 432 is located between the cryostat 420 and the cooling plate 431 to block heat transfer from the outside.
  • the subject support part 440 supports the subject module part 400 at a predetermined height from the lower surface of the groove part 510 for seating the subject.
  • Figure 5 shows the initial state of operation of the U-shaped characteristic evaluation device of the superconducting coil according to an embodiment of the present invention.
  • Figure 6 shows the intermediate state of the operation of the U-shaped characteristic evaluation device of the superconducting coil according to an embodiment of the present invention.
  • 7 shows the armature shape and the motor belt of the U-shaped characteristic evaluation device of the superconducting coil according to an embodiment of the present invention.
  • a transfer motor module for driving the transfer belt 120 with two rollers 111 and 112 on the top ( 100), the lower mounting bracket 500, the transfer unit provided on the upper surface of the mounting bracket 500, the armature module 210 that is mounted on the transport unit and sliding, and the test subject mounted on the mounting groove 510 of the mounting bracket 500 Includes module 400.
  • the transfer motor module 100 is provided to be spaced apart from the cradle 500, and operates to rotate the transfer belt 120 together with two rollers 111 and 112 arranged in parallel to the transfer portion.
  • the transfer belt 120 is a belt form having a plurality of irregularities on the outer surface, as shown in FIG. 7, and the outer surfaces of these irregularities can be engaged with the upper surface irregularities of the armature module 210 to transfer the armature module 210 have.
  • the cradle 500 is for mounting the transfer unit and the subject module 400, and includes a groove 510 for seating the subject in the middle of the cradle top plate.
  • the groove 510 for seating the subject is formed to be recessed at a predetermined depth on the top plate of the cradle 500, for example, is formed in the center of the top plate of the cradle. At this time, the groove 510 for seating the subject is a space for accommodating the subject module 400 and may be formed to be wider than the area of the subject module and deeper than the height of the subject module.
  • the transfer unit includes a transfer support unit 310 and a wheel 320 so that the armature module 210 is stably transferred on the cradle 500.
  • the transfer support part 310 includes a guide rail on the upper surface, and the lower surface may be arranged to be spaced apart with an inclination angle or height from the upper plate of the cradle. At this time, the transfer support 310 has a predetermined inclination angle, the first section 311 to initially mount the armature module 210, horizontally connected to the first section 311 and the second parallel to the cradle 500 It has a U-shape as a whole, including a section 312 and a third section 313 that is inclined to the second section 312 with a braking inclination angle ⁇ .
  • the second section 312 of the transport support 310 may be spaced apart and parallel to a height within a set range in which electromagnetic force torque is generated between the subject superconducting coil and the armature module 210.
  • the armature module 210 is accelerated by the transfer belt 120 and transferred at the rated speed Vr as shown in FIG.
  • the third section 313 is provided to be inclined with a braking inclination angle ⁇ of an angle greater than the inclination angle of the first section 311, and then the third section 313 after the armature module 210 passes through the second section 312 In, it is braked by gravity and braking inclination angle ( ⁇ ).
  • the braking inclination angle ⁇ may be set according to the initial speed Vo, the rated speed Vr, and the length L of the third section 313 of the armature module 210.
  • V r rated speed generated by the motor of the transfer motor module 100
  • V r rw by the rotational radius (r) and the angular speed (w) of the motor
  • armature module (210) brakes.
  • the height (H) of the state can be represented by L Sin ⁇ by the length (L) of the third section 313 and the braking inclination angle ( ⁇ ), so it is converted into Equation 2 below.
  • the third section 313 is provided to be inclined at a braking inclination angle ⁇ or more of [Equation 3], so that the armature module 210 is preferably stopped in the third section 313.
  • the wheel 320 is mounted on the lower portion of the armature module 210, and may be engaged with the guide rail of the transfer support 310.
  • the guide rail may be implemented in a form that wraps the wheels 320 up and down, and in another embodiment, the wheels 320 and the guide rails are meshed with each other so that the armature module 210 does not deviate. It may be implemented in the form.
  • the transfer unit may further include an armature module support.
  • the armature module support is for fixing the armature module 210 to the wheel, and can be implemented in various forms.
  • the armature module may have a structure for fixing both ends, and as another example, the armature module may be located on the lower surface of the armature module to be fixed, but the armature part may be a frame-shaped structure having a certain area.
  • the subject module 400 includes subject superconducting coils 411, 412, 413, cryostat 420, cooling plate 430, insulation plate 440, and subject support 450.
  • the subject superconducting coils 411, 412 and 413 include at least one superconducting coil as described in FIG. Between the superconducting coils may be arranged at the same distance as the rotor of the superconducting generator. As shown, the superconducting coil corresponding to 3 poles is located adjacent to both sides of the first superconducting coil and the first superconducting coil corresponding to 1 pole of the superconducting rotator with secured design results, and the 2 poles of the superconducting rotator with secured design results It includes two second superconducting coils.
  • the second superconducting coil may be disposed on the same plane as the first superconducting coil, or may be disposed at equal intervals on the curved surface of the same angle as the rotor of the entire superconducting generator according to another embodiment.
  • the first superconducting coil 412 and the second superconducting coils 411 and 413 directly cross-link the armature module 210 to generate the same magnetic flux, respectively.
  • the first superconducting coil 412 directly cross-links the armature module 210 to generate a magnetic flux
  • the second superconducting coils 411 and 413 are magnetic fields generated by the first superconducting coil 412 It can serve to supplement the size of the magnetic field so that a magnetic field having the same size as this design value can be generated.
  • the cryostat 420 may be provided in a closed structure to minimize cooling loss by blocking a heat transfer by convection and radiation by configuring a vacuum environment therein. In order to maximize the efficiency of conduction cooling, it is desirable to maintain the vacuum level inside the vacuum container at 10 -5 torr or less, and it is preferable to block heat transfer by convection and radiation inside using MLI (Multi layer insultion). .
  • MLI Multi layer insultion
  • the cooling plate 430 is for cooling the subject superconducting coil 410. At this time, the cooling plate 430 is supplied with a low-temperature refrigerant from a separate cooling system, circulates along the refrigerant pipe installed therein, flows back into the cooling system, and re-condenses, and is re-introduced into the cooling plate.
  • the insulating plate 440 is positioned between the cooling plate 430 and the cryostat 420 to prevent the cryogenic cooling plate 430 from cooling the cryostat 420 in addition to the subject superconducting coil. can do.
  • the subject module support part 450 is for stably supporting the subject module part to the groove part 510 for seating the subject, and the subject module 400 is located at a predetermined height from the bottom of the subject part seating groove part 510. It includes a support plate and a support pillar to be positioned.
  • the subject module support part 450 supports the subject superconducting coil and the armature module to be spaced apart by the air gap of the designed superconducting rotator.
  • the support pillar may be implemented in a column structure having a fixed height according to an embodiment, or may be implemented in a structure capable of height adjustment to adjust the separation distance between the subject superconducting coil and the armature module according to another embodiment.
  • the armature module 210 is prepared in a standby state inclined to the first section 311 of the transfer support part 310 as shown in FIG. 5. At this time, the armature module 210 slides down by the inclined shape of the first section 311 and passes through the first section 311 at an initial speed V o .
  • the armature module 210 that has passed through the first section 311 at the initial speed V o slides the second section 312 as shown in FIG. 6, along with the two rollers 111 and 112 provided on the upper part, and the transfer motor module ( 100) is accelerated by the transfer belt 120 rotated by the rated speed (V r ) is transferred.
  • the rated speed (V r ) of the armature module 210 corresponds to a linear speed that is set based on the angular speed and radius of the designed superconducting rotor, and for this purpose, the transfer motor module 100 has a rated speed of the designed superconducting rotor ( It is driven at a predetermined angular acceleration corresponding to V r ) and transferred to the transfer belt 120 so that the armature module 210 is transferred at the rated speed V r when it passes over the groove 510 for seating the subject. .
  • the armature module 210 that has passed through the second section 312 at the rated speed V r enters the third section 313 and has a third section 313 in a form inclined to be greater than or equal to the braking inclination angle ⁇ . ), the speed can be reduced and the braking state can be stopped.
  • the moving section of the armature module 210 can be reduced to minimize the device scale.
  • the U-shaped characteristic evaluation device of the superconducting coil of the present invention it is possible to verify the generator design result through the armature torque and the output waveform corresponding to the generator 2 pole.
  • the U-shaped characteristic evaluation device of the superconducting coil of the present invention it is possible to verify the design of each designed superconducting coil without making an entire system, thereby reducing manufacturing time and development cost.
  • design verification and characteristic parameters of the designed superconducting motor are secured by using a device that simulates the environment where the designed superconducting motor is operated and a partial module of the designed motor. It is possible to provide a device for evaluating U-shaped characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

본 발명의 일실시예에 따른 초전도 코일의 U자형 특성 평가 장치는 상부에 이송벨트를 구동하는 이송모터모듈; 하부의 거치대; 상기 거치대의 상부면에 구비된 이송부; 상기 이송부에 거치되어 슬라이딩되는 전기자 모듈; 및 상기 거치대의 안착용 홈부에 장착된 피검체 모듈;을 포함한다.

Description

초전도 코일의 U자형 특성 평가 장치 및 이를 이용한 특성 평가 방법
본 발명은 초전도 코일의 특성 평가 장치 및 이를 이용한 특성 평가 방법에 관한 것으로서, 더욱 상세하게는 장치 규모를 최소화한 U자형 특성 평가 장치 및 이를 이용한 특성 평가 방법에 관한 것이다.
일반적으로 초전도 모터는 기존의 회전자에 사용되는 구리선 대신에 전기저항이 제로인 초전도체를 사용하여 대전류 통전 및 고자장 발생이 가능하여, 고정자와 회전자에 사용되는 철심을 제거함으로써 무게, 부피 및 각종 손실을 대폭 줄인 고성능, 고출력의 첨단 모터를 말한다.
지금까지 개발된 초전도 모터에 사용되는 초전도 계자코일은 테이프 형상을 하고 있는 초전도 선재가 권선된 레이스트렉형 또는 팬케이크코일 형태로 권선되어 형성되며, 원하는 자장 및 세기를 얻기 위해 상기와 같은 코일 여러 개를 적층하여 한극의 초전도 계자코일을 이루고 2극(pole), 4극, 12극, 24극 또는 그 이상으로 결선된다.
현재, 초전도 모터 또는 발전기는 초전도체를 응용한 전력기기 분야 중 대표적이고 활발한 연구 개발이 진행되고 있는 분야이다. 기술이 진보함에 따라 초전도 모터들은 점차적으로 대용량화 되어가고 있으며, 이에 따라 초전도 코일 또한 고자장 및 대전류화 되어가고 있다.
도 1은 초전도 코일을 포함한 초전도 회전기를 나타낸 것이다.
도 1의 (a)는 전력 기기에 이용되는 초전도 회전기를 전체적으로 도시한 사시도이며, (b)는 초전도 회전기 중 점선부분을 확대하여 나타낸 것이다. 초전도 회전기는 회전축을 중심으로 일정 반경을 가지는 회전자(Rotor body), 회전자의 외측면에 소정 간격으로 배치되는 복수의 초전도 코일(HTS coil), 회전자의 외측면에서 각각의 초전도 코일을 수용하는 크라이오스탯(Cryostat), 회전 몸체와 소정의 거리(air gap)로 이격된 반경을 가지는 고정자(Stator body), 고정자의 내측면에 소정 간격으로 삽입되어 배열되는 복수의 전기자 코일(Armature Coil), 고정자의 외측면을 둘러싸는 자기차폐층(Magnetic shield)을 포함한다.
도시된 것과 같은 초전도 회전기는 고자장 및 대전류화가 됨으로써 코일에서 발생하는 힘 또는 외부의 힘에 대해서 초전도 코일이 취약하고, 대용량 회전기의 경우 기존의 회전기 설계가 적용되기 어려운 문제가 있다.
또한 일반 상전도 발전기와 비교하여 연구된 기간 및 축적된 기술도가 상대적으로 낮아, 연구 개발기간이 더디며, 특히 고가의 초전도체를 이용한 비용적 리스크와 아직 최적화되지 않은 설계 제작 과정 등의 이유로 연구된 초전도 발전기의 제작을 쉽게 하지 못하는 실정이다.
따라서, 대용량 초전도 회전기에 적용하기 전에, 설계단계에서 모터 및 발전기의 설계 결과 및 초전도 코일의 성능을 평가하기 위한 장치의 필요성이 대두되고 있다.
본 발명은 초전도 회전기의 전체 시스템을 제작하기 전에 설계된 초전도 코일의 성능 평가 장치를 U자형으로 최소화하여 구현하는데 그 목적이 있다.
본 발명의 다른 목적은 초전도 회전기의 전체 시스템을 제작하기 전에 설계된 초전도 코일의 U자형 특성 평가 장치를 이용한 특성 평가 방법을 제공하는 데 있다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위하여, 본 발명의 일실시예에 따른 초전도 코일의 U자형 특성 평가 장치는 상부에 이송벨트를 구동하는 이송모터모듈; 하부의 거치대; 상기 거치대의 상부면에 구비된 이송부; 상기 이송부에 거치되어 슬라이딩되는 전기자 모듈; 및 상기 거치대의 안착용 홈부에 장착된 피검체 모듈;을 포함한다.
본 발명의 일실시예에 따른 초전도 코일의 U자형 특성 평가 장치에서 상기 이송부는 상기 거치대로부터 이격되어 U자 형태로 배치되고 상면에 가이드 레일을 구비한 이송 지지부; 및 상기 전기자 모듈의 하부에 장착되고, 상기 가이드 레일과 결합되는 바퀴;를 더 포함하는 것을 특징으로 한다.
본 발명의 일실시예에 따른 초전도 코일의 U자형 특성 평가 장치에서 상기 이송 지지부는 소정의 경사각을 갖고 상기 전기자 모듈을 초기에 거치하는 제 1 구간; 상기 제 1 구간에 수평으로 연결되고 상기 거치대에 평행한 제 2 구간; 및 상기 제 1 구간에 대칭하고, 제동 경사각(θ을 가지며 상기 제 2 구간에 경사지게 연결된 제 3 구간;을 포함하는 것을 특징으로 한다.
본 발명의 일실시예에 따른 초전도 코일의 U자형 특성 평가 장치에서 상기 이송벨트는 상기 전기자 모듈의 상부면 요철과 맞물리는 요철 외부면을 갖는 것을 특징으로 한다.
본 발명의 일실시예에 따른 초전도 코일의 U자형 특성 평가 장치에서 상기 제동 경사각(θ은 상기 제 1 구간의 경사각보다 큰 각도를 갖는 것을 특징으로 한다.
또는, 본 발명의 다른 실시예에 따른 초전도 코일의 U자형 특성 평가 장치의 특성 평가 방법은 (A) 전기자 모듈을 이송지지부의 제 1 구간에 경사지게 거치된 대기 상태로 준비하는 단계; (B) 상기 전기자 모듈을 상기 이송지지부의 제 2 구간을 따라 이송시키며 이송모터모듈에 의해 회동하는 이송벨트에 의해 정격 속도(Vr)로 가속하는 단계; 및 (C) 상기 이송지지부의 제 3 구간에서 상기 전기자 모듈을 자동제동하는 단계;를 포함한다.
본 발명의 다른 실시예에 따른 초전도 코일의 U자형 특성 평가 장치의 특성 평가 방법에서 상기 (B) 단계는 상부에 구비된 두 개의 롤러와 함께 상기 이송모터모듈에 의해 회동하는 상기 이송벨트에 의해 정격 속도(Vr)로 가속되는 것을 특징으로 한다.
본 발명의 다른 실시예에 따른 초전도 코일의 U자형 특성 평가 장치의 특성 평가 방법에서 상기 (B) 단계는 상기 전기자 모듈이 상기 제 2 구간의 아래에 구비된 피검체 모듈을 정격 속도(Vr)로 교차함에 따라 피검체 초전도 코일에서 발생된 전자기력 토크를 측정하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따른 초전도 코일의 U자형 특성 평가 장치의 특성 평가 방법에서 상기 (C) 단계는 상기 이송지지부의 제 3 구간이 상기 제 1 구간의 경사각보다 큰 각도를 갖는 제동 경사각(θ에 의해 자동제동하는 것을 특징으로 한다.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고, 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다.
본 발명의 초전도 코일의 U자형 특성 평가 장치에 따르면, 이송모터 및 체인을 이용하여 전기자를 이송시킴으로써 전기자의 이동구간을 감소시켜 장치 규모를 최소화 할 수 있다.
본 발명의 초전도 코일의 U자형 특성 평가 장치에 따르면, 피검체 초전도 코일의 성능 검사, 손상여부 및 파라미터를 파악할 수 있다.
본 발명의 초전도 코일의 U자형 특성 평가 장치에 따르면, 전기자 토크 및 발전기 2 Pole에 해당하는 출력 파형을 통해 발전기 설계 결과를 검증할 수 있다.
또한, 본 발명의 초전도 코일의 U자형 특성 평가 장치에 따르면 전체 시스템을 만들지 않고도 설계된 초전도 코일 각각에 대한 설계의 검증이 가능하게 되며, 이로 인한 제작 시간 및 개발 비용을 감축할 수 있다.
따라서, 본 발명에서는 설계된 초전도 모터 또는 발전기의 전체 시스템을 제작하기 전에, 설계된 모터의 부분 모듈과 실제 초전도 모터가 운전되는 환경을 모의하는 장치를 이용하여, 설계된 초전도 모터의 설계 검증 및 특성 파라미터를 확보할 수 있는 U자형 특성 평가장치를 제공할 수 있다.
도 1은 초전도 코일을 포함한 초전도 회전기를 나타낸 것이다.
도 2는 본 발명의 실시예들에 따른 피검체 초전도 코일 및 전기자 모듈 간의 구조를 설명하기 위한 개념도이다.
도 3은 본 발명의 실시예들에 따른 피검체 초전도 코일 및 전기자 모듈 간의 동작을 설명하기 위한 개념도이다.
도 4는 본 발명의 실시예들에 따른 U자형 특성 평가 장치의 피검체 모듈을 구체적으로 도시한 것이다.
도 5는 본 발명의 일 실시예에 따른 초전도 코일의 특성 평가 장치의 작동 초기 상태를 도시한 것이다.
도 6은 본 발명의 일 실시예에 따른 초전도 코일의 U자형 특성 평가 장치의 작동 중간 상태를 도시한 것이다.
도 7은 본 발명의 일 실시예에 따른 초전도 코일의 U자형 특성 평가 장치의 전기자 형상 및 모터 벨트를 도시한 것이다.
이하, 도면을 참조하여 본 발명을 실시하기 위한 구체적인 내용을 실시 예에 기초하여 설명한다. 이들 실시 예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시 예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시 예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시 예로 구현될 수 있다. 또한, 각각의 개시된 실시 예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는 적절하게 설명된다면 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있는 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백히 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 초전도 회전기의 초전도 코일이 아닌 테스트용으로 설계가 확보된 초전도 코일은 피검체 초전도 코일이라고 지칭한다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시 예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 2는 본 발명의 실시예들에 따른 피검체 초전도 코일 및 전기자 모듈 간의 구조를 설명하기 위한 개념도이고, 도 3은 본 발명의 실시예들에 따른 피검체 초전도 코일 및 전기자 모듈 간의 동작을 설명하기 위한 개념도이다.
본 발명에서는 도 1에 도시된 것과 같은 초전도 회전기의 전체 시스템을 제작하기 전에, 설계된 초전도 코일의 부분 모듈과 실제 초전도 회전기가 운전되는 환경을 모의하는 U자형 특성 평가 장치를 이용하여, 설계된 초전도 모터의 성능 검증 및 특성 파라미터를 확보할 수 있다.
도 2를 참고하면, 초전도 회전기에 사용되는 초전도 코일을 테스트용으로 설계한 피검체 초전도 코일을 나타낸 것이다.
피검체 초전도 코일(410)은 일 실시예로 설계 결과가 확보된 초전도 회전기의 3 Pole에 해당하는 초전도 코일이다. 피검체 초전도 코일(410)은 일 예로 레이스 트랙 형상으로 구현될 수 있으나 형상이 이에 한정되는 것은 아니고, 초전도 회전기에 수용되는 실제 형상이면 다른 형태로도 구현 가능하다. 피검체 초전도 코일(410)은 3 Pole로 구현하기 위하여 3개의 레이스 트랙 형상 초전도 코일을 포함할 수 있고, 성능 평가 조건에 따라 1 Pole 또는 2 Pole 등으로도 구현 가능하다.
본 발명의 특성 평가 장치는 피검체 초전도 코일(410)의 성능을 확인하기 위해 교차하는 전기자 모듈(210)을 포함할 수 있다. 테스트용 전기자 모듈(210)은 도 1에 도시된 초전도 회전기의 전기자 형태와 유사하다.
전기자 모듈(210)은 고정자(211), 전기자 코일(213) 및 자기차폐층(215)을 포함한다. 전기자 코일(213)은 피검체 초전도 코일과 대면하는 고정자의 일면에 소정의 등간격으로 삽입 배열되며, 자기차폐층(215)는 피검체 초전도 코일과 대면하지 않는 고정자의 타면을 둘러싸도록 형성된다.
도 3에 도시된 바와 같은 3 Pole에 해당하는 초전도 코일은 설계 결과가 확보된 초전도 회전기의 1 Pole에 해당하는 제1 초전도 코일 및 상기 제1 초전도 코일의 양측에 이웃하여 위치하고 설계결과가 확보된 초전도 회전기의 2 Pole에 해당하는 두 개의 제2 초전도 코일을 포함한다.
전기자 모듈(210)은 피검체 초전도 코일(410)로부터 소정거리만큼 이격되어, 피검체 초전도 코일(410)들의 일면과 평행한 방향으로 정격 속도로 교차하며 이동한다. 이때 정격 속도는 실제 초전도 회전기가 운전되는 환경에서의 속도로서 설정된 것이다.
따라서 전기자 모듈(210)이 정격 속도로 피검체 초전도 코일 위로 움직이면, 제1 초전도 코일에서는 제1 방향으로 N극의 전자기력 토크가, 제2 초전도 코일에서는 제2 방향으로 S극의 전자기력 토크가 발생한다.
본 발명의 U자형 성능 평가 장치는 전기자 모듈(210)이 피검체 초전도 코일(410)과 교차하면서 발생하는 전자기력 토크를 감지하여, 피검체 초전도 코일(410)의 손상 유무를 가시적으로 판단할 수 있다.
도 4는 본 발명의 실시예들에 따른 U자형 수평형 특성 평가 장치의 피검체 모듈을 구체적으로 도시한 것이다.
도 4를 참고하면, 피검체 모듈(400)은 피검체 초전도 코일(410), 크라이오스탯(420), 냉각 플레이트(431), 절연 플레이트(432) 및 피검체 지지부(440)를 포함한다.
피검체 초전도 코일(410)은 성능 평가 환경에 따라 적어도 하나 이상의 초전도 코일을 포함할 수 있다. 도 4에 도시된 실시예에서는 3 Pole 성능 평가를 위해 3개의 초전도 코일(411,412,413)을 포함하고, 각 초전도 코일(411,412,413)은 소정 간격으로 이격되어 일 평면상에 배열된다.
냉각 플레이트(431)는 피검체 초전도 코일을 냉각하기 위한 것으로 피검체 초전도 코일(411,412,413) 하단에 배치된다. 구체적으로 도시하지는 않았으나 냉매가 공급되는 구조가 더 포함될 수 있다.
크라이오스탯(420)은 피검체 초전도 코일(410)을 진공상태로 수용하면서 별도의 냉각 시스템을 이용하여 극저온으로 피검체 초전도 코일을 냉각시킨다.
절연 플레이트(432)는 크라이오스탯(420)과 냉각 플레이트(431) 사이에 위치하여, 외부로부터의 열 전달을 차단한다.
피검체 지지부(440)는 피검체 모듈부(400)를 피검체 안착용 홈부(510)의 하면으로부터 소정의 높이에서 지지한다.
도 5는 본 발명의 일 실시예에 따른 초전도 코일의 U자형 특성 평가 장치의 작동 초기 상태를 도시한 것이다. 도 6은 본 발명의 일 실시예에 따른 초전도 코일의 U자형 특성 평가 장치의 작동 중간 상태를 도시한 것이다. 도 7은 본 발명의 일 실시예에 따른 초전도 코일의 U자형 특성 평가 장치의 전기자 형상 및 모터 벨트를 도시한 것이다.
먼저 도 5를 참고하여 본 발명의 초전도 코일의 U자형 특성 평가 장치(1000)의 구조를 설명하면, 상부에 두 개의 롤러(111, 112)와 함께 이송벨트(120)를 구동하는 이송모터모듈(100), 하부의 거치대(500), 거치대(500)의 상부면에 구비된 이송부, 이송부에 거치되어 슬라이딩되는 전기자 모듈(210) 및 거치대(500)의 안착용 홈부(510)에 장착된 피검체 모듈(400)을 포함한다.
구체적으로, 이송모터모듈(100)은 거치대(500)로부터 이격하여 상부에 구비되고, 이송부에 평행하게 배열된 두 개의 롤러(111, 112)와 함께 이송벨트(120)를 회동하도록 동작한다.
이송벨트(120)는 도 7에 도시된 바와 같이 외부면에 다수의 요철을 갖는 벨트 형태로서, 이러한 요철 외부면이 전기자 모듈(210)의 상부면 요철과 맞물려 전기자 모듈(210)을 이송시킬 수 있다.
이러한 두 개의 롤러(111, 112)와 함께 이송벨트(120)를 구동하는 이송모터모듈(100)의 동작에 의해 초전도 회전기의 각속도와 반지름에 기초하여 설정되는 선속도, 즉 정격 속도(Vr)로 전기자 모듈(210)을 이송하도록 이송벨트(120)를 감아 회동한다.
거치대(500)는 이송부 및 피검체 모듈(400)을 거치하기 위한 것으로, 거치대 상판 중간에 피검체 안착용 홈부(510)를 포함한다.
피검체 안착용 홈부(510)는 거치대(500) 상판에 소정의 깊이로 오목하게 형성되는 구조로, 예컨대 거치대 상판 중앙에 형성된다. 이때, 피검체 안착용 홈부(510)는 피검체 모듈(400)을 수용하기 위한 공간으로, 피검체 모듈의 면적보다 넓고 피검체 모듈의 높이보다 깊게 형성될 수 있다.
이송부는 전기자 모듈(210)이 거치대(500) 상에서 안정적으로 이송되도록, 이송지지부(310) 및 바퀴(320)를 포함한다.
이송지지부(310)는 상면에 가이드 레일을 포함하고, 하면은 거치대 상판으로부터 경사각도 또는 높이를 갖고 이격되어 배치될 수 있다. 이때, 이송지지부(310)는 소정의 경사각을 갖고 전기자 모듈(210)을 초기에 거치하는 제 1 구간(311), 제 1 구간(311)에 수평으로 연결되고 거치대(500)에 평행한 제 2 구간(312) 및 제동 경사각(θ을 갖고 제 2 구간(312)에 경사지게 연결된 제 3 구간(313)을 포함하여 전체적으로 U자 형태로 구비된다.
이러한 이송지지부(310)의 제 2 구간(312)은 피검체 초전도 코일과 전기자 모듈(210) 간에 전자기력 토크가 발생하는 설정 범위 내의 높이로 이격되어 평행하게 배치될 수 있다. 이러한 제 2 구간(312)에서 도 6에 도시된 바와 같이 전기자 모듈(210)이 이송벨트(120)에 의해 가속되어 정격 속도(Vr)로 이송된다.
제 3 구간(313)은 제 1 구간(311)의 경사각보다 큰 각도의 제동 경사각(θ을 갖고 경사지게 구비되어, 전기자 모듈(210)이 제 2 구간(312)을 거친 후에 제 3 구간(313)에서 중력과 제동 경사각(θ에 의해 스스로 제동된다.
이때, 제동 경사각(θ은 전기자 모듈(210)의 초기 속도(Vo), 정격 속도(Vr) 및 제 3 구간(313)의 길이(L)에 따라 설정될 수 있다.
즉, 도 5에 도시된 바와 같이 전기자 모듈(210)이 제 1 구간(311)을 통과하는 초기 속도(Vo)의 운동에너지와 제 2 구간(312)을 통과하는 정격 속도(Vr)의 운동에너지의 합이 제 3 구간(313)에서 전기자 모듈(210)이 제동된 상태의 위치에너지가 된다.
이를 아래의 [수학식 1]로 나타낼 수 있다.
Figure PCTKR2019007334-appb-img-000001
(m은 전기자 모듈(210)의 질량, V o는 초기 속도, V r은 정격 속도, H는 제동된 상태의 높이)
이때, 정격 속도(V r)는 이송모터모듈(100)의 모터에 의해 발생한 회전속도이므로 모터의 회전반경(r)과 각속도(w)에 의해 V r = rw 이고, 전기자 모듈(210)이 제동된 상태의 높이(H)는 제 3 구간(313)의 길이(L)와 제동 경사각(θ)에 의해 L Sinθ로 나타낼 수 있으므로, 아래의 [수학식 2]로 변환된다.
Figure PCTKR2019007334-appb-img-000002
이를 제동 경사각(θ)에 관한 식으로 정리하면, 아래의 [수학식 3]으로 정리할 수 있다.
Figure PCTKR2019007334-appb-img-000003
따라서, 제 3 구간(313)은 [수학식 3]의 제동 경사각(θ) 이상으로 경사지게 구비되어, 전기자 모듈(210)이 제 3 구간(313)에서 정지되도록 하는 것이 바람직하다.
바퀴(320)는 전기자 모듈(210)의 하부에 장착되어, 이송지지부(310)의 가이드 레일과 맞물릴 수 있다. 일 실시예로 가이드 레일은 바퀴(320)를 상하로 감싸는 형태로 구현될 수도 있고, 다른 실시예로 전기자 모듈(210)이 이탈하지 않도록 바퀴(320)와 가이드 레일이 각각 톱니 모양으로 서로 맞물리는 형태로 구현될 수도 있다.
도시하지는 않았으나 다른 실시예로 이송부는 전기자 모듈 지지부를 더 포함할 수 있다. 전기자 모듈 지지부는 전기자 모듈(210)을 바퀴에 고정적으로 지지하기 위한 것으로, 다양한 형태로 구현 가능하다. 일 예로 전기자 모듈 양측단을 고정하는 구조일 수도 있고, 다른 예로 전기자 모듈 하면에 위치하여 고정하되 전기자가 위치한 부분은 일정면적 뚫려있는 프레임 형태의 구조일 수도 있다.
피검체 모듈(400)은 피검체 초전도 코일(411,412,413), 크라이오스탯(420), 냉각 플레이트(430), 절연 플레이트(440) 및 피검체 지지부(450)를 포함한다.
피검체 초전도 코일(411,412,413)은 도 4에서 설명한 바와 같이 적어도 하나의 초전도 코일을 포함한다. 초전도 코일 사이는 초전도 발전기의 회전자와 동일한 간격으로 배치될 수 있다. 도시된 바와 같은 3 Pole에 해당하는 초전도 코일은 설계 결과가 확보된 초전도 회전기의 1 Pole에 해당하는 제 1 초전도 코일 및 제 1 초전도 코일의 양측에 이웃하여 위치하고 설계결과가 확보된 초전도 회전기의 2 Pole에 해당하는 두 개의 제 2 초전도 코일을 포함한다.
일 실시예에 따라 제 2 초전도 코일은 제 1 초전도 코일과 동일 평면상에 배치될 수도 있고, 다른 실시예에 따라 전체 초전도 발전기의 회전자와 동일한 각도의 곡면상에 동일한 간격으로 배치될 수도 있다.
일 실시예에 따를 경우, 제 1 초전도 코일(412) 및 제 2 초전도 코일(411, 413)은 전기자 모듈(210)과 직접적으로 쇄교하여 각각 동일한 자속을 발생시킨다.
또는, 다른 실시예에 따를 경우 제 1 초전도 코일(412)은 전기자 모듈(210)과 직접적으로 쇄교하여 자속을 발생시키고, 제 2 초전도 코일(411,413)은 제 1 초전도 코일(412)에서 발생되는 자장이 설계값과 동일한 크기의 자장을 발생할 수 있도록 자장의 크기를 보완해주는 역할을 수행할 수 있다.
크라이오스탯(420)은 내부에 진공환경을 구성하여 대류 및 복사에 의한 열 전달을 차단하여 냉각 손실을 최소화하기 위해 밀폐된 구조로 구비될 수 있다. 전도냉각의 효율을 최대한 끌어올리기 위하여 진공 용기 내부의 진공도를 10 -5 torr 이하로 유지하는 것이 바람직하며, MLI(Multi layer insultion)를 이용하여 내부의 대류 및 복사에 의한 열전달을 차단하는 것이 바람직하다.
냉각 플레이트(430)는 피검체 초전도 코일(410)을 냉각시키기 위한 것이다. 이때, 냉각 플레이트(430)는 별도의 냉각 시스템으로부터 저온의 냉매를 공급받아, 내부에 설치된 냉매 배관을 따라 순환시키고 다시 냉각 시스템으로 유입시켜 재응축되게 하며, 다시 냉각 플레이트로 재유입되게 한다.
절연 플레이트(440)는 극저온으로 냉각된 냉각플레이트(430)가 피검체 초전도 코일 외에 크라이오스탯(420)을 냉각시키는 것을 방지하기 위해, 냉각 플레이트(430)와 크라이오스탯(420) 사이에 위치할 수 있다.
피검체 모듈 지지부(450)는 피검체 모듈부를 피검체 안착용 홈부(510)에 안정적으로 지지하기 위한 것으로, 피검체 안착용 홈부(510)의 저면으로부터 소정의 높이에 피검체 모듈(400)이 위치할 수 있도록 하는 지지플레이트 및 지지기둥부 등을 포함한다. 이러한 피검체 모듈 지지부(450)는 피검체 초전도 코일과 전기자 모듈이 설계된 초전도 회전기의 공극만큼 이격되어 있도록 지지한다.
이때, 지지기둥부는 일 실시예에 따라 고정된 높이의 기둥 구조로 구현될 수도 있고, 다른 실시예에 따라 피검체 초전도 코일과 전기자 모듈간 이격 거리 조절을 위해 높이 조절이 가능한 구조로 구현될 수도 있다.
<구동 방법>
도 5 내지 도 7을 참고하여 본 발명의 실시예에 따른 초전도 코일의 U자형 특성 평가 장치의 구동을 설명하면 다음과 같다.
구동 초기 상태에는 도 5에서처럼 전기자 모듈(210)이 이송지지부(310)의 제 1 구간(311)에 경사지게 거치된 대기 상태로 준비된다. 이때, 전기자 모듈(210)은 제 1 구간(311)의 경사진 형태에 의해 아래로 슬라이딩되어 초기 속도(V o)로 제 1 구간(311)을 통과한다.
초기 속도(V o)로 제 1 구간(311)을 통과한 전기자 모듈(210)은 도 6에서처럼 제 2 구간(312)을 슬라이딩하면서 상부에 구비된 두 개의 롤러(111,112)와 함께 이송모터모듈(100)에 의해 회동하는 이송벨트(120)에 의해 정격 속도(V r)로 가속되어 이송된다.
이때, 전기자 모듈(210)의 정격 속도(V r)는 설계된 초전도 회전기의 각속도와 반지름에 기초하여 설정되는 선속도에 해당하고, 이를 위해 이송모터모듈(100)은 설계된 초전도 회전자의 정격 속도(V r)에 대응하는 소정의 각가속도로 구동되고 이송벨트(120)로 전달하여, 전기자 모듈(210)이 피검체 안착용 홈부(510)의 위를 지나갈 때 정격 속도(V r)로 이송되도록 한다.
전기자 모듈(210)이 피검체 모듈(400)을 정격 속도(V r)로 교차하면, 피검체 초전도 코일에서 발생된 전자기력 토크를 측정하여, 피검체 초전도 코일(411,412,413)의 성능, 손상여부 및 파라미터를 파악할 수 있다.
이어서, 정격 속도(V r)로 제 2 구간(312)을 통과한 전기자 모듈(210)은 제 3 구간(313)으로 진입하면서 제동 경사각(θ) 이상으로 경사진 형태에 의해 제 3 구간(313)에서 속도가 줄고 정지되는 제동상태가 될 수 있다.
이에 따라 전기자 모듈(210)을 제동시키기 위한 별도의 장치를 구비할 필요가 없고, 제동시키기 위해 전기자 모듈(210)을 손상시킬 염려도 없다.
그러므로 본 발명의 초전도 코일의 U자형 특성 평가 장치에 따르면, 이송모터 및 이송벨트를 이용하여 전기자를 이송시킴으로써 전기자 모듈(210)의 이동구간을 감소시켜 장치 규모를 최소화 할 수 있다.
본 발명의 초전도 코일의 U자형 특성 평가 장치에 따르면, 전기자 토크 및 발전기 2 Pole에 해당하는 출력 파형을 통해 발전기 설계 결과를 검증할 수 있다.
또한, 본 발명의 초전도 코일의 U자형 특성 평가 장치에 따르면 전체 시스템을 만들지 않고도 설계된 초전도 코일 각각에 대한 설계의 검증이 가능하게 되며, 이로 인한 제작 시간 및 개발 비용을 감축할 수 있다.
따라서, 본 발명에서는 설계된 초전도 모터 또는 발전기의 전체 시스템을 제작하기 전에, 설계된 모터의 부분 모듈과 실제 초전도 모터가 운전되는 환경을 모의하는 장치를 이용하여, 설계된 초전도 모터의 설계 검증 및 특성 파라메터를 확보할 수 있는 U자형 특성 평가장치를 제공할 수 있다.
본 발명의 기술사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 전술한 실시예들은 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다.
또한, 본 발명의 기술분야의 통상의 전문가라면 본 발명의 기술사상의 범위 내에서 다양한 실시가 가능함을 이해할 수 있을 것이다.

Claims (9)

  1. 상부에 이송벨트를 구동하는 이송모터모듈;
    하부의 거치대;
    상기 거치대의 상부면에 구비된 이송부;
    상기 이송부에 거치되어 슬라이딩되는 전기자 모듈; 및
    상기 거치대의 안착용 홈부에 장착된 피검체 모듈;
    을 포함하는 초전도 코일의 U자형 특성 평가 장치.
  2. 제 1 항에 있어서, 상기 이송부는
    상기 거치대로부터 이격되어 U자 형태로 배치되고 상면에 가이드 레일을 구비한 이송 지지부; 및
    상기 전기자 모듈의 하부에 장착되고, 상기 가이드 레일과 결합되는 바퀴;
    를 더 포함하는 것을 특징으로 하는 초전도 코일의 U자형 특성 평가 장치.
  3. 제 2 항에 있어서, 상기 이송 지지부는
    소정의 경사각을 갖고 상기 전기자 모듈을 초기에 거치하는 제 1 구간;
    상기 제 1 구간에 수평으로 연결되고 상기 거치대에 평행한 제 2 구간; 및
    상기 제 1 구간에 대칭하고, 제동 경사각(θ)을 가지며 상기 제 2 구간에 경사지게 연결된 제 3 구간;
    을 포함하는 것을 특징으로 하는 초전도 코일의 U자형 특성 평가 장치.
  4. 제 1 항에 있어서, 상기 이송벨트는 상기 전기자 모듈의 상부면 요철과 맞물리는 요철 외부면을 갖는 것을 특징으로 하는 초전도 코일의 U자형 특성 평가 장치.
  5. 제 3 항에 있어서, 상기 제동 경사각(θ)은 상기 제 1 구간의 경사각보다 큰 각도를 갖는 것을 특징으로 하는 초전도 코일의 U자형 특성 평가 장치.
  6. (A) 전기자 모듈을 이송지지부의 제 1 구간에 경사지게 거치된 대기 상태로 준비하는 단계;
    (B) 상기 전기자 모듈을 상기 이송지지부의 제 2 구간을 따라 이송시키며 이송모터모듈에 의해 회동하는 이송벨트에 의해 정격 속도(V r)로 가속하는 단계; 및
    (C) 상기 이송지지부의 제 3 구간에서 상기 전기자 모듈을 자동제동하는 단계;
    를 포함하는 초전도 코일의 U자형 특성 평가 장치의 특성 평가 방법.
  7. 제 6 항에 있어서, 상기 (B) 단계는 상부에 구비된 두 개의 롤러와 함께 상기 이송모터모듈에 의해 회동하는 상기 이송벨트에 의해 정격 속도(V r)로 가속되는 것을 특징으로 하는 초전도 코일의 U자형 특성 평가 장치의 특성 평가 방법.
  8. 제 6 항에 있어서, 상기 (B) 단계는 상기 전기자 모듈이 상기 제 2 구간의 아래에 구비된 피검체 모듈을 정격 속도(V r)로 교차함에 따라 피검체 초전도 코일에서 발생된 전자기력 토크를 측정하는 것을 특징으로 하는 초전도 코일의 U자형 특성 평가 장치의 특성 평가 방법.
  9. 제 6 항에 있어서, 상기 (C) 단계는 상기 이송지지부의 제 3 구간이 상기 제 1 구간의 경사각보다 큰 각도를 갖는 제동 경사각(θ)에 의해 자동제동하는 것을 특징으로 하는 초전도 코일의 U자형 특성 평가 장치의 특성 평가 방법.
PCT/KR2019/007334 2019-01-25 2019-06-18 초전도 코일의 u자형 특성 평가 장치 및 이를 이용한 특성 평가 방법 WO2020153547A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0009749 2019-01-25
KR1020190009749A KR102123756B1 (ko) 2019-01-25 2019-01-25 초전도 코일의 u자형 특성 평가 장치 및 이를 이용한 특성 평가 방법

Publications (1)

Publication Number Publication Date
WO2020153547A1 true WO2020153547A1 (ko) 2020-07-30

Family

ID=71141474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007334 WO2020153547A1 (ko) 2019-01-25 2019-06-18 초전도 코일의 u자형 특성 평가 장치 및 이를 이용한 특성 평가 방법

Country Status (2)

Country Link
KR (1) KR102123756B1 (ko)
WO (1) WO2020153547A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102321013B1 (ko) * 2020-09-10 2021-11-02 창원대학교 산학협력단 전기자 및 이를 포함하는 초전도 코일의 특성 평가 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609190B2 (ja) * 1979-05-08 1985-03-08 株式会社ナカ技術研究所 床下収納装置
KR101420733B1 (ko) * 2013-02-27 2014-07-22 창원대학교 산학협력단 초전도 코일의 특성 평가 장치
KR101420732B1 (ko) * 2013-02-27 2014-07-22 창원대학교 산학협력단 초전도 코일의 특성 평가 장치
KR101428377B1 (ko) * 2013-04-04 2014-08-08 주식회사 포스코 초전도 코일 시험 장치
KR101447856B1 (ko) * 2014-07-07 2014-10-13 도숙이 엠디에프 패널 마이크로 엠보싱 패턴 성형장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609190B2 (ja) * 1996-03-01 2005-01-12 株式会社四国総合研究所 超電導体の特性測定方法及び超電導体の特性測定装置
KR20180057326A (ko) * 2016-11-22 2018-05-30 한국산업기술시험원 엘리베이터 조속기 및 비상정지장치 연동 시험장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609190B2 (ja) * 1979-05-08 1985-03-08 株式会社ナカ技術研究所 床下収納装置
KR101420733B1 (ko) * 2013-02-27 2014-07-22 창원대학교 산학협력단 초전도 코일의 특성 평가 장치
KR101420732B1 (ko) * 2013-02-27 2014-07-22 창원대학교 산학협력단 초전도 코일의 특성 평가 장치
KR101428377B1 (ko) * 2013-04-04 2014-08-08 주식회사 포스코 초전도 코일 시험 장치
KR101447856B1 (ko) * 2014-07-07 2014-10-13 도숙이 엠디에프 패널 마이크로 엠보싱 패턴 성형장치

Also Published As

Publication number Publication date
KR102123756B1 (ko) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2011087209A2 (ko) 초전도 전력저장 장치용 코일 보빈
KR101420732B1 (ko) 초전도 코일의 특성 평가 장치
WO2020153547A1 (ko) 초전도 코일의 u자형 특성 평가 장치 및 이를 이용한 특성 평가 방법
WO2011081299A2 (ko) 저잡음 냉각장치
Zangenberg et al. Conduction cooled high temperature superconducting dipole magnet for accelerator applications
WO2019103253A1 (ko) 고온초전도 회전기용 초전도 코일의 성능평가 장치 및 상기 장치에 의한 초전도 코일의 성능평가 방법
WO2016143975A1 (ko) 이동형 철심을 이용한 초전도 자석 장치 및 그의 유도가열장치
WO2020138583A1 (ko) 자기부상 회전체를 포함하는 축방향 모터
WO2020153549A1 (ko) 초전도 코일의 수직형 특성 평가 장치 및 이를 이용한 특성 평가 방법
WO2014104615A1 (ko) 플라즈마 장치 및 기판 처리 장치
WO2020153548A1 (ko) 초전도 코일의 수평형 특성 평가 장치 및 이를 이용한 특성 평가 방법
WO2023113261A1 (ko) 자기부상 회전 장치 및 이를 이용하는 기판 처리 장치
CN111403102A (zh) 一种具有高散热效率的超导导体支架
Kameno et al. A measurement of rotation loss characteristics of high-Tc superconducting magnetic bearings and active magnetic bearings
WO2023136551A1 (ko) 동력 코일 및 이를 포함하는 자기장차 동력장치
WO2017217621A1 (ko) 자기장 변위를 이용한 초전도 직류 유도가열 장치
WO2022169306A1 (ko) 안테나 모듈, 무선 전력 전송 시스템 및 휴대 단말용 케이스
Bykovskiy et al. Design of the BabyIAXO superconducting detector magnet
WO2022080599A1 (ko) 개인용 이동수단을 위한 충전장치
KR101420733B1 (ko) 초전도 코일의 특성 평가 장치
WO2020013606A1 (ko) 중력을 회전운동 모드로 변경하여 전기를 발생시키는 발전 장치
Zbanik et al. ALS superbend magnet system
WO2020111690A1 (ko) 멀티 프로버용 척 조립체 및 채널
JP2560561B2 (ja) 超電導コイル装置
WO2020189939A1 (ko) 모듈형 초경량 dc발전기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911502

Country of ref document: EP

Kind code of ref document: A1