WO2017217621A1 - 자기장 변위를 이용한 초전도 직류 유도가열 장치 - Google Patents
자기장 변위를 이용한 초전도 직류 유도가열 장치 Download PDFInfo
- Publication number
- WO2017217621A1 WO2017217621A1 PCT/KR2016/014466 KR2016014466W WO2017217621A1 WO 2017217621 A1 WO2017217621 A1 WO 2017217621A1 KR 2016014466 W KR2016014466 W KR 2016014466W WO 2017217621 A1 WO2017217621 A1 WO 2017217621A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- superconducting
- direct current
- angle
- shape
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
- H05B6/365—Coil arrangements using supplementary conductive or ferromagnetic pieces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/101—Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
- H05B6/40—Establishing desired heat distribution, e.g. to heat particular parts of workpieces
Definitions
- the present invention relates to a superconducting direct current induction heating apparatus using a magnetic field displacement, and more particularly, by forming an angle in the longitudinal direction in a shape in which the superconducting magnet faces the member to be heated, thereby increasing the magnetic field displacement according to the angle in the longitudinal direction.
- a superconducting direct current induction heating apparatus using magnetic field displacement which can be induced to a member to be heated.
- Superconductors are devices whose electrical resistance is zero at cryogenic temperatures. It is already used in a variety of applications because it offers the advantages of high magnetic field, low loss and miniaturization compared to conventional copper (cu) conductors.
- Superconducting magnets are magnets made from such superconductors. Superconducting magnets are used in MRI, NMR, particle accelerators and magnetic separators to improve efficiency and performance. In addition, applications such as power cables, superconducting transformers, superconducting motors, and the like have been continuously studied throughout the industry. One of the applications is in the steel industry. In the steel industry, research and development on large-capacity induction heating apparatus is active.
- Heating methods for induction heating apparatus can be divided into AC induction heating and DC induction heating.
- AC induction heating is a method of applying AC current to a copper magnet to generate a time-varying magnetic field.
- the total energy efficiency of the system is only about 50 to 60% due to the heat generated by the resistance of the copper magnet. Therefore, superconducting magnets are sometimes used instead of copper magnets. This is to improve the energy conversion efficiency.
- the superconducting wire which is a material of a totally superconducting magnet, has a disadvantage in that magnetization loss occurs under energization of an alternating current. This means that cooling is necessary to maintain the superconducting state in the cryogenic operating environment. Therefore, there is a problem that the operating cost increases with the installation cost of the cooling system.
- DC induction heating is a method of generating a uniform magnetic field by applying a DC current to the superconducting magnet and forcibly rotating the product by a motor in the magnetic field and heating it.
- the DC induction heating has the advantage of using the DC current to improve the overall system efficiency of the induction heating apparatus by more than 90% without generating heat loss of the superconducting magnet.
- energy is transferred in proportion to the square of the magnetic field generated from the superconducting magnet, the heating time for the product to be heated may be shortened, thereby improving productivity.
- the DC induction heating method is applied to a lot of induction heating device, and a racetrack type superconducting magnet is used as a superconducting magnet for DC induction heating method.
- 1 is an explanatory diagram for explaining a conventional race track type superconducting magnet.
- the heating target product 1 is located in the center, and the superconducting magnet 10 of the race track type shape is located in the side surface of the heating target product 1. As shown in FIG.
- the superconducting magnets 10 are provided in pairs so as to be symmetrical with each other on the side of the product to be heated 1.
- the heating target product 1 and the superconducting magnet 10 rotate the heating target product 1 in a state of being stored in a cryogenic container and acquire a magnetic field by supplying a DC current to the superconducting magnet 10.
- the conventional direct current induction heating apparatus using a superconducting magnet maintains the same interval as that of the heating target product, which does not satisfy the temperature characteristics of the desired heating target product for each demand company.
- Embodiments of the present invention are superconducting using a magnetic field displacement, which can induce a magnetic field displacement according to the angle in the longitudinal direction to the heating target member by forming an angle in the longitudinal direction in the shape of the superconducting magnet facing the member to be heated.
- An induction heating device is provided.
- Embodiments of the present invention penetrate the inside of the superconducting magnet, the end portion facing the heating object is formed in the longitudinal direction to induce a magnetic field displacement according to the angle in the longitudinal direction, the length of the heating target member It is to provide a superconducting direct current induction heating apparatus using magnetic field displacement, by adjusting the formed angle so that the magnetic field displacement in the direction is variable, the magnetic field displacement can be easily changed.
- Embodiments of the present invention in the longitudinal direction to the shape that the movable member is opposed to the heating object member through the replacement angle jig is formed at the different angle in the longitudinal direction and attached to the end of the movable member facing the heating object member. It is to provide a superconducting direct current induction heating apparatus using a magnetic field displacement, by forming a different angle of each, can easily change the magnetic field displacement.
- a superconducting magnet is positioned symmetrically with respect to each other by a predetermined distance with respect to a member to be heated, and generates a magnetic field according to an applied direct current;
- a movable member that penetrates the inside of the superconducting magnet and has an angle in the longitudinal direction in a shape of an end portion facing the heating target member to induce a magnetic field displacement according to the angle in the longitudinal direction to the heating target member;
- a superconducting direct current induction heating apparatus using a magnetic field displacement may be provided that is connected to the heating target member through a rotating shaft to rotate the heating member.
- the movable member may have an angle formed such that the magnetic field displacement in the longitudinal direction of the member to be heated is varied.
- the movable member may be adjusted at intervals between the heating target member such that the magnetic field in the longitudinal direction of the heating target member is maximized by moving in a direction facing the heating target member.
- the movable member may be adjusted at an interval from the heating target member such that one side magnetic field in the longitudinal direction of the heating target member is maximized when the driving current value is any one of a predetermined range of operating currents.
- the device is formed at an angle in the longitudinal direction and attached to an end of the movable member facing the heating object member, such that the movable member forms an angle in the longitudinal direction in a shape facing the heating object member. It may further include a replaceable angle jig.
- the apparatus may further include a refrigeration unit including a cooling vessel in which the superconducting magnet is housed, and a freezer for cooling the superconducting magnet housed in the cooling vessel.
- a refrigeration unit including a cooling vessel in which the superconducting magnet is housed, and a freezer for cooling the superconducting magnet housed in the cooling vessel.
- the superconducting magnet may be any one of a circular shape, a race track shape, a square shape, a plate shape, and a trumpet shape.
- a superconducting magnet for generating a magnetic field in accordance with the applied direct current; At least one portion penetrates the inside of the superconducting magnet and has a C shape or an E shape, wherein the heating target member is positioned between the c shapes or the E-shaped ends, and an end shape facing the heating target member.
- a stationary member having an angle formed in the longitudinal direction to guide the magnetic field displacement according to the angle in the longitudinal direction to the heating target member;
- a superconducting direct current induction heating apparatus using a magnetic field displacement may be provided that is connected to the heating target member through a rotating shaft to rotate the heating member.
- the device is formed at an angle in the longitudinal direction and attached to an end of the stationary member facing the heating object member, such that the stationary member forms an angle in the longitudinal direction in a shape facing the heating object member. It may further include a replaceable angle jig.
- the apparatus may further include a refrigeration unit including a cooling vessel in which the superconducting magnet is housed, and a freezer for cooling the superconducting magnet housed in the cooling vessel.
- a refrigeration unit including a cooling vessel in which the superconducting magnet is housed, and a freezer for cooling the superconducting magnet housed in the cooling vessel.
- the superconducting magnet may be any one of a circular shape, a race track shape, a square shape, a plate shape, and a trumpet shape.
- the magnetic field displacement according to the angle in the longitudinal direction may be induced in the heating target member.
- Embodiments of the present invention penetrate the inside of the superconducting magnet, the end portion facing the heating object is formed in the longitudinal direction to induce a magnetic field displacement according to the angle in the longitudinal direction, the length of the heating target member By adjusting the formed angle so that the magnetic field displacement in the direction is variable, the magnetic field displacement can be easily changed.
- Embodiments of the present invention in the longitudinal direction to the shape that the movable member is opposed to the heating object member through the replacement angle jig is formed at the different angle in the longitudinal direction and attached to the end of the movable member facing the heating object member.
- Embodiments of the present invention by varying the magnetic field displacement according to the product desired or desired by the customer, the customer can produce the highest quality extruded products.
- 1 is an explanatory diagram for explaining a conventional race track type superconducting magnet.
- FIG. 2 is an explanatory diagram for explaining a temperature distribution of a metal billet required for a metal extrusion equipment in a demand company.
- 3 and 4 are a block diagram and an internal structure diagram of a superconducting direct current induction heating apparatus using a magnetic field displacement according to the first embodiment of the present invention.
- 5a and 5b is a result of the magnetic field displacement according to the angle change in the superconducting direct current induction heating apparatus according to the first embodiment of the present invention.
- FIG. 6 is a block diagram of a superconducting direct current induction heating apparatus using a magnetic field displacement according to the second embodiment of the present invention.
- 7a and 7b are results of the temperature displacement and the magnetic field displacement of the heating target member according to the angle change in the superconducting direct current induction heating apparatus according to the second embodiment of the present invention.
- FIG. 8 is a structural diagram illustrating a structure in which a replaceable angle jig is attached to a superconducting direct current induction heating apparatus according to a second embodiment of the present invention.
- FIGS. 9 and 10 are structural diagrams illustrating a structure in which a replaceable angle jig is not attached to and attached to a superconducting direct current induction heating apparatus according to a first embodiment of the present invention.
- FIG. 2 is an explanatory diagram for explaining a temperature distribution of a metal billet required for a metal extrusion equipment in a demand company.
- the temperature distribution of the metal billet is determined by the hot temperature at the extrusion inlet of the metallic mold. Must have In addition, the temperature distribution of the metal billet should have a low temperature at the extrusion exit of the extrusion die.
- the superconducting direct current induction heating apparatus used in such a metal extrusion equipment is required to temperature deviation according to the metal length according to the length or diameter of the metal billet to be extruded. Therefore, the superconducting direct current induction heating apparatus using the magnetic field displacement according to an embodiment of the present invention relates to a superconducting direct current induction heating apparatus that can satisfy the temperature deviation according to the length of the metal billet using the magnetic field displacement.
- 3 and 4 are a block diagram and an internal structure diagram of a superconducting direct current induction heating apparatus using a magnetic field displacement according to the first embodiment of the present invention.
- the superconducting direct current induction heating apparatus 100 using the magnetic field displacement according to the first embodiment of the present invention includes a superconducting magnet 110, a movable member 120, and a rotating unit 130.
- the superconducting direct current induction heating apparatus 100 may further include a gripping part 140, a support part 150, and a freezing part 160.
- the first embodiment of the present invention relates to a superconducting direct current induction heating apparatus 100 to which the movable member 120 is applied.
- the superconducting direct current induction heating apparatus 100 refers to a direct current (DC) induction heating apparatus.
- the superconducting direct current induction heating apparatus 100 refers to a device that rotates the heating target member 101 in a uniform magnetic field and heats it to a desired temperature.
- the uniform magnetic field may be obtained when a DC current is supplied to the superconducting magnet, and the greater the magnetic field generated in the superconducting magnet, the greater the energy transfer.
- the magnetic field increases in proportion to the current flowing through the superconducting magnet, the number of turns, and the number of coils, and decreases in inverse proportion to the distance to the heating target member 101. Therefore, the closer the distance between the superconducting magnet and the member to be heated 101 is, the larger the magnetic field can be obtained, and the greater the transferable energy.
- a superconducting element capable of inducing a magnetic field displacement having a predetermined inclination through the movable member 120 in which a predetermined angle is formed or the formed angle is adjusted.
- the superconducting magnets 110 are located symmetrically with respect to each other by a predetermined distance with respect to the member to be heated 101.
- the superconducting magnet 110 generates a magnetic field according to the direct current applied.
- the shape of the superconducting magnet 110 is not limited to the race track shape, but a superconducting magnet having another shape such as a circular shape may be applied.
- the superconducting magnet 110 may be any one of a circular shape, a race track shape, a square shape, a plate shape, and a trumpet shape, and is not limited to a specific shape.
- the movable member 120 penetrates the inside of the superconducting magnet 110, and an angle in the longitudinal direction is formed in the shape of the end portion facing the heating target member 101, thereby converting the magnetic field displacement according to the angle in the longitudinal direction.
- Guide member 101 is guided.
- the movable member 120 moves in a direction facing the heating target member 101 while penetrating the inside of the superconducting magnet 110. Accordingly, the movable member 120 induces the generated magnetic field to the member to be heated 101.
- the movable member 120 may be made of a metal iron core.
- the formed angle of the movable member 120 may be adjusted so that the magnetic field displacement in the longitudinal direction of the member to be heated 101 is varied.
- the movable member 120 may be adjusted at a distance from the heating target member 101 such that the magnetic field of one side of the heating target member 101 is maximized by moving in a direction facing the heating target member 101.
- the superconducting direct current induction heating apparatus 100 may further include an angle adjusting unit for adjusting a distance between the heating target member 101 and the movable member 120 and the angle in the longitudinal direction of the heating target member 101.
- the movable member 120 may have an angle in the longitudinal direction in the shape of the end portion facing the heating target member 101 or may be horizontal with the heating target member 101 because the angle is not formed.
- the angle adjusting unit may move the movable member 120 that is horizontal with the heating target member 101 to adjust the angle with the heating target member 101 within a preset angle range.
- the angle adjuster may bring one side of the first and second movable members 121 and 122 facing each other into the heating object member 101 and separate the other side from the heating object member 101.
- the angle adjuster may form an angle between the heating target member 101 and the movable member 120.
- the angle adjusting unit may adjust the angle to a target angle in consideration of the predetermined angle.
- the rotating unit 130 is connected to the heating target member 101 through the rotation shaft to rotate the heating target member 101.
- the holding unit 140 grips the rotating shaft so that the heating target member 101 is rotated through the rotating shaft.
- the support unit 150 supports the superconducting direct current induction heating apparatus 100 through a support structure respectively connected to the movable member 120.
- the general direct current induction furnace is made of a material that is not magnetized, while the support 150 according to the embodiment of the present invention may be made of a material that is magnetized, that is, magnetic.
- the freezing unit 160 is composed of a cooling vessel and a freezer.
- the superconducting magnet 110 is housed therein in the cooling vessel.
- the freezer cools the superconducting magnet 110 contained in the cooling vessel.
- the superconducting magnet 110 includes first and second superconducting magnets 111 and 112.
- the superconducting magnet 110 of the superconducting direct current induction heating apparatus 100 includes a pair of superconducting magnets.
- the superconducting magnet 110 is of race track type shape.
- the type of superconducting magnet 110 may be applied to the superconducting magnet formed in a circular shape, etc. in addition to the race track shape as described above.
- the pair of superconducting magnets 110 will be described as a first superconducting magnet 111 and a second superconducting magnet 112.
- the first superconducting magnet 111 and the second superconducting magnet 112 are positioned at a predetermined distance apart.
- the first and second superconducting magnets 111 and 112 are symmetrically positioned with respect to the heating target member 101 by a predetermined distance.
- the heating object member 101 is positioned between the first superconducting magnet 111 and the second superconducting magnet 112.
- the member to be heated 101 may be made of a metal such as aluminum or copper as a nonmagnetic material. According to the embodiment, the heating object member 101 is formed in a cylindrical shape and may be described as a metal billet.
- the movable member 120 is composed of the first and second movable members 121 and 122.
- the first and second movable members 121 and 122 penetrate the insides of the first and second superconducting magnets 111 and 112, respectively, and have an angle in the longitudinal direction to the end shape facing the member to be heated 101. Formed.
- the first and second movable members 121 and 122 move in a direction facing the heating target member 101.
- the movable member 120 is provided symmetrically with respect to the heating object member 101.
- the movable member 120 is also provided as a pair, and the first movable member 121 is disposed on the side of the first superconducting magnet 111 and the second movable member 122 is positioned on the side of the second superconducting magnet 112. do.
- the first movable member 121 and the second movable member 122 are formed in the same shape and size as each other, and in the embodiment, it is exemplified that the first movable member 121 and the second movable member 122 are formed of a hexahedron having an angle in the longitudinal direction.
- the first movable member 121 and the second movable member 122 are positioned symmetrically with each other with the heating target member 101 at the center. In addition, a portion of the first movable member 121 and the second movable member 122 is positioned through the cutouts of the first superconducting magnet 111 and the second superconducting magnet 112.
- the first movable member 121 and the second movable member 122 are shown in contact with the member to be heated 101, the first movable member 121 and the second movable member 122 are one-piece. Since it is provided so that the movement to a direction is possible, the separation distance with the heating object member 101 is adjusted. Preferably, the separation distance is a distance at which one magnetic field value of the heating object member 101 can maintain the highest magnetic field value according to the outer size of the heating object member 101.
- 5a and 5b is a result of the magnetic field displacement according to the angle change in the superconducting direct current induction heating apparatus according to the first embodiment of the present invention.
- both movable members 120 formed in two opposing superconducting magnets 110 may create a constant magnetic field displacement of the magnetic field by forming an angle in the longitudinal direction to the opposing shape.
- the movable member 120 may be made of a metal billet of iron core. In this way, the result of the constant magnetic field displacement of the magnetic field generated through the angle formed in the longitudinal direction in the shape that both the movable members 120 face.
- the magnetic flux displacement (Magnetic flux density norm B (T)) is from 1.1 (T) up to 0.7 (T). Can be variable.
- FIG. 6 is a block diagram of a superconducting direct current induction heating apparatus using a magnetic field displacement according to the second embodiment of the present invention.
- the superconducting direct current induction heating apparatus 200 using the magnetic field displacement according to the second embodiment of the present invention includes a superconducting magnet 210, a fixed member 220, and a rotating unit 130.
- the superconducting direct current induction heating apparatus 200 may further include a gripping part 140, a support part 150, and a freezing part 160.
- the rotating unit 130, the holding unit 140, the support unit 150 and the freezing unit 160 is not shown
- superconducting direct current induction heating apparatus 200 using a magnetic field displacement according to the second embodiment of the present invention May include the same components as in FIGS. 3 and 4. Detailed description of these components will be replaced with the description of FIGS. 3 and 4, and the superconducting magnet 210 and the fixed member 220 will be described.
- the superconducting magnet 210 generates a magnetic field according to the direct current applied.
- One superconducting magnet is shown in FIG. 6, but is not limited to a specific number.
- the superconducting magnets 210 may also be symmetrically positioned with respect to the heating target member 101 by a predetermined distance.
- the shape of the superconducting magnet 210 is not limited to the race track shape, but a superconducting magnet having another shape such as a circular shape may be applied.
- the superconducting magnet 210 may be any one of a circular shape, a race track shape, a square shape, a plate shape, and a trumpet shape, and is not limited to a specific shape.
- the fixed member 220 penetrates inside the superconducting magnet 110.
- the stationary member 220 has a shape in which at least one portion is open.
- the object to be heated 101 may be formed of at least one member to be heated, and may be positioned at open portions, respectively.
- the fixed member 220 may have a c shape or an e shape.
- the fixed member 220 penetrating through one superconducting magnet 210 has a c shape.
- the heating object member 101 is positioned between the c-shaped or E-shaped ends, and an angle in the longitudinal direction is formed at the end shape facing the heating object member 101. Accordingly, the fixed member 220 induces the magnetic field displacement according to the angle in the longitudinal direction to the member to be heated 101.
- the stationary member 220 may be made of an iron core metal billet.
- the fixed member 220 may be adjusted through a replaceable angle jig, such that the magnetic field displacement in the longitudinal direction of the heating object member 101 is variable.
- 7a and 7b are results of the temperature displacement and the magnetic field displacement of the heating target member according to the angle change in the superconducting direct current induction heating apparatus according to the second embodiment of the present invention.
- beveled angles of the end of the stationary member 220 facing each other based on the member to be heated 101 may be changed to 0 degrees to 5 degrees. Accordingly, the magnetic field generated according to the converted angle has a displacement with respect to the magnetic field.
- the magnetic flux density generated according to the angle may have a magnetic field displacement of 0.38 (T) at a minimum of 0.18 (T).
- the heating target member 101 While being heated, the heating target member 101 may be heated with such a temperature deviation. For example, after 30 seconds of heating, a metal billet having a maximum temperature of 89 degrees and a minimum temperature of 53.5 degrees has a temperature displacement in the longitudinal direction.
- FIG. 8 is a structural diagram illustrating a structure in which a replaceable angle jig is attached to a superconducting direct current induction heating apparatus according to a second embodiment of the present invention.
- the replaceable angle jig 270 may be detachably attached to the fixed member 220.
- Replacement angle jig 270 is formed with an angle in the longitudinal direction.
- the replaceable angle jig 270 is detachably attached to the end of the stationary member 220 facing the member to be heated 101.
- the replaceable angle jig 270 forms an angle in the longitudinal direction in a shape in which the fixed member 220 faces the member to be heated 101.
- the replaceable angular jig 270 may be configured as a total of six angular jig sets having 0 to 5 degrees with respect to one fixed member 220. Replacement angle jig 270 desired by the user in the angle range of 0 degrees to 5 degrees may be selected and attached.
- FIGS. 9 and 10 are structural diagrams illustrating a structure in which a replaceable angle jig is not attached to and attached to a superconducting direct current induction heating apparatus according to a first embodiment of the present invention.
- FIG. 9 illustrates a structure in which the replaceable angle jig 170 is not attached and an angle in the longitudinal direction of the heating object member 101 is formed in the movable member 120.
- the superconducting direct current induction heating apparatus 100 using the magnetic field displacement includes a superconducting magnet 110 and a movable member 120. ), The rotating unit 130, the holding unit 140, the support unit 150 and the freezing unit 160.
- the superconducting magnet 110 is composed of first and second superconducting magnets 111 and 112.
- the movable member 120 is composed of first and second movable members 121 and 122.
- the freezing unit 160 includes a cooling container 161 and a freezer 162.
- the replaceable angle jig 170 is not attached.
- the first and second movable members 121 and 122 have angles in the longitudinal direction in the shape of the end portions facing the heating target member 101.
- FIG. 10 illustrates a structure in which a replaceable angle jig is formed in which an angle in the longitudinal direction of the heating object member 101 is attached.
- the superconducting direct current induction heating apparatus 100 using the magnetic field displacement is a superconducting magnet 110, a movable member 120, The rotating unit 130, the holding unit 140, the support unit 150 and the freezing unit 160 is included.
- the superconducting direct current induction heating apparatus 100 is attached to the replaceable angle jig 170 is formed any one angle of the predetermined angle range.
- the replaceable angular jig 170 is composed of first and second replaceable angular jig 171 and 172.
- Replacement angle jig 170 is formed at an angle in the longitudinal direction is attached to the end of the movable member 120 facing the heating object member 101.
- the replaceable angle jig 170 forms an angle in the longitudinal direction in the shape in which the movable member 120 faces the member to be heated 101.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Induction Heating (AREA)
Abstract
본 발명은 자기장 변위를 이용한 초전도 직류 유도가열 장치에 관한 것으로서, 더욱 상세하게는, 본 발명의 실시 예에 따른 자기장 변위를 이용한 초전도 직류 유도가열 장치는, 가열 대상 부재를 중심으로 기설정된 거리만큼 서로 대칭되게 위치하고, 인가되는 직류 전류에 따라 자기장을 발생시키는 초전도 자석; 상기 초전도 자석의 내부를 관통하고, 상기 가열 대상 부재와 마주보는 끝부분 형상에 길이방향으로의 각도가 형성되어 길이방향으로의 각도에 따른 자기장 변위를 상기 가열 대상 부재에 유도시키는 이동형 부재; 및 상기 가열 대상 부재와 회전축을 통해 연결되어 상기 가열 대상 부재를 회전시키는 회전부를 포함한다.
Description
본 발명은 자기장 변위를 이용한 초전도 직류 유도가열 장치에 관한 것으로서, 더욱 상세하게는 초전도 자석이 가열 대상 부재와 마주보는 형상에 길이방향으로의 각도를 형성시킴으로써, 길이방향으로의 각도에 따른 자기장 변위를 가열 대상 부재에 유도시킬 수 있는, 자기장 변위를 이용한 초전도 직류 유도가열 장치에 관한 것이다.
초전도체는 극저온에서 전기적 저항이 '0'(zero)이 되는 소자이다. 이는 기존의 구리(cu) 도체와 비교했을 때 고자장, 저손실, 그리고 소형화라는 이점을 제공하기 때문에, 이미 다양한 응용 분야에 활용되고 있다.
초전도 자석은 이러한 초전도체를 이용하여 만든 자석이다. 초전도 자석은 MRI, NMR, 입자가속기, 자기분리장치 등에 사용되어 효율과 성능을 향상시킨다. 또한, 전력 케이블과 초전도 변압기, 초전도 모터 등과 같이 산업 전반에 걸쳐 그 응용기술이 지속적으로 연구되고 있다. 응용분야 중의 하나로서 철강 산업분야에 적용되기도 한다. 철강 산업분야에서는 대용량 유도가열장치에 대한 연구 개발이 활발하다.
유도가열장치를 위한 가열방식은 AC 유도가열과 DC 유도가열로 구분할 수 있다.
AC 유도가열은 시변 자기장을 생성하기 위해 구리 자석에 AC 전류를 인가하는 방식이다. 하지만, AC 유도가열은 구리 자석을 사용하기 때문에 그 구리 자석의 저항에 의한 발열로 시스템 전체 에너지 효율이 50 ~ 60% 정도밖에 되지 않는다. 따라서 구리 자석 대신 초전도 자석을 사용하기도 한다. 이는 에너지 변환 효율을 향상시키기 위함이다.
그렇지만, 통산 초전도 자석의 재료가 되는 초전도 선재는 교류전류의 통전 하에서 자화손실이 발생하는 단점이 있다. 이는 극저온 운전환경에서 초전도 상태를 유지하기 위한 냉각이 반드시 필요함을 의미한다. 그렇기 때문에 냉각장치의 설비 비용과 함께 운전비용이 증대되는 문제점이 있다.
반면, DC 유도가열은 초전도 자석에 DC 전류를 인가하여 균일한 자기장을 발생시키고 상기 자기장 내에서 제품을 모터로 강제회전시켜 가열하는 방식이다. 이러한 DC 유도가열은 DC 전류를 사용하여 초전도 자석의 열 손실을 발생시키지 않으면서도 유도가열장치의 전체 시스템 효율을 90% 이상 향상시킬 수 있다는 이점을 가진다. 또한, 초전도 자석에서 발생하는 자기장의 제곱에 비례하여 에너지가 전달되기 때문에 가열 대상 제품에 대한 가열 시간을 단축할 수 있어 생산성이 더욱 향상되는 이점이 있다.
이에 유도가열장치는 DC 유도 가열방식이 많이 적용되고 있으며, 아울러 DC 유도 가열방식을 위한 초전도 자석으로서 레이스트랙 타입의 초전도 자석이 많이 사용되고 있다.
도 1은 종래의 레이스 트랙 타입의 초전도 자석을 설명하기 위한 설명도이다.
도 1을 보면, 중앙에 가열 대상 제품(1)이 위치하고, 그 가열 대상 제품(1)의 측면에 레이스 트랙 타입 형상의 초전도 자석(10)이 위치하고 있다. 초전도 자석(10)은 가열 대상 제품(1)의 측면에 서로 대칭되도록 한 쌍으로 제공된다.
이와 같은 가열 대상 제품(1) 및 초전도 자석(10)은 극저온 용기에 수납된 상태에서 가열 대상 제품(1)을 회전시키고 초전도 자석(10)에 DC 전류를 공급함으로써 자기장을 획득하게 된다.
한편, 가열 대상 제품을 원하는 수요기업에서는 희망하거나, 생산하고자 하는 가열 대상 제품에 따라 가열 대상 제품의 부분별로 온도 편차를 요구하고 있는 상황이다.
그러나 종래의 초전도 자석을 이용한 직류 유도가열 장치는 가열 대상 제품과 동일한 간격을 유지하기 때문에 수요 기업별로 원하는 가열 대상 제품의 온도 특성을 만족시켜주지 못하고 있는 실정이다.
본 발명의 실시 예들은 초전도 자석이 가열 대상 부재와 마주보는 형상에 길이방향으로의 각도를 형성시킴으로써, 길이방향으로의 각도에 따른 자기장 변위를 가열 대상 부재에 유도시킬 수 있는, 자기장 변위를 이용한 초전도 직류 유도가열 장치를 제공하고자 한다.
본 발명의 실시 예들은 초전도 자석의 내부를 관통하고, 가열 대상 부재와 마주보는 끝부분 형상에 길이방향으로의 각도가 형성되어 길이방향으로의 각도에 따른 자기장 변위를 유도시키되, 가열 대상 부재의 길이방향으로의 자기장 변위가 가변되도록 그 형성된 각도를 조절함으로써, 자기장 변위를 용이하게 가변시킬 수 있는, 자기장 변위를 이용한 초전도 직류 유도가열 장치를 제공하고자 한다.
본 발명의 실시 예들은 길이방향으로의 서로 다른 각도가 형성되고 가열 대상 부재와 마주보는 이동형 부재의 끝부분에 부착되는 교체형 각도 치구들을 통해 이동형 부재가 가열 대상 부재와 마주보는 형상에 길이방향으로의 서로 다른 각도를 각각 형성시킴으로써, 자기장 변위를 용이하게 가변시킬 수 있는, 자기장 변위를 이용한 초전도 직류 유도가열 장치를 제공하고자 한다.
본 발명의 제1 측면에 따르면, 가열 대상 부재를 중심으로 기설정된 거리만큼 서로 대칭되게 위치하고, 인가되는 직류 전류에 따라 자기장을 발생시키는 초전도 자석; 상기 초전도 자석의 내부를 관통하고, 상기 가열 대상 부재와 마주보는 끝부분 형상에 길이방향으로의 각도가 형성되어 길이방향으로의 각도에 따른 자기장 변위를 상기 가열 대상 부재에 유도시키는 이동형 부재; 및 상기 가열 대상 부재와 회전축을 통해 연결되어 상기 가열 대상 부재를 회전시키는 회전부를 포함하는 자기장 변위를 이용한 초전도 직류 유도가열 장치가 제공될 수 있다.
상기 이동형 부재는 상기 가열 대상 부재의 길이방향으로의 자기장 변위가 가변되도록 상기 형성된 각도가 조절될 수 있다.
상기 이동형 부재는 상기 가열 대상 부재와 서로 마주보는 방향으로 이동하여 상기 가열 대상 부재의 길이방향의 일측 자기장이 최대가 되는 상기 가열 대상 부재와의 간격으로 조절될 수 있다.
상기 이동형 부재는 기설정된 운전 전류의 범위 중에서 어느 하나의 운전 전류값인 경우, 상기 가열 대상 부재의 길이방향의 일측 자기장이 최대가 되는 상기 가열 대상 부재와의 간격으로 조절될 수 있다.
상기 장치는, 길이방향으로의 각도가 형성되고 상기 가열 대상 부재와 마주보는 상기 이동형 부재의 끝부분에 부착되어, 상기 이동형 부재가 상기 가열 대상 부재와 마주보는 형상에 길이방향으로의 각도를 형성시키는 교체형 각도 치구를 더 포함할 수 있다.
상기 장치는, 상기 초전도 자석이 내부에 수납되는 냉각 용기와, 상기 냉각 용기의 내부에 수납된 상기 초전도 자석을 냉각시키는 냉동기로 이루어진 냉동부를 더 포함할 수 있다.
상기 초전도 자석은 원형 형상, 레이스 트랙 형상, 사각 형상, 접시 형상 및 나팔 형상 중 어느 하나의 형상일 수 있다.
본 발명의 제2 측면에 따르면, 인가되는 직류 전류에 따라 자기장을 발생시키는 초전도 자석; 상기 초전도 자석의 내부를 관통하고 적어도 한 부분이 개방된 ㄷ 형상 또는 E 형상으로 이루어지고, ㄷ 형상 또는 E 형상의 끝부분 사이에 상기 가열 대상 부재가 위치하고, 상기 가열 대상 부재와 마주보는 끝부분 형상에 길이방향으로의 각도가 형성되어 길이방향으로의 각도에 따른 자기장 변위를 상기 가열 대상 부재에 유도시키는 고정형 부재; 및 상기 가열 대상 부재와 회전축을 통해 연결되어 상기 가열 대상 부재를 회전시키는 회전부를 포함하는 자기장 변위를 이용한 초전도 직류 유도가열 장치가 제공될 수 있다.
상기 장치는, 길이방향으로의 각도가 형성되고 상기 가열 대상 부재와 마주보는 상기 고정형 부재의 끝부분에 부착되어, 상기 고정형 부재가 상기 가열 대상 부재와 마주보는 형상에 길이방향으로의 각도를 형성시키는 교체형 각도 치구를 더 포함할 수 있다.
상기 장치는, 상기 초전도 자석이 내부에 수납되는 냉각 용기와, 상기 냉각 용기의 내부에 수납된 상기 초전도 자석을 냉각시키는 냉동기로 이루어진 냉동부를 더 포함할 수 있다.
상기 초전도 자석은 원형 형상, 레이스 트랙 형상, 사각 형상, 접시 형상 및 나팔 형상 중 어느 하나의 형상일 수 있다.
본 발명의 실시 예들은 초전도 자석이 가열 대상 부재와 마주보는 형상에 길이방향으로의 각도를 형성시킴으로써, 길이방향으로의 각도에 따른 자기장 변위를 가열 대상 부재에 유도시킬 수 있다.
본 발명의 실시 예들은 초전도 자석의 내부를 관통하고, 가열 대상 부재와 마주보는 끝부분 형상에 길이방향으로의 각도가 형성되어 길이방향으로의 각도에 따른 자기장 변위를 유도시키되, 가열 대상 부재의 길이방향으로의 자기장 변위가 가변되도록 그 형성된 각도를 조절함으로써, 자기장 변위를 용이하게 가변시킬 수 있다.
본 발명의 실시 예들은 길이방향으로의 서로 다른 각도가 형성되고 가열 대상 부재와 마주보는 이동형 부재의 끝부분에 부착되는 교체형 각도 치구들을 통해 이동형 부재가 가열 대상 부재와 마주보는 형상에 길이방향으로의 서로 다른 각도를 각각 형성시킴으로써, 자기장 변위를 용이하게 가변시킬 수 있다.
본 발명의 실시 예들은 수요고객이 원하거나, 생산하고자 하는 제품에 따라 자기장 변위를 가변시킴으로써, 수요고객이 최고 품질의 압출제품을 생산할 수 있다.
도 1은 종래의 레이스 트랙 타입의 초전도 자석을 설명하기 위한 설명도이다.
도 2는 수요 기업에서의 금속 압출 장비에 필요한 금속 빌렛의 온도 분포를 설명하기 위한 설명도이다.
도 3 및 도 4는 본 발명의 제1 실시 예에 따른 자기장 변위를 이용한 초전도 직류 유도가열 장치의 구성도 및 내부 구조도이다.
도 5a 및 도 5b는 본 발명의 제1 실시 예에 따른 초전도 직류 유도가열 장치에서 각도 변화에 따른 자기장 변위에 대한 결과도이다.
도 6은 본 발명의 제2 실시 예에 따른 자기장 변위를 이용한 초전도 직류 유도가열 장치의 구성도이다.
도 7a 및 도 7b는 본 발명의 제2 실시 예에 따른 초전도 직류 유도가열 장치에서 각도 변화에 따른 가열 대상 부재의 온도변위 및 자기장 변위에 대한 결과도이다.
도 8은 본 발명의 제2 실시 예에 따른 초전도 직류 유도가열 장치에 교체형 각도 치구가 부착된 구조를 나타낸 구조도이다.
도 9 및 도 10은 본 발명의 제1 실시 예에 따른 초전도 직류 유도가열 장치에 교체형 각도 치구가 미부착된 구조 및 부착된 구조를 나타낸 구조도이다.
[부호의 설명]
100, 200: 초전도 직류 유도가열 장치
110, 210: 초전도 자석
120: 이동형 부재
220: 고정형 부재
130: 회전부
140: 파지부
150: 지지부
160: 냉동부
170, 270: 교체형 각도 치구
111 및 112: 제1 및 제2 초전도 자석
121 및 122: 제1 및 제2 이동형 부재
이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 설명한다. 본 발명에 따른 동작 및 작용을 이해하는 데 필요한 부분을 중심으로 상세히 설명한다. 본 발명의 실시 예를 설명하면서, 본 발명이 속하는 기술 분야에 익히 알려졌고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 동일한 명칭의 구성 요소에 대하여 도면에 따라 다른 참조부호를 부여할 수도 있으며, 서로 다른 도면임에도 동일한 참조부호를 부여할 수도 있다. 그러나 이와 같은 경우라 하더라도 해당 구성 요소가 실시 예에 따라 서로 다른 기능을 갖는다는 것을 의미하거나, 서로 다른 실시 예에서 동일한 기능을 갖는다는 것을 의미하는 것은 아니며, 각각의 구성 요소의 기능은 해당 실시 예에서의 각각의 구성 요소에 대한 설명에 기초하여 판단하여야 할 것이다.
도 2는 수요 기업에서의 금속 압출 장비에 필요한 금속 빌렛의 온도 분포를 설명하기 위한 설명도이다.
도 2에 도시된 바와 같이, 금속 압출 장비를 통해 최상의 압출 제품을 생산하기 위해서는 금속 빌렛(metal billet)의 온도분포(Temperature distribution)가 압출 금형(metallic mold)의 압출 입구 부분에서 최고 온도(Hot temperature)를 가져야 한다. 또한, 금속 빌렛의 온도분포가 압출 금형의 압출 출구 부분에서는 최소 온도(Low temperature)를 가져야 한다.
이러한 금속 압출 장비에 사용되는 초전도 직류 유도가열 장치는 압출하고자 하는 금속 빌렛의 길이 또는 직경에 따라 금속 길이에 따른 온도 편차가 반드시 요구되고 있다. 따라서, 본 발명의 실시 예에 따른 자기장 변위를 이용한 초전도 직류 유도가열 장치는 자기장 변위를 이용하여 금속 빌렛의 길이에 따른 온도편차를 만족시킬 수 있는, 초전도 직류 유도가열 장치에 관한 것이다.
도 3 및 도 4는 본 발명의 제1 실시 예에 따른 자기장 변위를 이용한 초전도 직류 유도가열 장치의 구성도 및 내부 구조도이다.
도 3에 도시된 바와 같이, 본 발명의 제1 실시 예에 따른 자기장 변위를 이용한 초전도 직류 유도가열 장치(100)는 초전도 자석(110), 이동형 부재(120) 및 회전부(130)를 포함한다. 여기서, 초전도 직류 유도가열 장치(100)는 파지부(140), 지지부(150) 및 냉동부(160)를 더 포함할 수 있다.
본 발명의 제1 실시 예는 이동형 부재(120)가 적용된 초전도 직류 유도가열 장치(100)에 관한 것이다. 여기서, 초전도 직류 유도가열 장치(100)는 직류(DC) 유도가열 장치를 말하고 있다. 초전도 직류 유도가열 장치(100)는 균일한 자장 내에서 가열 대상 부재(101)를 회전시켜 원하는 온도까지 가열하는 장치를 말한다. 상기 균일한 자장은 초전도 자석에 DC 전류가 공급되면 얻을 수 있고, 초전도 자석에서 발생하는 자기장이 클수록 더 큰 에너지 전달이 가능해진다. 물론 자기장은 초전도 자석에 흐르는 전류, 턴 수, 코일의 개수에 비례하여 증가하고 가열 대상 부재(101)와의 거리에 반비례하여 감소한다. 따라서 초전도 자석과 가열 대상 부재(101)와의 거리가 가까울수록 더 큰 자기장을 얻을 수 있고 전달 가능한 에너지가 크게 되는 것이다.
이에 따라, 본 발명의 제1 실시 예는 기설정된 각도가 형성되거나 그 형성된 각도가 조절되는 이동형 부재(120)를 통해 가열 대상 부재(101)가 일정한 기울기를 갖는 자기장 변위를 유도시킬 수 있는, 초전도 직류 유도가열 장치(100)를 제공하고자 한다.
이하, 본 발명의 제1 실시 예에 따른 도 3 및 도 4의 자기장 변위를 이용한 초전도 직류 유도가열 장치(100)의 각 구성요소들의 구체적인 구성 및 동작을 설명한다.
초전도 자석(110)은 가열 대상 부재(101)를 중심으로 기설정된 거리만큼 서로 대칭되게 위치한다. 초전도 자석(110)은 인가되는 직류 전류에 따라 자기장을 발생시킨다. 여기서, 본 발명의 실시 예에서는 초전도 자석(110)의 형상이 레이스 트랙 형상에 한정되지 않고, 원형 형상 등 다른 형상의 초전도 자석이 적용될 수 있다. 일례로, 초전도 자석(110)은 원형 형상, 레이스 트랙 형상, 사각 형상, 접시 형상 및 나팔 형상 중 어느 하나의 형상일 수 있으며, 특정 형상으로 한정되지 않는다.
이동형 부재(120)는 초전도 자석(110)의 내부를 관통하고, 가열 대상 부재(101)와 마주보는 끝부분 형상에 길이방향으로의 각도가 형성되어 길이방향으로의 각도에 따른 자기장 변위를 가열 대상 부재(101)에 유도시킨다. 또한, 이동형 부재(120)는 초전도 자석(110)의 내부를 관통하면서 가열 대상 부재(101)와 서로 마주보는 방향으로 이동한다. 이에 따라, 이동형 부재(120)는 발생된 자기장을 가열 대상 부재(101)에 유도시킨다. 일례로, 이동형 부재(120)는 금속 철심으로 이루어질 수 있다.
여기서, 이동형 부재(120)는 가열 대상 부재(101)의 길이방향으로의 자기장 변위가 가변되도록 그 형성된 각도가 조절될 수 있다. 이동형 부재(120)는 가열 대상 부재(101)와 서로 마주보는 방향으로 이동하여 가열 대상 부재(101)의 일측 자기장이 최대가 되는 가열 대상 부재(101)와의 간격으로 조절될 수 있다.
변형 예로, 초전도 직류 유도가열 장치(100)는 가열 대상 부재(101)와 이동형 부재(120) 사이의 간격 및 가열 대상 부재(101)의 길이방향의 각도를 조절하는 각도 조절부를 더 포함할 수 있다. 여기서, 이동형 부재(120)는 가열 대상 부재(101)와 마주보는 끝부분 형상에 길이방향으로의 각도가 형성되거나, 각도가 형성되지 않아 가열 대상 부재(101)와 수평일 수 있다.
여기서, 각도 조절부는 가열 대상 부재(101)와 수평인 이동형 부재(120)를 움직여서 가열 대상 부재(101)와의 각도를 기설정된 각도 범위 내에서 조절할 수 있다. 이때, 각도 조절부는 마주보는 제1 및 제2 이동형 부재(121, 122)의 일측을 가열 대상 부재(101)와 근접시키고, 타측을 가열 대상 부재(101)와 떨어지게 한다. 그래서 각도 조절부는 가열 대상 부재(101)와 이동형 부재(120)와의 각도를 형성시킬 수 있다. 이동형 부재(101)에 기설정된 각도가 형성되어 있는 경우, 각도 조절부는 기설정된 각도를 고려하여 목표 각도에 맞게 각도를 조절할 수 있다.
회전부(130)는 가열 대상 부재(101)와 회전축을 통해 연결되어 가열 대상 부재(101)를 회전시킨다.
한편, 파지부(140)는 가열 대상 부재(101)가 회전축을 통해 회전되도록 회전축을 파지한다.
지지부(150)는 이동형 부재(120)와 각각 연결되는 지지구조를 통해 초전도 직류 유도가열 장치(100)를 지지한다. 여기서, 일반적인 직류 유도 가열로는 자화되지 않는 재질로 이루어져 있는 반면, 본 발명의 실시 예에 따른 지지부(150)는 자화되는 즉, 자성을 지니는 재질로 이루어질 수 있다.
냉동부(160)는 냉각 용기 및 냉동기로 이루어진다. 냉각 용기에는 초전도 자석(110)이 내부에 수납된다. 냉동기는 냉각 용기의 내부에 수납된 초전도 자석(110)을 냉각시킨다.
한편, 도 4에 도시된 바와 같이, 초전도 자석(110)은 제1 및 제2 초전도 자석(111 및 112)으로 이루어진다.
초전도 직류 유도가열 장치(100)의 초전도 자석(110)은 한 쌍의 초전도 자석을 포함한다. 일례로, 초전도 자석(110)은 레이스 트랙 타입 형상이다. 물론, 초전도 자석(110)의 타입은 앞서 설명한 바와 같이 레이스 트랙 형상 이외에도 원형 등으로 형성된 초전도 자석이 적용될 수 있다. 이하에서는 한 쌍의 초전도 자석(110)을 제1 초전도 자석(111)과 제2 초전도 자석(112)으로 설명한다.
제1 초전도 자석(111)과 제2 초전도 자석(112)은 일정 간격 떨어진 채로 위치한다. 제1 및 제2 초전도 자석(111 및 112)은 가열 대상 부재(101)를 중심으로 기설정된 거리만큼 서로 대칭되게 위치한다.
제1 초전도 자석(111)과 제2 초전도 자석(112) 사이에는 가열 대상 부재(101)가 위치한다. 가열 대상 부재(101)는 비 자성체로서 알루미늄, 구리 등의 금속으로 이루어질 수 있다. 실시 예에 따르면 가열 대상 부재(101)는 원통형으로 형성되며, 금속 빌렛이라 칭하여 설명할 수도 있다.
한편, 이동형 부재(120)는 제1 및 제2 이동형 부재(121 및 122)로 이루어진다. 제1 및 제2 이동형 부재(121 및 122)는 제1 및 제2 초전도 자석(111 및 112)의 내부를 각각 관통하면서 가열 대상 부재(101)와 마주보는 끝부분 형상에 길이방향으로의 각도가 형성되어 있다. 제1 및 제2 이동형 부재(121 및 122)는 가열 대상 부재(101)와 서로 마주보는 방향으로 이동한다.
가열 대상 부재(101)를 중심으로 서로 대칭되게 이동형 부재(120)가 제공된다. 이동형 부재(120) 역시 한 쌍으로 마련되며, 제1 초전도 자석(111) 측에 제1 이동형 부재(121), 제2 초전도 자석(112) 측에 제2 이동형 부재(122)가 위치하는 것으로 설명한다. 제1 이동형 부재(121) 및 제2 이동형 부재(122)는 서로 동일한 형상 및 사이즈로 형성되며, 실시 예에서는 끝부분 형상에 길이방향으로의 각도가 형성된 육면체로 구성됨을 예시하고 있다. 그리고 제1 이동형 부재(121)와 제2 이동형 부재(122)는 가열 대상 부재(101)를 중앙에 두고 서로 대칭되게 위치한다. 또한, 제1 이동형 부재(121)와 제2 이동형 부재(122)의 일부는 제1 초전도 자석(111) 및 제2 초전도 자석(112)의 절개부를 관통하여 위치된다.
또한, 제1 이동형 부재(121)와 제2 이동형 부재(122)는 가열 대상 부재(101)와 접촉된 상태로 도시되고 있지만, 제1 이동형 부재(121)와 제2 이동형 부재(122)는 일 방향으로 이동 가능하게 설치되기 때문에 가열 대상 부재(101)와는 이격 거리가 조정된다. 바람직하게는 이격 거리는 가열 대상 부재(101)의 외형 사이즈에 따라 그 가열 대상 부재(101)의 일측 자기장 값이 가장 높은 자장 값을 유지할 수 있는 거리가 된다.
도 5a 및 도 5b는 본 발명의 제1 실시 예에 따른 초전도 직류 유도가열 장치에서 각도 변화에 따른 자기장 변위에 대한 결과도이다.
도 5a에 도시된 바와 같이, 두 개의 마주보는 초전도 자석(110)에 구성된 양쪽의 이동형 부재(120)는 마주보는 형상에 길이방향으로의 각도를 형성시킴으로써 자기장의 일정한 자기장 변위를 만들어 줄 수 있다. 여기서, 이동형 부재(120)는 철심의 금속 빌렛으로 이루어질 수 있다. 이와 같이, 양쪽의 이동형 부재(120)가 마주보는 형상에 길이방향으로 형성된 각도를 통해 발생하는 자기장의 일정한 자기장 변위에 대한 결과값을 나타낸 것이다.
도 5b에 도시된 바와 같이, 이동형 부재(120)의 각도가 0도 내지 5도로 변화시켰을 때, 자기장의 변위(Magnetic flux density norm B(T))는 최대1.1 (T)에서 0.7 (T)로 가변될 수 있다.
도 6은 본 발명의 제2 실시 예에 따른 자기장 변위를 이용한 초전도 직류 유도가열 장치의 구성도이다.
도 6에 도시된 바와 같이, 본 발명의 제2 실시 예에 따른 자기장 변위를 이용한 초전도 직류 유도가열 장치(200)는 초전도 자석(210), 고정형 부재(220) 및 회전부(130)를 포함한다. 여기서, 초전도 직류 유도가열 장치(200)는 파지부(140), 지지부(150) 및 냉동부(160)를 더 포함할 수 있다. 도 6에는 회전부(130), 파지부(140), 지지부(150) 및 냉동부(160)는 도시되어 있지 않으나, 본 발명의 제2 실시 예에 따른 자기장 변위를 이용한 초전도 직류 유도가열 장치(200)는 도 3 및 도 4와 동일한 구성요소를 포함될 수 있다. 이러한 구성 요소에 대한 세부 설명은 도 3 및 도 4의 설명으로 대체하기로 하고, 초전도 자석(210), 고정형 부재(220)에 대해서 설명하기로 한다.
이하, 본 발명의 제2 실시 예에 따른 도 6의 자기장 변위를 이용한 초전도 직류 유도가열 장치(200)의 각 구성요소들의 구체적인 구성 및 동작을 설명한다.
초전도 자석(210)은 인가되는 직류 전류에 따라 자기장을 발생시킨다. 도 6에는 하나의 초전도 자석이 도시되어 있으나, 특정 개수로 한정되지 않는다. 초전도 자석(210)도 가열 대상 부재(101)를 중심으로 기설정된 거리만큼 서로 대칭되게 위치할 수 있다. 여기서, 본 발명의 제2 실시 예에서는 초전도 자석(210)의 형상이 레이스 트랙 형상에 한정되지 않고, 원형 형상 등 다른 형상의 초전도 자석이 적용될 수 있다. 일례로, 초전도 자석(210)은 원형 형상, 레이스 트랙 형상, 사각 형상, 접시 형상 및 나팔 형상 중 어느 하나의 형상일 수 있으며, 특정 형상으로 한정되지 않는다.
고정형 부재(220)는 초전도 자석(110)의 내부를 관통한다. 고정형 부재(220)는 적어도 한 부분이 개방된 형상을 가진다. 가열 대상 부재(101)는 적어도 하나의 가열 대상 부재로 이루어질 수 있으며, 개방된 부분에 각각 위치할 수 있다. 예를 들면, 고정형 부재(220)는 ㄷ 형상 또는 E 형상으로 이루어질 수 있다. 도 6에 도시된 본 발명의 제2 실시 예에 따른 초전도 직류 유도가열 장치(200)에서는 한 개의 초전도 자석(210)에 관통하는 고정형 부재(220)는 ㄷ 형상으로 이루어진다.
고정형 부재(220)는 ㄷ 형상 또는 E 형상의 끝부분 사이에 가열 대상 부재(101)가 각각 위치하고, 그 가열 대상 부재(101)와 마주보는 끝부분 형상에 길이방향으로의 각도가 형성되어 있다. 이에 따라, 고정형 부재(220)는 길이방향으로의 각도에 따른 자기장 변위를 상기 가열 대상 부재(101)에 유도시킨다. 일례로, 고정형 부재(220)는 철심의 금속 빌렛으로 이루어질 수 있다. 여기서, 고정형 부재(220)는 가열 대상 부재(101)의 길이방향으로의 자기장 변위가 가변되도록 그 형성된 각도가 교체형 각도 치구 등을 통해 조절될 수 있다.
도 7a 및 도 7b는 본 발명의 제2 실시 예에 따른 초전도 직류 유도가열 장치에서 각도 변화에 따른 가열 대상 부재의 온도변위 및 자기장 변위에 대한 결과도이다.
도 7a 및 도 7b에 도시된 바와 같이, 가열 대상 부재(101)를 기준으로 마주보는 고정형 부재(220)의 끝부분은 0도 내지 5도로 경사진 각도(beveled angles)가 변화될 수 있다. 이에 따라, 변환된 각도에 따라 발생되는 자기장은 그 자기장에 대한 변위를 가지게 된다.
일례로, 각도에 따라 발생되는 자기장(magnetic flux density)은 최대 0.32 (T)에서 최소 0.18(T)의 자기장 변위를 가질 수 있다.
가열되는 동안 가열 대상 부재(101)는 이러한 온도 편차를 가지고 가열이 진행될 수 있다. 일례로, 가열이 진행되고 30초 후 최대온도 89도에서 최소온도 53.5도의 금속빌렛이 길이방향으로 온도 변위를 가지게 된다.
도 8은 본 발명의 제2 실시 예에 따른 초전도 직류 유도가열 장치에 교체형 각도 치구가 부착된 구조를 나타낸 구조도이다.
도 8의 (a)에 도시된 바와 같이, 본 발명의 제2 실시 예에 따른 초전도 직류 유도가열 장치(200)에서 고정형 부재(220)에 교체형 각도 치구(270)가 탈부착될 수 있다.
교체형 각도 치구(270)는 길이방향으로의 각도가 형성되어 있다. 교체형 각도 치구(270)는 가열 대상 부재(101)와 마주보는 고정형 부재(220)의 끝부분에 탈부착된다. 교체형 각도 치구(270)는 고정형 부재(220)가 가열 대상 부재(101)와 마주보는 형상에 길이방향으로의 각도를 형성시킨다.
도 8의 (b)에 도시된 바와 같이, 교체형 각도 치구(270)는 하나의 고정형 부재(220)에 대해 0도 내지 5도를 갖는 총 6개의 각도 치구 세트로 이루어질 수 있다. 0도 내지 5도의 각도 범위에서 사용자가 원하는 교체형 각도 치구(270)가 선택되어 부착될 수 있다.
도 9 및 도 10은 본 발명의 제1 실시 예에 따른 초전도 직류 유도가열 장치에 교체형 각도 치구가 미부착된 구조 및 부착된 구조를 나타낸 구조도이다.
일례로, 도 9에는 교체형 각도 치구(170)가 미부착되고 이동형 부재(120)에 가열 대상 부재(101)의 길이방향으로의 각도가 형성된 구조가 도시되어 있다.
우선, 도 9의 (a) 및 (b)에 도시된 바와 같이, 본 발명의 제1 실시 예에 따른 자기장 변위를 이용한 초전도 직류 유도가열 장치(100)는 초전도 자석(110), 이동형 부재(120), 회전부(130), 파지부(140), 지지부(150) 및 냉동부(160)를 포함한다. 여기서, 초전도 자석(110)은 제1 및 제2 초전도 자석(111 및 112)으로 이루어진다. 이동형 부재(120)는 제1 및 제2 이동형 부재(121 및 122)로 이루어진다. 냉동부(160)는 냉각 용기(161) 및 냉동기(162)로 이루어진다.
본 발명의 제1 실시 예에 따른 초전도 직류 유도가열 장치(100)는 교체형 각도 치구(170)가 미부착되어 있다. 제1 및 제2 이동형 부재(121 및 122)는 가열 대상 부재(101)와 마주보는 끝부분 형상에 길이방향으로의 각도가 형성되어 있다.
다른 예로, 도 10에는 가열 대상 부재(101)의 길이방향으로의 각도가 형성된 교체형 각도 치구가 부착된 구조가 도시되어 있다.
도 10의 (a) 및 (b)에 도시된 바와 같이, 본 발명의 제1 실시 예에 따른 자기장 변위를 이용한 초전도 직류 유도가열 장치(100)는 초전도 자석(110), 이동형 부재(120), 회전부(130), 파지부(140), 지지부(150) 및 냉동부(160)를 포함한다.
여기서, 본 발명의 제1 실시 예에 따른 초전도 직류 유도가열 장치(100)는 기설정된 각도 범위 중에서 어느 하나의 각도가 형성된 교체형 각도 치구(170)가 부착되어 있다. 교체형 각도 치구(170)는 제1 및 제2 교체형 각도 치구(171 및 172)로 이루어진다. 교체형 각도 치구(170)는 길이방향으로의 각도가 형성되고 가열 대상 부재(101)와 마주보는 이동형 부재(120)의 끝부분에 부착된다. 교체형 각도 치구(170)는 이동형 부재(120)가 가열 대상 부재(101)와 마주보는 형상에 길이방향으로의 각도를 형성시킨다.
이상에서 설명한 실시 예들은 그 일 예로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (11)
- 가열 대상 부재를 중심으로 기설정된 거리만큼 서로 대칭되게 위치하고, 인가되는 직류 전류에 따라 자기장을 발생시키는 초전도 자석;상기 초전도 자석의 내부를 관통하고, 상기 가열 대상 부재와 마주보는 끝부분 형상에 길이방향으로의 각도가 형성되어 길이방향으로의 각도에 따른 자기장 변위를 상기 가열 대상 부재에 유도시키는 이동형 부재; 및상기 가열 대상 부재와 회전축을 통해 연결되어 상기 가열 대상 부재를 회전시키는 회전부를 포함하는 자기장 변위를 이용한 초전도 직류 유도가열 장치.
- 제1항에 있어서,상기 이동형 부재는상기 가열 대상 부재의 길이방향으로의 자기장 변위가 가변되도록 상기 형성된 각도가 조절되는 자기장 변위를 이용한 초전도 직류 유도가열 장치.
- 제1항에 있어서,상기 이동형 부재는상기 가열 대상 부재와 서로 마주보는 방향으로 이동하여 상기 가열 대상 부재의 길이방향의 일측 자기장이 최대가 되는 상기 가열 대상 부재와의 간격으로 조절되는 자기장 변위를 이용한 초전도 직류 유도가열 장치.
- 제2항에 있어서,상기 이동형 부재는기설정된 운전 전류의 범위 중에서 어느 하나의 운전 전류값인 경우, 상기 가열 대상 부재의 길이방향의 일측 자기장이 최대가 되는 상기 가열 대상 부재와의 간격으로 조절되는 자기장 변위를 이용한 초전도 직류 유도가열 장치.
- 제1항에 있어서,길이방향으로의 각도가 형성되고 상기 가열 대상 부재와 마주보는 상기 이동형 부재의 끝부분에 부착되어, 상기 이동형 부재가 상기 가열 대상 부재와 마주보는 형상에 길이방향으로의 각도를 형성시키는 교체형 각도 치구를 더 포함하는 자기장 변위를 이용한 초전도 직류 유도가열 장치.
- 제1항에 있어서,상기 초전도 자석이 내부에 수납되는 냉각 용기와, 상기 냉각 용기의 내부에 수납된 상기 초전도 자석을 냉각시키는 냉동기로 이루어진 냉동부를 더 포함하는 자기장 변위를 이용한 초전도 직류 유도가열 장치.
- 제1항에 있어서,상기 초전도 자석은원형 형상, 레이스 트랙 형상, 사각 형상, 접시 형상 및 나팔 형상 중 어느 하나의 형상인 자기장 변위를 이용한 초전도 직류 유도가열 장치.
- 인가되는 직류 전류에 따라 자기장을 발생시키는 초전도 자석;상기 초전도 자석의 내부를 관통하고 적어도 한 부분이 개방된 ㄷ 형상 또는 E 형상으로 이루어지고, ㄷ 형상 또는 E 형상의 끝부분 사이에 가열 대상 부재가 위치하고, 상기 가열 대상 부재와 마주보는 끝부분 형상에 길이방향으로의 각도가 형성되어 길이방향으로의 각도에 따른 자기장 변위를 상기 가열 대상 부재에 유도시키는 고정형 부재; 및상기 가열 대상 부재와 회전축을 통해 연결되어 상기 가열 대상 부재를 회전시키는 회전부를 포함하는 자기장 변위를 이용한 초전도 직류 유도가열 장치.
- 제8항에 있어서,길이방향으로의 각도가 형성되고 상기 가열 대상 부재와 마주보는 상기 고정형 부재의 끝부분에 부착되어, 상기 고정형 부재가 상기 가열 대상 부재와 마주보는 형상에 길이방향으로의 각도를 형성시키는 교체형 각도 치구를 더 포함하는 자기장 변위를 이용한 초전도 직류 유도가열 장치.
- 제8항에 있어서,상기 초전도 자석이 내부에 수납되는 냉각 용기와, 상기 냉각 용기의 내부에 수납된 상기 초전도 자석을 냉각시키는 냉동기로 이루어진 냉동부를 더 포함하는 자기장 변위를 이용한 초전도 직류 유도가열 장치.
- 제8항에 있어서,상기 초전도 자석은원형 형상, 레이스 트랙 형상, 사각 형상, 접시 형상 및 나팔 형상 중 어느 하나의 형상인 자기장 변위를 이용한 초전도 직류 유도가열 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160074046A KR101877118B1 (ko) | 2016-06-14 | 2016-06-14 | 자기장 변위를 이용한 초전도 직류 유도가열 장치 |
KR10-2016-0074046 | 2016-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017217621A1 true WO2017217621A1 (ko) | 2017-12-21 |
Family
ID=60664409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/014466 WO2017217621A1 (ko) | 2016-06-14 | 2016-12-09 | 자기장 변위를 이용한 초전도 직류 유도가열 장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101877118B1 (ko) |
WO (1) | WO2017217621A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020051593A1 (en) | 2018-09-07 | 2020-03-12 | Dolby Laboratories Licensing Corporation | Dynamic environmental overlay instability detection and suppression in media-compensated pass-through devices |
WO2020061215A1 (en) | 2018-09-19 | 2020-03-26 | Dolby Laboratories Licensing Corporation | Methods and devices for controlling audio parameters |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080090433A (ko) * | 2005-12-22 | 2008-10-08 | 제너지 파워 게엠베하 | 피가공물의 유도 가열 방법 |
KR20100039355A (ko) * | 2007-07-26 | 2010-04-15 | 제너지 파워 게엠베하 | 유도 가열 방법 |
KR20100075534A (ko) * | 2007-10-24 | 2010-07-02 | 제너지 파워 게엠베하 | 금속 공작물의 유도 가열 방법 |
US20120028807A1 (en) * | 2009-10-20 | 2012-02-02 | Sumitomo Electric Industries, Ltd. | Oxide superconducting coil, oxide-superconducting-coil assembly, and rotating machine |
KR101468312B1 (ko) * | 2013-06-19 | 2014-12-02 | 창원대학교 산학협력단 | 초전도 코일 및 그의 유도가열장치 |
-
2016
- 2016-06-14 KR KR1020160074046A patent/KR101877118B1/ko active IP Right Grant
- 2016-12-09 WO PCT/KR2016/014466 patent/WO2017217621A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080090433A (ko) * | 2005-12-22 | 2008-10-08 | 제너지 파워 게엠베하 | 피가공물의 유도 가열 방법 |
KR20100039355A (ko) * | 2007-07-26 | 2010-04-15 | 제너지 파워 게엠베하 | 유도 가열 방법 |
KR20100075534A (ko) * | 2007-10-24 | 2010-07-02 | 제너지 파워 게엠베하 | 금속 공작물의 유도 가열 방법 |
US20120028807A1 (en) * | 2009-10-20 | 2012-02-02 | Sumitomo Electric Industries, Ltd. | Oxide superconducting coil, oxide-superconducting-coil assembly, and rotating machine |
KR101468312B1 (ko) * | 2013-06-19 | 2014-12-02 | 창원대학교 산학협력단 | 초전도 코일 및 그의 유도가열장치 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020051593A1 (en) | 2018-09-07 | 2020-03-12 | Dolby Laboratories Licensing Corporation | Dynamic environmental overlay instability detection and suppression in media-compensated pass-through devices |
WO2020061215A1 (en) | 2018-09-19 | 2020-03-26 | Dolby Laboratories Licensing Corporation | Methods and devices for controlling audio parameters |
US12045539B2 (en) | 2018-09-19 | 2024-07-23 | Dolby Laboratories Licensing Corporation | Methods and devices for controlling audio parameters |
Also Published As
Publication number | Publication date |
---|---|
KR20170141062A (ko) | 2017-12-22 |
KR101877118B1 (ko) | 2018-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016143975A1 (ko) | 이동형 철심을 이용한 초전도 자석 장치 및 그의 유도가열장치 | |
Jin et al. | High-temperature superconducting linear synchronous motors integrated with HTS magnetic levitation components | |
WO2011087209A2 (ko) | 초전도 전력저장 장치용 코일 보빈 | |
WO2014148656A1 (ko) | 분할 코일체를 갖는 코일판과 분할 자석을 갖는 왕복 이동형 자석판을 이용한 발전겸용 전동장치 | |
WO2019103253A1 (ko) | 고온초전도 회전기용 초전도 코일의 성능평가 장치 및 상기 장치에 의한 초전도 코일의 성능평가 방법 | |
WO2017217621A1 (ko) | 자기장 변위를 이용한 초전도 직류 유도가열 장치 | |
US7339145B2 (en) | Apparatus and a method for induction heating of pieces of electrically conducting and non-magnetic material | |
CA2688069C (en) | Induction heater | |
Nurullo et al. | Technique and installations for electromagnetic treatment in the formation of composite polymer coatings | |
WO2016117751A1 (ko) | 자성체 홀딩 장치 | |
CN103313449A (zh) | 感应加热装置及其感应加热方法 | |
WO2018151422A1 (ko) | 초전도 자석 회전형 직류 유도 가열 장치 | |
Thullen et al. | An experimental alternator with a superconducting rotating field winding | |
WO2023136551A1 (ko) | 동력 코일 및 이를 포함하는 자기장차 동력장치 | |
CN203327277U (zh) | 感应加热装置 | |
WO2020153547A1 (ko) | 초전도 코일의 u자형 특성 평가 장치 및 이를 이용한 특성 평가 방법 | |
WO2023182750A1 (ko) | 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치를 이용한 배터리 클러스터링 시스템 | |
WO2023182749A1 (ko) | 순차 독립 발전형 발전장치를 이용한 배터리 클러스터링 시스템 | |
WO2020153548A1 (ko) | 초전도 코일의 수평형 특성 평가 장치 및 이를 이용한 특성 평가 방법 | |
CN207458710U (zh) | 一种可调式变压器安装支架 | |
Dong et al. | Study of axial-flux-type superconducting eddy-current couplings | |
CN108735423A (zh) | 一种径向四磁极等温热充磁装置 | |
JP7259315B2 (ja) | 誘導加熱装置 | |
WO2020153549A1 (ko) | 초전도 코일의 수직형 특성 평가 장치 및 이를 이용한 특성 평가 방법 | |
WO2018128487A1 (ko) | 모터와 알터네이터를 융합한 구동기계 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16905605 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16905605 Country of ref document: EP Kind code of ref document: A1 |