WO2020153215A1 - 通信制御方法、送信側端末、及び受信側端末 - Google Patents
通信制御方法、送信側端末、及び受信側端末 Download PDFInfo
- Publication number
- WO2020153215A1 WO2020153215A1 PCT/JP2020/001225 JP2020001225W WO2020153215A1 WO 2020153215 A1 WO2020153215 A1 WO 2020153215A1 JP 2020001225 W JP2020001225 W JP 2020001225W WO 2020153215 A1 WO2020153215 A1 WO 2020153215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- side terminal
- receiving
- group
- transmitting
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
- H04W4/08—User group management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/35—Services specially adapted for particular environments, situations or purposes for the management of goods or merchandise
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
- H04W4/46—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
- H04W92/18—Interfaces between hierarchically similar devices between terminal devices
Definitions
- the present disclosure relates to a communication control method, a transmission side terminal, and a reception side terminal in a mobile communication system.
- V2X direct communication in which such direct communication is applied to a V2X (Vehicle-to-everything) service is also defined.
- Non-Patent Document 1 In recent years, standardization of NR (New Radio), which is positioned as a fifth-generation (5G) wireless access technology, is being advanced in 3GPP (see Non-Patent Document 1, for example). Although direct communication is not specified in the specifications of the current NR system, discussion for introducing direct communication (in particular, V2X direct communication) into the NR system has started in 3GPP.
- 5G fifth-generation
- the communication control method is a method in a mobile communication system in which data is transmitted using direct communication between terminals in a group consisting of a plurality of terminals.
- each terminal belonging to the group discovers another terminal capable of direct communication with its own terminal in the group based on a radio signal received from another terminal belonging to the group.
- information indicating that the transmitting-side terminal belonging to the group indicates the second receiving-side terminal that cannot directly communicate with the transmitting-side terminal to the first receiving-side terminal that can directly communicate with the transmitting-side terminal.
- the first receiving side terminal When the first receiving side terminal is capable of direct communication with the second receiving side terminal, the first receiving side terminal, based on the search request, transmits the search request including 2 transmitting a search notification including information indicating the receiving side terminal to the transmitting side terminal, and, after transmitting the searching notification, the data received by the first receiving side terminal from the transmitting side terminal to the first side. Transferring from the receiving side terminal to the second receiving side terminal.
- the transmitting side terminal is a transmitting side terminal in a mobile communication system that transmits data using direct communication between terminals within a group of a plurality of terminals.
- the transmission side terminal based on a radio signal received from another terminal belonging to the group, a control unit for discovering another terminal capable of direct communication with the transmission side terminal in the group, and the transmission side A transmitting unit that transmits a search request including information indicating a second receiving terminal that cannot directly communicate with the transmitting terminal to the first receiving terminal that can directly communicate with the terminal;
- the receiving side terminal includes a receiving unit that receives a search notification including information indicating the second receiving side terminal from the first receiving side terminal.
- the control unit determines, based on the search notification, that communication between the transmission side terminal and the second reception side terminal can be established.
- the receiving-side terminal is a receiving-side terminal in a mobile communication system that transmits data using direct communication between terminals in a group consisting of a plurality of terminals.
- the receiving side terminal based on a radio signal received from another terminal belonging to the group, a control unit for discovering another terminal capable of direct communication with the own terminal in the group, and a transmission belonging to the group.
- a receiving unit that receives a search request from the transmitting side terminal including information indicating another receiving side terminal that cannot directly communicate with the transmitting side terminal.
- the receiving side terminal when the receiving side terminal is capable of direct communication with the other receiving side terminal, based on the search request, transmits a search notification including information indicating the other receiving side terminal to the transmitting side terminal. And a transmitting unit that does. After transmitting the search notification, the control unit transfers the data received by the receiving side terminal from the transmitting side terminal to the other receiving side terminal from the receiving side terminal.
- FIG. 1 It is a figure which shows the structure of the mobile communication system which concerns on one Embodiment. It is a figure which shows the structure of the terminal which concerns on one Embodiment. It is a figure which shows the structure of the base station which concerns on one Embodiment. It is a figure which shows the structure of the protocol stack of the radio
- FIG. 8 is a diagram showing an example of a discovery procedure under the communication environment shown in FIG. 7. It is a figure which shows an example of the assumption scenario which concerns on one Embodiment. It is a figure which shows the positional relationship of each terminal in the operation example 1 which concerns on one Embodiment. It is a figure which shows the operation
- NR direct communication is based on LTE direct communication, but it is assumed that advanced functions not included in LTE direct communication will be added. For example, it is assumed that a group cast (multicast) function is added in addition to unicast and broadcast.
- each terminal can directly communicate.
- the range of communication area (hereinafter referred to as "direct communication area") in which each terminal can directly communicate is limited.
- the direct communication area of each terminal can be further limited.
- the present disclosure aims to make it possible for each receiving side terminal to more reliably receive data transmitted from a transmitting side terminal using direct communication between terminals within a group of a plurality of terminals.
- the mobile communication system according to one embodiment is a 5G system of 3GPP
- LTE may be at least partially applied to the mobile communication system.
- FIG. 1 is a diagram showing a configuration of a mobile communication system according to an embodiment.
- the mobile communication system has a terminal 100, a 5G radio access network (NG-RAN: Next Generation Radio Access Network) 10, and a 5G core network (5GC: 5G Core Network) 20. ..
- the terminal 100 is also referred to as UE (User Equipment).
- the terminal 100 is a movable device.
- the terminal 100 may be any device as long as it is a device used by a user.
- the terminal 100 is a mobile phone terminal (including a smartphone), a tablet terminal, a notebook PC, a communication module (including a communication card or a chipset), a sensor or a device provided in the sensor, a vehicle or a device provided in the vehicle (Vehicle). Terminal), or an aircraft or a device provided on the aircraft (Aerial terminal).
- the NG-RAN 10 includes a base station (called “gNB” in the 5G system) 200.
- the base station 200 may also be called an NG-RAN node.
- the base stations 200 are connected to each other via an Xn interface which is an interface between base stations.
- the base station 200 manages one or a plurality of cells.
- the base station 200 performs wireless communication with the terminal 100 that has established a connection with its own cell.
- the base station 200 has a radio resource management (RRM) function, a user data (hereinafter simply referred to as “data”) routing function, and/or a measurement control function for mobility control/scheduling.
- RRM radio resource management
- Cell is used as a term indicating a minimum unit of a wireless direct communication area.
- the “cell” is also used as a term indicating a function or resource for performing wireless communication with the terminal 100.
- One cell belongs to one carrier frequency.
- the base station may be connected to the EPC (Evolved Packet Core) that is the LTE core network, or the LTE base station may be connected to 5GC. Further, the LTE base station and the base station may be connected via an inter-base station interface.
- EPC Evolved Packet Core
- 5GC20 includes AMF(Access and Mobility Management Function) and UPF(User Plane Function)300.
- the AMF performs various mobility controls for the terminal 100.
- the AMF manages information on the area in which the terminal 100 is located by communicating with the terminal 100 using NAS (Non-Access Stratum) signaling.
- the UPF controls data transfer.
- the AMF and UPF are connected to the base station 200 via an NG interface which is an interface between the base station and the core network.
- FIG. 2 is a diagram showing the configuration of the terminal 100 (terminal).
- the terminal 100 includes a receiving unit 110, a transmitting unit 120, and a control unit 130.
- the receiving unit 110 performs various types of reception under the control of the control unit 130.
- the receiver 110 includes an antenna and a receiver.
- the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
- the transmission unit 120 performs various types of transmission under the control of the control unit 130.
- the transmitter 120 includes an antenna and a transmitter.
- the transmitter converts the baseband signal (transmission signal) output by the control unit 130 into a radio signal and transmits the radio signal from the antenna.
- the control unit 130 performs various controls on the terminal 100.
- the control unit 130 includes at least one processor and at least one memory electrically connected to the processor.
- the memory stores a program executed by the processor and information used for processing by the processor.
- the processor may include a baseband processor and a CPU (Central Processing Unit).
- the baseband processor performs modulation/demodulation and coding/decoding of the baseband signal.
- the CPU executes programs stored in the memory to perform various kinds of processing.
- FIG. 3 is a diagram showing the configuration of the base station 200.
- the base station 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
- the transmission unit 210 performs various types of transmission under the control of the control unit 230.
- the transmitter 210 includes an antenna and a transmitter.
- the transmitter converts the baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits the radio signal from the antenna.
- the receiving unit 220 performs various types of reception under the control of the control unit 230.
- the receiver 220 includes an antenna and a receiver.
- the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
- the control unit 230 performs various controls in the base station 200.
- the controller 230 includes at least one processor and at least one memory electrically connected to the processor.
- the memory stores a program executed by the processor and information used for processing by the processor.
- the processor may include a baseband processor and a CPU.
- the baseband processor performs modulation/demodulation and coding/decoding of the baseband signal.
- the CPU executes programs stored in the memory to perform various kinds of processing.
- the backhaul communication unit 240 is connected to an adjacent base station via an interface between base stations.
- the backhaul communication unit 240 is connected to the AMF/UPF 300 via a base station-core network interface.
- the base station may be composed of a CU (Central Unit) and a DU (Distributed Unit) (that is, functionally divided), and both units may be connected by an F1 interface.
- FIG. 4 is a diagram showing a configuration of a protocol stack of a wireless interface of a user plane that handles data.
- the radio interface protocol of the user plane includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. It has an SDAP (Service Data Adaptation Protocol) layer.
- PHY physical
- MAC Medium Access Control
- RLC Radio Link Control
- PDCP Packet Data Convergence Protocol
- SDAP Service Data Adaptation Protocol
- PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted via a physical channel between the PHY layer of the terminal 100 and the PHY layer of the base station 200.
- the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, etc.
- Data and control information are transmitted between the MAC layer of the terminal 100 and the MAC layer of the base station 200 via a transport channel.
- the MAC layer of the base station 200 includes a scheduler.
- the scheduler determines an uplink/downlink transport format (transport block size, modulation/coding method (MCS)) and resource blocks allocated to the terminal 100.
- MCS modulation/coding method
- the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the terminal 100 and the RLC layer of the base station 200 via a logical channel.
- the PDCP layer performs header compression/decompression and encryption/decryption.
- the SDAP layer maps the IP flow, which is the unit in which the core network performs QoS control, and the radio bearer, which is the unit in which AS (Access Stratum) performs QoS control.
- SDAP may be omitted.
- FIG. 5 is a diagram showing a configuration of a protocol stack of a radio interface of a control plane that handles signaling (control signal).
- the protocol stack of the radio interface of the control plane has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) layer instead of the SDAP layer shown in FIG.
- RRC signaling for various settings is transmitted between the RRC layer of the terminal 100 and the RRC layer of the base station 200.
- the RRC layer controls logical channels, transport channels and physical channels according to establishment, re-establishment and release of radio bearers.
- RRC connection connection between the RRC of the terminal 100 and the RRC of the base station 200
- the terminal 100 is in the RRC connected mode.
- RRC connection no connection between the RRC of the terminal 100 and the RRC of the base station 200
- the terminal 100 is in the RRC idle mode.
- the terminal 100 is in the RRC inactive mode.
- the NAS layer which is located above the RRC layer, performs session management, mobility management, etc.
- NAS signaling is transmitted between the NAS layer of the terminal 100 and the NAS layer of the AMF 300.
- the terminal 100 has an application layer and the like in addition to the wireless interface protocol.
- the mobile communication system supports side link communication (direct communication) that is communication performed directly using a side link that is an interface between terminals.
- the side link communication may be V2X side link communication.
- the side link may be called a PC5 interface.
- the side-link communication protocol stack has a physical layer, a MAC layer, an RLC layer, and a PDCP layer.
- the side stack communication protocol stack may have an RRC layer in the control plane.
- FIG. 6 is a diagram showing a transmission type of sidelink communication according to an embodiment.
- the transmission types of the side link communication include unicast, group cast (multicast), and broadcast. Further, in the side link communication, feedback from the receiving side terminal 100R to the transmitting side terminal 100T can be introduced.
- the feedback includes response information indicating whether the receiving side terminal 100R has correctly received the data from the transmitting side terminal 100T.
- the feedback may include channel state information (CSI) indicating the state of the propagation path between the transmission-sided terminal 100T and the reception-sided terminal 100R.
- CSI channel state information
- the response information may be response information of ARQ (Automatic repeat-request) of the RLC layer or may be response information of HARQ (Hybrid ARQ) of the MAC layer.
- the response information includes an ACK indicating that the data has been correctly received and a NACK indicating that the data has not been correctly received (that is, the reception of the data has failed).
- Unicast side-link communication is one-to-one side-link communication.
- the transmitting side terminal 100T transmits data to the receiving side terminal 100R, and the receiving side terminal 100R transmits feedback information to the transmitting side terminal 100T.
- the transmitting side terminal 100T transmits the side link communication control information to the receiving side terminal 100R before transmitting the data.
- -Groupcast sidelink communication is one-to-many (one-to-many specific) sidelink communication performed within a specific group.
- the transmitting side terminal 100T collectively transmits the same data to each receiving side terminal 100R in the group, and each receiving side terminal 100R transmits feedback information to the transmitting side terminal 100T.
- the transmission-sided terminal 100T transmits data without designating a specific destination terminal or group.
- unicast and group cast are mainly assumed as the side link communication transmission types.
- each terminal 100 that performs side link communication discovers another terminal that can directly communicate with its own terminal based on a radio signal received from another terminal, and discovers the other terminal.
- Establishes and manages communication connections for The communication connection may be a wireless link which is a physical layer (and MAC layer) connection or an RRC connection which is an RRC layer connection.
- the radio signal for maintaining/managing the communication connection is a reference signal of a physical layer that can be used for estimating channel state information (CSI), an RRC message transmitted/received in the RRC layer, and/or a discovery as defined in LTE. It may be a message.
- the wireless signal for maintaining/managing the communication connection includes the identifier of the transmission source terminal.
- a radio signal is referred to as a “discovery signal”
- a procedure for discovering another terminal using this discovery signal is referred to as a “discovery procedure”.
- the discovery signal shall be transmitted by broadcast or group cast.
- the identifier of the terminal 100 may be assigned to each terminal 100 from the network (base station 200) by communication, or may be preset in each terminal. Further, in the following embodiments, it is assumed that a group including a plurality of terminals 100 is formed. Each terminal 100 stores and manages the identifier of each terminal in the group to which it belongs as group information. The group information may be set in each terminal 100 from the network (base station 200) by communication, or may be preset in each terminal.
- FIG. 7 is a diagram showing an example of maintenance/management of communication connections in a group including a plurality of terminals 100.
- three terminals A to C are illustrated as the plurality of terminals 100.
- Each of "A”, “B”, and “C” corresponds to the identifier of the terminal.
- Each of the terminals A to C stores in advance, as group information, the identifiers “A”, “B”, and “C” of each terminal in the group.
- the group information may further include a group identifier.
- each of the terminals A to C transmits a radio signal for maintaining/managing the communication connection with a predetermined transmission power.
- the reach of wireless signals corresponds to the direct communication area.
- Terminal A is in the direct communication area of terminals B and C
- terminal B is in the direct communication area of terminals A and C
- terminal C is in the direct communication area of terminals A and B.
- FIG. 8 is a diagram showing an example of a discovery procedure under the communication environment shown in FIG. In FIG. 8, it is assumed that the terminal A is a transmitting side terminal that transmits data and the terminals B and C are receiving side terminals that receive data.
- the terminal A may be a master terminal that manages a group, and the terminals B and C may be slave terminals that are managed by the terminal A.
- each of the terminals A to C periodically transmits a discovery signal including a transmission source identifier.
- the discovery signal may further include an identifier of each destination group.
- the terminal A may transmit the discovery signal before transmitting the data
- the terminals B and C may transmit the discovery signal in response to the reception of the discovery signal from the terminal A.
- step S101 the terminal A transmits a discovery signal including its own identifier “A”.
- Each of the terminals B and C receives the discovery signal from the terminal A.
- step S102 the terminal B transmits a discovery signal including its own identifier “B”.
- Each of the terminals A and C receives the discovery signal from the terminal B.
- step S103 the terminal C transmits a discovery signal including its own identifier “C”.
- Each of the terminals A and B receives the discovery signal from the terminal C.
- step S104 terminal A discovers terminals B and C based on the discovery signal received from terminal B and the discovery signal received from terminal C. Specifically, the terminal A collates the transmission source identifier included in each discovery signal with the group information and directly communicates with each of the other terminals B and C in the group to which the terminal A belongs. recognize.
- step S105 the terminal B discovers the terminals A and C based on the discovery signal received from the terminal A and the discovery signal received from the terminal C. Specifically, the terminal B can collate the transmission source identifier included in each discovery signal with the group information and directly communicate with each of the other terminals A and C in the group to which the terminal B belongs. recognize.
- step S106 the terminal C discovers the terminals A and B based on the discovery signal received from the terminal A and the discovery signal received from the terminal B. Specifically, the terminal C collates the transmission source identifier included in each discovery signal with the group information, and directly communicates with each of the other terminals A and B in the group to which the terminal C belongs. recognize.
- FIG. 9 is a diagram illustrating an example of an assumed scenario according to the embodiment.
- each of the terminals A to C in the group is an in-vehicle terminal mounted in a vehicle.
- the terminal A is mounted on the vehicle A
- the terminal B is mounted on the vehicle B
- the terminal C is mounted on the vehicle C.
- the vehicles A to C are, for example, automobiles (for example, trucks) moving on the road.
- the vehicles A to C may be tractors or the like.
- the -Vehicles A to C perform cooperative driving using direct communication between terminals.
- the vehicles A to C perform platoon traveling as an example of cooperative traveling.
- the vehicle A is the first vehicle
- the vehicle C is the last vehicle
- the vehicle B is a vehicle between the vehicle A and the vehicle C.
- the terminal A uses the position data, the vehicle speed data, the acceleration data, the traveling direction data, the steering data, the accelerator data, and/or the brake data as the data indicating the traveling state of the vehicle A.
- the vehicles B and C follow the movement of the vehicle A based on the information received by the terminals B and C from the terminal A.
- the direct communication area of terminal A is limited.
- a high frequency band such as the 28 GHz band
- radio waves do not reach far, and the direct communication area of the terminal A can be further limited.
- the distance between the terminal A and the terminals B and C changes depending on the traveling environment.
- the terminal C at the end may be located outside the direct communication area of the terminal A. In this case, the terminal C cannot receive the data transmitted by the terminal A.
- FIG. 10 is a diagram showing a positional relationship of each terminal in the operation example 1 according to the embodiment.
- terminal A is in the direct communication area of terminal B and outside the direct communication area of terminal C.
- Terminal B is within the direct communication area of terminals A and C.
- Terminal C is outside the direct communication area of terminal A and within the direct communication area of terminal B.
- Each terminal A to C may be outside the coverage of the base station 200 or within the coverage of the base station 200.
- FIG. 11 is a diagram showing an operation sequence in the operation example 1.
- step S201 the terminal A (transmission side terminal) transmits a discovery signal.
- the terminal B first receiving side terminal receives the discovery signal from the terminal A, but the terminal C (second receiving side terminal) does not receive the discovery signal from the terminal A.
- step S202 terminal B transmits a discovery signal.
- Each of the terminals A and C receives the discovery signal from the terminal B.
- step S203 the terminal C transmits a discovery signal.
- Terminal B receives the discovery signal from terminal C, but terminal A does not receive the discovery signal from terminal C.
- step S204 terminal A discovers terminal B based on the discovery signal received from terminal B, but fails to discover terminal C in the same group.
- the terminal A determines that the direct communication with the terminal B is possible and the direct communication with the terminal C is impossible.
- step S205 the terminal B discovers the terminals A and C based on the discovery signal received from the terminals A and C.
- the terminal B determines that direct communication with the terminals A and C is possible.
- step S206 terminal C discovers terminal B based on the discovery signal received from terminal B, but fails to discover terminal A in the same group.
- the terminal C determines that direct communication with the terminal B is possible and direct communication with the terminal A is impossible.
- step S207 the terminal A transmits a search request including the identifier of the terminal C to the terminal B by direct communication based on the fact that the terminal C fails to be found in step S204.
- the search request is a message requesting a search for the terminal C.
- the search request may be an inquiry as to whether or not data transfer to the terminal C is possible, or whether or not a discovery signal has been received from the terminal C.
- the search request may be an RRC message specified by the RRC layer or a message specified by a layer higher than the RRC layer.
- step S208 the terminal B has found the terminal C in step S205 and determines that direct communication with the terminal C is possible. Therefore, based on the search request from the terminal A, the terminal B The search notification including the identifier is transmitted to the terminal A.
- the search notification is a message indicating that the search for the terminal C has succeeded.
- the search notification may be a message indicating that data transfer to the terminal C is possible or that the discovery signal has been received from the terminal C.
- the search notification may be an RRC message defined in the RRC layer or a message defined in a layer higher than the RRC layer.
- terminal A Based on the search notification from terminal B, terminal A transmits an affirmative response (OK) to the search notification to terminal B (step S209), and establishes communication (communication connection) between self terminal A and terminal C. It is determined that it is possible (step S210).
- step S211 based on the search request from terminal A, terminal B transmits to terminal C a transfer notification indicating that terminal B transfers data from terminal A to terminal C.
- the transfer notification includes the identifier of the terminal A.
- the transfer notification may be a message indicating that the terminal C can establish communication (communication connection) with the terminal A.
- the transfer notification may be an RRC message defined in the RRC layer or a message defined in a layer higher than the RRC layer.
- the terminal C transmits an affirmative response (OK) to the transfer notification to the terminal B based on the transfer notification from the terminal B (step S212), and establishes communication (communication connection) between the own terminal C and the terminal A. It is determined that it is possible (step S213).
- step S214 the terminal B generates transfer information that associates the terminal A with the terminal C, and sets to relay (data transfer) the communication between the terminal A and the terminal C.
- the terminal A transmits the same data for the terminals B and C by group cast.
- the terminal A may transmit data with the identifier of the group to which the terminal A itself belongs as the destination.
- the terminal A may transmit different data to each of the terminals B and C by unicast.
- step S217 the terminal B transfers the data received from the terminal A to the terminal C.
- the terminal C receives the data from the terminal B.
- the terminal B searches for the terminal C and the data from the terminal A is transmitted by the terminal B to the terminal C.
- the communication between the terminal A and the terminal C can be established by transferring the data to the terminal.
- FIG. 12 is a diagram showing the positional relationship between the terminals in the operation example 2. In operation example 2, it is assumed that one group is formed by four terminals A to D.
- terminal A is within the direct communication area of terminal B and outside the direct communication area of terminals C and D.
- the terminal B is within the direct communication area of the terminals A and C and outside the direct communication area of the terminal D.
- Terminal C is outside the direct communication area of terminal A and within the direct communication area of terminals B and D.
- FIG. 13 is a diagram showing an operation sequence in the operation example 2. Here, the description overlapping with the operation example 1 is omitted.
- the terminal A transmits a discovery signal.
- the terminal B first receiving side terminal
- the terminal C second receiving side terminal
- the terminal D third receiving side terminal
- step S302 terminal B transmits a discovery signal.
- Each of the terminals A and C receives the discovery signal from the terminal B, but the terminal D does not receive the discovery signal from the terminal B.
- step S303 the terminal C transmits a discovery signal.
- Terminals B and D receive the discovery signal from terminal C, but terminal A does not receive the discovery signal from terminal C.
- step S304 terminal D transmits a discovery signal.
- the terminal C receives the discovery signal from the terminal D, but the terminals A and B do not receive the discovery signal from the terminal D.
- step S305 terminal A discovers terminal B based on the discovery signal received from terminal B, but fails to discover terminals C and D within the same group.
- the terminal A determines that direct communication with the terminal B is possible and direct communication with the terminals C and D is impossible.
- step S306 the terminal B discovers the terminals A and C based on the discovery signal received from the terminals A and C, but fails to discover the terminals in the same group.
- the terminal B determines that the direct communication with the terminals A and C is possible and the direct communication with the terminal D is impossible.
- step S307 the terminal C discovers the terminals B and D based on the discovery signals received from the terminals B and D, but fails to discover the terminal A in the same group.
- the terminal C determines that the direct communication with the terminals B and D is possible and the direct communication with the terminal A is impossible.
- step S308 the terminal D discovers the terminal C based on the discovery signal received from the terminal C, but fails to discover the terminals A and B in the same group.
- the terminal C determines that direct communication with the terminal C is possible and direct communication with the terminals A and B is impossible.
- step S309 the terminal A transmits a search request including the respective identifiers of the terminals C and D to the terminal B by direct communication based on the fact that the terminals C and D have not been found in step S305.
- step S310 the terminal B finds the terminal C in step S305 and fails to find the terminal D. Therefore, based on the search request from the terminal A, the terminal B issues a search notification including the identifier of the found terminal C. Send to terminal A.
- terminal A Based on the search notification from terminal B, terminal A transmits an affirmative response (OK) to the search notification to terminal B (step S311), and establishes communication (communication connection) between self terminal A and terminal C. It is determined that it is possible (step S312).
- step S313 the terminal B transmits to the terminal C a transfer notification indicating that the terminal B transfers the data from the terminal A to the terminal C.
- the transfer notification includes the identifier of the terminal A.
- the terminal C transmits an affirmative response (OK) to the transfer notification to the terminal B based on the transfer notification from the terminal B (step S314), and establishes communication (communication connection) between the own terminal C and the terminal A. It is determined that it is possible (step S315).
- step S316 based on the search request from the terminal A, the terminal B sends a search request including the identifier of the terminal D, which has not been searched yet, to the terminal C by direct communication.
- step S317 since the terminal C has found the terminal D in step S307, the terminal C transmits a search notification including the identifier of the found terminal D to the terminal B based on the search request from the terminal B. Based on the search notification from terminal C, terminal B transmits an affirmative response (OK) to the search notification to terminal C (step S318).
- step S319 since the terminal C has found the terminal D, the terminal B transmits a search notification including the identifier of the found terminal D to the terminal A.
- terminal A Based on the search notification from terminal B, terminal A transmits an affirmative response (OK) to the search notification to terminal B (step S320), and establishes communication (communication connection) between self terminal A and terminal D. It is determined that it is possible (step S321).
- step S322 the terminal B generates transfer information that associates the terminal A with the terminal C, and sets to relay (data transfer) the communication between the terminal A and the terminal C.
- step S323 the terminal C transmits to the terminal D a transfer notification indicating that the terminal C transfers the data from the terminal B (that is, the data from the terminal A) to the terminal D.
- the transfer notification includes the identifier of the terminal B (and A).
- the terminal D Based on the transfer notification from the terminal C, the terminal D transmits an affirmative response (OK) to the transfer notification to the terminal B (step S324), and communication (communication between the terminal D and the terminal A (and B)) is performed. It is determined that the connection can be established (step S326).
- the terminal A transmits the same data to the terminals B to D by group cast.
- the terminal A may transmit data with the identifier of the group to which the terminal A itself belongs as the destination.
- the terminal A may transmit different data to each of the terminals B to D by unicast.
- the terminal B transfers the data received from the terminal A to the terminal C.
- the terminal C receives the data from the terminal B.
- step S332 the terminal C transfers the data received from the terminal B to the terminal D.
- the terminal D receives the data from the terminal C.
- the terminal B searches the terminal C and the terminal C searches the terminal D.
- terminal B transfers data from terminal A to terminal C
- terminal C transfers data to terminal D. Therefore, the communication between the terminal A and the terminals C and D can be established.
- FIG. 14 is a diagram showing an operation sequence in the operation example 3.
- the terminal E joins the group midway after the operation of the operation example 2.
- each of the terminals A to E in the group stores in advance the respective identifiers of the terminals A to E as the group information of this group.
- Each of the terminals A to E belonging to the group may update the group information so as to add the identifier of the terminal E based on the message received from the base station 200.
- the terminal E which is a participation request terminal, transmits a participation contact signal for the terminal E to participate in the group.
- the join contact signal may be a wireless signal similar to or the same as the discovery signal.
- the participation contact signal includes the identifier "E" of the transmission source.
- the terminal D receives the participation contact signal.
- step S402 the terminal D determines that the terminal E is registered in the group, and notifies the terminal E of permission to join the group.
- the terminal E discovers the terminal D in the group based on the participation permission from the terminal D.
- the terminal E has not found the terminals A to C in the group. That is, the terminal E determines that it is outside the direct communication area of the terminals A to C.
- step S404 the terminal E transmits to the terminal D a check request including the identifier of the terminal D that the terminal E has already discovered.
- the check request is used to confirm which terminal the terminal E has already discovered.
- the terminal D determines that the terminal E has not found the terminals A to C based on the difference between the check request from the terminal E and the group information (step S405).
- step S406 the terminal D transmits a participation notification including the identifier of the terminal E (that is, a notification that the terminal E joins the group) to the terminal C.
- the terminal C accepts the participation of the terminal E based on the participation notification and the group information (step S407), notifies the terminal D of the participation permission to the group (step S408), and the terminal D permits the participation permission. Transfer to E. Accordingly, the terminal E determines that the communication (communication connection) between the terminal E and the terminal D can be established.
- the terminals A to C also accept the participation contact and transfer the participation permission to the terminal E (steps S410 to S415). Thereby, the terminal E determines that communication (communication connection) between the terminal E and the terminals A to C can be established.
- FIG. 15 is a diagram showing an operation sequence in the operation example 4. Here, it is assumed that the terminal E leaves the group after the terminal E becomes a participating terminal in the operation of the operation example 3.
- the terminal E which is the exit request terminal, transmits an exit contact signal for the terminal E to leave the group.
- the exit contact signal may be a wireless signal similar to the discovery signal.
- the exit contact signal includes the identifier "E" of the transmission source.
- the terminal D receives the leaving contact signal.
- step S502 the terminal D determines that the terminal E is registered in the group, and accepts and notifies the terminal E of the exit permission from the group (steps S502, S503).
- step S504 the terminal D transmits an exit notification including the identifier of the terminal E (that is, a notification that the terminal E leaves the group) to the C.
- the exit notification is transferred from the terminal C to the terminal B and from the terminal B to the terminal A.
- the terminals A to C accept the exit notification and transmit/transfer the exit permission to the terminal E (steps S505 to S510).
- the terminal E determines that the communication (communication connection) between the terminal E and the terminals A to D is released.
- each terminal in the group may be a wireless tag terminal attached to an article (article).
- direct communication between terminals may be used within a group for inventory management of a plurality of items.
- the sending terminal may manage each receiving terminal in the group to check whether or not each article (each terminal) exists.
- a warning notification may be given to the user or a warning notification may be given to the network (base station 200).
- the terminal that has detected the deterioration of the wireless quality with the terminal on the data transfer path by periodically measuring the electric field strength may perform user notification such as alert display, warning sound, and vibration.
- a program that causes a computer to execute each process performed by the terminal 100 may be provided.
- the program may be recorded in a computer-readable medium.
- a computer readable medium can be used to install the program on a computer.
- the computer-readable medium in which the program is recorded may be a non-transitory recording medium.
- the non-transitory recording medium is not particularly limited, and examples thereof include a CD-ROM (Compact Disk-Read Only Memory) and a DVD-ROM (Digital Versatile Disc-Read Only Memory). May be.
- circuits for executing each process performed by the terminal 100 may be integrated, and at least a part of the terminal 100 may be configured as a semiconductor integrated circuit (chip set, SoC).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
複数の端末からなるグループ内において端末間の直接通信を用いてデータを送信するための通信制御方法は、グループに属する各端末が、グループに属する他の端末から受信する無線信号に基づいて、グループ内において自端末との直接通信が可能な他の端末を発見することと、グループに属する送信側端末が、送信側端末との直接通信が可能な第1受信側端末に対して、送信側端末との直接通信が不能な第2受信側端末を示す情報を含む探索要求を送信することと、第1受信側端末が第2受信側端末との直接通信が可能である場合、第1受信側端末が、探索要求に基づいて、第2受信側端末を示す情報を含む探索通知を送信側端末に送信することと、を含む。
Description
本開示は、移動通信システムにおける通信制御方法、送信側端末、及び受信側端末に関する。
従来、3GPP(3rd Generation Partnership Project)のLTE(Long Term Evolution)システムにおいて、端末間のインターフェイスであるサイドリンクを用いて直接的に行う通信である直接通信が規定されている。このような直接通信は、サイドリンク通信とも呼ばれる。このような直接通信をV2X(Vehicle-to-everything)サービスに応用したV2X直接通信も規定されている。
近年、第5世代(5G)の無線アクセス技術に位置付けられるNR(New Radio)の標準化が3GPPにおいて進められている(例えば、非特許文献1参照)。現状のNRシステムの仕様には直接通信が規定されていないが、NRシステムに直接通信(特に、V2X直接通信)を導入するための議論が3GPPにおいて開始されている。
3GPP技術仕様書 「TS38.300 V15.3.0」 2018年9月、インターネット<URL:http://www.3gpp.org/ftp//Specs/archive/38_series/38.300/38300-f30.zip>
第1の態様に係る通信制御方法は、複数の端末からなるグループ内において端末間の直接通信を用いてデータを送信する移動通信システムにおける方法である。前記通信制御方法は、前記グループに属する各端末が、前記グループに属する他の端末から受信する無線信号に基づいて、前記グループ内において自端末との直接通信が可能な他の端末を発見することと、前記グループに属する送信側端末が、前記送信側端末との直接通信が可能な第1受信側端末に対して、前記送信側端末との直接通信が不能な第2受信側端末を示す情報を含む探索要求を送信することと、前記第1受信側端末が前記第2受信側端末との直接通信が可能である場合、前記第1受信側端末が、前記探索要求に基づいて、前記第2受信側端末を示す情報を含む探索通知を前記送信側端末に送信することと、前記探索通知の送信後、前記送信側端末から前記第1受信側端末が受信する前記データを、前記第1受信側端末から前記第2受信側端末に転送することと、を含む。
第2の態様に係る送信側端末は、複数の端末からなるグループ内において端末間の直接通信を用いてデータを送信する移動通信システムにおける送信側端末である。前記送信側端末は、前記グループに属する他の端末から受信する無線信号に基づいて、前記グループ内において前記送信側端末との直接通信が可能な他の端末を発見する制御部と、前記送信側端末との直接通信が可能な第1受信側端末に対して、前記送信側端末との直接通信が不能な第2受信側端末を示す情報を含む探索要求を送信する送信部と、前記第1受信側端末が前記第2受信側端末との直接通信が可能である場合、前記第2受信側端末を示す情報を含む探索通知を前記第1受信側端末から受信する受信部とを備える。前記制御部は、前記探索通知に基づいて、前記送信側端末と前記第2受信側端末との間の通信を確立可能であると判断する。
第3の態様に係る受信側端末は、複数の端末からなるグループ内において端末間の直接通信を用いてデータを送信する移動通信システムにおける受信側端末である。前記受信側端末は、前記グループに属する他の端末から受信する無線信号に基づいて、前記グループ内において自端末との直接通信が可能な他の端末を発見する制御部と、前記グループに属する送信側端末と前記受信側端末との直接通信が可能である場合、前記送信側端末との直接通信が不能な他の受信側端末を示す情報を含む探索要求を前記送信側端末から受信する受信部と、前記受信側端末が前記他の受信側端末との直接通信が可能である場合、前記探索要求に基づいて、前記他の受信側端末を示す情報を含む探索通知を前記送信側端末に送信する送信部と、を備える。前記制御部は、前記探索通知の送信後、前記送信側端末から前記受信側端末が受信する前記データを、前記受信側端末から前記他の受信側端末に転送する。
NRの直接通信は、LTEの直接通信をベースとしつつ、LTEの直接通信には無い高度な機能が追加されることが想定される。例えば、ユニキャスト及びブロードキャストに加えてグループキャスト(マルチキャスト)の機能が追加されると想定される。
しかしながら、各端末の直接通信可能な通信エリア(以下、「直接通信エリア」と呼ぶ)の範囲は限定されている。特に、LTEでは利用されていないような高い周波数帯を直接通信に用いる場合、各端末の直接通信エリアはさらに限定されうる。
よって、グループ内の一部の受信側端末が送信側端末の直接通信エリアの外に位置する場合がありうる。この場合、送信側端末が送信するデータを一部の受信側端末が受信できないという問題がある。
そこで、本開示は、複数の端末からなるグループ内において端末間の直接通信を用いて送信側端末から送信されるデータを各受信側端末がより確実に受信可能とすることを目的とする。
図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
(移動通信システムの構成例)
まず、一実施形態に係る移動通信システムの構成について説明する。一実施形態に係る移動通信システムは3GPPの5Gシステムであるが、移動通信システムには、LTEが少なくとも部分的に適用されてもよい。
まず、一実施形態に係る移動通信システムの構成について説明する。一実施形態に係る移動通信システムは3GPPの5Gシステムであるが、移動通信システムには、LTEが少なくとも部分的に適用されてもよい。
図1は、一実施形態に係る移動通信システムの構成を示す図である。
図1に示すように、移動通信システムは、端末100と、5Gの無線アクセスネットワーク(NG-RAN:Next Generation Radio Access Network)10と、5Gのコアネットワーク(5GC:5G Core Network)20とを有する。端末100は、UE(User Equipment)とも呼ばれる。
端末100は、移動可能な装置である。端末100は、ユーザにより利用される装置であればどのような装置であってもよい。例えば、端末100は、携帯電話端末(スマートフォンを含む)、タブレット端末、ノートPC、通信モジュール(通信カード又はチップセットを含む)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(Vehicle端末)、又は飛行体若しくは飛行体に設けられる装置(Aerial端末)である。
NG-RAN10は、基地局(5Gシステムにおいて「gNB」と呼ばれる)200を含む。基地局200は、NG-RANノードと呼ばれることもある。基地局200は、基地局間インターフェイスであるXnインターフェイスを介して相互に接続される。基地局200は、1又は複数のセルを管理する。基地局200は、自セルとの接続を確立した端末100との無線通信を行う。基地局200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、及び/又はモビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線直接通信エリアの最小単位を示す用語として用いられる。「セル」は、端末100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。
なお、基地局がLTEのコアネットワークであるEPC(Evolved Packet Core)に接続されてもよいし、LTEの基地局が5GCに接続されてもよい。また、LTEの基地局と基地局とが基地局間インターフェイスを介して接続されてもよい。
以下において、基地局200が端末100との無線通信を行う場合について主として説明するが、eNBが端末100との無線通信を行うことにより、eNBがサイドリンク通信を制御してもよい。
5GC20は、AMF(Access and Mobility Management Function)及びUPF(User Plane Function)300を含む。AMFは、端末100に対する各種モビリティ制御等を行う。AMFは、NAS(Non-Access Stratum)シグナリングを用いて端末100と通信することにより、端末100が在圏するエリアの情報を管理する。UPFは、データの転送制御を行う。AMF及びUPFは、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介して基地局200と接続される。
図2は、端末100(端末)の構成を示す図である。
図2に示すように、端末100は、受信部110、送信部120、及び制御部130を備える。
受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
制御部130は、端末100における各種の制御を行う。制御部130は、少なくとも1つのプロセッサと、プロセッサと電気的に接続された少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
図3は、基地局200の構成を示す図である。
図3に示すように、基地局200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
制御部230は、基地局200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサと、プロセッサと電気的に接続された少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUと、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
バックホール通信部240は、基地局間インターフェイスを介して隣接基地局と接続される。バックホール通信部240は、基地局-コアネットワーク間インターフェイスを介してAMF/UPF300と接続される。なお、基地局は、CU(Central Unit)とDU(Distributed Unit)とで構成され(すなわち、機能分割され)、両ユニット間がF1インターフェイスで接続されてもよい。
図4は、データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
図4に示すように、ユーザプレーンの無線インターフェイスプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、SDAP(Service Data Adaptation Protocol)レイヤとを有する。
PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。端末100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。端末100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及び端末100への割当リソースブロックを決定する。
RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。端末100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
SDAPレイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。なお、RANがEPCに接続される場合は、SDAPが無くてもよい。
図5は、シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
図5に示すように、制御プレーンの無線インターフェイスのプロトコルスタックは、図4に示したSDAPレイヤに代えて、RRC(Radio Resource Control)レイヤ及びNAS(Non-Access Stratum)レイヤを有する。
端末100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。端末100のRRCと基地局200のRRCとの間に接続(RRC接続)がある場合、端末100はRRCコネクティッドモードである。端末100のRRCと基地局200のRRCとの間に接続(RRC接続)がない場合、端末100はRRCアイドルモードである。また、RRC接続が中断(サスペンド)されている場合、端末100はRRCインアクティブモードである。
RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理等を行う。端末100のNASレイヤとAMF300のNASレイヤとの間では、NASシグナリングが伝送される。
なお、端末100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
(サイドリンク通信)
次に、一実施形態に係るサイドリンク通信について説明する。
次に、一実施形態に係るサイドリンク通信について説明する。
一実施形態に係る移動通信システムは、端末間のインターフェイスであるサイドリンクを用いて直接的に行う通信であるサイドリンク通信(直接通信)をサポートする。サイドリンク通信は、V2Xサイドリンク通信であってもよい。なお、サイドリンクは、PC5インターフェイスと呼ばれることもある。
サイドリンク通信のプロトコルスタックは、物理レイヤと、MACレイヤと、RLCレイヤと、PDCPレイヤとを有する。サイドリンク通信のプロトコルスタックは、制御プレーンにおいて、RRCレイヤを有していてもよい。
図6は、一実施形態に係るサイドリンク通信の送信種別を示す図である。
図6に示すように、サイドリンク通信の送信種別は、ユニキャスト、グループキャスト(マルチキャスト)、及びブロードキャストを含む。また、サイドリンク通信には、受信側端末100Rから送信側端末100Tへのフィードバックが導入されうる。
フィードバックは、受信側端末100Rが送信側端末100Tからのデータを正しく受信したか否かを示す応答情報を含む。フィードバックは、送信側端末100Tと受信側端末100Rとの間の伝搬路の状態を示すチャネル状態情報(CSI)を含んでもよい。
応答情報は、RLCレイヤのARQ(Automatic repeat-request)の応答情報であってもよいし、MACレイヤのHARQ(Hybrid ARQ)の応答情報であってもよい。応答情報は、データを正しく受信したことを示すACKと、データを正しく受信しなかった(すなわち、データの受信に失敗した)ことを示すNACKとを含む。
ユニキャストのサイドリンク通信は、1対1のサイドリンク通信である。送信側端末100Tがデータを受信側端末100Rに送信し、受信側端末100Rがフィードバック情報を送信側端末100Tに送信する。なお、送信側端末100Tは、データの送信に先立ち、サイドリンク通信用の制御情報を受信側端末100Rに送信する。
グループキャストのサイドリンク通信は、特定のグループ内で行う1対多(1対特定多数)のサイドリンク通信である。送信側端末100Tが同一のデータをグループ内の各受信側端末100Rに一括送信し、各受信側端末100Rがフィードバック情報を送信側端末100Tに送信する。
ブロードキャストのサイドリンク通信は、1対不特定多数のサイドリンク通信である。送信側端末100Tは特定の宛先端末又はグループを指定せずにデータを送信する。
以下の実施形態において、サイドリンク通信の送信種別として、ユニキャスト及びグループキャストを主として想定する。
(通信接続の管理)
次に、一実施形態に係る通信接続の管理について説明する。
次に、一実施形態に係る通信接続の管理について説明する。
一実施形態において、サイドリンク通信を行う各端末100は、他の端末から受信する無線信号に基づいて、自端末と直接的に通信が可能な他の端末を発見し、発見した他の端末との通信接続を確立及び管理する。通信接続は、物理レイヤ(及びMACレイヤ)の接続である無線リンクであってもよいし、RRCレイヤの接続であるRRC接続であってもよい。
通信接続の維持・管理用の無線信号は、チャネル状態情報(CSI)を推定に利用可能な物理レイヤの参照信号、RRCレイヤで送受信されるRRCメッセージ、及び/又はLTEで規定されるようなディスカバリーメッセージであってもよい。通信接続の維持・管理用の無線信号は、送信元端末の識別子を含む。以下において、このような無線信号を「発見用信号」と呼び、この発見用信号を用いて他の端末を発見する手続きを「発見手続」と呼ぶ。発見用信号は、ブロードキャスト又はグループキャストで送信されるものとする。
端末100の識別子は、通信によりネットワーク(基地局200)から各端末100に割り当てられてもよいし、各端末に事前設定されていてもよい。また、以下の実施形態において、複数の端末100からなるグループが形成されることを前提とする。各端末100は、自身が属するグループ内の各端末の識別子をグループ情報として記憶及び管理する。グループ情報は、通信によりネットワーク(基地局200)から各端末100に設定されてもよいし、各端末に事前設定されていてもよい。
図7は、複数の端末100からなるグループ内における通信接続の維持・管理の一例を示す図である。図7において、複数の端末100として、3つの端末A乃至Cを例示している。「A」、「B」、「C」のそれぞれは、端末の識別子に対応する。端末A乃至Cのそれぞれは、グループ情報として、グループ内の各端末の識別子「A」、「B」、及び「C」を予め記憶している。グループ情報は、グループの識別子をさらに含んでもよい。
図7に示すように、端末A乃至Cのそれぞれは、通信接続の維持・管理用の無線信号を所定の送信電力で送信する。無線信号の到達範囲が直接通信エリアに相当する。端末Aは端末B及びCの直接通信エリア内にあり、端末Bは端末A及びCの直接通信エリア内にあり、端末Cは端末A及びBの直接通信エリア内にある。
図8は、図7に示す通信環境下における発見手続の一例を示す図である。図8において、端末Aがデータを送信する送信側端末であり、端末B及びCがデータを受信する受信側端末であると仮定している。端末Aは、グループを管理するマスタ端末であり、端末B及びCは、端末Aにより管理されるスレーブ端末であってもよい。
図8に示すように、端末A乃至Cのそれぞれは、送信元識別子を含む発見用信号を定期的に送信する。発見用信号は、各宛グループの識別子をさらに含んでもよい。
或いは、端末Aがデータ送信の前に発見用信号を送信し、端末B及びCが端末Aからの発見用信号の受信に応じて発見用信号を送信してもよい。
ステップS101において、端末Aは、自身の識別子「A」を含む発見用信号を送信する。端末B及びCのそれぞれは、端末Aからの発見用信号を受信する。
ステップS102において、端末Bは、自身の識別子「B」を含む発見用信号を送信する。端末A及びCのそれぞれは、端末Bからの発見用信号を受信する。
ステップS103において、端末Cは、自身の識別子「C」を含む発見用信号を送信する。端末A及びBのそれぞれは、端末Cからの発見用信号を受信する。
ステップS104において、端末Aは、端末Bから受信した発見用信号と端末Cから受信した発見用信号とに基づいて、端末B及びCを発見する。具体的には、端末Aは、各発見用信号に含まれる送信元識別子をグループ情報と照合し、自端末Aが属するグループ内の他の端末B及びCのそれぞれと直接通信が可能であると認識する。
ステップS105において、端末Bは、端末Aから受信した発見用信号と端末Cから受信した発見用信号とに基づいて、端末A及びCを発見する。具体的には、端末Bは、各発見用信号に含まれる送信元識別子をグループ情報と照合し、自端末Bが属するグループ内の他の端末A及びCのそれぞれと直接通信が可能であると認識する。
ステップS106において、端末Cは、端末Aから受信した発見用信号と端末Bから受信した発見用信号とに基づいて、端末A及びBを発見する。具体的には、端末Cは、各発見用信号に含まれる送信元識別子をグループ情報と照合し、自端末Cが属するグループ内の他の端末A及びBのそれぞれと直接通信が可能であると認識する。
(想定シナリオの一例)
次に、一実施形態に係る想定シナリオの一例について説明する。図9は、一実施形態に係る想定シナリオの一例を示す図である。
次に、一実施形態に係る想定シナリオの一例について説明する。図9は、一実施形態に係る想定シナリオの一例を示す図である。
図9に示すように、グループ内の各端末A乃至Cは、車両に搭載される車載端末である。端末Aは車両Aに、端末Bは車両Bに、端末Cは車両Cにそれぞれ搭載されている。車両A乃至Cは、例えば、道路上を移動する自動車(例えば、トラック)である。車両A乃至Cは、トラクター等であってもよい。
車両A乃至Cは、端末間の直接通信を用いて連携走行を行う。例えば、車両A乃至Cは、連携走行の一例として隊列走行を行う。具体的には、車両Aが先頭の車両であり、車両Cが最後尾の車両であり、車両Bが車両Aと車両Cとの間の車両である。
このようなシナリオにおいて、端末A(送信側端末)は、車両Aの走行状況を示すデータとして、位置データ、車速データ、加速度データ、進行方向データ、ステアリングデータ、アクセルデータ、及び/又はブレーキデータ等を端末B及びC(受信側端末)にグループキャストで送信する。車両B及びCは、端末B及びCが端末Aから受信した情報に基づいて、車両Aの移動に追従する。
しかしながら、端末Aの直接通信エリアは限定されている。特に、28GHz帯のような高周波数帯を直接通信に用いる場合、電波が遠くまで到達せず、端末Aの直接通信エリアはさらに限定されうる。また、端末Aと端末B及びCとの間の距離は走行環境に応じて変化する。
このため、最後尾の端末Cが端末Aの直接通信エリアの外に位置する場合がありうる。この場合、端末Aが送信するデータを端末Cが受信できない。
(動作例)
次に、上述した説明を前提として、一実施形態に係る移動通信システムの動作例について説明する。
次に、上述した説明を前提として、一実施形態に係る移動通信システムの動作例について説明する。
(1)動作例1
図10は、一実施形態に係る動作例1における各端末の位置関係を示す図である。
図10は、一実施形態に係る動作例1における各端末の位置関係を示す図である。
図10に示すように、端末Aは、端末Bの直接通信エリア内であって、端末Cの直接通信エリア外にある。端末Bは、端末A及びCの直接通信エリア内にある。端末Cは、端末Aの直接通信エリア外であって、端末Bの直接通信エリア内にある。なお、各端末A乃至Cは、基地局200のカバレッジ外であってもよいし、基地局200のカバレッジ内であってもよい。
図11は、動作例1における動作シーケンスを示す図である。
図11に示すように、ステップS201において、端末A(送信側端末)は、発見用信号を送信する。端末B(第1受信側端末)は端末Aから発見用信号を受信するが、端末C(第2受信側端末)は端末Aから発見用信号を受信しない。
ステップS202において、端末Bは、発見用信号を送信する。端末A及びCのそれぞれは、端末Bから発見用信号を受信する。
ステップS203において、端末Cは、発見用信号を送信する。端末Bは端末Cから発見用信号を受信するが、端末Aは端末Cから発見用信号を受信しない。
ステップS204において、端末Aは、端末Bから受信した発見用信号に基づいて端末Bを発見するが、同一グループ内の端末Cの発見に失敗する。端末Aは、端末Bとの直接通信は可能であり、端末Cとの直接通信は不能であると判断する。
ステップS205において、端末Bは、端末A及びCから受信した発見用信号に基づいて端末A及びCを発見する。端末Bは、端末A及びCとの直接通信が可能であると判断する。
ステップS206において、端末Cは、端末Bから受信した発見用信号に基づいて端末Bを発見するが、同一グループ内の端末Aの発見に失敗する。端末Cは、端末Bとの直接通信は可能であり、端末Aとの直接通信は不能であると判断する。
ステップS207において、端末Aは、ステップS204で端末Cの発見に失敗したことに基づいて、端末Bに対して、端末Cの識別子を含む探索要求を直接通信により送信する。探索要求は、端末Cの探索を要求するメッセージである。探索要求は、端末Cへのデータ転送が可能か否か、又は端末Cから発見用信号を受信したか否かの問い合わせであってもよい。探索要求は、RRCレイヤで規定されたRRCメッセージであってもよいし、RRCレイヤよりも上位のレイヤで規定されたメッセージであってもよい。
ステップS208において、端末Bは、ステップS205で端末Cを発見しており、端末Cとの直接通信が可能であると判断していることから、端末Aからの探索要求に基づいて、端末Cの識別子を含む探索通知を端末Aに送信する。探索通知は、端末Cの探索が成功したことを示すメッセージである。探索通知は、端末Cへのデータ転送が可能であること、又は端末Cから発見用信号を受信したことを示すメッセージであってもよい。探索通知は、RRCレイヤで規定されたRRCメッセージであってもよいし、RRCレイヤよりも上位のレイヤで規定されたメッセージであってもよい。
端末Aは、端末Bからの探索通知に基づいて、探索通知に対する肯定応答(OK)を端末Bに送信し(ステップS209)、自端末Aと端末Cとの間の通信(通信接続)を確立可能であると判断する(ステップS210)。
ステップS211において、端末Bは、端末Aからの探索要求に基づいて、端末Aからのデータを端末Bが端末Cに転送することを示す転送通知を端末Cに送信する。転送通知は、端末Aの識別子を含む。転送通知は、端末Cが端末Aとの通信(通信接続)を確立可能であることを示すメッセージであってもよい。転送通知は、RRCレイヤで規定されたRRCメッセージであってもよいし、RRCレイヤよりも上位のレイヤで規定されたメッセージであってもよい。
端末Cは、端末Bからの転送通知に基づいて、転送通知に対する肯定応答(OK)を端末Bに送信し(ステップS212)、自端末Cと端末Aとの間の通信(通信接続)を確立可能であると判断する(ステップS213)。
ステップS214において、端末Bは、端末Aと端末Cとを対応付ける転送情報を生成し、端末Aと端末Cとの間の通信を中継(データ転送)するよう設定する。
ステップS215及びS216において、端末Aは、端末B及びCに対する同一のデータをグループキャストで送信する。ここで、端末Aは、自端末Aが属するグループの識別子を宛先としてデータを送信してもよい。或いは、端末Aは、端末B及びCのそれぞれに対して互いに異なるデータをユニキャストで送信してもよい。
ステップS217において、端末Bは、端末Aから受信したデータを端末Cに転送する。端末Cは、端末Bからデータを受信する。
このように、動作例1によれば、端末Aの直接通信エリア外に端末Cが位置する場合であっても、端末Bが端末Cを探索し、端末Aからのデータを端末Bが端末Cに転送することにより、端末Aと端末Cとの間の通信を確立できる。
(2)動作例2
図12は、動作例2における各端末の位置関係を示す図である。動作例2では、1つのグループが4つの端末A乃至Dにより形成される場合を想定する。
図12は、動作例2における各端末の位置関係を示す図である。動作例2では、1つのグループが4つの端末A乃至Dにより形成される場合を想定する。
図12に示すように、端末Aは、端末Bの直接通信エリア内であって、端末C及びDの直接通信エリア外にある。端末Bは、端末A及びCの直接通信エリア内であって、端末Dの直接通信エリア外にある。端末Cは、端末Aの直接通信エリア外であって、端末B及びDの直接通信エリア内にある。
図13は、動作例2における動作シーケンスを示す図である。ここでは、動作例1と重複する説明については省略する。
図13に示すように、ステップS301において、端末A(送信側端末)は、発見用信号を送信する。端末B(第1受信側端末)は端末Aから発見用信号を受信するが、端末C(第2受信側端末)及び端末D(第3受信側端末)は端末Aから発見用信号を受信しない。
ステップS302において、端末Bは、発見用信号を送信する。端末A及びCのそれぞれは端末Bから発見用信号を受信するが、端末Dは端末Bから発見用信号を受信しない。
ステップS303において、端末Cは、発見用信号を送信する。端末B及びDは端末Cから発見用信号を受信するが、端末Aは端末Cから発見用信号を受信しない。
ステップS304において、端末Dは、発見用信号を送信する。端末Cは端末Dから発見用信号を受信するが、端末A及びBは端末Dから発見用信号を受信しない。
ステップS305において、端末Aは、端末Bから受信した発見用信号に基づいて端末Bを発見するが、同一グループ内の端末C及びDの発見に失敗する。端末Aは、端末Bとの直接通信は可能であり、端末C及びDとの直接通信は不能であると判断する。
ステップS306において、端末Bは、端末A及びCから受信した発見用信号に基づいて端末A及びCを発見するが、同一グループ内の端末の発見に失敗する。端末Bは、端末A及びCとの直接通信は可能であり、端末Dとの直接通信は不能であると判断する。
ステップS307において、端末Cは、端末B及びDから受信した発見用信号に基づいて端末B及びDを発見するが、同一グループ内の端末Aの発見に失敗する。端末Cは、端末B及びDとの直接通信は可能であり、端末Aとの直接通信は不能であると判断する。
ステップS308において、端末Dは、端末Cから受信した発見用信号に基づいて端末Cを発見するが、同一グループ内の端末A及びBの発見に失敗する。端末Cは、端末Cとの直接通信は可能であり、端末A及びBとの直接通信は不能であると判断する。
ステップS309において、端末Aは、ステップS305で端末C及びDの発見に失敗したことに基づいて、端末Bに対して、端末C及びDのそれぞれの識別子を含む探索要求を直接通信により送信する。
ステップS310において、端末Bは、ステップS305で端末Cを発見し、端末Dの発見に失敗していることから、端末Aからの探索要求に基づいて、発見した端末Cの識別子を含む探索通知を端末Aに送信する。
端末Aは、端末Bからの探索通知に基づいて、探索通知に対する肯定応答(OK)を端末Bに送信し(ステップS311)、自端末Aと端末Cとの間の通信(通信接続)を確立可能であると判断する(ステップS312)。
ステップS313において、端末Bは、端末Aからのデータを端末Bが端末Cに転送することを示す転送通知を端末Cに送信する。転送通知は、端末Aの識別子を含む。
端末Cは、端末Bからの転送通知に基づいて、転送通知に対する肯定応答(OK)を端末Bに送信し(ステップS314)、自端末Cと端末Aとの間の通信(通信接続)を確立可能であると判断する(ステップS315)。
ステップS316において、端末Bは、端末Aからの探索要求に基づいて、未だ探索できていない端末Dの識別子を含む探索要求を、端末Cに対して直接通信により送信する。
ステップS317において、端末Cは、ステップS307で端末Dを発見していることから、端末Bからの探索要求に基づいて、発見された端末Dの識別子を含む探索通知を端末Bに送信する。端末Bは、端末Cからの探索通知に基づいて、探索通知に対する肯定応答(OK)を端末Cに送信する(ステップS318)。
ステップS319において、端末Bは、端末Cが端末Dを発見していることから、発見された端末Dの識別子を含む探索通知を端末Aに送信する。
端末Aは、端末Bからの探索通知に基づいて、探索通知に対する肯定応答(OK)を端末Bに送信し(ステップS320)、自端末Aと端末Dとの間の通信(通信接続)を確立可能であると判断する(ステップS321)。
ステップS322において、端末Bは、端末Aと端末Cとを対応付ける転送情報を生成し、端末Aと端末Cとの間の通信を中継(データ転送)するよう設定する。
ステップS323において、端末Cは、端末Bからのデータ(すなわち、端末Aからのデータ)を端末Cが端末Dに転送することを示す転送通知を端末Dに送信する。転送通知は、端末B(及びA)の識別子を含む。
端末Dは、端末Cからの転送通知に基づいて、転送通知に対する肯定応答(OK)を端末Bに送信し(ステップS324)、自端末Dと端末A(及びB)との間の通信(通信接続)を確立可能であると判断する(ステップS326)。
ステップS327乃至S329において、端末Aは、端末B乃至Dに対する同一のデータをグループキャストで送信する。ここで、端末Aは、自端末Aが属するグループの識別子を宛先としてデータを送信してもよい。或いは、端末Aは、端末B乃至Dのそれぞれに対して互いに異なるデータをユニキャストで送信してもよい。
ステップS330及びS331において、端末Bは、端末Aから受信したデータを端末Cに転送する。端末Cは、端末Bからデータを受信する。
ステップS332において、端末Cは、端末Bから受信したデータを端末Dに転送する。端末Dは、端末Cからデータを受信する。
このように、動作例2によれば、端末Aの直接通信エリア外に端末C及びDが位置する場合であっても、端末Bが端末Cを探索し、且つ端末Cが端末Dを探索し、これにより、端末Aからのデータを端末Bが端末Cに転送し、且つ端末Cが端末Dに転送する。よって、端末Aと端末C及びDとの間の通信を確立できる。
(3)動作例3
図14は、動作例3における動作シーケンスを示す図である。ここでは、動作例2の動作の後に、端末Eがグループに途中参加することを想定する。この場合、グループ内の各端末A乃至Eは、このグループのグループ情報として、端末A乃至Eのそれぞれの識別子を予め記憶している。グループに属する各端末A乃至Eは、基地局200から受信するメッセージに基づいて、端末Eの識別子を追加するようにグループ情報を更新していてもよい。
図14は、動作例3における動作シーケンスを示す図である。ここでは、動作例2の動作の後に、端末Eがグループに途中参加することを想定する。この場合、グループ内の各端末A乃至Eは、このグループのグループ情報として、端末A乃至Eのそれぞれの識別子を予め記憶している。グループに属する各端末A乃至Eは、基地局200から受信するメッセージに基づいて、端末Eの識別子を追加するようにグループ情報を更新していてもよい。
図14に示すように、ステップS401において、参加要求端末である端末Eは、グループに端末Eが参加するための参加連絡信号を送信する。参加連絡信号は、発見用信号に類似した又は同じ無線信号であってもよい。参加連絡信号は、送信元の識別子「E」を含む。端末Dは、参加連絡信号を受信する。
ステップS402において、端末Dは、端末Eがグループに登録されていると判断し、端末Eに対してグループへの参加許可を通知する。端末Eは、端末Dからの参加許可に基づいて、グループ内の端末Dを発見する。但し、端末Eは、グループ内の端末A乃至Cを発見していない。すなわち、端末Eは、自身が端末A乃至Cの直接通信エリア外にあると判断する。
ステップS404において、端末Eは、自身が発見済みの端末Dの識別子を含むチェック要求を端末Dに送信する。チェック要求は、端末Eがどの端末を発見済みであるかを確認するために用いられる。ここでは、端末Dは、端末Eからのチェック要求とグループ情報との差分に基づいて、端末Eが端末A乃至Cを発見していないと判断する(ステップS405)。
ステップS406において、端末Dは、端末Eの識別子を含む参加連絡(すなわち、端末Eがグループに参加する旨の連絡)を端末Cに送信する。端末Cは、参加連絡とグループ情報とに基づいて端末Eの参加を受理し(ステップS407)、端末Dに対してグループへの参加許可を通知し(ステップS408)、端末Dが参加許可を端末Eに転送する。これにより、端末Eは、自端末Eと端末Dとの通信(通信接続)が確立可能であると判断する。
その後、同様にして、端末A乃至Cも参加連絡を受理し、参加許可を端末Eに転送する(ステップS410乃至S415)。これにより、端末Eは、自端末Eと端末A乃至Cとの通信(通信接続)が確立可能であると判断する。
(4)動作例4
図15は、動作例4における動作シーケンスを示す図である。ここでは、動作例3の動作において端末Eが参加中端末となった後に、端末Eがグループから退出することを想定する。
図15は、動作例4における動作シーケンスを示す図である。ここでは、動作例3の動作において端末Eが参加中端末となった後に、端末Eがグループから退出することを想定する。
図15に示すように、ステップS501において、退出要求端末である端末Eは、グループから端末Eが退出するための退出連絡信号を送信する。退出連絡信号は、発見用信号に類似した無線信号であってもよい。退出連絡信号は、送信元の識別子「E」を含む。端末Dは、退出連絡信号を受信する。
ステップS502において、端末Dは、端末Eがグループに登録されていると判断し、端末Eに対してグループからの退出許可を受理及び通知する(ステップS502、S503)。
ステップS504において、端末Dは、端末Eの識別子を含む退出連絡(すなわち、端末Eがグループから退出する旨の連絡)をCに送信する。退出連絡は、端末Cから端末Bに転送され、端末Bから端末Aに転送される。端末A乃至Cは退出連絡を受理し、退出許可を端末Eに送信・転送する(ステップS505乃至S510)。これにより、端末Eは、自端末Eと端末A乃至Dとの通信(通信接続)が解放されたと判断する。
(その他の実施形態)
上述した実施形態において、端末間の直接通信を用いて複数の車両の連携走行を行うシナリオについて説明した。しかしながら、上述した実施形態に係る動作を別のシナリオに適用してもよい。例えば、グループ内の各端末は、物品(商品)に取り付けられる無線タグ端末であってもよい。また、複数の物品の在庫管理のためにグループ内において端末間の直接通信を用いてもよい。このようなシナリオにおいて、送信側端末がグループ内の各受信側端末を管理することにより、各物品(各端末)が存在するか否かを確認してもよい。
上述した実施形態において、端末間の直接通信を用いて複数の車両の連携走行を行うシナリオについて説明した。しかしながら、上述した実施形態に係る動作を別のシナリオに適用してもよい。例えば、グループ内の各端末は、物品(商品)に取り付けられる無線タグ端末であってもよい。また、複数の物品の在庫管理のためにグループ内において端末間の直接通信を用いてもよい。このようなシナリオにおいて、送信側端末がグループ内の各受信側端末を管理することにより、各物品(各端末)が存在するか否かを確認してもよい。
上述した実施形態において、データ転送経路上にある端末(例えば、動作例2における端末B又はC)がグループから退出する場合について特に考慮していなかった。しかしながら、データ転送経路上にある端末がグループから退出すると、他の通信端末機器間の通信接続に影響が発生するため、データ転送経路上にある端末がグループから自発的に退出することを許可しないこととしてもよい。
但し、データ転送経路上にある端末が無線の問題でデータ転送を継続できなくなる場合も想定される。この場合、ユーザに対して警告通知を行ったり、ネットワーク(基地局200)に対して警告通知を行ったりしてもよい。例えば、定期的な電界強度の測定などにより、データ転送経路上にある端末との間の無線品質の劣化を検知した端末は、アラート表示や警告音、バイブレーション等のユーザ通知を行ってもよい。
なお、端末100が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM(Compact Disk-Read Only Memory)やDVD-ROM(Digital Versatile Disc-Read Only Memory)等の記録媒体であってもよい。
また、端末100が行う各処理を実行する回路を集積化し、端末100の少なくとも一部を半導体集積回路(チップセット、SoC)として構成してもよい。
以上、図面を参照して一実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
本願は、日本国特許出願第2019-011003号(2019年1月25日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。
Claims (18)
- 複数の端末からなるグループ内において端末間の直接通信を用いてデータを送信する移動通信システムにおける通信制御方法であって、
前記グループに属する各端末が、前記グループに属する他の端末から受信する無線信号に基づいて、前記グループ内において自端末との直接通信が可能な他の端末を発見することと、
前記グループに属する送信側端末が、前記送信側端末との直接通信が可能な第1受信側端末に対して、前記送信側端末との直接通信が不能な第2受信側端末を示す情報を含む探索要求を送信することと、
前記第1受信側端末が前記第2受信側端末との直接通信が可能である場合、前記第1受信側端末が、前記探索要求に基づいて、前記第2受信側端末を示す情報を含む探索通知を前記送信側端末に送信することと、
前記探索通知の送信後、前記送信側端末から前記第1受信側端末が受信する前記データを、前記第1受信側端末から前記第2受信側端末に転送することと、を含む
通信制御方法。 - 前記送信側端末が、前記探索通知に基づいて、前記送信側端末と前記第2受信側端末との間の通信を確立可能であると判断することをさらに含む
請求項1に記載の通信制御方法。 - 前記第1受信側端末から前記第2受信側端末に転送するよりも前において、前記第1受信側端末が、前記探索要求に基づいて、前記送信側端末からのデータを前記第1受信側端末が前記第2受信側端末に転送することを示す転送通知を前記第2受信側端末に送信することをさらに含む
請求項1又は2に記載の通信制御方法。 - 前記第2受信側端末が、前記転送通知に基づいて、前記送信側端末と前記第2受信側端末との間の通信を確立可能であると判断することをさらに含む
請求項3に記載の通信制御方法。 - 前記送信側端末との直接通信が不能な第2受信側端末及び第3受信側端末が存在する場合、前記送信側端末が、前記第2受信側端末を示す情報と前記第3受信側端末を示す情報とを含む探索要求を前記第1受信側端末に送信することと、
前記第1受信側端末が前記第2受信側端末との直接通信が可能であって前記第3受信側端末との直接通信が不能である場合、前記第1受信側端末が、前記送信側端末からの探索要求に基づいて、前記第3受信側端末を示す情報を含む探索要求を前記第2受信側端末に送信することと、をさらに含む
請求項1乃至3のいずれか1項に記載の通信制御方法。 - 前記第2受信側端末が前記第3受信側端末との直接通信が可能である場合、前記第2受信側端末が、前記第1受信側端末からの探索要求に基づいて、前記第3受信側端末を示す情報を含む探索通知を前記第1受信側端末に送信することと、
前記第1受信側端末への探索通知の送信後、前記第1受信側端末から前記第2受信側端末が受信するデータを、前記第2受信側端末から前記第3受信側端末に転送することと、をさらに含む
請求項5に記載の通信制御方法。 - 前記第1受信側端末が、前記第2受信側端末からの探索通知に基づいて、前記第3受信側端末を示す情報を含む探索通知を前記送信側端末に送信することと、
前記送信側端末が、前記第1受信側端末からの探索通知に基づいて、前記送信側端末と前記第3受信側端末との間の通信を確立可能であると判断することと、をさらに含む
請求項6に記載の通信制御方法。 - 前記第2受信側端末から前記第3受信側端末に転送するよりも前において、前記第2受信側端末が、前記第2受信側端末からのデータを前記第2受信側端末が前記第3受信側端末に転送することを示す転送通知を前記第3受信側端末に送信することをさらに含む
請求項6又は7に記載の通信制御方法。 - 前記第3受信側端末が、前記第2受信側端末からの転送通知に基づいて、前記送信側端末と前記第3受信側端末との間の通信を確立可能であると判断することをさらに含む
請求項8に記載の通信制御方法。 - 前記グループに参加要求端末が参加するために、前記参加要求端末が参加連絡信号を送信することと、
前記グループに属する端末が前記参加要求端末から前記参加連絡信号を受信し、前記参加要求端末が前記グループに登録されていると判断した場合、前記参加連絡信号を受信した前記端末が、前記参加要求端末に対して前記グループへの参加許可を通知することと、をさらに含む
請求項1乃至9のいずれか1項に記載の通信制御方法。 - 前記参加連絡信号を受信した前記端末が、自端末との直接通信が可能な前記グループ内の他の端末に対して、前記参加要求端末が前記グループに参加する旨を通知することをさらに含む
請求項10に記載の通信制御方法。 - 前記グループに属する退出要求端末が前記グループから退出するために、前記参加中端末が退出連絡信号を送信することと、
前記グループに属する端末が前記退出要求端末から前記退出連絡信号を受信し、前記退出要求端末が前記グループに登録されていると判断した場合、前記退出連絡信号を受信した前記端末が、前記退出要求端末に対して前記グループからの退出許可を通知することと、をさらに含む
請求項1乃至11のいずれか1項に記載の通信制御方法。 - 前記退出連絡信号を受信した前記端末が、自端末との直接通信が可能な前記グループ内の他の端末に対して、前記退出要求端末が前記グループから退出する旨を通知することをさらに含む
請求項12に記載の通信制御方法。 - 前記グループに属する各端末が、前記移動通信システムの基地局から受信するメッセージに基づいて、前記グループに属する各端末の情報を更新することをさらに含む
請求項1乃至13のいずれか1項に記載の通信制御方法。 - 前記グループ内の各端末は、車両に搭載される車載端末であって、複数の車両による連携走行のために前記グループ内において端末間の直接通信を用いる
請求項1乃至14のいずれか1項に記載の通信制御方法。 - 前記グループ内の各端末は、物品に取り付けられる無線タグ端末であって、複数の物品の在庫管理のために前記グループ内において端末間の直接通信を用いる
請求項1乃至14のいずれか1項に記載の通信制御方法。 - 複数の端末からなるグループ内において端末間の直接通信を用いてデータを送信する移動通信システムにおける送信側端末であって、
前記グループに属する他の端末から受信する無線信号に基づいて、前記グループ内において前記送信側端末との直接通信が可能な他の端末を発見する制御部と、
前記送信側端末との直接通信が可能な第1受信側端末に対して、前記送信側端末との直接通信が不能な第2受信側端末を示す情報を含む探索要求を送信する送信部と、
前記第1受信側端末が前記第2受信側端末との直接通信が可能である場合、前記第2受信側端末を示す情報を含む探索通知を前記第1受信側端末から受信する受信部と、
前記制御部は、前記探索通知に基づいて、前記送信側端末と前記第2受信側端末との間の通信を確立可能であると判断する
送信側端末。 - 複数の端末からなるグループ内において端末間の直接通信を用いてデータを送信する移動通信システムにおける受信側端末であって、
前記グループに属する他の端末から受信する無線信号に基づいて、前記グループ内において自端末との直接通信が可能な他の端末を発見する制御部と、
前記グループに属する送信側端末と前記受信側端末との直接通信が可能である場合、前記送信側端末との直接通信が不能な他の受信側端末を示す情報を含む探索要求を前記送信側端末から受信する受信部と、
前記受信側端末が前記他の受信側端末との直接通信が可能である場合、前記探索要求に基づいて、前記他の受信側端末を示す情報を含む探索通知を前記送信側端末に送信する送信部と、を備え、
前記制御部は、前記探索通知の送信後、前記送信側端末から前記受信側端末が受信する前記データを、前記受信側端末から前記他の受信側端末に転送する
受信側端末。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-011003 | 2019-01-25 | ||
JP2019011003 | 2019-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020153215A1 true WO2020153215A1 (ja) | 2020-07-30 |
Family
ID=71736170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/001225 WO2020153215A1 (ja) | 2019-01-25 | 2020-01-16 | 通信制御方法、送信側端末、及び受信側端末 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020153215A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005303563A (ja) * | 2004-04-09 | 2005-10-27 | Data Rinku Kk | 無線端末、無線通信可能な相手先の管理方法、及び無線通信可能な相手先の管理プログラム |
JP2016507944A (ja) * | 2012-12-20 | 2016-03-10 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいて端末間直接通信を用いたグループ通信方法及びそのための装置 |
JP2016523459A (ja) * | 2013-06-28 | 2016-08-08 | 日本電気株式会社 | ProSeグループ通信に関するセキュリティ |
JP2017192068A (ja) * | 2016-04-14 | 2017-10-19 | 富士通株式会社 | 端末装置および通信方法 |
-
2020
- 2020-01-16 WO PCT/JP2020/001225 patent/WO2020153215A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005303563A (ja) * | 2004-04-09 | 2005-10-27 | Data Rinku Kk | 無線端末、無線通信可能な相手先の管理方法、及び無線通信可能な相手先の管理プログラム |
JP2016507944A (ja) * | 2012-12-20 | 2016-03-10 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいて端末間直接通信を用いたグループ通信方法及びそのための装置 |
JP2016523459A (ja) * | 2013-06-28 | 2016-08-08 | 日本電気株式会社 | ProSeグループ通信に関するセキュリティ |
JP2017192068A (ja) * | 2016-04-14 | 2017-10-19 | 富士通株式会社 | 端末装置および通信方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107079237B (zh) | 用于在移动内容传递网络中有选择地存储和删除接收的数据分组的方法和装置 | |
CN106162511B (zh) | 一种d2d中继节点的确定、使用方法及装置 | |
US10848998B2 (en) | Wireless-communication electronic device and method | |
JP6158899B2 (ja) | ユーザ端末、プロセッサ、及び基地局 | |
US10959070B2 (en) | Radio terminal and base station | |
CN109937610B (zh) | 基站和终端设备 | |
US20160302181A1 (en) | Mobile communication system, radio communication apparatus, network apparatus, and radio terminal | |
CN111165041A (zh) | 用于在直通链路通信中执行双连接通信的系统和方法 | |
US11082965B2 (en) | Resource allocation method and relevant device | |
WO2014129450A1 (ja) | 移動通信システム、基地局、ユーザ端末及びプロセッサ | |
WO2014129465A1 (ja) | 通信制御方法、ユーザ端末及び基地局 | |
US11259281B2 (en) | Electronic device in wireless communication system, and wireless communication method | |
US20210360504A1 (en) | Method and apparatus for mobility optimization | |
US20230017794A1 (en) | Communication control method | |
CN113396639A (zh) | 通信设备、控制设备和通信系统 | |
JP2016116205A (ja) | 位置情報管理装置、移動機、無線通信システム | |
CN116671243A (zh) | 侧链路中继通信的方法和装置 | |
WO2021028551A1 (en) | Sidelink transmission continuity | |
WO2020153215A1 (ja) | 通信制御方法、送信側端末、及び受信側端末 | |
EP4152805A1 (en) | Communication method and related apparatus | |
JP6235188B2 (ja) | 通信制御方法、及びネットワーク装置 | |
TWI819462B (zh) | 用於移動性更新報告之技術 | |
JP7542625B2 (ja) | 通信制御方法、ユーザ装置及びプロセッサ | |
US20230262516A1 (en) | Communication control method | |
WO2023286783A1 (ja) | 通信制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20744718 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20744718 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |