WO2020153214A1 - セル再選択制御方法及びユーザ装置 - Google Patents

セル再選択制御方法及びユーザ装置 Download PDF

Info

Publication number
WO2020153214A1
WO2020153214A1 PCT/JP2020/001224 JP2020001224W WO2020153214A1 WO 2020153214 A1 WO2020153214 A1 WO 2020153214A1 JP 2020001224 W JP2020001224 W JP 2020001224W WO 2020153214 A1 WO2020153214 A1 WO 2020153214A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
priority
cell reselection
control method
rrc
Prior art date
Application number
PCT/JP2020/001224
Other languages
English (en)
French (fr)
Inventor
真人 藤代
ヘンリー チャン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2020568096A priority Critical patent/JP7144541B2/ja
Publication of WO2020153214A1 publication Critical patent/WO2020153214A1/ja
Priority to US17/384,141 priority patent/US20210352555A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to a cell reselection control method and a user equipment in a mobile communication system.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • an LAA that performs a LTE communication by using a license band that is a frequency band that requires a license and an unlicensed band that is a frequency band that does not require a license ( License-Assisted Access) is specified.
  • the unlicensed band is sometimes called Unlicensed spectrum.
  • NR New Radio
  • 5G fifth-generation
  • NR-U is supposed to be able to use the unlicensed band alone without using the unlicensed band together with the licensed band. Under such an assumption, it is considered that a new function that LAA does not have is required.
  • the cell reselection control method is a method performed by a user apparatus in an RRC idle state or an RRC inactive state in an unlicensed band.
  • the cell reselection control method determines a congestion degree for each of a plurality of candidates that are a plurality of carrier frequencies or a plurality of cells belonging to the unlicensed band, and from among the plurality of candidates, the user equipment
  • the method includes extracting a candidate that satisfies a selection criterion required to be used as a serving cell, and selecting a cell to be used as the serving cell from the extracted candidates. At least one of the extraction of the candidate and the selection of the cell is based on the determined congestion degree.
  • the cell reselection control method is a method for controlling cell reselection processing in an unlicensed band.
  • the user apparatus in an RRC connected state receives an RRC release message including a conditional priority for determining the priority in the cell reselection for each carrier frequency from a base station, and Until the user equipment that has transitioned to the RRC idle state or the RRC inactive state in response to the reception of the RRC release message immediately applies the conditional priority, until a predetermined condition regarding the current serving cell is satisfied. Suspending application of the conditional priority, and applying the conditional priority when the user device in the RRC idle state or the RRC inactive state satisfies the predetermined condition. including.
  • Mobile communication system First, the configuration of the mobile communication system according to the embodiment will be described.
  • the mobile communication system according to one embodiment is a 5G system of 3GPP, LTE may be at least partially applied to the mobile communication system.
  • FIG. 1 is a diagram showing a configuration of a mobile communication system according to an embodiment.
  • the mobile communication system includes a user equipment (UE: User Equipment) 100, a 5G radio access network (NG-RAN: Next Generation Radio Access Network) 10, and a 5G core network (5GC: 5G). Core Network) 20 and.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • 5G core network 5G core network
  • the UE 100 is a movable device.
  • the UE 100 may be any device as long as it is a device used by a user.
  • the UE 100 is a mobile phone terminal (including a smartphone), a tablet terminal, a notebook PC, a communication module (including a communication card or a chipset), a sensor or a device provided in the sensor, a vehicle or a device provided in the vehicle (vehicle UE). ), or a device or an apparatus (Aerial UE) provided on the device.
  • the NG-RAN 10 includes a base station (called “gNB” in the 5G system) 200.
  • the gNB 200 may also be called an NG-RAN node.
  • the gNBs 200 are connected to each other via an Xn interface which is an interface between base stations.
  • the gNB 200 manages one or a plurality of cells.
  • the gNB 200 performs wireless communication with the UE 100 that has established a connection with its own cell.
  • the gNB 200 has a radio resource management (RRM) function, a user data (hereinafter simply referred to as “data”) routing function, and/or a measurement control function for mobility control/scheduling.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a wireless communication area.
  • the “cell” is also used as a term indicating a function or resource for performing wireless communication with the UE 100.
  • One cell belongs to one carrier frequency.
  • the gNB may be connected to EPC (Evolved Packet Core), which is the LTE core network, or the LTE base station may be connected to 5GC. Further, the LTE base station and the gNB may be connected via an inter-base station interface.
  • EPC Evolved Packet Core
  • the 5GC20 includes AMF(Access and Mobility Management Function) and UPF(User Plane Function)300.
  • the AMF performs various mobility controls for the UE 100.
  • the AMF manages information on the area in which the UE 100 is located by communicating with the UE 100 using NAS (Non-Access Stratum) signaling.
  • the UPF controls data transfer.
  • the AMF and UPF are connected to the gNB 200 via the NG interface which is an interface between the base station and the core network.
  • FIG. 2 is a diagram showing a configuration of the UE 100 (user device).
  • the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiver 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
  • the transmission unit 120 performs various types of transmission under the control of the control unit 130.
  • the transmitter 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output by the control unit 130 into a radio signal and transmits the radio signal from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes at least one processor and at least one memory electrically connected to the processor.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor performs modulation/demodulation and coding/decoding of the baseband signal.
  • the CPU executes programs stored in the memory to perform various kinds of processing.
  • FIG. 3 is a diagram showing a configuration of the gNB 200 (base station).
  • the gNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various types of transmission under the control of the control unit 230.
  • the transmitter 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits the radio signal from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiver 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the gNB 200.
  • the controller 230 includes at least one processor and at least one memory electrically connected to the processor.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor performs modulation/demodulation and coding/decoding of the baseband signal.
  • the CPU executes programs stored in the memory to perform various kinds of processing.
  • the backhaul communication unit 240 is connected to an adjacent base station via an interface between base stations.
  • the backhaul communication unit 240 is connected to the AMF/UPF 300 via a base station-core network interface.
  • the gNB may be composed of a CU (Central Unit) and a DU (Distributed Unit) (that is, functionally divided), and both units may be connected by an F1 interface.
  • FIG. 4 is a diagram showing a configuration of a protocol stack of a wireless interface of a user plane that handles data.
  • the radio interface protocol of the user plane includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. It has an SDAP (Service Data Adaptation Protocol) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adaptation Protocol
  • PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted via the physical channel between the PHY layer of the UE 100 and the PHY layer of the gNB 200.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, etc. Data and control information are transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the gNB 200.
  • the MAC layer of gNB200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation/coding scheme (MCS)) and resource blocks to be allocated to the UE 100.
  • MCS modulation/coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted via the logical channel between the RLC layer of the UE 100 and the RLC layer of the gNB 200.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • the SDAP layer maps the IP flow, which is the unit in which the core network performs QoS control, and the radio bearer, which is the unit in which AS (Access Stratum) performs QoS control.
  • SDAP may be omitted.
  • FIG. 5 is a diagram showing a configuration of a protocol stack of a radio interface of a control plane that handles signaling (control signal).
  • the protocol stack of the radio interface of the control plane has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) layer instead of the SDAP layer shown in FIG.
  • RRC signaling for various settings is transmitted between the RRC layer of the UE 100 and the RRC layer of the gNB 200.
  • the RRC layer controls logical channels, transport channels and physical channels according to establishment, re-establishment and release of radio bearers.
  • RRC connection connection between the RRC of the UE 100 and the RRC of the gNB 200
  • the UE 100 is in the RRC connected state.
  • RRC connection no connection between the RRC of the UE 100 and the RRC of the gNB 200
  • the UE 100 is in the RRC idle state.
  • the RRC connection is suspended (suspended), the UE 100 is in the RRC inactive state.
  • the NAS layer which is located above the RRC layer, performs session management, mobility management, etc.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the AMF 300.
  • the UE 100 has an application layer and the like in addition to the wireless interface protocol.
  • NR-U Each of the embodiments described below is premised on NR-U which uses an unlicensed band in NR communication.
  • the NR-U may use the unlicensed band alone without using the unlicensed band together with the licensed band.
  • the unlicensed band may have an interference wave (interference wave) from another system such as a wireless LAN, and may interfere with another system from the communication device (UE100, gNB200) of the mobile communication system.
  • the interference wave is a radio signal other than the desired wave. Desired waves are SSB (Synchronization Signal and PBCH block), MIB (Master Information Block), SIB1 (System Information BlockSinking or Resync type such as 1), and/or RLM-RS (Metal Information), and/or RLM-RS (Rid-Min).
  • SSB Synchrom Signal and PBCH block
  • MIB Master Information Block
  • SIB1 System Information BlockSinking or Resync type such as 1
  • RLM-RS Metal Information
  • RLM-RS Rad-Min
  • Wireless signal downlink signal.
  • the communication device (UE100, gNB200) is obliged to apply the LBT (Listen Before Talk) before transmitting.
  • the UE 100 and the gNB 200 determine the interference power of this channel in order to determine whether there is interference, that is, whether the channel is idle or busy (busy). Measure and monitor.
  • the communication device can execute transmission. On the other hand, if it is determined that there is an interference wave, that is, the channel is in use, the communication device cannot perform transmission. If it is determined that there is no interference, it is considered that the LBT has succeeded. If it is determined that the interference wave is present, it is considered that the LBT has failed.
  • Cell reselection The UE 100 in the RRC idle state or the RRC inactive state performs cell reselection.
  • the UE 100 measures the reception status of each of the serving cell and the adjacent cell in order to enable the reselection process.
  • the UE 100 grasps the adjacent frequency in advance in order to search and measure the adjacent frequency different from the serving frequency which is the carrier frequency to which the serving cell belongs.
  • the UE 100 determines a cell (serving cell) to camp on by performing cell reselection based on the measurement result of each of the serving cell and the adjacent cell.
  • the UE 100 performs cell reselection on the same carrier frequency (intra frequency) as the serving frequency by ranking according to the reception state of each cell. Specifically, the UE 100 selects the highest ranked cell.
  • UE 100 performs cell reselection on a carrier frequency (inter frequency) different from the serving frequency based on the priority for each carrier frequency.
  • Such frequency priority is set in the UE 100 from the gNB 200, for example.
  • UE 100 attempts to camp on the highest priority frequency available to it.
  • the UE 100 may perform cell reselection for adjacent frequencies having the same priority as the serving frequency by ranking according to the reception state of each cell.
  • the UE 100 measures the reception state of the adjacent cell and selects the cell to be used as the serving cell from the cells satisfying the selection condition.
  • a frequency having a higher priority than the priority of the frequency of the current serving cell The UE 100 constantly measures the quality of frequencies with high priority.
  • a frequency having a priority equal to or lower than the priority of the frequency of the current serving cell UE100 measures the quality of the frequency which has equal priority or low priority, when the quality of the present serving cell falls below the predetermined threshold value.
  • the priority of the frequency of the neighboring cell is higher than the priority of the current serving cell:
  • the UE 100 selects a cell that satisfies the relationship of Squal>ThreshX, HighQ for a predetermined period (TreletionRAT), or a cell that satisfies the relationship of Srxlev>ThreshX, HighP for a predetermined period (TreselectionRAT).
  • Squal is a value according to the reception quality of the desired wave
  • Srxlev is a value according to the reception power of the desired wave.
  • the frequency priority of the neighboring cell is the same as the priority of the current serving cell:
  • the UE 100 calculates the current serving cell rank Rs and the neighboring cell rank Rn.
  • the UE 100 selects a cell having a rank Rn higher than Rs over a predetermined period (TreselectionRAT).
  • the frequency priority of the neighboring cell is lower than that of the current serving cell: UE100 is the same as the above-mentioned (B1) on the premise that Squal ⁇ ThreshServing, LowQ is satisfied for a predetermined period (TreselectionRAT) or Srxlev ⁇ ThreshServing, LowP is satisfied for a predetermined period (TreselectionRAT).
  • the target cell is selected from the adjacent cells by the method.
  • the UE 100 in the RRC idle state or the RRC inactive state can select the cell operated in the unlicensed band by the cell reselection process. It is desirable that the UE 100 selects a cell in which no interference wave exists, particularly a cell that is not congested in the cell reselection process.
  • the cell reselection control method according to the first embodiment is a method performed by the UE 100 in the RRC idle state or the RRC inactive state in the unlicensed band.
  • the UE 100 determines a congestion degree for each of a plurality of candidates which are a plurality of carrier frequencies or a plurality of cells belonging to an unlicensed band.
  • the congestion degree is an index indicating how much the determination target (carrier frequency or cell) is used.
  • the UE 100 may determine the congestion degree based on the received power of the interference wave in the determination target.
  • the UE 100 may determine the congestion degree based on the result of the LBT check on the determination target (carrier frequency or cell). For example, the UE 100 measures the received power of the interference wave in the determination target, compares the measurement result with the threshold value, and determines that the interference wave does not exist (that is, LBT success) if the measurement result is less than the threshold value. On the other hand, if the measurement result is greater than or equal to the threshold value, it is determined that an interfering wave exists (that is, LBT failure).
  • the determination target is crowded May be determined.
  • the method of determining the congestion degree may be based on the channel occupancy (Channel occupancy) of the determination target (carrier frequency or cell).
  • the channel occupancy is a ratio of RSSI sample values exceeding a threshold value among a plurality of received signal strength indicator (RSSI) sampled values measured in a certain period.
  • the fixed period and the threshold may be set in the UE 100 from the gNB 200.
  • the gNB 200 may set the timing at which the RSSI measurement should be performed in the UE 100. Then, the UE 100 may determine that the determination target is congested when the channel occupancy rate exceeds the threshold value.
  • the method of determining the congestion degree may be based on the reception state of the desired wave of the determination target (carrier frequency or cell). For example, the UE 100 may determine that the determination target is congested when the desired wave cannot be detected for the determination target over a predetermined period.
  • the UE 100 extracts a candidate satisfying the selection criterion required to be used as the serving cell of the UE 100 from a plurality of candidates (a plurality of carrier frequencies or a plurality of cells) based on the determination result of the congestion degree. Such a selection criterion is sometimes called S-criterion.
  • the UE 100 selects a cell in which the UE 100 camps on from candidates that satisfy the selection criterion.
  • the general selection criterion is based on the reception power of the desired wave (and the reception quality of the desired wave).
  • the desired wave may be, for example, an RLM-RS (Radio Link Monitoring Reference Signal) transmitted from the gNB 200, or an SSB (Synchronization Signal and PBCH block) transmitted from the gNB 200.
  • the UE 100 has grasped in advance the time/frequency resource for transmitting the desired wave, the signal sequence of the desired wave, and the like.
  • the congestion degree is considered in the selection criteria. Specifically, the UE 100 extracts an uncongested carrier frequency or an uncongested cell as a target to camp on. In other words, the UE 100 excludes a congested carrier frequency or a congested cell from carrier frequency or cell candidates for which it camps.
  • FIG. 6 is a diagram showing a specific example of selection criteria according to the first embodiment.
  • the cell selection criterion Cell Selection Criterion
  • a cell may be read as a carrier frequency.
  • the channel occupancy is used as the congestion degree.
  • the value (Soccup) according to the congestion degree of the cell is larger than the first threshold value (Th), and the value according to the received power of the cell (Srxlev). Is larger than the second threshold (0), and the value (Squal) according to the reception quality of the cell is larger than the third threshold (0).
  • condition A that the value (Soccup) according to the cell congestion degree is larger than the first threshold value (Th) is a condition not included in general cell selection criteria.
  • the condition A that the value (Soccup) corresponding to the cell congestion degree is larger than the first threshold value (Th) may be a condition that is applied only in the unlicensed band.
  • the first threshold value (Th) may be a fixed value preset in the UE 100 or a variable value set in the UE 100 from the gNB 200.
  • the first threshold value (Th) may be a positive value.
  • the first threshold value (Th) may be 0.
  • Srxlev represents the received power of the desired wave of the cell.
  • Qrxlevmeas is the reception power of the desired wave of the cell and is a value measured by the UE 100.
  • Qrxlevmin is the minimum required received power.
  • Qrxlevminoffset is a predetermined offset constantly applied to the cell.
  • Pcompensation is a parameter related to uplink capability.
  • Qoffsettemp is an offset temporarily applied to the cell.
  • Squal represents the quality level of the desired wave of the cell.
  • Qqualmeas is the quality level of the desired wave of the cell and is a value measured by the UE 100.
  • the quality level of the desired wave may be a desired wave-to-interference wave ratio (SINR: Signal? to Interference plus Noise Power ratio).
  • Qqualmin is the minimum required quality level.
  • Qqualminoffset is a predetermined offset constantly applied to the cell.
  • Qoffsettemp is an offset temporarily applied to the cell.
  • Soccup represents the congestion level of the cell. Soccup is calculated by (Qoccup_max+Qoccup_offset)-(Qoccup_meas).
  • Qoccup_meas is the channel occupancy of the cell and is a value measured by the UE 100.
  • Qoccup_max is the maximum allowed channel occupancy.
  • Qoccup_offset is a predetermined offset applied to the cell.
  • SIB System Information Block
  • the UE 100 selects a cell to be used as a serving cell (that is, a cell on which UE 100 camps on) from cells that satisfy the cell selection criteria.
  • the UE 100 ranks the carrier frequency (intra frequency) that is the same as the serving frequency to which the current serving cell belongs and other carrier frequencies (inter frequencies) that have the same priority as the serving frequency based on the reception state. To do. Then, the UE 100 selects the highest ranked cell as a cell to be used as a serving cell (camp-on cell).
  • R-criterion is based on the received power of the desired wave. The higher the received power of the desired wave, the higher the rank. In the first embodiment, in addition to the received power of the desired wave, the congestion degree is considered in the ranking standard. Specifically, the UE 100 adjusts so that cells that are not congested are ranked higher. In other words, the UE 100 adjusts so that the congested cell is ranked lower.
  • FIG. 7 is a diagram showing a specific example of the ranking standard according to the first embodiment.
  • FIG. 7 shows an example of using the channel occupancy rate as the congestion degree.
  • Qmeas,s is the received power of the desired wave of the current serving cell and is a value measured by the UE 100.
  • Qhyst and Qoffsettemp are predetermined offsets applied to the current serving cell.
  • Qmeas and congestion are offset values according to the current channel occupancy (congestion degree) of the serving cell, and are values measured by the UE 100.
  • Qmeas,congestion may be included in the information (SIB) broadcast from the gNB 200.
  • SIB information
  • a mapping table of the congestion degree measured by the UE 100 and the Qmeas, congestion may be included in the SIB.
  • the rank Rs of the current serving cell is adjusted to be lower.
  • Qmeas,n is the reception power of the desired wave of the adjacent cell and is a value measured by the UE 100.
  • Qoffset and Qoffsettemp are predetermined offsets applied to neighboring cells.
  • Qmeas,congestion are offset values according to the channel occupancy (congestion degree) of adjacent cells, and are values measured by the UE 100.
  • Qmeas,congestion may be included in the information (SIB) broadcast from the gNB 200.
  • SIB information
  • a mapping table of the congestion degree measured by the UE 100 and the Qmeas, congestion may be included in the SIB.
  • parameters such as various offsets used for ranking are included in the information (SIB) broadcast from the gNB 200.
  • FIG. 8 is a diagram showing a cell reselection control method according to the first embodiment.
  • the UE 100 performs various measurements. For example, the UE 100 measures the reception power and/or the reception quality of the desired wave and/or the reception power of the interfering wave for each of the current serving cell and the adjacent cell.
  • the neighbor cell may be a neighbor cell belonging to the intra frequency or a neighbor cell belonging to the inter frequency.
  • step S102 the UE 100 determines the congestion degree of each of the current serving cell and the adjacent cell based on at least the received power of the interference wave measured in step S101.
  • step S103 the UE 100 extracts a neighboring cell that satisfies the cell selection criterion (S-criterion) in consideration of the congestion degree determined in step S102.
  • S-criterion cell selection criterion
  • step S104 the UE 100 ranks the current serving cell and the adjacent cell in consideration of the congestion degree determined in step S102, so that the UE 100 selects the cell having the highest ranking criterion (R-criterion). Select as a cell to camp on.
  • the congestion degree is considered in both steps S103 and S104, but the congestion degree may be considered in only one of steps S103 and S104.
  • the existing criterion or offset value is changed to the cell criterion. You may adjust based on a congestion degree.
  • any one of the offset values (Qrxlevmin, Qrxlevminoffset, Pcompensation, Qoffsettemp) included in the calculation formula of Srxlev which is a value corresponding to the reception power of the desired wave is set. , May be adjusted (scaling) according to the congestion degree of the corresponding cell.
  • Any of the offset values (Qqualmin, Qqualminoffset, Qoffsettemp) included in the Squal calculation formula, which is a value corresponding to the reception quality of the desired wave may be adjusted (scaled) according to the congestion level of the corresponding cell.
  • one of the offset values (Qhyst, Qoffsettemp) included in the calculation formula of the ranking criterion Rs of the current serving cell is set according to the congestion degree of the current serving cell. May be adjusted (scaling). Any of the offset values (Qoffset, Qoffsettemp) included in the calculation formula of the ranking criterion Rn of the adjacent cell may be adjusted (scaled) according to the congestion degree of the adjacent cell.
  • FIG. 9 is a diagram showing a cell reselection control method according to a modification of the first embodiment.
  • the UE 100 classifies each cell according to the degree of congestion. For example, when the congestion degree is compared with threshold values (Thresh_congestion_H, Thresh_congestion_L) for each cell, and the congestion degree state continues for a predetermined period (T_congestion), the congestion degree states are high congestion degree (High) and medium congestion degree (High). It is classified as either Mid) or low congestion (Normal).
  • These thresholds (Thresh_congestion_H, Thresh_congestion_L) and a predetermined period (T_congestion) may be included in the SIB broadcast from the gNB 200.
  • the offset value is adjusted (scaled) as described above.
  • the frequency priority (absolute priority) which is the priority for each carrier frequency in cell reselection is considered.
  • the frequency priority is set from the gNB 200 to the UE 100 by broadcast signaling (SIB) or unicast signaling (UE dedicated signaling).
  • SIB broadcast signaling
  • UE dedicated signaling UE dedicated signaling
  • the frequency priority is provided as a set with the carrier frequency identifier, and is configured as a list including a plurality of this set.
  • the frequency priority set by unicast signaling is sometimes called UE-dedicated priority.
  • the UE dedicated priority is included in the RRC release message transmitted from the gNB 200 to the UE 100 in the RRC connected state.
  • the RRC release message is a message for releasing or suspending the RRC connection.
  • the UE 100 transitions to the RRC idle state or the RRC inactive state in response to the reception of the RRC release message.
  • a general UE dedicated priority is applied when the UE 100 transits to the RRC idle state or the RRC inactive state. That is, the UE 100 immediately applies the UE dedicated priority included in the RRC release message and performs cell reselection based on the UE dedicated priority.
  • the gNB 200 sets the UE-dedicated priority for the UE 100, the set UE-dedicated priority may become inappropriate as time elapses.
  • conditional priority a new UE-specific priority called conditional priority is introduced.
  • the UE 100 transitions to the RRC idle state or the RRC inactive state, instead of immediately applying the conditional priority, the UE 100 suspends the application of the conditional priority until a predetermined condition regarding the current serving cell is satisfied. To do. Then, the UE 100 applies the conditional priority when the predetermined condition is satisfied. As a result, the UE 100 can apply the conditional priority (UE dedicated priority) at an appropriate timing after the conditional priority (UE dedicated priority) is set.
  • FIG. 10 is a diagram showing a cell reselection control method according to the second embodiment.
  • step S201 the UE 100 in the RRC connected state receives the RRC release message from the gNB 200 and transitions to the RRC idle state or the RRC inactive state.
  • the RRC release message includes a conditional priority that determines the priority in cell reselection for each carrier frequency.
  • the RRC release message may further include a general frequency priority that determines the priority in cell reselection for each carrier frequency, in addition to the conditional priority.
  • a general frequency priority is a UE-dedicated priority that the UE 100 should immediately apply.
  • a general frequency priority is called a non-conditional priority (Non-conditional priority).
  • the RRC release message may include setting information for designating to UE 100 the applicable condition (predetermined condition) of conditional priority (Conditional priority).
  • the predetermined condition may include at least one of A1) the condition that the congestion level of the current serving cell has increased and A2) that the reception state of the desired wave of the current serving cell has deteriorated.
  • the predetermined condition may be a condition that the congestion degree of the serving cell exceeds a threshold value, or a condition that the UE 100 determines that the serving cell is crowded.
  • the predetermined condition may include B) the condition that it is necessary to transit from the RRC idle state or the RRC inactive state to the RRC connected state.
  • the predetermined condition is when the RRC Connection is to be established, restored, or reestablished (when it is necessary to perform any one of PRACH transmission, RRC Request transmission, RRC Resume Request transmission, and RRC Rehabilitation Request transmission). It may be.
  • the predetermined condition may be a combination of at least one of the conditions A1) and A2) and the condition B).
  • the UE 100 performs the cell reselection by applying the conditional priority when the condition of “congestion degree” is satisfied before transmitting the PRACH.
  • the RRC release message may include the value of the first timer that determines the applicable period of the conditional priority (Conditional priority).
  • the UE 100 starts the first timer when receiving the RRC release message, and invalidates (discards) the conditional priority setting when the first timer expires.
  • the UE 100 stops the first timer when the conditional priority is applied during the operation of the first timer.
  • the RRC release message may include the value of the second timer that defines the period during which the conditional priority (Conditional priority) can be continuously applied.
  • the UE 100 starts the second timer when the conditional priority is applied, and invalidates (discards) the conditional priority setting when the second timer expires.
  • the UE 100 may apply the frequency priority notified in the SIB to cell reselection when the conditional priority setting is invalidated (discarded).
  • the RRC release message may include a value of a third timer that defines a period in which the application of the non-conditional priority (Non-conditional dedicated priority) can be continued.
  • the UE 100 starts the third timer when receiving the RRC release message, and invalidates (discards) the conditional priority setting when the third timer expires.
  • step S202 the UE 100, which has transitioned to the RRC idle state or the RRC inactive state in response to the reception of the RRC release message, instead of immediately applying the conditional priority, until a predetermined condition regarding the current serving cell is satisfied. Suspends the application of conditional priorities.
  • the UE 100 may apply the conditionless priority to the cell reselection when transitioning to the RRC idle state or the RRC inactive state.
  • the UE 100 may start the first timer and the third timer when transitioning to the RRC idle state or the RRC inactive state.
  • step S203 the UE 100 confirms whether or not the predetermined condition specified in the RRC release message is satisfied.
  • step S203 YES
  • the UE 100 advances the process to step S204.
  • step S204 the UE 100 applies the conditional priority to cell reselection.
  • the UE 100 may start a second timer.
  • the UE 100 may start application of the conditional priority by overwriting the unconditional priority that has been applied until then with the conditional priority in response to the predetermined condition being satisfied. ..
  • the UE 100 may discard the unconditional priority or may retain the unconditional priority.
  • the UE 100 may terminate the application of the conditional priority and restart the application of the conditional priority when the second timer expires.
  • the UE 100 may set the priority of the current serving cell or the priority of the carrier frequency to which the current serving cell belongs to as the lowest priority as the priority in the cell reselection in response to the satisfaction of the predetermined condition. .. This can facilitate cell reselection to an adjacent cell or an adjacent frequency.
  • this operation flow does not particularly consider the case where the UE 100 performs cell reselection to the adjacent cell before the predetermined condition regarding the current serving cell (that is, the cell at the time of receiving the RRC release message) is satisfied.
  • the UE 100 may discard the conditional priority setting, or retain the conditional priority setting. Good.
  • the conditional priority setting is retained, the current serving cell after cell reselection is the cell reselection target cell, and the predetermined condition is the condition for the cell reselection target cell.
  • the determination (LBT check) as to whether or not there is an interfering wave is performed when transmission data occurs.
  • LBT check is performed by measuring the power.
  • NR-U it is desired that the LBT check can be performed even when transmission data is not generated.
  • FIG. 11 is a diagram showing a first modification of the first and second embodiments.
  • the operation of the UE 100 will be described as an example, but the operation of FIG. 8 may be performed by the gNB 200.
  • the UE 100 may be in the RRC connected state.
  • step S301 the upper layer of the UE 100, even when there is no data to be transmitted from the UE 100 (first communication device) to another communication device (second communication device), It instructs the physical layer of the UE 100 to perform the LBT check.
  • the upper layer may be the MAC layer or the RRC layer.
  • the upper layer notifies the physical layer of LBT check indication that instructs to perform the LBT check.
  • the upper layer may notify the physical layer how many times the physical layer should perform LBT check (for example, N times (N ⁇ 1)).
  • the upper layer may notify the physical layer of the carrier frequency or channel for LBT check.
  • the LBT check target is a serving frequency that is a carrier frequency of the serving cell, a partial band (channel) of the serving frequency, an adjacent frequency different from the serving frequency (specifically, an adjacent frequency belonging to an unlicensed band), and/or It may be a partial band (channel) of adjacent frequencies.
  • step S302 the physical layer of the UE 100 performs an LBT check according to the instruction from the upper layer.
  • the physical layer may perform the LBT check of the number of times notified from the upper layer.
  • the physical layer of the UE 100 notifies the upper layer of the result of the LBT check in step S302.
  • the physical layer notifies the upper layer of LBT success or LBT failure.
  • the physical layer may notify the upper layer of multiple LBT check results (for example, M times successful, L times failed (M, L ⁇ 0)).
  • M times successful, L times failed (M, L ⁇ 0) The physical layer does not have to notify the upper layer of the number of times the LBT check has been executed and the number of successful times, and need not notify the number of failures to the upper layer.
  • the physical layer may notify the upper layer of the number of times the LBT check has been executed and the number of times of failure, and may not notify the upper layer of the number of successes.
  • the upper layer of the UE 100 determines (determines) the congestion degree of the unlicensed band based on the notification from the physical layer. For example, when the LBT check fails, the LBT check fails N times (N ⁇ 2) or more, the ratio of the LBT check failures is equal to or more than a threshold, and the carrier frequency or the channel targeted for the LBT check is congested. You may decide that it is doing.
  • the first modification it is possible to perform the LBT check even when the transmission data is not generated by the cooperation between the layers of the physical layer and the upper layer.
  • the frequency priority is set from the gNB 200 to the UE 100, and the UE 100 performs the cell reselection process in consideration of the frequency priority. For example, when there is an adjacent frequency having a higher priority than the priority set for the carrier frequency of the current serving cell, the UE 100 always performs measurement on this adjacent frequency (measurement of reception power of desired wave). Such a measurement is called an inter frequency measurement.
  • the NR-U when the high-priority adjacent frequency is congested, it is not preferable to reselect the cell belonging to this adjacent frequency, so it is desirable not to perform measurement for this adjacent frequency. Thereby, the power consumption of the UE 100 due to the measurement can be saved.
  • the UE 100 in the RRC idle state or the RRC inactive state measures the interference wave power for the high priority frequency having a higher priority than the priority set for the carrier frequency of the current serving cell. , Determine the degree of congestion for high priority frequencies.
  • the method of determining the degree of congestion is the same as in the above-described first and second embodiments.
  • the UE 100 determines that the high priority frequency is congested, the UE 100 skips the measurement for the high priority frequency in a certain period.
  • the value of the timer that defines this fixed period may be set from the gNB 200 to the UE 100 by SIB or dedicated RRC signaling.
  • the UE 100 may skip the congestion degree determination (that is, the measurement of the interfering wave power) in a certain period, or the interface for the high priority frequency may be skipped.
  • the frequency measurement that is, the measurement of the desired wave power
  • the UE 100 When the UE 100 determines that the high priority frequency is congested, the UE 100 suppresses the measurement by lowering the priority set for the high priority frequency for a certain period (for example, regarding it as the lowest priority). Good.
  • FIG. 12 is a diagram showing a modified example 2 of the first and second embodiments. In this operation, it is assumed that the UE 100 is in the RRC idle state or the RRC inactive state in the cell operated in the unlicensed band.
  • step S401 the UE 100 determines the congestion degree by measuring the interference wave power for the high priority frequency.
  • step S402 When it is determined that the high priority frequencies are mixed (step S402: YES), the UE 100 starts the timer and skips the measurement for the high priority frequencies in step S403. The UE 100 continues the measurement skip for the high priority frequency while the timer is operating.
  • step S404 the UE 100 determines the congestion degree by measuring the interference wave power for the serving frequency.
  • step S405 If it is determined that the serving frequencies are mixed (step S405: YES), the UE 100 stops the timer in step S406 and returns the process to step S401.
  • step S405 when it is determined that the serving frequencies are not mixed (step S405: NO), the UE 100 confirms in step S407 whether or not the timer has expired. When the timer has expired (step S407: YES), the UE 100 returns the process to step S401. When the timer has not expired (step S407: NO), the UE 100 returns the process to step S404.
  • the power consumption of the UE 100 can be saved by not measuring the adjacent frequency.
  • the power consumption of the UE 100 is large, so it is desirable to reduce the time and number of times of congestion degree determination as much as possible.
  • FIG. 13 is a diagram showing a modified example 3 of the first and second embodiments. In this operation, it is assumed that the UE 100 is in the RRC idle state or the RRC inactive state in the cell operated in the unlicensed band.
  • step S501 only when the predetermined condition is satisfied (step S501), the UE 100 determines the congestion degree by measuring the interference wave power in the unlicensed band in step S502.
  • the congestion degree determination basically assumes the congestion degree determination of the current serving cell (serving frequency), but may be applied to adjacent cells (adjacent frequencies).
  • the UE 100 may determine the congestion degree of the adjacent cell (adjacent frequency) when the current serving cell (serving frequency) is congested.
  • the priority set in the current serving cell (serving frequency) is not the highest priority or the highest rank (that is, the received power of the desired wave power is the highest)
  • the UE 100 determines that the adjacent cell (adjacent frequency) You may judge congestion degree.
  • Such an operation may be similarly applied to each of the above-described embodiments.
  • the predetermined condition for executing the congestion degree determination may be a condition that the reception power (desired wave power) of the radio signal received by the UE 100 from the serving cell is below a threshold value.
  • the UE 100 may consider that the gNB 200 has failed the LBT and may determine that the serving frequency is congested.
  • the UE 100 may perform cell reselection to another cell of the same frequency.
  • the UE 100 may perform inter frequency measurement and perform cell reselection to another cell of the adjacent frequency.
  • the predetermined condition for executing the congestion degree determination is that the UE 100 performs a tracking area update process (TAU: Tracking Area Update) or a RAN notification area update process (RNAU: RAN-based Notification Area Update) via the cell.
  • TAU is a process of notifying the AMF when the UE 100 moves from one tracking area to another tracking area.
  • the RNAU is a process of notifying the destination gNB 200 when the UE 100 in the RRC connected state moves from one RAN-based Notification Area to another RAN-based Notification Area.
  • the UE 100 may perform congestion degree determination for each of the serving frequency and the adjacent frequency, and may perform transmission at a frequency that is not crowded among these frequencies.
  • the predetermined condition for executing the congestion degree determination may be a condition that the UE 100 performs a connection process for a cell.
  • the connection process may be PRACH (Physical Random Access Channel) transmission in the random access procedure or Msg3 (eg, RRC Request message) transmission in the random access procedure.
  • PRACH Physical Random Access Channel
  • Msg3 eg, RRC Request message
  • the UE 100 may perform congestion degree determination for each of the serving frequency and the adjacent frequency, and may perform transmission at a frequency that is not crowded among these frequencies.
  • the predetermined condition for executing the congestion degree determination may be a condition that the UE 100 performs the cell reselection process.
  • the UE 100 may perform inter frequency measurement when the serving frequency is congested.
  • the 5G system (NR) has been mainly described, but the operation according to each of the embodiments may be applied to LTE.
  • a program that causes a computer to execute each process performed by the UE 100 or the gNB 200 may be provided.
  • the program may be recorded in a computer-readable medium.
  • a computer readable medium can be used to install the program on a computer.
  • the computer-readable medium in which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • a circuit that executes each process performed by the UE 100 or the gNB 200 may be integrated, and at least a part of the UE 100 or the gNB 200 may be configured as a semiconductor integrated circuit (chip set, SoC).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一実施形態に係るセル再選択制御方法は、RRCアイドル状態又はRRCインアクティブ状態にあるユーザ装置がアンライセンスバンドにおいて行う方法である。前記セル再選択制御方法は、前記アンライセンスバンドに属する複数のキャリア周波数又は複数のセルである複数の候補のそれぞれについて混雑度を判定することと、前記複数の候補の中から、前記ユーザ装置のサービングセルとして用いるために必要とされる選択基準を満たす候補を抽出することと、前記抽出した候補の中から、前記サービングセルとして用いるセルを選択することとを含む。前記候補の抽出及び前記セルの選択のうち少なくとも一方は、前記判定された前記混雑度に基づく。

Description

セル再選択制御方法及びユーザ装置
 本開示は、移動通信システムにおけるセル再選択制御方法及びユーザ装置に関する。
 従来、3GPP(3rd Generation Partnership Project)のLTE(Long Term Evolution)において、免許が必要な周波数帯であるライセンスバンドと免許不要な周波数帯であるアンライセンスバンドとを併用してLTE通信を行うLAA(License-Assisted Access)が規定されている。なお、アンライセンスバンドは、Unlicensed spectrumと呼ばれることもある。
 近年、第5世代(5G)の無線アクセス技術に位置付けられるNR(New Radio)の標準化が3GPPにおいて進められている。現状のNRの仕様には、アンライセンスバンドを用いる仕組みが規定されていないが、NR通信においてアンライセンスバンドを用いる技術であるNR-Uを導入するための議論が3GPPにおいて開始されている。
 NR-Uにおいては、アンライセンスバンドをライセンスバンドと併用せずにアンライセンスバンドを単独で用いることが可能になると想定される。このような想定下においては、LAAには無い新たな機能が必要になると考えられる。
3GPP技術仕様書 「TS38.300 V15.3.0」 2018年9月、インターネット<URL: http://www.3gpp.org/ftp//Specs/archive/38_series/38.300/38300-f30.zip>
 一実施形態に係るセル再選択制御方法は、RRCアイドル状態又はRRCインアクティブ状態にあるユーザ装置がアンライセンスバンドにおいて行う方法である。前記セル再選択制御方法は、前記アンライセンスバンドに属する複数のキャリア周波数又は複数のセルである複数の候補のそれぞれについて混雑度を判定することと、前記複数の候補の中から、前記ユーザ装置のサービングセルとして用いるために必要とされる選択基準を満たす候補を抽出することと、前記抽出した候補の中から、前記サービングセルとして用いるセルを選択することとを含む。前記候補の抽出及び前記セルの選択のうち少なくとも一方は、前記判定された前記混雑度に基づく。
 一実施形態に係るセル再選択制御方法は、アンライセンスバンドにおけるセル再選択処理を制御するための方法である。前記セル再選択制御方法は、RRCコネクティッド状態にあるユーザ装置が、前記セル再選択における優先度をキャリア周波数ごとに定める条件付き優先度を含むRRC解放メッセージを基地局から受信することと、前記RRC解放メッセージの受信に応じてRRCアイドル状態又はRRCインアクティブ状態に遷移した前記ユーザ装置が、前記条件付き優先度を直ちに適用することに代えて、現在のサービングセルに関する所定の条件が満たされるまでは前記条件付き優先度の適用を保留することと、前記RRCアイドル状態又は前記RRCインアクティブ状態にある前記ユーザ装置が、前記所定の条件が満たされた場合、前記条件付き優先度を適用することとを含む。
実施形態に係る移動通信システムの構成を示す図である。 実施形態に係るユーザ装置の構成を示す図である。 実施形態に係る基地局の構成を示す図である。 実施形態に係るユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 実施形態に係る制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 第1実施形態に係る選択基準の具体例を示す図である。 第1実施形態に係るランク付け基準の具体例を示す図である。 第1実施形態に係るセル再選択制御方法を示す図である。 第1実施形態の変更例に係るセル再選択制御方法を示す図である。 第2実施形態に係るセル再選択制御方法を示す図である。 第1及び第2実施形態の変更例1を示す図である。 第1及び第2実施形態の変更例2を示す図である。 第1及び第2実施形態の変更例3を示す図である。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (移動通信システム)
 まず、一実施形態に係る移動通信システムの構成について説明する。一実施形態に係る移動通信システムは3GPPの5Gシステムであるが、移動通信システムには、LTEが少なくとも部分的に適用されてもよい。
 図1は、一実施形態に係る移動通信システムの構成を示す図である。
 図1に示すように、移動通信システムは、ユーザ装置(UE:User Equipment)100と、5Gの無線アクセスネットワーク(NG-RAN:Next Generation Radio Access Network)10と、5Gのコアネットワーク(5GC:5G Core Network)20とを有する。
 UE100は、移動可能な装置である。UE100は、ユーザにより利用される装置であればどのような装置であってもよい。例えば、UE100は、携帯電話端末(スマートフォンを含む)やタブレット端末、ノートPC、通信モジュール(通信カード又はチップセットを含む)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(Vehicle UE)、又は飛行体若しくは飛行体に設けられる装置(Aerial UE)である。
 NG-RAN10は、基地局(5Gシステムにおいて「gNB」と呼ばれる)200を含む。gNB200は、NG-RANノードと呼ばれることもある。gNB200は、基地局間インターフェイスであるXnインターフェイスを介して相互に接続される。gNB200は、1又は複数のセルを管理する。gNB200は、自セルとの接続を確立したUE100との無線通信を行う。gNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、及び/又はモビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。
 なお、gNBがLTEのコアネットワークであるEPC(Evolved Packet Core)に接続されてもよいし、LTEの基地局が5GCに接続されてもよい。また、LTEの基地局とgNBとが基地局間インターフェイスを介して接続されてもよい。
 5GC20は、AMF(Access and Mobility Management Function)及びUPF(User Plane Function)300を含む。AMFは、UE100に対する各種モビリティ制御等を行う。AMFは、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100が在圏するエリアの情報を管理する。UPFは、データの転送制御を行う。AMF及びUPFは、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してgNB200と接続される。
 図2は、UE100(ユーザ装置)の構成を示す図である。
 図2に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、少なくとも1つのプロセッサと、プロセッサと電気的に接続された少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
 図3は、gNB200(基地局)の構成を示す図である。
 図3に示すように、gNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、gNB200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサと、プロセッサと電気的に接続された少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUと、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
 バックホール通信部240は、基地局間インターフェイスを介して隣接基地局と接続される。バックホール通信部240は、基地局-コアネットワーク間インターフェイスを介してAMF/UPF300と接続される。なお、gNBは、CU(Central Unit)とDU(Distributed Unit)とで構成され(すなわち、機能分割され)、両ユニット間がF1インターフェイスで接続されてもよい。
 図4は、データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図4に示すように、ユーザプレーンの無線インターフェイスプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、SDAP(Service Data Adaptation Protocol)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとgNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとgNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。gNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとgNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 SDAPレイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。なお、RANがEPCに接続される場合は、SDAPが無くてもよい。
 図5は、シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図5に示すように、制御プレーンの無線インターフェイスのプロトコルスタックは、図4に示したSDAPレイヤに代えて、RRC(Radio Resource Control)レイヤ及びNAS(Non-Access Stratum)レイヤを有する。
 UE100のRRCレイヤとgNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドル状態にある。また、RRC接続が中断(サスペンド)されている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理等を行う。UE100のNASレイヤとAMF300のNASレイヤとの間では、NASシグナリングが伝送される。
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (NR-U)
 後述する各実施形態は、NR通信においてアンライセンスバンドを用いるNR-Uを前提とする。NR-Uは、アンライセンスバンドをライセンスバンドと併用せずにアンライセンスバンドを単独で用いるものであってもよい。
 アンライセンスバンドは、無線LANなどの他のシステムからの妨害波(干渉波)が存在しうるとともに、移動通信システムの通信装置(UE100、gNB200)から他のシステムへ干渉を与えうる。妨害波とは、所望波以外の無線信号をいう。所望波とは、SSB(Synchronization Signal and PBCH block)、MIB(Master Information Block)、SIB1(System Information Block type 1)、及び/又はRLM-RS(Radio Link Monitoring Reference Signal)など、予め送信タイミングが分かっている無線信号(下りリンク信号)をいう。
 このため、アンライセンスバンドにおいては、通信装置(UE100、gNB200)は、送信を行う前にLBT(Listen Before Talk)を適用することが義務づけられている。
 LBTが適用される場合、UE100及びgNB200は、妨害波が存在するか否か、すなわち、チャネルが空いているか又は使用中(ビジー)であるかを判定するために、このチャネルの妨害波電力を測定及び監視する。
 妨害波が存在しない、すなわち、チャネルが空いていると判定された場合、通信装置は、送信を実行することができる。一方、妨害波が存在する、すなわち、チャネルが使用中であると判定された場合、通信装置は、送信を実行することができない。妨害波が存在しないと判定される場合はLBT成功とみなされる。妨害波が存在すると判定される場合はLBT失敗とみなされる。
 (セル再選択)
 RRCアイドル状態又はRRCインアクティブ状態にあるUE100は、セル再選択を行う。UE100は、再選択処理を可能にするために、サービングセル及び隣接セルのそれぞれについて受信状態を測定する。UE100は、サービングセルが属するキャリア周波数であるサービング周波数とは異なる隣接周波数の検索及び測定のために、隣接周波数を予め把握している。
 UE100は、サービングセル及び隣接セルのそれぞれの測定結果に基づいてセル再選択を行うことにより、自身がキャンプオンすべきセル(サービングセル)を決定する。
 ここで、UE100は、サービング周波数と同一のキャリア周波数(イントラ周波数)におけるセル再選択を、各セルの受信状態に応じたランク付けにより行う。具体的には、UE100は、最上位にランク付けされたセルを選択する。
 UE100は、サービング周波数とは異なるキャリア周波数(インター周波数)におけるセル再選択を、キャリア周波数ごとの優先度に基づいて行う。このような周波数優先度は、例えばgNB200からUE100に設定される。UE100は、自身が利用可能な最高優先度の周波数にキャンプオンしようと試みる。なお、UE100は、サービング周波数と優先度が等しい隣接周波数については、各セルの受信状態に応じたランク付けによりセル再選択を行ってもよい。
 一般的なセル再選択において、UE100は、開始条件が満たされた場合に、隣接セルの受信状態を測定し、選択条件を満たすセルの中からサービングセルとして用いるセルを選択する。
 第1に、開始条件は、以下に示す通りである。
 (A1)現在のサービングセルの周波数の優先度よりも高い優先度を有する周波数:
 UE100は、高い優先度を有する周波数の品質を常に測定する。
 (A2)現在のサービングセルの周波数の優先度と等しい優先度又は低い優先度を有する周波数:
 UE100は、現在のサービングセルの品質が所定閾値を下回った場合に、等しい優先度又は低い優先度を有する周波数の品質を測定する。
 第2に、選択条件は、以下に示す通りである。
 (B1)隣接セルの周波数の優先度が現在のサービングセルの優先度よりも高い:
 UE100は、所定期間(TreselectionRAT)に亘ってSqual>ThreshX,HighQの関係を満たすセル、若しくは、所定期間(TreselectionRAT)に亘ってSrxlev>ThreshX,HighPの関係を満たすセルを選択する。ここで、Squalは所望波の受信品質に応じた値であり、Srxlevは所望波の受信電力に応じた値である。
 (B2)隣接セルの周波数の優先度が現在のサービングセルの優先度と同じである:
 UE100は、現在のサービングセルのランクRs及び隣接セルのランクRnを算出する。UE100は、所定期間(TreselectionRAT)に亘ってRsよりも高いランクRnを有するセルを選択する。
 (B3)隣接セルの周波数の優先度が現在のサービングセルの優先度よりも低い:
 UE100は、所定期間(TreselectionRAT)に亘ってSqual<ThreshServing,LowQが満たされる、若しくは、所定期間(TreselectionRAT)に亘ってSrxlev<ThreshServing,LowPが満たされるという前提下において、上述した(B1)と同様の手法によって隣接セルの中から対象セルを選択する。
 NR-Uにおいては、RRCアイドル状態又はRRCインアクティブ状態にあるUE100は、セル再選択処理により、アンライセンスバンドで運用されるセルを選択しうる。UE100は、妨害波が存在しないようなセル、特に、混雑していないセルをセル再選択処理において選択することが望ましい。
 (第1実施形態)
 第1実施形態に係るセル再選択制御方法は、RRCアイドル状態又はRRCインアクティブ状態にあるUE100がアンライセンスバンドにおいて行う方法である。
 第1実施形態において、UE100は、アンライセンスバンドに属する複数のキャリア周波数又は複数のセルである複数の候補のそれぞれについて混雑度を判定する。混雑度とは、判定対象(キャリア周波数又はセル)がどの程度使用されているかを示す指標をいう。UE100は、判定対象における妨害波の受信電力に基づいて混雑度を判定してもよい。
 UE100は、判定対象(キャリア周波数又はセル)に対するLBTチェックの結果に基づいて混雑度を判定してもよい。例えば、UE100は、判定対象における妨害波の受信電力を測定し、測定結果を閾値と比較し、測定結果が閾値未満であれば妨害波が存在しない(すなわち、LBT成功)と判定する。一方、測定結果が閾値以上であれば、妨害波が存在する(すなわち、LBT失敗)と判定する。そして、UE100は、1)LBT失敗の場合、2)LBTがN回(N≧2)以上失敗した場合、3)LBTチェックが失敗した割合が閾値以上である場合、判定対象が混雑していると判定してもよい。
 混雑度の判定方法は、判定対象(キャリア周波数又はセル)のチャネル占有率(Channel occupancy)に基づくものであってもよい。チャネル占有率とは、ある一定期間において測定された複数の受信電力(RSSI:Received Signal Strength Indicator)サンプル値のうち閾値を超えるRSSIサンプル値の割合をいう。この一定期間及び閾値は、gNB200からUE100に設定されてもよい。また、gNB200は、RSSI測定を行うべきタイミングをUE100に設定してもよい。そして、UE100は、チャネル占有率が閾値を超える場合、判定対象が混雑していると判定してもよい。
 混雑度の判定方法は、判定対象(キャリア周波数又はセル)の所望波の受信状態に基づくものであってもよい。例えば、UE100は、判定対象について所望波を所定期間にわたって検出することができない場合、判定対象が混雑していると判定してもよい。
 UE100は、混雑度の判定結果に基づいて、複数の候補(複数のキャリア周波数又は複数のセル)の中から、UE100のサービングセルとして用いるために必要とされる選択基準を満たす候補を抽出する。このような選択基準は、S-criterionと呼ばれることがある。UE100は、選択基準を満たす候補の中から、自身がキャンプオンするセルを選択する。
 ここで、一般的な選択基準(S-criterion)は、所望波の受信電力(及び所望波の受信品質)に基づく。所望波は、例えば、gNB200から送信されるRLM-RS(Radio Link Monitoring Reference Signal)であってもよいし、gNB200から送信されるSSB(Synchronization Signal and PBCH block)であってもよい。UE100は、所望波が送信される時間・周波数リソース及び所望波の信号系列等を予め把握している。
 第1実施形態では、所望波の受信電力(及び受信品質)に加えて、混雑度を選択基準において考慮する。具体的には、UE100は、混雑していないキャリア周波数又は混雑していないセルを、自身がキャンプオンする対象として抽出する。言い換えると、UE100は、混雑しているキャリア周波数又は混雑しているセルを、自身がキャンプオンするキャリア周波数又はセルの候補から除外する。
 図6は、第1実施形態に係る選択基準の具体例を示す図である。以下の第1実施形態において、セルの選択基準(Cell Selection Criterion)を例示するが、セルをキャリア周波数と読み替えてもよい。また、混雑度としてチャネル占有率を用いる一例を示している。
 図6に示すように、セルの選択基準(Cell Selection Criterion)は、セルの混雑度に応じた値(Soccup)が第1閾値(Th)より大きく、セルの受信電力に応じた値(Srxlev)が第2閾値(0)より大きく、且つ、セルの受信品質に応じた値(Squal)が第3閾値(0)より大きいという基準である。
 ここで、セルの混雑度に応じた値(Soccup)が第1閾値(Th)より大きいという条件Aは、一般的なセルの選択基準には無い条件である。セルの混雑度に応じた値(Soccup)が第1閾値(Th)より大きいという条件Aは、アンライセンスバンドにおいてのみ適用される条件であってもよい。第1閾値(Th)は、UE100に予め設定された固定値であってもよいし、gNB200からUE100に設定される可変値であってもよい。第1閾値(Th)は、正の値であってよい。第1閾値(Th)は、0であってよい。
 具体的には、図6において、Srxlevは、セルの所望波の受信電力を表している。Srxlevは、Srxlev=Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation-Qoffsettempによって算出される。Qrxlevmeasは、セルの所望波の受信電力であって、UE100が測定した値である。Qrxlevminは、最小要求受信電力である。Qrxlevminoffsetは、セルに定常的に適用される所定オフセットである。Pcompensationは、アップリンクの能力に関するパラメータである。Qoffsettempは、セルに一時的に適用されるオフセットである。
 また、Squalは、セルの所望波の品質レベルを表している。Squalは、Squal=Qqualmeas-(Qqualmin+Qqualminoffset)-Qoffsettempによって算出される。Qqualmeasは、セルの所望波の品質レベルであって、UE100が測定した値である。所望波の品質レベルは、所望波対妨害波比(SINR:Signal?to?Interference plus Noise power Ratio)であってもよい。Qqualminは、最小要求品質レベルである。Qqualminoffsetは、セルに定常的に適用される所定オフセットである。Qoffsettempは、セルに一時的に適用されるオフセットである。
 また、Soccupは、セルの混雑レベルを表している。Soccupは、(Qoccup_max+Qoccup_offset)-(Qoccup_meas)によって算出される。Qoccup_measは、セルのチャネル占有率であって、UE100が測定した値である。Qoccup_maxは、最大許容チャネル占有率である。Qoccup_offsetは、セルに適用される所定オフセットである。
 なお、セルの選択で用いる各種オフセット等のパラメータは、gNB200からブロードキャストされる情報(SIB:System Information Block)に含まれる。
 UE100は、セルの選択基準を満たすセルの中から、サービングセルとして用いるセル(すなわち、UE100がキャンプオンするセル)を選択する。ここで、UE100は、現在のサービングセルが属するサービング周波数と同一のキャリア周波数(イントラ周波数)、及びサービング周波数と同一の優先度を有する他のキャリア周波数(インター周波数)について、受信状態に基づくランク付けを行う。そして、UE100は、最上位にランク付けされたセルを、サービングセルとして用いるセル(キャンプオンするセル)として選択する。
 一般的なランク付け基準(R-criterion)は、所望波の受信電力に基づく。所望波の受信電力が高いほど、上位にランク付けされることになる。第1実施形態では、所望波の受信電力に加えて、混雑度をランク付け基準において考慮する。具体的には、UE100は、混雑していないセルが上位にランク付けされるように調整する。言い換えると、UE100は、混雑しているセルが下位にランク付けされるように調整する。
 図7は、第1実施形態に係るランク付け基準の具体例を示す図である。図7において、混雑度としてチャネル占有率を用いる一例を示している。
 図7に示すように、現在のサービングセルのランク付け基準であるRsは、Rs=Qmeas,s+Qhyst-Qoffsettemp-Qmeas,congestionによって算出される。Qmeas,sは、現在のサービングセルの所望波の受信電力であって、UE100が測定した値である。Qhyst及びQoffsettempは、現在のサービングセルに適用される所定オフセットである。Qmeas,congestionは、現在のサービングセルのチャネル占有率(混雑度)に応じたオフセット値であって、UE100が測定した値である。Qmeas,congestionは、gNB200からブロードキャストされる情報(SIB)に含まれてもよい。UE100が測定した混雑度とQmeas,congestionとのマッピングテーブルがSIBに含まれてもよい。
 よって、現在のサービングセルの混雑度が高いほど、現在のサービングセルのランクRsが低なるように調整される。
 また、隣接セルのランク付け基準であるRnは、Rn=Qmeas,n+Qoffset-Qoffsettemp-Qmeas,congestionによって算出される。Qmeas,nは、隣接セルの所望波の受信電力であって、UE100が測定した値である。Qoffset及びQoffsettempは、隣接セルに適用される所定オフセットである。Qmeas,congestionは、隣接セルのチャネル占有率(混雑度)に応じたオフセット値であって、UE100が測定した値である。Qmeas,congestionは、gNB200からブロードキャストされる情報(SIB)に含まれてもよい。UE100が測定した混雑度とQmeas,congestionとのマッピングテーブルがSIBに含まれてもよい。
 よって、隣接セルの混雑度が高いほど、隣接セルのランクRnが低くなるように調整される。
 なお、ランク付けで用いる各種オフセット等のパラメータは、gNB200からブロードキャストされる情報(SIB)に含まれる。
 図8は、第1実施形態に係るセル再選択制御方法を示す図である。
 図8に示すように、ステップS101において、UE100は、各種の測定を行う。例えば、UE100は、現在のサービングセル及び隣接セルのそれぞれについて、所望波の受信電力及び/もしくは受信品質、並びに/又は妨害波の受信電力の測定を行う。隣接セルは、イントラ周波数に属する隣接セルであってもよいし、インター周波数に属する隣接セルであってもよい。
 ステップS102において、UE100は、ステップS101で測定した妨害波の受信電力に少なくとも基づいて、現在のサービングセル及び隣接セルのそれぞれについて混雑度を判定する。
 ステップS103において、UE100は、ステップS102で判定した混雑度を考慮して、セルの選択基準(S-criterion)を満たす隣接セルを抽出する。
 ステップS104において、UE100は、ステップS102で判定した混雑度を考慮して、現在のサービングセル及び隣接セルのそれぞれをランク付けすることにより、ランク付け基準(R-criterion)が最も高いセルを、UE100がキャンプオンするセルとして選択する。
 ここでは、ステップS103及びS104の両方において混雑度を考慮しているが、ステップS103及びS104のいずれか一方のみにおいて混雑度を考慮してもよい。
 (第1実施形態の変更例)
 上述した実施形態において、セルの選択基準(S-criterion)及びランク付け基準(R-criterion)において、セルの混雑度に基づく判定条件やセルの混雑度を示すオフセット値を新たに導入する一例について説明した。
 しかしながら、セルの選択基準(S-criterion)及びランク付け基準(R-criterion)において、新たな判定基準や新たなオフセット値を導入することに代えて、既存の判定基準やオフセット値を、セルの混雑度に基づいて調整してもよい。
 例えば、図6に示すセルの選択基準(S-criterion)において、所望波の受信電力に応じた値であるSrxlevの計算式に含まれるオフセット値(Qrxlevmin、Qrxlevminoffset、Pcompensation、Qoffsettemp)のいずれかを、対応するセルの混雑度に応じて調整(スケーリング)してもよい。所望波の受信品質に応じた値であるSqualの計算式に含まれるオフセット値(Qqualmin、Qqualminoffset、Qoffsettemp)のいずれかを、対応するセルの混雑度に応じて調整(スケーリング)してもよい。
 また、図7に示すランク付け基準(R-criterion)において、現在のサービングセルのランク付け基準Rsの計算式に含まれるオフセット値(Qhyst、Qoffsettemp)のいずれかを、現在のサービングセルの混雑度に応じて調整(スケーリング)してもよい。隣接セルのランク付け基準Rnの計算式に含まれるオフセット値(Qoffset、Qoffsettemp)のいずれかを、隣接セルの混雑度に応じて調整(スケーリング)してもよい。
 図9は、第1実施形態の変更例に係るセル再選択制御方法を示す図である。
 図9に示すように、UE100は、セルごとに、混雑度に応じたクラス分けを行う。例えば、セルごとに混雑度を閾値(Thresh_congestion_H、Thresh_congestion_L)と比較し、混雑度の状態が所定期間(T_congestion)にわたって継続した場合、混雑度の状態として、混雑度高(High)、混雑度中(Mid)、混雑度低(Normal)のいずれかに分類する。これらの閾値(Thresh_congestion_H、Thresh_congestion_L)及び所定期間(T_congestion)は、gNB200からブロードキャストされるSIBに含まれてもよい。
 そして、分類された混雑度状態に応じて、上述したようにオフセット値を調整(スケーリング)する。例えば、現在のサービングセルのランク付け基準Rsの計算式に含まれるQhystを調整する場合、Qhyst=Qhyst×scaling factor(High congestion)というように調整(スケーリング)する。なお、UE100は、混雑度低(Normal)の場合、スケーリングを行わなくてもよい。また、スケーリングファクターは、gNB200からブロードキャストされる情報に含まれてもよい。
 ここでは、セルの選択基準(S-criterion)及びランク付け基準(R-criterion)に含まれるオフセット値をスケーリングする一例について説明したが、上述したTreselectionRATを混雑度に応じてスケーリングしてもよい。
 (第2実施形態)
 第2実施形態について、第1実施形態との相違点を主として説明する。
 第2実施形態においては、セル再選択におけるキャリア周波数ごとの優先度である周波数優先度(絶対優先度)を考慮する。周波数優先度は、gNB200からUE100に対してブロードキャストシグナリング(SIB)又はユニキャストシグナリング(UE専用シグナリング)により設定される。具体的には、周波数優先度はキャリア周波数の識別子とセットで提供され、このセットを複数含むリストとして構成される。
 ここで、ユニキャストシグナリングにより設定される周波数優先度は、UE専用優先度と呼ばれることがある。UE専用優先度は、gNB200から、RRCコネクティッド状態にあるUE100に送信されるRRC解放メッセージに含まれる。RRC解放メッセージは、RRC接続を解放又は中断させるためのメッセージである。UE100は、RRC解放メッセージの受信に応じて、RRCアイドル状態又はRRCインアクティブ状態に遷移する。
 一般的なUE専用優先度は、UE100がRRCアイドル状態又はRRCインアクティブ状態に遷移する際に適用される。すなわち、UE100は、RRC解放メッセージに含まれるUE専用優先度を直ちに適用し、UE専用優先度に基づいてセル再選択を行う。
 しかしながら、アンライセンスバンドにおいては、gNB200が将来における妨害波の発生を予測することが困難であり、アンライセンスバンドにおける無線状態は時々刻々と変化する。このため、gNB200がUE100に対してUE専用優先度を設定した後、時間の経過に応じて、設定されたUE専用優先度が不適切なものになりうる。
 第2実施形態においては、条件付き優先度という新たなUE専用優先度を導入する。UE100は、RRCアイドル状態又はRRCインアクティブ状態に遷移した際に、条件付き優先度を直ちに適用することに代えて、現在のサービングセルに関する所定の条件が満たされるまでは条件付き優先度の適用を保留する。そして、UE100は、所定の条件が満たされた場合、条件付き優先度を適用する。これにより、UE100は、条件付き優先度(UE専用優先度)が設定された後、適切なタイミングで条件付き優先度(UE専用優先度)を適用できる。
 図10は、第2実施形態に係るセル再選択制御方法を示す図である。
 図10に示すように、ステップS201において、RRCコネクティッド状態にあるUE100は、RRC解放メッセージをgNB200から受信し、RRCアイドル状態又はRRCインアクティブ状態に遷移する。
 RRC解放メッセージは、セル再選択における優先度をキャリア周波数ごとに定める条件付き優先度(Conditional dedicated priority)を含む。
 RRC解放メッセージは、条件付き優先度とは別に、セル再選択における優先度をキャリア周波数ごとに定める一般的な周波数優先度をさらに含んでもよい。一般的な周波数優先度は、UE100が直ちに適用するべきUE専用優先度である。以下において、一般的な周波数優先度を条件無し優先度(Non-conditional dedicated priority)と呼ぶ。
 RRC解放メッセージは、条件付き優先度(Conditional dedicated priority)の適用条件(所定の条件)をUE100に対して指定するための設定情報を含んでもよい。
 ここで、所定の条件は、A1)現在のサービングセルの混雑度が上昇したという条件及びA2)現在のサービングセルの所望波の受信状態が劣化したという条件のうち少なくとも一方を含んでもよい。例えば、所定の条件は、サービングセルの混雑度が閾値を越えたという条件であってもよいし、サービングセルが混雑しているとUE100が判定したという条件であってもよい。
 所定の条件は、B)RRCアイドル状態又はRRCインアクティブ状態からRRCコネクティッド状態に遷移する必要が生じたという条件を含んでもよい。例えば、所定の条件は、RRC Connectionを確立、復旧、又は再確立しようとする時(PRACH送信、RRC Request送信、RRC Resume Request送信、RRC Reestablishment Request送信のいずれかを行う必要が生じた場合)であってもよい。
 所定の条件は、上記A1)及びA2)の条件の少なくとも一つと上記B)の条件との組み合わせでもよい。例えば、UE100は、PRACH送信前に、”混雑度”の条件が満たされた場合に、条件付き優先度を適用してセル再選択を行う。
 RRC解放メッセージは、条件付き優先度(Conditional dedicated priority)の適用可能期間を定める第1のタイマの値を含んでもよい。UE100は、RRC解放メッセージの受信時に第1のタイマを開始させ、第1のタイマが満了すると、条件付き優先度の設定を無効化(破棄)する。UE100は、第1のタイマの動作中に条件付き優先度を適用すると、第1のタイマを停止させる。
 RRC解放メッセージは、条件付き優先度(Conditional dedicated priority)の適用を継続可能な期間を定める第2のタイマの値を含んでもよい。UE100は、条件付き優先度を適用すると、第2のタイマを開始させ、第2のタイマが満了すると、条件付き優先度の設定を無効化(破棄)する。
 なお、UE100は、条件付き優先度の設定を無効化(破棄)した場合、SIBで通知されている周波数優先度をセル再選択に適用してもよい。
 RRC解放メッセージは、条件無し優先度(Non-conditional dedicated priority)の適用を継続可能な期間を定める第3のタイマの値を含んでもよい。UE100は、RRC解放メッセージの受信時に第3のタイマを開始させ、第3のタイマが満了すると、条件付き優先度の設定を無効化(破棄)する。
 ステップS202において、RRC解放メッセージの受信に応じてRRCアイドル状態又はRRCインアクティブ状態に遷移したUE100は、条件付き優先度を直ちに適用することに代えて、現在のサービングセルに関する所定の条件が満たされるまでは条件付き優先度の適用を保留する。
 ここで、UE100は、RRCアイドル状態又はRRCインアクティブ状態に遷移する際に、条件無し優先度をセル再選択に適用してもよい。
 また、UE100は、RRCアイドル状態又はRRCインアクティブ状態に遷移する際に、第1のタイマ及び第3のタイマを開始させてもよい。
 ステップS203において、UE100は、RRC解放メッセージにおいて指定された所定の条件が満たされたか否かを確認する。所定の条件が満たされた場合(ステップS203:YES)、UE100は、処理をステップS204に進める。
 ステップS204において、UE100は、条件付き優先度をセル再選択に適用する。
 ここで、UE100は、第2のタイマを開始させてもよい。
 また、UE100は、所定の条件が満たされたことに応じて、それまで適用していた条件無し優先度を条件付き優先度で上書きすることにより、条件付き優先度の適用を開始してもよい。ここで、UE100は、条件無し優先度を破棄してもよいし、条件無し優先度を保持してもよい。条件無し優先度を保持する場合、UE100は、第2のタイマの満了時に、条件付き優先度の適用を終了し、条件付き優先度の適用を再開してもよい。
 UE100は、所定の条件が満たされたことに応じて、セル再選択における優先度として、現在のサービングセルの優先度又は現在のサービングセルが属するキャリア周波数の優先度を最低優先度に設定してもよい。これにより、隣接セル又は隣接周波数へのセル再選択をし易くすることができる。
 なお、本動作フローにおいては、現在のサービングセル(すなわち、RRC解放メッセージ受信時点のセル)に関する所定の条件が満たされる前にUE100が隣接セルへのセル再選択を行う場合について特に考慮していない。
 しかしながら、所定の条件が満たされる前にUE100が隣接セルへのセル再選択を行う場合、UE100は、条件付き優先度の設定を破棄してもよいし、条件付き優先度の設定を保持してもよい。条件付き優先度の設定を保持する場合、セル再選択後における現在のサービングセルはセル再選択先のセルであり、所定の条件は、セル再選択先のセルについての条件ということになる。
 (第1及び第2実施形態の変更例1)
 第1及び第2実施形態の変更例1について、第1及び第2実施形態との相違点を主として説明する。
 一般的に、アンライセンスバンドにおいて、妨害波が存在するか否かの判定(LBTチェック)は、送信データが発生した場合に実行される。具体的には、アンライセンスバンドで運用されるセルに在圏する第1通信装置から第2通信装置に送信するデータが発生した場合、第1通信装置の物理レイヤが、アンライセンスバンドについて妨害波電力を測定することによりLBTチェックを行う。しかしながら、NR-Uにおいては、送信データが発生していない場合であってもLBTチェックを実施できることが望まれる。
 図11は、第1及び第2実施形態の変更例1を示す図である。ここでは、UE100の動作を例に挙げて説明するが、図8の動作をgNB200が行ってもよい。なお、UE100はアンライセンスバンドで運用されるセルにおいてRRCアイドル状態又はRRCインアクティブ状態にあると仮定しているが、UE100がRRCコネクティッド状態であってもよい。
 図11に示すように、ステップS301において、UE100の上位レイヤは、UE100(第1通信装置)から他の通信装置(第2通信装置)に送信するデータが発生していない場合であっても、UE100の物理レイヤに対してLBTチェックを行うように指示する。この指示を行うトリガの具体例については、変更例3においても説明する。ここで、上位レイヤは、MACレイヤであってもよいし、RRCレイヤであってもよい。
 例えば、上位レイヤは、LBTチェックを行うように指示するLBT check indicationを物理レイヤに通知する。上位レイヤは、物理レイヤが何回LBT checkを実施すべきか(例えば、N回(N≧1))を物理レイヤに通知してもよい。
 また、上位レイヤは、LBTチェック対象のキャリア周波数又はチャネルを物理レイヤに通知してもよい。LBTチェック対象は、サービングセルのキャリア周波数であるサービング周波数、サービング周波数の一部の帯域(チャネル)、サービング周波数とは異なる隣接周波数(具体的には、アンライセンスバンドに属する隣接周波数)、及び/又は隣接周波数の一部の帯域(チャネル)であってもよい。
 ステップS302において、UE100の物理レイヤは、上位レイヤからの指示に応じてLBTチェックを行う。物理レイヤは、上位レイヤから通知された回数のLBTチェックを行ってもよい。
 ステップS303において、UE100の物理レイヤは、ステップS302のLBTチェックの結果を上位レイヤに通知する。例えば、物理レイヤは、LBT成功又はLBT失敗を上位レイヤに通知する。物理レイヤは、複数回のLBT check結果を上位レイヤに通知してもよい(例えば、M回成功、L回失敗(M,L≧0))。物理レイヤは、LBT checkを実行した回数と、成功した回数とを上位レイヤに通知し、失敗した回数を上位レイヤに通知しなくともよい。物理レイヤは、LBT checkを実行した回数と、失敗した回数とを上位レイヤに通知し、成功した回数を上位レイヤに通知しなくてもよい。
 ステップS304において、UE100の上位レイヤは、物理レイヤからの通知に基づいて、アンライセンスバンドについて混雑度を判定(判定)する。例えば、上位レイヤは、LBTチェック失敗の場合、LBTチェックがN回(N≧2)以上失敗した場合、LBTチェックが失敗した割合が閾値以上である場合、LBTチェック対象のキャリア周波数又はチャネルが混雑していると判定してもよい。
 変更例1によれば、物理レイヤと上位レイヤとの間のレイヤ間の協調により、送信データが発生していない場合であってもLBTチェックを実施可能とすることができる。
 (第1及び第2実施形態の変更例2)
 第1及び第2実施形態の変更例2について、第1及び第2実施形態との相違点を主として説明する。
 上述したように、セル再選択処理においては、gNB200からUE100に周波数優先度が設定され、UE100は周波数優先度を考慮してセル再選択処理を行う。例えば、UE100は、現在のサービングセルのキャリア周波数に設定された優先度よりも高い優先度を有する隣接周波数が存在する場合、この隣接周波数に対する測定(所望波の受信電力の測定)を常に行う。このような測定は、インター周波数測定と呼ばれる。
 しかしながら、NR-Uにおいて、高優先度の隣接周波数が混雑している場合には、この隣接周波数に属するセルを再選択することは好ましくないため、この隣接周波数に対する測定を行わないことが望ましい。これにより、測定によるUE100の消費電力を節約できる。
 変更例2において、RRCアイドル状態又はRRCインアクティブ状態にあるUE100は、現在のサービングセルのキャリア周波数に設定された優先度よりも高い優先度を有する高優先度周波数について妨害波電力を測定することにより、高優先度周波数について混雑度を判定する。混雑度の判定方法については、上述した第1実施形態及び第2実施形態と同様である。
 そして、UE100は、高優先度周波数が混雑していると判定した場合、一定期間において高優先度周波数に対する測定をスキップする。ここで、この一定期間を規定するタイマの値は、gNB200からUE100にSIB又は専用RRCシグナリングにより設定されてもよい。
 例えば、UE100は、高優先度周波数が混雑していると判定した場合、一定期間において、混雑度判定(すなわち、妨害波電力の測定)をスキップしてもよいし、この高優先度周波数に対するインター周波数測定(すなわち、所望波電力の測定)をスキップしてもよい。
 UE100は、高優先度周波数が混雑していると判定した場合、一定期間において、この高優先度周波数に設定された優先度を下げる(例えば、最低優先度とみなす)ことにより測定を抑制してもよい。
 図12は、第1及び第2実施形態の変更例2を示す図である。本動作において、UE100はアンライセンスバンドで運用されるセルにおいてRRCアイドル状態又はRRCインアクティブ状態にあると仮定している。
 図12に示すように、ステップS401において、UE100は、高優先度周波数について妨害波電力を測定することにより混雑度を判定する。
 高優先度周波数が混在していると判定した場合(ステップS402:YES)、ステップS403において、UE100は、タイマをスタートするとともに、高優先度周波数に対する測定をスキップする。UE100は、タイマが動作している間は、高優先度周波数に対する測定スキップを継続する。
 ステップS404において、UE100は、サービング周波数について妨害波電力を測定することにより混雑度を判定する。
 サービング周波数が混在していると判定した場合(ステップS405:YES)、ステップS406において、UE100は、タイマを停止し、ステップS401に処理を戻す。
 一方、サービング周波数が混在していないと判定した場合(ステップS405:NO)、ステップS407において、UE100は、タイマが満了したか否かを確認する。タイマが満了した場合(ステップS407:YES)、UE100は、ステップS401に処理を戻す。タイマが満了していない場合(ステップS407:NO)、UE100は、ステップS404に処理を戻す。
 変更例2によれば、高優先度の隣接周波数が混雑している場合に、この隣接周波数に対する測定を行わないことにより、UE100の消費電力を節約できる。
 (第1及び第2実施形態の変更例3)
 第1及び第2実施形態の変更例3について、第1及び第2実施形態との相違点を主として説明する。
 上述した混雑度判定(特に、チャネル占有率の測定)は、UE100の消費電力が大きいため、できる限り混雑度判定を行う時間及び回数を削減することが望ましい。
 図13は、第1及び第2実施形態の変更例3を示す図である。本動作において、UE100はアンライセンスバンドで運用されるセルにおいてRRCアイドル状態又はRRCインアクティブ状態にあると仮定している。
 図13に示すように、UE100は、所定条件が満たされた場合(ステップS501)に限り、ステップS502において、アンライセンスバンドについて妨害波電力を測定することにより混雑度を判定する。
 ここで、混雑度判定は、基本的には現在のサービングセル(サービング周波数)の混雑度判定を想定しているが、隣接セル(隣接周波数)に対して適用されてもよい。例えば、UE100は、現在のサービングセル(サービング周波数)が混雑していた場合に、隣接セル(隣接周波数)の混雑度判定を行ってもよい。UE100は、現在のサービングセル(サービング周波数)に設定された優先度が最高優先度ではない又は最上ランク(すなわち、所望波電力の受信電力が最も高い)ではない場合に、隣接セル(隣接周波数)の混雑度判定を行ってもよい。このような動作は、上述した各実施形態においても同様に適用してもよい。
 混雑度判定を実行するべき所定条件は、UE100がサービングセルから受信する無線信号の受信電力(所望波電力)が閾値を下回ったという条件であってもよい。所望波電力がゼロである場合、UE100は、gNB200がLBTに失敗したとみなし、サービング周波数が混雑していると判定してもよい。UE100は、サービング周波数が混雑していないと判定した場合、同一周波数の他セルへのセル再選択を行ってもよい。UE100は、サービング周波数が混雑していると判定した場合、インター周波数測定を行い、隣接周波数の他セルへのセル再選択を行ってもよい。
 混雑度判定を実行するべき所定条件は、UE100がセルを介してトラッキングエリア更新処理(TAU:Tracking Area Update)又はRANノティフィケーションエリア更新処理(RNAU:RAN-based Notification Area Update)を行うという条件であってもよい。TAUは、UE100が一のトラッキングエリアから他のトラッキングエリアに移動する際にAMFに対して通知する処理である。RNAUは、RRCコネクティッド状態にあるUE100が一のRAN-based Notification Areaから他のRAN-based Notification Areaに移動する際に移動先のgNB200に対して通知する処理である。ここで、UE100は、サービング周波数及び隣接周波数のそれぞれについて混雑度判定を行い、これらの周波数のうち混雑していない周波数において送信を行ってもよい。
 混雑度判定を実行するべき所定条件は、UE100がセルに対する接続処理を行うという条件であってもよい。接続処理は、ランダムアクセスプロシージャにおけるPRACH(Physical Random Access Channel)送信であってもよいし、ランダムアクセスプロシージャにおけるMsg3(例えば、RRC Requestメッセージ)送信であってもよい。ここで、UE100は、サービング周波数及び隣接周波数のそれぞれについて混雑度判定を行い、これらの周波数のうち混雑していない周波数において送信を行ってもよい。
 混雑度判定を実行するべき所定条件は、UE100がセル再選択処理を行うという条件であってもよい。ここで、UE100は、サービング周波数が混雑している場合、インター周波数測定を行ってもよい。
 (その他の実施形態)
 上述した各実施形態は、別個独立して実施するだけではなく、2以上の実施形態を組み合わせて実施してもよい。
 上述した各実施形態において、5Gシステム(NR)について主として説明したが、各実施形態に係る動作をLTEに適用してもよい。
 なお、UE100又はgNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 また、UE100又はgNB200が行う各処理を実行する回路を集積化し、UE100又はgNB200の少なくとも一部を半導体集積回路(チップセット、SoC)として構成してもよい。
 以上、図面を参照して一実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 本願は、米国仮出願第62/795684号(2019年1月23日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。

Claims (16)

  1.  RRC(Radio Resource Control)アイドル状態又はRRCインアクティブ状態にあるユーザ装置がアンライセンスバンドにおいて行うセル再選択制御方法であって、
     前記アンライセンスバンドに属する複数のキャリア周波数又は複数のセルである複数の候補のそれぞれについて混雑度を判定することと、
     前記複数の候補の中から、前記ユーザ装置のサービングセルとして用いるために必要とされる選択基準を満たす候補を抽出することと、
     前記抽出した候補の中から、前記サービングセルとして用いるセルを選択することと、を含み、
     前記候補の抽出及び前記セルの選択のうち少なくとも一方は、前記判定された前記混雑度に基づく
     セル再選択制御方法。
  2.  前記抽出することは、前記混雑度に応じた値が第1閾値を満たす候補を前記複数の候補の中から抽出することを含む
     請求項1に記載のセル再選択制御方法。
  3.  前記複数の候補のそれぞれについて、所望波の受信電力を測定することをさらに含み、
     前記抽出することは、前記混雑度に応じた値が前記第1閾値を満たし、且つ、前記受信電力に応じた値が第2閾値を満たす候補を前記複数の候補の中から抽出することを含む
     請求項2に記載のセル再選択制御方法。
  4.  前記選択することは、
     前記混雑度に基づいて前記複数の候補をランク付けすることと、
     前記ランク付けにより最上位にランク付けされた候補を選択することと、を含む
     請求項1乃至3のいずれか1項に記載のセル再選択制御方法。
  5.  前記複数の候補のそれぞれについて、所望波の受信電力を測定することをさらに含み、
     前記ランク付けすることは、前記混雑度と前記受信電力とに基づいて前記複数の候補をランク付けすることを含む
     請求項4に記載のセル再選択制御方法。
  6.  前記複数の候補のそれぞれについて、所望波の受信電力を測定することをさらに含み、
     前記抽出することは、前記混雑度に応じたオフセットを前記受信電力に付与して得られた値が閾値以上である候補を、前記複数の候補の中から抽出することを含む
     請求項1に記載のセル再選択制御方法。
  7.  前記複数の候補のそれぞれについて、所望波の受信電力を測定することをさらに含み、
     前記選択することは、
     前記混雑度に応じたオフセットを前記受信電力に付与して得られた値に基づいて、前記複数の候補をランク付けすることと、
     前記ランク付けにより最上位にランク付けされた候補を選択することと、を含む
     請求項1に記載のセル再選択制御方法。
  8.  アンライセンスバンドにおけるセル再選択処理を制御するためのセル再選択制御方法であって、
     RRC(Radio Resource Control)コネクティッド状態にあるユーザ装置が、前記セル再選択における優先度をキャリア周波数ごとに定める条件付き優先度を含むRRC解放メッセージを基地局から受信することと、
     前記RRC解放メッセージの受信に応じてRRCアイドル状態又はRRCインアクティブ状態に遷移した前記ユーザ装置が、前記条件付き優先度を直ちに適用することに代えて、現在のサービングセルに関する所定の条件が満たされるまでは前記条件付き優先度の適用を保留することと、
     前記RRCアイドル状態又は前記RRCインアクティブ状態にある前記ユーザ装置が、前記所定の条件が満たされた場合、前記条件付き優先度を適用することと、を含む
     セル再選択制御方法。
  9.  前記RRC解放メッセージは、前記所定の条件を前記ユーザ装置に対して指定するための設定情報を含む
     請求項8に記載のセル再選択制御方法。
  10.  前記所定の条件は、前記現在のサービングセルの混雑度が上昇したという条件及び前記現在のサービングセルの所望波の受信状態が劣化したという条件のうち少なくとも一方を含む
     請求項8又は9に記載のセル再選択制御方法。
  11.  前記所定の条件は、前記RRCアイドル状態又は前記RRCインアクティブ状態からRRCコネクティッド状態に遷移する必要が生じたという条件を含む
     請求項8乃至10のいずれか1項に記載のセル再選択制御方法。
  12.  前記ユーザ装置が、前記RRCアイドル状態又は前記RRCインアクティブ状態に遷移する際に、前記条件付き優先度の適用可能期間を定める第1のタイマを開始させることをさらに含む
     請求項8乃至11のいずれか1項に記載のセル再選択制御方法。
  13.  前記ユーザ装置が、前記条件付き優先度を適用する際に、前記条件付き優先度の適用を継続可能な期間を定める第2のタイマを開始させることをさらに含む
     請求項8乃至12のいずれか1項に記載のセル再選択制御方法。
  14.  前記RRC解放メッセージは、前記条件付き優先度とは別に、前記セル再選択における優先度をキャリア周波数ごとに定める周波数優先度をさらに含み、
     前記セル再選択制御方法は、
     前記ユーザ装置が、前記RRCアイドル状態又は前記RRCインアクティブ状態に遷移する際に、前記周波数優先度を適用することと、
     前記ユーザ装置が、前記所定の条件が満たされた場合、前記周波数優先度を前記条件付き優先度で上書きすることと、をさらに含む
     請求項8乃至13のいずれか1項に記載のセル再選択制御方法。
  15.  前記ユーザ装置が、前記所定の条件が満たされた場合、前記セル再選択における優先度として、前記現在のサービングセルの優先度又は前記現在のサービングセルが属するキャリア周波数の優先度を最低優先度に設定することをさらに含む
     請求項8乃至14のいずれか1項に記載のセル再選択制御方法。
  16. 請求項1乃至15のいずれか1項に記載のセル再選択制御方法を実行するプロセッサを備える
    ユーザ装置。
PCT/JP2020/001224 2019-01-23 2020-01-16 セル再選択制御方法及びユーザ装置 WO2020153214A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020568096A JP7144541B2 (ja) 2019-01-23 2020-01-16 セル再選択制御方法及びユーザ装置
US17/384,141 US20210352555A1 (en) 2019-01-23 2021-07-23 Cell reselection control method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962795684P 2019-01-23 2019-01-23
US62/795,684 2019-01-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/384,141 Continuation US20210352555A1 (en) 2019-01-23 2021-07-23 Cell reselection control method and user equipment

Publications (1)

Publication Number Publication Date
WO2020153214A1 true WO2020153214A1 (ja) 2020-07-30

Family

ID=71735422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001224 WO2020153214A1 (ja) 2019-01-23 2020-01-16 セル再選択制御方法及びユーザ装置

Country Status (3)

Country Link
US (1) US20210352555A1 (ja)
JP (1) JP7144541B2 (ja)
WO (1) WO2020153214A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11792712B2 (en) 2021-12-23 2023-10-17 T-Mobile Usa, Inc. Cell reselection priority assignment based on performance triggers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294871A (zh) * 2019-01-31 2020-06-16 展讯通信(上海)有限公司 触发小区重选的方法及装置、存储介质、用户终端
US20210410013A1 (en) * 2020-06-26 2021-12-30 Qualcomm Incorporated Indication of operating configuration priorities
CN115767625A (zh) * 2022-11-14 2023-03-07 Oppo广东移动通信有限公司 拥塞处理方法及装置、终端设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510527A (ja) * 2015-04-01 2018-04-12 ソニー株式会社 無線通信のユーザー機器側用と基地局側用の装置と方法
JP2018129813A (ja) * 2015-04-10 2018-08-16 京セラ株式会社 ユーザ端末

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9479988B2 (en) * 2012-03-19 2016-10-25 Lg Electronics Inc. Method for accessing network by terminal in wireless communication system, and device therefor
WO2018026218A1 (ko) * 2016-08-05 2018-02-08 삼성전자 주식회사 이동 통신 시스템에서 빔을 선택하는 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510527A (ja) * 2015-04-01 2018-04-12 ソニー株式会社 無線通信のユーザー機器側用と基地局側用の装置と方法
JP2018129813A (ja) * 2015-04-10 2018-08-16 京セラ株式会社 ユーザ端末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Cell Selection and Reselection in NR-U", 3GPP TSG RAN WG2 #104 R2-1816481, 16 November 2018 (2018-11-16), XP051482164 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11792712B2 (en) 2021-12-23 2023-10-17 T-Mobile Usa, Inc. Cell reselection priority assignment based on performance triggers

Also Published As

Publication number Publication date
JP7144541B2 (ja) 2022-09-29
US20210352555A1 (en) 2021-11-11
JPWO2020153214A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
US10028331B2 (en) User terminal, communication control method and chipset
WO2020153214A1 (ja) セル再選択制御方法及びユーザ装置
CN105075343B (zh) 用于在异构通信环境中选择网络和分发业务的方法和装置
JP7442571B2 (ja) 通信制御方法
JP2023027204A (ja) ハンドオーバ制御方法
WO2015093569A1 (ja) 通信制御方法
JP7039613B2 (ja) セル再選択制御方法、基地局、及び無線端末
WO2013177768A1 (zh) 多流传输的配置方法、基站、无线网络控制器和用户设备
WO2019194297A1 (ja) セル再選択制御方法
US11388643B2 (en) User terminal and mobile communication method
US20220225202A1 (en) Communication control method and user equipment
WO2013113230A1 (zh) 发送数据的方法及终端
JP6732184B2 (ja) ユーザ端末及び移動通信方法
WO2020153392A1 (ja) 再配分制御方法及びユーザ装置
US20220070745A1 (en) Cell reselection method and user equipment
WO2023282303A1 (ja) 通信装置、基地局及び通信方法
WO2023132260A1 (ja) 通信方法及びユーザ装置
WO2023282304A1 (ja) 通信装置、基地局及び通信方法
WO2023282352A1 (ja) 通信装置、基地局及び通信方法
WO2023282300A1 (ja) 通信装置、基地局及び通信方法
WO2023282353A1 (ja) 通信装置、基地局及び通信方法
WO2020241426A1 (ja) 無線測定収集方法及びユーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568096

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20744617

Country of ref document: EP

Kind code of ref document: A1