WO2013177768A1 - 多流传输的配置方法、基站、无线网络控制器和用户设备 - Google Patents

多流传输的配置方法、基站、无线网络控制器和用户设备 Download PDF

Info

Publication number
WO2013177768A1
WO2013177768A1 PCT/CN2012/076300 CN2012076300W WO2013177768A1 WO 2013177768 A1 WO2013177768 A1 WO 2013177768A1 CN 2012076300 W CN2012076300 W CN 2012076300W WO 2013177768 A1 WO2013177768 A1 WO 2013177768A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user equipment
network controller
configuration
radio network
Prior art date
Application number
PCT/CN2012/076300
Other languages
English (en)
French (fr)
Inventor
陈君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280000558.9A priority Critical patent/CN103650365B/zh
Priority to EP12878014.5A priority patent/EP2858263B1/en
Priority to PCT/CN2012/076300 priority patent/WO2013177768A1/zh
Publication of WO2013177768A1 publication Critical patent/WO2013177768A1/zh
Priority to US14/554,412 priority patent/US20150078342A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • H04W16/16Spectrum sharing arrangements between different networks for PBS [Private Base Station] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes

Definitions

  • Multi-stream transmission configuration method base station, radio network controller and user equipment
  • the embodiments of the present application relate to the field of communications technologies, and, more particularly, to a method for configuring multi-stream transmission, a base station, a radio network controller, and a user equipment. Background technique
  • the conventional macro base station or the macro cell cannot provide more capacity to more and more user equipments (User Equipments, UEs), thus the emergence of micro base stations or small cells.
  • Small Cell, Scell Small Cell
  • Micro Cell to effectively increase network capacity.
  • a plurality of base stations can be deployed in a macro cell, and the coverage of the small cell corresponding to the base station is smaller than the coverage of the macro cell corresponding to the macro base station.
  • a Homogeneous network for example, a base station or a transmitting/receiving node with low transmission power, including a Pico base station, a Home base station, and a pico ( Femto) base station, relay station, remote radio head (RRH), etc.
  • a network structure is called a heterogeneous network.
  • the small cell can further improve the user's data service experience, and the macro cell is generally used for full coverage, ensuring coverage of the user's real-time service and providing a lower rate data service.
  • the frequency of the small cell may be the same as or different from the frequency of the macro cell.
  • the small cell scenario in which multiple base stations are deployed in one macro cell may include the following two types: 1) a macro cell may use frequency point 1, and a plurality of small cells under the coverage of a macro cell may use frequency point 2; 2) Multiple small cells under the coverage of the cell and the macro cell use the same frequency point.
  • the High Mobile Downlink Packet Access (HSDPA) technology was introduced in the Universal Mobile Telecommunications System (UMTS) version 5 (Rel-5) to further improve UE's peak throughput and coverage. Swallowing.
  • UMTS Universal Mobile Telecommunications System
  • a High-Speed Downlink Shared Channel (HS-DSCH) serving cell is configured, and all HSDPA physical channels of the UE, for example, a high-speed shared control channel (High Speed-Shared Control) Channel, HS-SCCH) and High Speed-Dedicated Physical Control Channel (HS-DPCCH) are both established on this HS-DSCH serving cell.
  • a High-Speed Downlink Shared Channel High Speed-Shared Control
  • HS-SCCH High Speed-Shared Control Channel
  • HS-DPCCH High Speed-Dedicated Physical Control Channel
  • the UE moves out of the current serving cell and After moving to a new cell, the HS-DSCH serving cell change is triggered.
  • the change of the serving cell is mainly performed by radio resource control (RRC) signaling, and the signaling interaction between the macro base station and the radio network controller (RNC) and the RNC and the UE needs to be completed.
  • RRC radio resource control
  • Multiflow multi-flow
  • the UE is in the cell edge area, that is, the network side may configure multi-stream transmission when the UE is in the soft handover state or the soft handover state.
  • the soft handover state refers to a common coverage area of two cells of the same frequency of the UE under different base stations
  • the softer handover state refers to a common coverage area of two cells of the same frequency of the UE under the same base station.
  • the HS-DSCH serves more than one cell, the downlink throughput of the UE can be improved.
  • the small cells may not be adjacent to each other, or there are fewer overlapping areas, which may result in more hard handovers and affect the user experience; if the existing mobility process is followed; The UE frequently moves between different small cells, which triggers more RRC signaling, which consumes more network-side processing resources and brings potential risk of dropped calls.
  • aspects of the present application provide a multi-stream transmission configuration method, a base station, a wireless network controller, and a user equipment, which can reduce signaling interaction of the system, thereby reducing system resource consumption.
  • a method for configuring a multi-stream transmission including: receiving, by a second base station, a first detection indication sent by a first radio network controller, where the first detection indication includes an identifier of a user equipment that establishes a connection with the first base station Information, the first base station is controlled by the first radio network controller; the second base station detects, according to the first detection indication, whether the user equipment is within the coverage of the second base station; the second base station detects that the user equipment is at the second base station Notifying the first radio network controller of the information in the coverage, so that the first radio network controller performs multi-stream transmission configuration according to the detected result; the second base station according to the configuration indication and the multi-flow configuration information sent by the first radio network controller
  • the multi-stream transmission configuration is performed such that the cell of the first base station and the cell of the second base station jointly provide a multi-stream transmission service for the user equipment as a multi-stream service cell.
  • a method for configuring multi-stream transmission including: in a case where a connection is established between a user equipment and a first base station, the first radio network controller sends a first detection to the second base station. Instructing, wherein the first base station is controlled by the first radio network controller, the first detection indication includes the identification information of the user equipment, so that the second base station detects whether the user equipment is within the coverage of the second base station; The controller performs multi-stream transmission configuration according to the information that is detected by the user equipment and detects that the user equipment is within the coverage of the second base station, so that the cell of the first base station and the cell of the second base station are combined as the multi-flow service cell as the user equipment. Provide multi-streaming services.
  • a method for configuring multi-stream transmission including: receiving, by a user equipment that establishes a connection with a first base station, multi-flow configuration information from a first radio network controller, where the first base station is controlled by the first radio network controller
  • the user equipment receives the physical layer signaling and/or the RRC layer reconfiguration signaling sent by the second base station, and the physical layer signaling and/or the RRC layer reconfiguration signaling indicates that the user equipment is configured according to the Multi-stream configuration information for multi-stream transmission configuration; the user equipment performs multi-stream transmission configuration according to the physical layer signaling and/or RRC layer reconfiguration signaling and the multi-flow configuration information, so as to receive the first base station and
  • the second base station serves as a multi-stream transmission service provided by the multi-stream serving cell for the user equipment.
  • a base station including: a receiver, configured to receive a first detection indication sent by a first radio network controller, where the first detection indication includes identifier information of a user equipment that establishes a connection with another base station, where The another base station is controlled by the first radio network controller; the detecting processor is configured to detect, according to the first detection indication, whether the user equipment is within the coverage of the base station; and the notification processor, configured to detect that the user equipment is Notifying the first radio network controller of the information in the coverage of the second base station, so that the first radio network controller performs the configuration of the multi-stream transmission according to the detected result; and configuring the processor, according to the indication of the first radio network controller
  • the multi-stream transmission configuration is performed such that the cell of the other base station and the cell of the base station jointly provide a multi-stream transmission service for the user equipment as a multi-stream service cell.
  • a radio network controller including: a transmitter, configured to send a first detection indication to a second base station, where the first base station is received, where the user equipment establishes a connection with the first base station Controlling, by the first radio network controller, the first detection indication includes the identification information of the user equipment, so that the second base station detects whether the user equipment is within the coverage of the second base station; and the configuration processor is configured to detect according to the sending by the user equipment
  • the information of the user equipment in the coverage of the second base station is configured for multi-stream transmission, so that the cell of the first base station and the cell of the second base station jointly provide a multi-stream transmission service for the user equipment as a multi-stream service cell.
  • a user equipment configured to receive multiple stream configuration information sent by the first radio network controller, where The first base station is controlled by the first radio network controller, and receives physical layer signaling and/or radio resource control layer reconfiguration signaling sent by the second base station, physical layer signaling and/or radio resource control layer reconfiguration.
  • the signaling indicates that the user equipment performs multi-stream transmission configuration according to the multi-flow configuration information; and the configuration processor is configured to perform multi-stream transmission according to physical layer signaling and/or radio resource control layer reconfiguration signaling and multi-flow configuration information.
  • receiving the first base station and the second base station as a multi-stream transmission service provided by the multi-stream serving cell for the user equipment.
  • the embodiment of the present application may be configured by the radio network controller to instruct the second base station to detect whether the user equipment that establishes the connection with the first base station is within the coverage of the second base station, and perform multi-stream transmission configuration according to the result of the foregoing detection, so that The cell of a base station and the cell of the second base station jointly provide a multi-stream transmission service for the user equipment. Since the signaling interaction is less when the configuration of the multi-stream transmission is implemented according to the embodiment of the present application, the resource consumption of the system is reduced.
  • FIG. 1A is a schematic diagram of a communication system in accordance with a first embodiment of the present application.
  • FIG. 1B is a schematic diagram of a communication system in accordance with a second embodiment of the present application.
  • FIG. 2 is a schematic flow chart of a configuration method of multi-stream transmission according to a third embodiment of the present application.
  • FIG. 3 is a schematic flow chart of a configuration method of multi-stream transmission according to a fourth embodiment of the present application.
  • FIG. 4 is a schematic flow chart of a configuration method of multi-stream transmission according to a fifth embodiment of the present application.
  • Fig. 5 is a schematic flow chart showing a configuration procedure of multi-stream transmission according to a sixth embodiment of the present application.
  • Fig. 6 is a schematic flow chart showing a configuration procedure of multi-stream transmission according to a seventh embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a configuration process of multi-stream transmission according to an eighth embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a configuration process of multi-stream transmission according to a ninth embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a base station according to a tenth embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a radio network controller according to an eleventh embodiment of the present application.
  • 11 is a schematic structural diagram of a radio network controller according to a twelfth embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a user equipment according to a thirteenth embodiment of the present application. detailed description
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • the system, the UMTS Universal Mobile Telecommunication System
  • the embodiment of the present application will be described by taking a WCDMA system as an example.
  • a wireless access network may include different network elements in different systems.
  • the network elements of the radio access network in the LTE and the LTE-A include an eNB (eNodeB, an evolved base station), and the network elements of the radio access network in the WCDMA include an RNC (Radio Network Controller) and a NodeB, similar to Other wireless networks, such as the WiMax (Worldwide Interoperability for Microwave Access), may also use a similar solution to the embodiment of the present application, and the related modules in the system may be different. It is not limited, but for convenience of description, the following embodiments will be described by taking a NodeB as an example.
  • a micro base station may include a Pico base station, a home base station, a femto base station, a relay station, an RRH, and other small base stations of low transmission power.
  • the embodiment of the present invention will be described by taking a heterogeneous network deployed by a macro base station and a micro base station as an example, but the embodiment of the present invention is not limited to Thus, for example, when the history base station is an RRH, the embodiments of the present invention are equally applicable.
  • the user equipment includes but is not limited to a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile telephone (Mobile Telephone), a mobile phone (handset).
  • the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, a computer, etc., and the user equipment can also be portable, pocket-sized, Handheld, computer built-in or in-vehicle mobile devices.
  • RAN Radio Access Network
  • the user equipment can be a mobile telephone (or "cellular" telephone), a computer with wireless communication capabilities, etc., and the user equipment can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist separately. B These three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • Multi-stream transmission means that the UE can receive downlink in at least two cells on at least one frequency point.
  • the network side can schedule downlink HS-DSCH data in at least two cells on at least one frequency point.
  • the base station 1 has a cell 1, a cell 2, and a cell 3, all of which are at a frequency point 1.
  • the cell 1 and the cell 2 can perform multi-stream transmission.
  • the base station 1 has a cell 1, a cell 2, a cell 3, a cell 4, a cell 5, and a cell 6, wherein the cells 1, 2, and 3 are at frequency 1, and the cells 4, 5, and 6 are at a frequency point 2, if the cell 1, 2 and cells 4, 5 have a common coverage area, then cells 1, 2, 4 and 5 can perform multi-stream transmission.
  • the base station 1 has a cell 1 and the base station 2 has a cell 2. If the cell 1 and the cell 2 have a common coverage area, the cell 1 and the cell 2 can perform multi-stream transmission.
  • first base station and the second base station of the embodiment of the present application may be logically separated, but may belong to different base stations or belong to the same base station.
  • the multi-stream transmission technology may be applied to the small-cell scenario, that is, the at least one macro cell and the at least one small cell jointly perform downlink data scheduling for one user, so that the UE can be solved in the small cell.
  • the hard handover problem that exists when moving between them further enhances the user's data service experience and has no significant impact on the user's real-time service.
  • the small cell in the multi-stream transmission is used as the serving cell and the small cell is used as the secondary serving cell, then since the small cells are usually not adjacent to each other, when the UE moves between different small cells, When the measurement process is used to detect small cells, more measurements are needed and more RRC signaling is triggered, which results in a large amount of air interface resources. According to the conventional mechanism, if the UE cannot successfully send the uplink RRC signaling, the call will be dropped, which will trigger excessive air interface RRC signaling, thereby increasing the probability of the UE's call drop and affecting the user experience (especially real-time voice). obvious.
  • the configuration flow of optimizing multi-stream transmission in a small cell scenario is considered according to an embodiment of the present application, so as to improve the throughput rate of the UE without greatly affecting the signaling interaction on the network side.
  • FIG. 1A is a schematic diagram of a communication system in accordance with a first embodiment of the present application.
  • the cell Cell-1 of the macro base station 110 is a macro cell, and the user experience of the real-time service (such as a voice call) is mainly ensured by the wide coverage; and the cell Cell-21 of the micro base station 120 and the cell Cell of the micro base station 130 are
  • the cell Cell-23 of the micro base station 140 is a small cell, and each is responsible for hotspot coverage in the coverage area, and mainly improves the experience of the data type service.
  • the macro base station 110, the micro base station 120, the micro base station 130, and the base station 140 can be controlled by the RNC 150.
  • the UE When the UE is in these hotspot coverage areas, better data service services can be obtained.
  • the UE when the UE is in the coverage area of the Cell-21 and the Cell-1, it may be considered that the Cell-21 and the Cell-1 are both configured as the HS-DSCH serving cell of the UE, and the UE can ensure the real-time service experience. It can further improve the throughput rate of data services to enhance the user experience.
  • FIG. 1B is a schematic diagram of a communication system in accordance with a second embodiment of the present application.
  • the base station 120, the base station 130, and the micro base station 140 can be controlled by the RNC 160.
  • the RNC 150 and the RNC 160 can Communicate through the Iur interface.
  • FIG. 2 is a schematic flow chart of a configuration method of multi-stream transmission according to a third embodiment of the present application.
  • the second base station receives the first detection indication sent by the first radio network controller, where the first detection indication includes identifier information of the user equipment that establishes a connection with the first base station, and the first base station is controlled by the first radio network controller. .
  • the second base station detects, according to the first detection indication, whether the user equipment is within the coverage of the second base station.
  • the second base station notifies the first radio network controller that the user equipment is within the coverage of the second base station, so that the first radio network controller performs multi-stream transmission configuration according to the detected result.
  • the multi-stream transmission configuration is performed such that the cell of the first base station and the cell of the second base station jointly provide a multi-stream transmission service for the user equipment as a multi-stream service cell.
  • the first base station is a macro base station
  • the second base station is a micro base station
  • the first radio network controller is
  • the RNC is taken as an example to specifically describe an embodiment according to the present application.
  • an RNC can control multiple base stations, and the RNC can communicate with the base stations through an Iub interface, that is, the RNC terminates the Iub interface to the base stations, and the RNC is used to manage load control and congestion control of the cells to which the base stations belong. And admission control and more.
  • the base station controlled by the RNC may be a macro base station or a micro base station.
  • the macro base station can be controlled by the RNC
  • the micro base station can be controlled by the RNC or by other RNCs.
  • multi-stream transmission may refer to a plurality of serving cells establishing a connection with a UE, and jointly transmitting a plurality of data streams with the UE.
  • a cell of one macro base station and a cell of one or more micro base stations jointly provide a multi-stream transmission service for the UE.
  • a macro base station transmits a data stream to the UE over one link, while one or more micro base stations transmit other data streams to the UE over other links.
  • multiple micro base stations may be deployed within the coverage of one macro base station.
  • the coverage of the micro base station overlaps with the coverage of the macro base station.
  • These micro base stations can be controlled by a RNC together with the macro base station.
  • the macro base station may be controlled by one RNC, and the micro base stations are controlled by other RNCs, and the RNC controlling the macro base station and the RNC controlling the micro base station communicate through the Iur interface.
  • the cell of the macro base station can serve as the HS-DSCH serving cell of the UE.
  • the RNC may obtain the identifier information of the UE in the process of the UE accessing the macro base station, and may send a detection indication including the identifier information of the UE to the one or more micro base stations to indicate whether the micro base station detects whether the UE is within its coverage.
  • the micro base station can detect the uplink signal sent by the UE (for example, the signal of the uplink dedicated channel sent by the UE in the uplink synchronization process), if the micro base station finds the identifier information of the UE included in the uplink signal and the UE included in the detection indication.
  • the micro base station detects that the UE is within the coverage of the micro base station.
  • the micro base station may also send a detection response to the RNC to inform the RNC that the micro base station has successfully detected that the UE is within its coverage.
  • the RNC may trigger a configuration of multi-stream transmission for the UE, the micro base station, and the macro base station, such that the small cell of the micro base station also serves as the HS-DSCH serving cell of the UE, that is, the cell and the Acer base of the micro base station.
  • the cell of the station acts as a multi-stream service cell A multi-stream transmission service is provided for the UE.
  • the micro base station may notify the RNC of the detection result, and then the RNC may perform multi-stream transmission configuration according to the detection result notified by the micro base station. If the micro base station does not successfully detect that the UE is within its coverage, it does not send a detection response to the RNC or notifies the RNC that the UE does not successfully detect that the UE is within its coverage by detecting the response. Therefore, the RNC will not consider The micro base station that has not successfully detected the UE is configured to perform multi-stream transmission.
  • the identifier information includes at least one of the following information: an uplink scrambling code of the UE, an uplink DPCCH channelization code, and an uplink DPCCH slot format.
  • the embodiment of the present application is not limited thereto, and the identifier information may be other Identifies the information of the UE.
  • the embodiment of the present application may be configured by the first radio network controller to instruct the second base station to detect whether the user equipment that establishes the connection with the first base station is within the coverage of the second base station, and perform multi-stream transmission configuration according to the result of the foregoing detection,
  • the cell of the first base station and the cell of the second base station jointly provide a multi-stream transmission service for the user equipment. Since the signaling interaction is less when the configuration of the multi-stream transmission is implemented according to the embodiment of the present application, the resource consumption of the system is reduced, and the probability of dropped calls of the UE can be reduced, and the user experience is improved.
  • the second base station sends a first detection response to the first radio network controller, where the second base station detects that the user equipment is in the coverage of the second base station, where the first detection response is used to indicate that the user equipment is in the first Within the coverage of the two base stations.
  • the first detection response may indicate that the second base station indicates that the UE is successfully detected to be within its coverage, or the first detection response may include a flag bit.
  • the flag bit is 1 indicating that the micro base station successfully detects the coverage of the UE in the UE. Within the range, the flag bit is 0 indicating that the second base station does not detect that the UE is within its coverage, and vice versa.
  • the method further includes: receiving, by the second base station, the configuration indication and the multi-flow configuration information that are sent by the first radio network controller according to the first detection response.
  • the first radio network controller may, according to the first detection response, determine that the second base station successfully detects that the UE is within the coverage of the second base station, and may send configuration indications and multiple flows to the first base station, the second base station, and the UE.
  • the configuration information is such that the first base station, the second base station, and the UE can perform multi-stream transmission configuration according to the multi-flow configuration information.
  • the second base station after receiving the multi-flow configuration information, the second base station performs multi-stream transmission configuration according to the multi-flow configuration information, so that the cell of the second base station can serve as a multi-stream transmission serving cell of the UE.
  • the configuration indication and multi-flow configuration information can be dedicated
  • the signaling message can also be carried by a conventional signaling message (e.g., a wireless link setup message).
  • the configuration indication may be a flag bit, or the multi-flow configuration information may be placed on a fixed cell of the signaling message to implicitly indicate the configuration indication.
  • the second base station receives the multi-stream configuration information sent by the first radio network controller; and the second base station receives the configuration indication sent by the first radio network controller according to the first detection response.
  • the first radio network controller may transmit multi-stream configuration information to the first base station, the second base station, and the UE in advance.
  • the multi-stream transmission configuration is not performed, but the multi-stream transmission is performed after receiving the configuration indication of the further transmission by the first radio network controller.
  • Configuration After the mechanism for pre-sending the multi-flow configuration information is introduced, the network side may notify the UE of the multi-flow configuration information in advance, and when the multi-flow configuration information is required to be effective, the network side only needs to notify the UE through the indication of the single ticket, so that Avoid using large RRC signaling, which improves the handover success rate and shortens the switching time.
  • the configuration method of the multi-stream transmission of FIG. 2 further includes: after receiving the configuration indication, the second base station notifies the UE of the configuration of the multi-stream transmission according to the multi-flow configuration information by using physical layer signaling; and/or, the second base station And transmitting, to the user equipment, the RRC layer reconfiguration signaling sent by the first radio network controller, to notify the user equipment that the multi-stream transmission configuration is performed according to the multi-flow configuration information.
  • the UE may be configured to perform multi-stream transmission configuration in two ways: 1) notify the UE of configuration of multi-stream transmission by physical layer signaling (for example, HS-DPCCH order);
  • the RRC layer signaling (for example, RRC layer reconfiguration signaling) sent by the wireless controller notifies the UE of the configuration of the multi-stream transmission.
  • one of the foregoing two methods may be used, and the two methods may be adopted to improve the probability that the UE successfully receives the configuration indication.
  • the physical layer signaling is used to notify the UE to switch the multi-stream transmission, which has a great advantage in the handover delay, and can significantly reduce the proportion of dropped calls during the handover process.
  • the configuration indication further includes an activation time, configured to indicate, by the second base station, that the multi-stream transmission is performed according to the multi-flow configuration information in the activation time, wherein in 240, the second base station receives the After the configuration indication is performed, the configuration of the multi-stream transmission is performed according to the multi-flow configuration information during the activation time.
  • the physical signaling may also carry an activation time, where the user equipment is configured to perform multi-stream transmission according to the multi-flow configuration information at the activation time.
  • the configuration indication and the physical layer signaling carry the activation time
  • the UE may return a handover response to the RNC when completing the handover to the new multi-stream transmission serving cell.
  • the configuration method of the multi-stream transmission of FIG. 2 further includes: receiving, by the second base station, a stop detection indication sent by the first radio network controller; the second base station stops detecting, according to the stop detection indication, whether the user equipment is within the coverage of the second base station .
  • the first radio network controller when the first radio network controller receives the third base station sending the detection response, it is learned that the third base station has detected that the UE is within the coverage of the third base station, and the first radio network controller may notify the second base station to stop detecting the UE. Whether it is within the coverage of the second base station, this can reduce system resource consumption for the second base station.
  • the second base station may determine, according to whether the identifier information of the user equipment included in the uplink signal sent by the UE is consistent with the identifier information of the user equipment included in the first detection indication, whether the user equipment is in the first Within the coverage of the two base stations.
  • the method for detecting whether the UE is within the coverage of the micro base station according to the uplink signal is used, and the RRC signaling is significantly reduced compared with the method for the UE to detect the small cell according to the conventional measurement procedure, thereby saving air interface resources. .
  • the second base station may detect whether the user equipment is within the coverage of the second base station according to the first detection indication, and may adopt the following manners.
  • the second base station detects, according to the uplink synchronization rule, whether the user equipment is within the coverage of the second base station.
  • the network side determines that the UE is within its coverage. Otherwise, the network side determines that the UE is not in its coverage.
  • the second base station detects, according to the rule carried in the first detection indication, whether the user equipment is in the coverage of the second base station, for example, the carrying rule is: if the second base station is in During the X time, the UE continuously detects that the uplink signal sent by the UE is at least Y, and the second base station considers that the user is within the coverage of the second base station, and if the second base station continuously monitors that the uplink signal sent by the UE is less than the X time, Y, the second base station considers that the user is not in the coverage of the second base station, where the unit of X may be milliseconds, Y is a positive integer, and X and Y are carried in the first detection indication.
  • X is 0 to 5 seconds and Y is 0 to 100.
  • X is 400ms
  • Y is 20.
  • the second base station detects, according to a preset rule, whether the user equipment is within the coverage of the second base station, for example, the preset rule is: if the second base station is continuously monitored in the X time If the uplink signal sent by the UE is at least one, the second base station considers that the user is within the coverage of the second base station, and if the second base station continuously monitors that the uplink signal sent by the UE is less than one in the X time, the second base station considers that The user is not in the coverage of the second base station, where the unit of X can be milliseconds, and ⁇ is a positive integer.
  • the preset rule is: if the second base station is continuously monitored in the X time If the uplink signal sent by the UE is at least one, the second base station considers that the user is within the coverage of the second base station, and if the second base station continuously monitors that the uplink signal sent by the UE is less than one in the X time, the second base station considers that The user is
  • the configuration method of the multi-stream transmission of FIG. 2 further includes: the second base station performs de-configuration of the multi-stream transmission according to the de-configuration indication sent by the first radio network controller.
  • the first radio network controller may determine whether to deconfigure the multi-stream transmission based on the amount of scheduling data of the UE in the small cell for a period of time.
  • the configuration method of the multi-stream transmission of FIG. 2 further includes: the second base station sends a deconfiguration request to the first radio network controller according to the air interface channel quality; and the second base station receives the first radio network control. And the de-configuration of the multi-stream transmission is performed by the second base station according to the de-configuration indication.
  • the second base station may send a deconfiguration request to the first radio network controller to request the first radio.
  • the network controller triggers deconfiguration of the multi-stream transmission according to the de-configuration request.
  • the first radio network controller may send a de-configuration indication to the first base station, the second base station, and the UE to instruct the first base station, the second base station, and the UE to perform multi-stream transmission de-configuration.
  • the quality of the air interface channel may be a Channel Quality Indicator (CQI).
  • CQI Channel Quality Indicator
  • the second base station is controlled by the first radio network controller.
  • both the macro base station and the micro base station are controlled by the same radio network controller.
  • the second base station is controlled by the second radio network controller, where the second base station is connected to the first radio network by using an interface between the second radio network controller and the first radio network controller.
  • the controller communicates.
  • the ⁇ base station and the macro base station can be controlled by different Radio Network Controllers (RNCs), and different radio network controllers can communicate through the Iur interface.
  • RNCs Radio Network Controllers
  • the first radio network controller and the second base station according to an embodiment of the present invention (for example, The detection indication, the detection response, the stop detection indication, the multi-flow configuration information, and the transmission of the multi-stream configuration information that are mutually exchanged between the micro base stations are transmitted by the second radio network controller and the Iur interface.
  • the signaling messages such as the detection indication, the detection response, the stop detection indication, the configuration indication, and the multi-flow configuration information may be dedicated signaling messages or may be carried by conventional signaling messages.
  • the signaling interaction can be effectively reduced, and the reporting of the target small cell can be triggered relatively quickly, so that the UE can effectively experience the gain of the multi-stream transmission.
  • FIG. 3 is a schematic flow chart of a configuration method of multi-stream transmission according to a fourth embodiment of the present application.
  • the embodiment of FIG. 3 corresponds to the embodiment of FIG. 2 and will not be further described herein.
  • the first radio network controller in a case that a connection is established between the user equipment and the first base station, sends a first detection indication to the second base station, where the first base station is controlled by the first radio network controller, the first detection Instructing to include the identification information of the user equipment, so that the second base station detects whether the user equipment is within the coverage of the second base station;
  • the first radio network controller performs multi-stream transmission configuration according to information that is detected by the user equipment and detects that the user equipment is within the coverage of the second base station, so that the cell of the first base station and the cell of the second base station serve as a multi-stream service.
  • the cell jointly provides a multi-stream transmission service for the user equipment.
  • the first base station is a macro base station
  • the second base station is a micro base station
  • the first radio network controller is an RNC.
  • the first radio network controller can cover the macro base station when the UE accesses the macro base station.
  • the micro base station in the range transmits the above detection indication.
  • the embodiment according to the present application is not limited thereto. For example, when the UE leaves a small cell, that is, leaves the coverage of one micro base station, the first radio network controller deletes the small cell from the multi-stream serving cell of the UE.
  • the first radio network controller may send a detection indication to other micro base stations in the coverage of the macro base station, or the first radio network controller may periodically send a detection indication to all the micro base stations in the macro base station, so as to detect the
  • the small cell of the micro base station of the UE performs multi-stream transmission as a new multi-stream serving cell, thereby implementing handover between small cells.
  • the UE always keeps a connection with the macro base station, so that dropped calls due to hard handover can be avoided.
  • the embodiment of the present application may be configured by the first radio network controller to instruct the second base station to detect whether the user equipment that establishes the connection with the first base station is within the coverage of the second base station, and perform multi-stream transmission configuration according to the result of the foregoing detection, So that the cell of the first base station and the cell of the second base station are jointly
  • the user equipment provides a multi-stream transmission service. Since the signaling interaction is less when the configuration of the multi-stream transmission is implemented according to the embodiment of the present application, the resource consumption of the system is reduced.
  • the multi-stream transmission configuration method of FIG. 3 further includes: receiving, by the first radio network controller, a first detection response that is sent by the second base station according to the result of the detection, where the first detection response is used to indicate The user equipment is within the coverage of the second base station.
  • the multi-stream transmission configuration method of FIG. 3 further includes: the first radio network controller sends a configuration indication and a multi-flow to the first base station, the second base station, and the user equipment according to the first detection response. And configuring the information, so that the first base station, the second base station, and the user equipment perform multi-stream transmission configuration according to the configuration indication and the multi-flow configuration information.
  • the multi-stream transmission configuration method of FIG. 3 further includes: the first radio network controller sends the multi-stream configuration information to the second base station and the user equipment; the first radio network controller receives the After the first detection response sent by the second base station, the configuration indication is sent to the first base station and the second base station, so that the first base station and the second base station perform multi-stream transmission configuration according to the configuration indication and the multi-flow configuration information.
  • the multi-stream transmission configuration method of FIG. 3 further includes: the first radio network controller sends reconfiguration signaling to the user equipment, where the user equipment is instructed to perform, according to the multi-flow configuration information, Multi-streaming configuration.
  • the configuration indication further carries an activation time, which is used to indicate that the first base station and the second base station perform multi-stream transmission configuration according to the multi-flow configuration information at the activation time.
  • the multi-stream transmission configuration method of FIG. 3 further includes: when the user equipment accesses the first base station, the first radio network controller receives the first reported by the user equipment from the first base station. The measurement information of the two base stations, wherein in 310, the first radio network controller sends a first detection indication to the second base station according to the measurement information.
  • the multi-stream transmission configuration method of FIG. 3 further includes: the first radio network controller sends a second detection indication to the third base station, where the second detection indication includes the identification information of the user equipment, so that The third base station detects whether the user equipment is within the coverage of the third base station; and when receiving the first detection response sent by the second base station, sends a stop detection indication to the third base station, so that the third base station stops detecting the user. Whether the device is within the coverage of the third base station.
  • the multi-stream transmission configuration method of FIG. 3 further includes: receiving, by the first radio network controller, a second detection response sent by the third base station, where the second detection response is used to indicate that the user equipment is in the first Within the coverage of the three base stations; from the second base station and the third base station group according to preset rules The second base station is selected from the group to perform the multi-stream transmission, wherein in 310, the first detection indication may be sent to the selected second base station.
  • the detection response may be selected in the order of receiving the detection response.
  • the RNC first receives the detection response from the second base station, and then receives the detection from the third base station. In response, the RNC selects the second base station as the multi-stream transmission serving cell.
  • the cell may be selected according to the cell load of the micro base station, and/or the number of UEs accessing the cell, and/or the number of available resources of the cell, for example, the RNC selects a cell with a lighter cell load as the multi-stream transmission service. Community.
  • the first base station is a macro base station
  • the second base station is a micro base station
  • the multi-stream transmission configuration method of FIG. 3 further includes: the first radio network controller receives a deconfiguration request from the second base station, and sends the deconfiguration request to the second base station and the user equipment according to the de-configuration request.
  • the configuration indicator is configured to enable the second base station and the user equipment to perform de-configuration of the multi-stream transmission.
  • the second base station may be determined by the second base station whether to perform de-configuration of the multi-stream transmission.
  • the second base station sends a deconfiguration request to the first radio network controller according to the air interface channel quality to request the first radio network controller to trigger deconfiguration of the multi-stream transmission.
  • the multi-stream transmission configuration method of FIG. 3 further includes: the first radio network controller sends a de-configuration indication to the second base station and the user equipment according to the preset data scheduling condition, so that The two base stations and the user equipment perform de-configuration of multi-stream transmission.
  • whether to perform de-configuration of multi-stream transmission can be determined by the first radio network controller.
  • the first radio network controller may determine whether to deconfigure the multi-stream transmission according to the amount of scheduling data of the UE in the small cell of the second base station for a period of time.
  • the second base station is controlled by the first radio network controller.
  • the second base station is controlled by the second radio network controller, where the second base station is connected to the first radio network by using an interface between the second radio network controller and the first radio network controller.
  • the controller communicates.
  • the foregoing identification information includes an uplink scrambling code corresponding to the user equipment and/or a channelization code of the uplink DPCCH and/or an uplink high-speed dedicated physical control channel DPCCH slot format.
  • the signaling interaction can be effectively reduced, and the reporting of the target small cell can be triggered relatively quickly, so that the UE can be effective.
  • the gain of multi-stream transmission is achieved.
  • FIG. 4 is a schematic flow chart of a configuration method of multi-stream transmission according to a fifth embodiment of the present application.
  • the embodiment of FIG. 4 corresponds to the embodiment of FIG. 2 and will not be further described herein.
  • the user equipment that establishes a connection with the first base station receives multiple stream configuration information from the first radio network controller, where the first base station is controlled by the first radio network controller.
  • the user equipment receives the physical layer signaling and/or the RRC layer reconfiguration signaling sent by the second base station, where the physical layer signaling and/or the RRC layer reconfiguration signaling indicates that the user equipment is configured according to the Flow configuration information for multi-stream transmission configuration;
  • the user equipment performs multi-stream transmission configuration according to the physical layer signaling and/or the RRC layer reconfiguration signaling and the multi-flow configuration information, so as to receive the first base station and the second base station as the multi-flow serving cell. Multi-stream transmission service provided by the user equipment.
  • the embodiment of the present application may be configured by the first radio network controller to instruct the second base station to detect whether the user equipment that establishes the connection with the first base station is within the coverage of the second base station, and perform multi-stream transmission configuration according to the result of the foregoing detection, Therefore, the cell of the first base station and the cell of the second base station jointly provide a multi-stream transmission service for the user equipment, because the signaling interaction is less when the configuration of the multi-stream transmission is implemented according to the embodiment of the present application, thereby reducing resources of the system. Consumption.
  • the method of FIG. 4 further includes: the user equipment receives reconfiguration signaling sent by the first radio network controller, where the reconfiguration signaling is used to indicate that the user equipment is configured according to the multi-flow The configuration of information for multi-stream transmission.
  • the method of FIG. 4 further includes: the user equipment receiving a de-configuration indication sent by the first wireless network controller; and the user equipment performing de-configuration of the multi-stream transmission according to the de-configuration indication.
  • the signaling interaction can be effectively reduced, and the reporting of the target small cell can be triggered relatively quickly, so that the UE can effectively experience the gain of the multi-stream transmission.
  • Fig. 5 is a schematic flow chart showing a configuration procedure of multi-stream transmission according to a sixth embodiment of the present application.
  • the embodiment of Figure 5 is an example of the embodiment of Figures 2, 3 and 4.
  • the embodiment of Figure 5 describes the process of configuring and deconfiguring multi-stream transmissions if the macro base station and the micro base station are controlled by the same RNC.
  • the UE accesses the macro base station. For example, the UE establishes an RRC connection with the macro base station through RRC signaling, that is, accesses the macro base station, and can receive data through the macro base station.
  • RRC signaling that is, accesses the macro base station
  • the RNC sends a first detection indication to the micro base station 1.
  • the RNC may send a first detection indication to the micro base station 1, and the micro base station 1 may be a micro base station within the coverage of the macro base station.
  • the first detection indication is information that uniquely identifies the UE.
  • the first detection indication may include an uplink scrambling code corresponding to the UE, and/or a channelization code of an uplink DPCCH, and/or an uplink DPCCH slot format.
  • the RNC may also send a detection indication to the micro base station in the coverage of the macro base station, or the first radio network controller may periodically The micro base station sends a detection indication to detect that the small cell of the micro base station of the UE performs multi-stream transmission as a new multi-stream serving cell.
  • the micro base station 1 detects whether the UE is within its coverage.
  • the micro base station 1 can detect the UE according to the rules defined in the conventional uplink synchronization procedure (the rules defined in section 4.3.2 of 3GPP TS 25.214). The base station 1 can determine whether the identifier information of the UE included in the signal (for example, DPCCH) of the uplink is matched with the identifier information of the UE included in the first detection indication by using uplink synchronization detection, and if the two match, the micro base station 1 Successfully detected that the UE is within its coverage.
  • the rules defined in the conventional uplink synchronization procedure the rules defined in section 4.3.2 of 3GPP TS 25.214.
  • the base station 1 can determine whether the identifier information of the UE included in the signal (for example, DPCCH) of the uplink is matched with the identifier information of the UE included in the first detection indication by using uplink synchronization detection, and if the two match, the micro base station 1 Successfully detected that the UE is within its coverage.
  • the RNC may carry the detection rule in the detection indication, and the micro base station 1 may determine, according to the detection rule, whether the UE is within its coverage.
  • a detection rule may be newly defined, and the micro base station may detect the UE according to the newly defined detection rule.
  • the micro base station 1 returns a first detection response to the RNC.
  • the micro base station 1 when detecting that the UE is within its coverage, may carry the flag bit 1 in the first detection response, and the micro base station 1 may be in the first detection response when it does not detect that the UE is within its coverage. Carry flag 0.
  • the micro base station 1 may also send a first detection response to the RNC when detecting that the UE is within its coverage range, and not send the first detection response to the RNC when the UE is not detected to be within its coverage.
  • the RNC sends a second detection indication to the micro base station 2.
  • the RNC may send a second detection indication to the micro base station 2, the micro base station
  • the second detection indication is to uniquely identify the UE Information, for example, the second detection indication may include an uplink scrambling code and/or an uplink DPCCH slot format corresponding to the UE.
  • the micro base station 2 detects whether the UE is within its coverage.
  • the micro base station 2 can detect the UE according to the rules defined in the conventional uplink synchronization procedure (the rules defined in section 4.3.2 of 3GPP TS 25.214).
  • the micro base station 2 can determine whether the identification information of the UE included in the uplink transmission signal (for example, the DPCCH) matches the identification information of the UE included in the second detection indication by using the uplink synchronization detection, and if the two match, the micro The base station 2 successfully detects that the UE is within its coverage.
  • the RNC may carry a detection rule in the detection indication, and the micro base station 2 may determine, according to the detection rule, whether the UE is within its coverage.
  • a detection rule may be newly defined, and the micro base station 2 may detect the UE according to the newly defined detection rule.
  • the micro base station 2 returns a second detection response to the RNC.
  • the micro base station 2 may carry the flag bit 1 in the second detection response, and the micro base station 2 may be in the second detection response when it does not detect that the UE is within its coverage. Carry flag 0.
  • the micro base station 2 may also send a second detection response to the RNC when detecting that the UE is within its coverage range, and not send a second detection response to the RNC when the UE is not detected to be within its coverage.
  • the RNC sends a stop detection indication to the micro base station 2.
  • the RNC may determine that the UE is within the coverage of the micro base station 1 according to the first detection response, and notify other micro base stations (eg, the micro base station 2) to stop detecting the UE, to The micro base station 2 is prevented from performing unnecessary detection, which can reduce system resource consumption of the micro base station 2.
  • the micro base station 2 may notify other micro base stations (eg, the micro base station 2) to stop detecting the UE, to The micro base station 2 is prevented from performing unnecessary detection, which can reduce system resource consumption of the micro base station 2.
  • the RNC sends a configuration indication and multi-flow configuration information to the micro base station 1, so that the micro base station 1 performs a multi-stream transmission configuration.
  • the RNC may perform configuration of multi-stream transmission to the micro base station 1, for example, transmitting a configuration indication and multi-flow configuration information to the micro base station 1, and returning the multi-stream configuration at the micro base station 1.
  • the configuration of the multi-stream transmission is completed after the response.
  • the RNC needs to select a suitable micro base station as the new UE.
  • Multi-stream transmission service cell The following two options are available: 1) selecting according to the order of receiving the detection response, for example, the RNC first receives the detection response from the micro base station 1, and then receives the detection response from the micro base station 2, the RNC selects the micro base station 1 as the multi-stream transmission serving cell;
  • the RNC selects a cell with a lighter cell load as a multi-stream transmission service cell.
  • the RNC sends the multi-stream configuration information to the macro base station, so that the macro base station performs the configuration of the multi-stream transmission.
  • the RNC also needs to inform the macro base station to complete the configuration of the multi-stream transmission, because the format of the uplink channel of the system adopting the HSDPA technology may change when the number of the multi-stream transmission service cells changes.
  • the macro base station can make corresponding changes to the transmission configuration according to the notification of the RNC.
  • the RNC sends the multi-flow configuration information to the UE, so that the UE performs the configuration of the multi-stream transmission.
  • the RNC may send the multi-flow configuration information to the UE through the micro base station 1, and the UE may perform multi-stream transmission configuration according to the received multi-flow configuration information.
  • the multi-flow configuration information may include at least one of the following: an HS-SCCH channelization code of the secondary serving cell, an HS-PDSCH channelization code of the secondary serving cell, an uplink HS-DPCCH channelization code of the UE, and an uplink HS-DPCCH of the UE.
  • the UE receives data through the macro base station.
  • the UE can receive the data through the macro base station.
  • the UE receives data through the micro base station 1.
  • the UE can receive data through the micro base station 1, thereby implementing multi-stream transmission.
  • invention of Figure 5 may also include a process of deconfiguring the multi-stream transmission.
  • the RNC determines to trigger to configure multi-stream transmission.
  • the RNC may determine to configure the multi-stream transmission according to the amount of scheduling data of the UE at the micro base station 1. For example, the RNC detects that the amount of downlink data requested by the micro base station 1 is less than a certain threshold, or that the UE does not have more downlink data scheduling for a long time (for example, exceeding a preset time), and the RNC may trigger the RNC. To configure multi-stream transmission. 595. The micro base station 1 sends a configuration request to the RNC, requesting the RNC to trigger to configure the multi-stream transmission.
  • the micro base station 1 requests the RNC to configure the multi-stream transmission according to the air interface channel quality. For example, if the channel information included in the feedback information of the UE and the reception feedback of the downlink data packet are poor for a long time (for example, exceeding a preset time), the micro base station 1 may send a deconfiguration request to the RNC to request the RNC to trigger for the UE. Go to configure multi-streaming.
  • step 594 or step 595 may be selected to trigger the configuration of multi-stream transmission in accordance with an embodiment of the present application.
  • the RNC sends a configuration indication to the UE, so that the UE performs deconfiguration on the multi-stream transmission according to the de-configuration indication.
  • the RNC sends a deconfiguration indication to the micro base station 1 so that the micro base station 1 performs deconfiguration on the multi-stream transmission.
  • steps 540, 545, and 550 are optional. If the UE carries the measurement information of the small cell on a certain frequency point (the frequency point where the small cell is located) in the process of accessing the macro base station, the RNC may only send the measurement information to the small cell after receiving the measurement report.
  • the micro base station sends a detection indication, so that the resources of the micro base station can be optimized. For example, in the embodiment of Fig. 5, the first detection indication may be transmitted only to the micro base station 1.
  • the sequence of sending detection indications to the micro base station 1 and the micro base station 2 is not limited according to the embodiment of the present application, and the detection indication may be sent to the base station 1 and the base station 2 at the same time, or the detection indication may be sent to one of the micro base stations. And determining that the micro base station does not detect the UE, and sending a detection indication to another micro base station.
  • the order in which the multi-stream configuration information is transmitted to the UE, the micro base station, and the macro base station is not limited in accordance with an embodiment of the present application.
  • 570, 580, and 590 may be performed simultaneously, or may be performed in reverse order.
  • Fig. 6 is a schematic flow chart showing a configuration procedure of multi-stream transmission according to a seventh embodiment of the present application.
  • the embodiment of Figure 6 is an example of the embodiment of Figures 2, 3 and 4.
  • the embodiment of Figure 6 describes the process of configuring and deconfiguring multi-stream transmissions with the micro base station and macro base station being controlled by different RNCs.
  • FIG. 6 differs from FIG. 5 in that the micro base station and the macro base station of FIG. 6 are controlled by different RNCs.
  • both the micro base station 1 and the micro base station 2 are controlled by the S-RNC
  • the macro base station is controlled by the M-RNC.
  • S-RNC and The M-RNC performs signaling and data interaction through the conventional Iur interface, that is, the S-RNC and the M-RNC are interconnected through a standard Iur interface to implement communication between the two.
  • the embodiment of FIG. 6 increases the signaling interaction between the corresponding S-RNC and the M-RNC, the information of the interaction and the flow of FIG. The information in the interaction is similar, and will not be described here.
  • the UE accesses the macro base station.
  • the M-RNC sends a first detection indication to the micro base station 1 by using the S-RNC.
  • the micro base station 1 detects whether the UE is within its coverage.
  • the micro base station 1 returns a first detection response to the M-RNC through the S-RNC.
  • the M-RNC sends a second detection indication to the micro base station 2 through the S-RNC.
  • the femtocell 2 detects if the UE is within its coverage.
  • the micro base station 2 returns a second detection response to the M-RNC through the S-RNC.
  • the M-RNC sends a stop detection indication to the micro base station 2 through the S-RNC.
  • the M-RNC sends the multi-flow configuration information to the micro base station 1 through the S-RNC, so that the micro base station 1 performs multi-stream transmission configuration, and the micro base station 1 can return the multi-flow configuration response to the M-RNC through the S-RNC.
  • the M-RNC sends a configuration indication and multi-flow configuration information to the macro base station, so that the macro base station performs multi-stream transmission configuration, and the macro base station may return a multi-flow configuration response to the M-RNC.
  • the M-RNC sends the multi-flow configuration information to the UE by using the S-RNC and the micro base station 1, so that the UE performs multi-stream transmission configuration, and the UE may return a multi-flow configuration response to the M-RNC.
  • the UE receives data through the macro base station.
  • the UE receives data through the micro base station 1.
  • invention of Figure 6 may also include a process of deconfiguring the multi-stream transmission.
  • the M-RNC determines to trigger to configure multi-stream transmission.
  • the micro base station 1 sends a configuration request to the M-RNC through the S-RNC, and requests the M-RNC to trigger to configure the multi-stream transmission.
  • the M-RNC sends a deconfiguration indication to the UE by using the S-RNC and the micro base station 1, so that the UE deconfigures the multi-stream transmission according to the de-configuration indication.
  • the RNC sends a deconfiguration indication to the micro base station 1 through the S-RNC, so that the base station is more than one. Streaming is done to configure.
  • Fig. 7 is a schematic flow chart showing a configuration procedure of multi-stream transmission according to an eighth embodiment of the present application.
  • the embodiment of Figure 7 is an example of the embodiment of Figures 2, 3 and 4.
  • the embodiment of Figure 7 describes the process of configuring and deconfiguring a multi-stream transmission in the case where the micro base station and the macro base station are controlled by the same RNC. 710, 720, 725, 730, 740, 745, 750, 760, 792, 793, 794, 795, 796, and 797 of FIG. 7 and 510, 520, 525, 530, 540, 545, 550, 560 of FIG. 592, 593, 594, 595, 596, and 597 are similar, and detailed descriptions are omitted as appropriate herein.
  • the UE accesses the macro base station.
  • the RNC sends the multi-flow configuration information to the macro base station, the micro base station 1, the micro base station 2, and the UE. After the UE accesses the macro base station, the RNC may advance to the micro base station (for example, the micro base station 1 and the micro base station).
  • multi-stream pre-configuration information multi-stream configuration information (hereinafter referred to as multi-stream pre-configuration information), which may be used as a multi-flow configuration when the small cell of the micro base station is configured as a multi-stream transmission serving cell information.
  • the RNC sends a first detection indication to the micro base station 1.
  • the micro base station 1 detects whether the UE is within its coverage.
  • the micro base station 1 returns a first detection response to the RNC.
  • the RNC sends a second detection indication to the micro base station 2.
  • the micro base station 2 detects whether the UE is within its coverage.
  • the micro base station 2 returns a second detection response to the RNC.
  • the RNC sends a stop detection indication to the micro base station 2.
  • the RNC sends a configuration indication to the micro base station 1 to perform configuration of the multi-stream transmission by the micro base station 1.
  • the RNC may instruct the micro base station 1 to perform multi-stream transmission after determining that the UE is within the coverage of the micro base station 1, for example, may send a configuration indication to the base station 1, and complete the multi-stream after the base station 1 returns the multi-flow configuration response.
  • the configuration of the transfer can contain a flag bit, and the value of the flag bit is 1 to indicate the configuration for multi-streaming.
  • the micro base station 1 can perform the configuration of the multi-stream transmission according to the multi-stream pre-configuration information received in 715.
  • the RNC may select the small cell of the micro base station 1 or the small base station 2 according to the order of receiving the first detection response and the second detection response.
  • the configuration of the multi-stream transmission is performed by the cell as a multi-stream transmission service cell, and the selection manner is similar to that of FIG. 550, and details are not described herein again.
  • the configuration indication may further carry an activation time, where the base station 1 is configured to perform multi-stream transmission at the activation time, and the small cell of the micro base station 1 provides multiple streams for the UE as a new multi-stream transmission serving cell. Transfer service.
  • the RNC sends a configuration indication to the macro base station, so that the macro base station performs multi-stream transmission configuration.
  • the RNC also needs to inform the macro base station to complete the configuration of the multi-stream transmission, because the format of the uplink channel of the system adopting the HSDPA technology may change when the number of the multi-stream transmission service cells changes.
  • the macro base station can make corresponding changes to the transmission configuration according to the notification of the RNC. For example, after receiving the configuration indication, the Acer station can perform multi-stream transmission configuration according to the multi-stream pre-configuration information received in 715.
  • the configuration indicator may further carry an activation time, where the macro base station is configured to perform multi-stream transmission at the activation time, and the macro cell of the macro base station is used as the multi-stream transmission service cell.
  • the UE provides a multi-stream transmission service.
  • the UE and the macro base station and the micro base station 1 can simultaneously switch to multi-stream transmission at the activation time, and the multi-stream transmission service is provided by the new multi-stream transmission serving cell (ie, the macro cell of the macro base station and the small cell of the micro base station 1).
  • the UE can then send a handover response message to complete the handover.
  • the micro base station 1 sends an HS-SCCH instruction to the UE, so that the UE performs the configuration of the multi-stream transmission.
  • the micro base station 1 may instruct the UE to switch to the multi-stream transmission through a physical layer signaling (for example, HS-SCCH order).
  • a physical layer signaling for example, HS-SCCH order
  • the micro base station 1 Compared with the embodiment of FIG. 5, in the embodiment of FIG. 7, the micro base station 1 notifies the UE to switch to multi-stream transmission by means of physical layer signaling, which has a large advantage in handover delay and can be significantly reduced. The proportion of dropped calls during the switch.
  • the configuration indication may further carry an activation time, where the UE is configured to perform multi-stream transmission at the activation time.
  • the RNC sends reconfiguration signaling to the UE.
  • the RNC may also send RRC reconfiguration signaling to the UE through the micro base station 1, that is, the RNC may notify the UE to switch to the multi-stream transmission through RRC reconfiguration signaling, so as to increase the probability of successful handover.
  • the UE returns a reconfiguration complete signaling to the RNC.
  • the UE returns RRC reconfiguration complete signaling to the RNC through the micro base station 1 in response to the RRC reconfiguration signaling. It should be understood that 790 and 791 are optional.
  • the UE receives data through a macro base station. 793. The UE receives data through the micro base station 1.
  • invention of Figure 7 may also include a process of deconfiguring the multi-stream transmission.
  • the RNC determines to trigger to configure multi-stream transmission.
  • the micro base station 1 sends a configuration request to the RNC, requesting the RNC to trigger to configure multi-stream transmission.
  • the RNC sends a configuration indication to the UE, so that the UE performs deconfiguration on the multi-stream transmission according to the de-configuration indication.
  • the RNC sends a deconfiguration indication to the micro base station 1 to enable the micro base station 1 to deconfigure the multi-stream transmission.
  • Fig. 8 is a schematic flow chart showing a configuration procedure of multi-stream transmission according to a ninth embodiment of the present application.
  • the embodiment of Figure 8 is an example of the embodiment of Figures 2, 3 and 4.
  • the embodiment of Figure 8 describes the process of configuring and deconfiguring multi-stream transmissions with the micro base station and macro base station being controlled by different RNCs.
  • Fig. 810 to 897 of Fig. 8 are similar to 710 to 797 of Fig. 7, and Fig. 8 differs from Fig. 7 in that the micro base station and the macro base station of Fig. 8 are controlled by different RNCs.
  • both the micro base station 1 and the micro base station 2 are controlled by the S-RNC
  • the macro base station is controlled by the M-RNC.
  • the S-RNC and the M-RNC exchange signaling and data through the conventional Iur interface, that is, the S-RNC and the M-RNC are interconnected through a standard Iur interface to implement communication between the two.
  • the embodiment of FIG. 8 increases the signaling interaction between the corresponding S-RNC and the M-RNC, the information of the interaction and the flow of FIG. The information in the interaction is similar, and will not be described here.
  • the UE accesses the macro base station.
  • the M-RNC sends the multi-stream pre-configuration information to the macro base station, the micro base station 1, the micro base station 2, and the UE.
  • the M-RNC may send the multi-stream pre-configuration information to the micro base station by using the S-RNC, and may send the multi-stream pre-configuration information to the macro base station, and may send the multi-stream pre-configuration information to the UE by using the macro base station or any one of the micro base stations. Therefore, the macro base station, the micro base station, and the UE can perform multi-stream transmission configuration according to the multi-stream pre-configuration information when needed.
  • the M-RNC sends a first detection indication to the micro base station 1 by using the S-RNC.
  • the micro base station 1 detects whether the UE is within its coverage.
  • the micro base station 1 returns a first detection response to the M-RNC through the S-RNC. 840.
  • the M-RNC sends a second detection indication to the micro base station 2 by using the S-RNC.
  • the micro base station 2 detects whether the UE is within its coverage.
  • the micro base station 2 returns a second detection response to the M-RNC through the S-RNC.
  • the M-RNC sends a stop detection indication to the micro base station 2 through the S-RNC.
  • the M-RNC sends a configuration indication to the micro base station 1 through the S-RNC, so that the base station 1 performs configuration of multi-stream transmission.
  • the M-RNC sends a configuration indication to the macro base station, so that the macro base station performs configuration of multi-stream transmission.
  • the micro base station 1 sends an HS-SCCH instruction to the UE, so that the UE performs the configuration of the multi-stream transmission.
  • the M-RNC may send reconfiguration signaling to the UE by using the S-RNC and the micro base station 1.
  • the UE returns reconfiguration complete signaling to the M-RNC through the S-RNC.
  • the UE receives data through a macro base station.
  • the UE receives data through the micro base station 1.
  • invention of Figure 5 may also include a process of deconfiguring the multi-stream transmission.
  • the M-RNC determines to trigger to configure the multi-stream transmission.
  • the micro base station 1 sends a configuration request to the M-RNC through the S-RNC, and requests the M-RNC to trigger to configure the multi-stream transmission.
  • the M-RNC sends a deconfiguration indication to the UE by using the S-RNC and the micro base station 1, so that the UE deconfigures the multi-stream transmission according to the de-configuration indication.
  • the M-RNC sends a deconfiguration indication to the micro base station 1 through the S-RNC, so that the base station 1 deconfigures the multi-stream transmission.
  • FIG. 9 is a schematic structural diagram of a base station 900 according to a tenth embodiment of the present application.
  • the base station 900 includes a receiver 910, a detection processor 920, a notification processor 930, and a configuration processor 940.
  • the base station 900 of FIG. 9 corresponds to the method of FIG. 2 and will not be described again.
  • the receiver 910 is configured to receive a first detection indication sent by the first radio network controller, where the first detection indication includes identifier information of a user equipment that establishes a connection with another base station, where the another base station is controlled by the first radio network Control of the device.
  • the detecting processor 920 is configured to detect, according to the first detection indication, whether the user equipment is within the coverage of the base station 900.
  • the notification processor 930 is configured to notify the first wireless network control that the information that the user equipment is detected within the coverage of the second base station is detected. , so that the first radio network controller performs multi-stream transmission configuration according to the detected result.
  • the configuration processor 940 is configured to perform multi-stream transmission according to the configuration indication sent by the first radio network controller and the multi-flow configuration information, so that the cell of the another base station and the cell of the base station 900 are combined as a multi-flow service cell. Provide multi-streaming service for the user equipment.
  • the embodiment of the present application may be configured by the first radio network controller to instruct the second base station to detect whether the user equipment that establishes the connection with the first base station is within the coverage of the second base station, and perform multi-stream transmission configuration according to the result of the foregoing detection, Therefore, the cell of the first base station and the cell of the second base station jointly provide a multi-stream transmission service for the user equipment, because the signaling interaction is less when the configuration of the multi-stream transmission is implemented according to the embodiment of the present application, thereby reducing resources of the system. Consumption.
  • the notification processor 930 is configured to send a first detection response to the first radio network controller, where the user equipment is detected to be within the coverage of the base station 900, where the first detection response is used.
  • the user equipment is indicated to be within the coverage of the base station 900.
  • the receiver 910 is further configured to receive, by the first radio network controller, the configuration indication and the multi-flow configuration information that are sent according to the first detection response.
  • the receiver 910 is further configured to receive the multi-flow configuration information sent by the first radio network controller, and receive a configuration indication sent by the first radio network controller according to the first detection response.
  • the configuration processor 930 is further configured to notify, by using physical layer signaling, the configuration of the multi-stream transmission by the user equipment according to the multi-flow configuration information after receiving the configuration indication.
  • the configuration processor 930 forwards the RRC layer reconfiguration signaling sent by the first radio network controller to the user equipment, to notify the user equipment to perform multi-stream according to the multi-flow configuration information.
  • the configuration of the transfer is
  • the configuration indication and the physical layer signaling further carry an activation time, configured to indicate that the base station 900 and the user equipment perform multi-stream transmission according to the multi-flow configuration information at the activation time
  • the configuration The processor is configured to perform multi-stream transmission configuration according to the multi-flow configuration information at the activation time after receiving the configuration indication.
  • the receiver 910 further receives a stop detection indication sent by the first radio network controller, and the detection processor 920 stops detecting, according to the stop detection indication, whether the user equipment is within the coverage of the second base station. .
  • the detection processor 920 may be according to an uplink signal sent by the UE. Whether the identification information of the included user equipment and the identification information of the user equipment included in the first detection indication are consistent to determine whether the user equipment is within the coverage of the base station 900.
  • the detection processor 920 is configured to detect, according to an uplink synchronization rule, whether the user equipment is within the coverage of the base station 900, or detect, according to a rule carried in the first detection indication, whether the user equipment is in the Whether the user equipment is within the coverage of the base station 900 is detected within the coverage of the base station 900 or according to a preset rule.
  • the first detection indication further carries the frequency point information of the base station 900
  • the detection processor 920 is configured to detect the first detection indication that the frequency point information of the base station 900 is further carried. Whether the user equipment is within the coverage of the base station 900.
  • the another base station is a macro base station, and the base station 900 is a micro base station.
  • the configuration processor 930 further performs deconfiguration of the multi-stream transmission according to the de-configuration indication sent by the first radio network controller.
  • the configuration processor 930 further sends a deconfiguration request to the first radio network controller according to the air interface channel quality, and receives a deconfiguration indication sent by the first radio network controller according to the deconfiguration request, and The base station 900 performs de-configuration of the multi-stream transmission according to the de-configuration indication.
  • the base station 900 is controlled by a first radio network controller, or the base station 900 is controlled by a second radio network controller, wherein the base station 900 passes the second radio network controller and the first radio network.
  • the interface between the controllers communicates with the first radio network controller.
  • the identifier information of the user equipment includes an uplink scrambling code corresponding to the user equipment and/or a channelization code of an uplink DPCCH and/or an uplink high-speed dedicated physical control channel slot format.
  • FIG. 10 is a structural schematic diagram of a radio network controller 1000 in accordance with an eleventh embodiment of the present application.
  • the radio network controller 1000 of FIG. 10 corresponds to the method of FIG. 3 and will not be described again.
  • the radio network controller 1000 includes a transmitter 1010 and a configuration processor 1020.
  • the transmitter 1010 is configured to send a first detection indication to the second base station, where the user equipment is connected to the first base station, where the first base station is controlled by the radio network controller 1000, where the first detection indication includes the The identification information of the user equipment, so that the second base station detects whether the user equipment is within the coverage of the second base station.
  • the configuration processor 1020 is configured to perform multi-stream transmission according to information that is detected by the user equipment and that detects that the user equipment is within the coverage of the second base station, so that The cell of a base station and the cell of the second base station jointly provide a multi-stream transmission service for the user equipment as a multi-stream service cell.
  • the embodiment of the present application may be configured by the radio network controller to instruct the second base station to detect whether the user equipment that establishes the connection with the first base station is within the coverage of the second base station, and perform multi-stream transmission configuration according to the result of the foregoing detection, so that A base station and the second base station jointly provide a multi-stream transmission service for the user equipment. Since the signaling interaction is less when the configuration of the multi-stream transmission is implemented according to the embodiment of the present application, the resource consumption of the system is reduced.
  • FIG. 11 is a structural schematic diagram of a radio network controller 1100 in accordance with a twelfth embodiment of the present application.
  • the radio network controller 1100 includes: a transmitter 1110 and a configuration processor 1120.
  • the transmitter 1100 and the configuration processor 1120 of FIG. 11 are similar to the transmitter 1010 and the configuration processor 1020 of FIG. 10, and are not described herein again.
  • the receiver 1130 is further configured to receive, by the second base station, a first detection response that is sent according to the result of the detection, where the first detection response is used to indicate that the user equipment is in coverage of the second base station.
  • the transmitter 1110 further sends the multi-flow configuration information to the first base station, the second base station, and the user equipment according to the first detection response, so that the first base station, the second base station, and the user The device performs configuration of multi-stream transmission according to the multi-flow configuration information.
  • the transmitter 1110 further sends the multi-flow configuration information to the second base station and the user equipment, and after receiving the first detection response sent by the second base station, to the first base station and the second base station. And sending a configuration indication, so that the first base station and the second base station perform multi-stream transmission configuration according to the configuration indication and the multi-flow configuration information.
  • the transmitter 1110 further sends a reconfiguration signal to the user equipment, where the user equipment is configured to perform multi-stream transmission according to the multi-flow configuration information.
  • the configuration indication further includes an activation time, configured to indicate, by the first base station and the second base station, that the multi-stream transmission is performed according to the multi-flow configuration information at the activation time.
  • the radio network controller 1100 of FIG. 11 further includes: a receiver 1130, configured to receive, when the user equipment accesses the first base station, the first reported by the user equipment from the first base station The measurement information of the second base station, wherein the transmitter sends the first detection indication to the second base station according to the measurement information.
  • a receiver 1130 configured to receive, when the user equipment accesses the first base station, the first reported by the user equipment from the first base station The measurement information of the second base station, wherein the transmitter sends the first detection indication to the second base station according to the measurement information.
  • the transmitter 1110 further sends a second detection indication to the third base station, where the second detection indication includes the identification information of the user equipment, so that the third base station detects the user setting. Whether the device is within the coverage of the third base station, and if receiving the first detection response sent by the second base station, sending a stop detection indication to the third base station, so that the third base station stops detecting whether the user equipment is in the third Within the coverage of the base station.
  • the radio network controller 1100 of FIG. 11 further includes: a receiver 1130, configured to receive a second detection response sent by the third base station, where the second detection response is used to indicate that the user equipment is in the first a processor 1140, configured to select a second base station from the group consisting of the second base station and the third base station to perform the multi-stream transmission according to a preset rule, where the transmitter further The selected second base station transmits a first detection indication.
  • a receiver 1130 configured to receive a second detection response sent by the third base station, where the second detection response is used to indicate that the user equipment is in the first
  • a processor 1140 configured to select a second base station from the group consisting of the second base station and the third base station to perform the multi-stream transmission according to a preset rule, where the transmitter further The selected second base station transmits a first detection indication.
  • the first base station is a macro base station
  • the second base station is a micro base station
  • the transmitter 1110 is further configured to send a deconfiguration indication to the second base station and the user equipment according to the deconfiguration request received from the second base station, so that the second base station and the user equipment perform multi-stream transmission.
  • De-configuration or sending a configuration indication to the second base station and the user equipment according to the preset data scheduling condition, so that the second base station and the user equipment perform de-configuration of the multi-stream transmission.
  • the second base station is controlled by the radio network controller 1100.
  • the second base station is controlled by the second radio network controller, where the second base station passes the interface between the second radio network controller and the radio network controller 1100 and the radio network controller 1100. Communicate.
  • the foregoing identification information includes an uplink scrambling code corresponding to the user equipment and/or a channelization code of an uplink DPCCH and/or an uplink high-speed dedicated physical control channel slot format.
  • FIG. 12 is a schematic structural diagram of a user equipment 1200 according to a thirteenth embodiment of the present application.
  • the user equipment establishes a connection with the first base station.
  • the user equipment 1200 of Figure 12 corresponds to the method of Figure 4 and will be described again herein.
  • User equipment 1200 includes: a receiver 1210 and a configuration processor 1220.
  • the receiver 1210 is configured to receive the multi-flow configuration information sent by the first radio network controller, where the first base station is controlled by the first radio network controller, and receives physical layer signaling and/or radio resources sent by the second base station. Control layer reconfiguration signaling, the physical layer signaling and/or radio resource control layer reconfiguration signaling indicating a configuration of the multi-stream transmission by the user equipment according to the multi-flow configuration information.
  • the configuration processor 1220 is configured to perform multi-stream transmission according to the physical layer signaling and/or the RRC layer reconfiguration signaling and the multi-flow configuration information, so as to receive the first base station and the second base station as the multi-stream service.
  • the multi-stream transmission service provided by the cell for the user equipment.
  • An embodiment of the present application may be configured by the first radio network controller to instruct the second base station to detect whether the user equipment that establishes the connection with the first base station is within the coverage of the second base station, and according to the foregoing detection As a result, the configuration of the multi-stream transmission is performed, so that the first base station and the second base station jointly provide the multi-stream transmission service for the user equipment, because the signaling interaction is less when the configuration of the multi-stream transmission is implemented according to the embodiment of the present application, Reduce system resource consumption.
  • the receiver 1210 further receives reconfiguration signaling sent by the first radio network controller, where the reconfiguration signaling is used to indicate that the user equipment performs multi-stream transmission according to the multi-stream configuration information. Configuration.
  • the receiver 1210 further receives a de-configuration indication sent by the first radio network controller, and the configuration processor further performs de-configuration of the multi-stream transmission according to the de-configuration indication.
  • the embodiment of the present application further provides that the communication system can include the user equipment, the radio network controller, and the base station described in the foregoing embodiments.
  • the signaling interaction can be effectively reduced, and the reporting of the target small cell can be triggered relatively quickly, so that the UE can effectively experience the gain of the multi-stream transmission.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, may be located in one place. Or it can be distributed to multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present application or the part contributing to the prior art or the part of the technical solution may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program code. .

Abstract

本申请提供了一种多流传输的配置方法、基站、无线网络控制器和用户设备。该方法包括:第二基站接收第一RNC发送的第一检测指示,第一检测指示包含与第一基站建立连接的用户设备的标识信息,第一基站受第一RNC的控制;第二基站根据第一检测指示检测该用户设备是否在第二基站的覆盖范围内;第二基站将检测的结果通知第一RNC,以便第一RNC根据检测的结果进行多流传输的配置;第二基站根据第一RNC的指示进行多流传输的配置,以便第一基站的小区和第二基站的小区作为多流服务小区联合为该用户设备提供多流传输服务。由于根据本申请实施例在实现多流传输的配置时信令交互较少,因此,降低系统的资源消耗。

Description

多流传输的配置方法、 基站、 无线网络控制器和用户设备 技术领域
本申请实施例涉及通信技术领域, 并且更具体地, 涉及一种多流传输的 配置方法、 基站、 无线网络控制器和用户设备。 背景技术
随着数据业务的爆发性增长, 常规宏基站或宏小区(Marco Cell, Mcell ) 无法提供更多的容量给越来越多的用户设备(User Equipment, UE ), 因而 出现了微基站或小小区(Small Cell, Scell )或微小区 (Micro Cell), 用以有效 提升网络容量。 一个宏小区内通常可以部署多个 基站, 基站对应的小小 区的覆盖范围小于宏基站对应的宏小区的覆盖范围。 例如, 可以在同构网络 ( Homogeneous network ) 内部署不同类型或不同制式的微基站, 例如, 低 发射功率的基站或发射 /接收节点, 包括匹克(Pico )基站、 家庭(Home ) 基站、微微 ( femto )基站、 中继站、远端射频头( Remote Radio Head, RRH ) 等, 以增强网络的覆盖和性能, 这样的网络结构被称之为异构网络 (Heterogeneous network)。 小小区可以进一步提升用户的数据业务体验, 而宏 小区一般用于全覆盖,保证用户的实时类业务的覆盖以及提供速率较低的数 据业务。 小小区的频点与宏小区的频点可以相同或不同。 上述一个宏小区内 部署多个 基站的小小区场景可以包括以下两种: 1 )宏小区可以采用频点 1 , 而宏小区的覆盖范围下的多个小小区可以采用频点 2; 2 )宏小区和宏小区覆 盖范围下的多个小小区均采用相同的频点。
通用移动通信系统 ( Universal Mobile Telecommunications System , UMTS )版本 5 ( Rel-5 ) 中引入了高速下行分组接入 ( High Speed Downlink Packet Access , HSDPA )技术, 以进一步提升 UE的峰值吞吐和 '〗、区吞吐。 在 UE配置了 HSDPA后, 会配置一个高速下行链路共享信道(High-Speed Downlink Shared Channel, HS-DSCH )服务小区, UE的所有 HSDPA物理信 道,例如,高速共享控制信道( High Speed-Shared Control Channel, HS-SCCH ) 和高速专用物理控制信道 ( High Speed-Dedicated Physical Control Channel, HS-DPCCH )都建立在这个 HS-DSCH服务小区上。 在 Rel-5引入 HSDPA技 术后, 由于 HS-DSCH服务小区仅有一个, 在 UE移动出当前服务小区并且 移动到新的小区后, 会触发 HS-DSCH服务小区变更。 服务小区变更主要通 过无线资源控制 (Radio Resource Control, RRC )信令完成, 需要完成宏基 站与无线网络控制器( Radio Network Controller, RNC )以及 RNC与 UE之 间的信令交互。
UMTS技术演进到版本 11 ( Rel- 11 ) 时, 引入了多流传输( Multiflow ) 技术,该多流传输技术允许将同频或异频上多个小区配置为 UE的 HS-DSCH 服务小区, 用户体验可以得到明显提升。 多流传输仅在 UE在小区边缘区域 时才使用, 即 UE处于软切换状态或更软切换状态时网络侧才可能配置多流 传输。这里软切换状态指 UE在不同基站下的同频两个小区的共同覆盖区域, 更软切换状态指 UE在同一个基站下的同频两个小区的共同覆盖区域。 在多 流传输技术中, 由于 HS-DSCH服务小区超过一个, 因而 UE的下行吞吐可 以获得较好的改善。
UE在小小区场景下移动时, 可能存在如下问题: 小小区可能彼此不相 邻的, 或重叠区域较少, 这样会导致较多的硬切换从而影响用户体验; 如果 按照现有的移动性流程,UE在不同的小小区间频繁移动,会触发较多的 RRC 信令, 这样会消耗较多的网络侧处理资源, 并且带来潜在的掉话风险。 发明内容
本申请的多个方面提供了一种多流传输的配置方法、 基站、 无线网络控 制器和用户设备, 能够减少系统的信令交互, 从而降低系统的资源消耗。
一方面, 提供了一种多流传输的配置方法, 包括: 第二基站接收第一无 线网络控制器发送的第一检测指示,其中第一检测指示包含与第一基站建立 连接的用户设备的标识信息, 第一基站受第一无线网络控制器的控制; 第二 基站根据第一检测指示检测该用户设备是否在第二基站的覆盖范围内; 第二 基站将检测到用户设备在第二基站的覆盖范围内的信息通知第一无线网络 控制器, 以便第一无线网络控制器根据检测的结果进行多流传输的配置; 第 二基站根据第一无线网络控制器发送的配置指示和多流配置信息进行多流 传输的配置, 以便第一基站的小区和第二基站的小区作为多流服务小区联合 为该用户设备提供多流传输服务。
另一方面, 提供了一种多流传输的配置方法, 包括: 在用户设备与第一 基站之间建立连接的情况下, 第一无线网络控制器向第二基站发送第一检测 指示, 其中第一基站受第一无线网络控制器的控制, 第一检测指示包含该用 户设备的标识信息, 以便第二基站检测该用户设备是否在第二基站的覆盖范 围内; 第一无线网络控制器根据用户设备发送的检测到用户设备在第二基站 的覆盖范围内的信息进行多流传输的配置, 以便第一基站的小区和第二基站 的小区作为多流服务小区联合为该用户设备提供多流传输服务。
另一方面, 提供了一种多流传输的配置方法, 包括: 与第一基站建立连 接的用户设备从第一无线网络控制器接收多流配置信息, 其中第一基站受第 一无线网络控制器的控制; 该用户设备接收第二基站发送的物理层信令和 / 或无线资源控制层重配置信令,该物理层信令和 /或无线资源控制层重配置信 令指示该用户设备根据该多流配置信息进行多流传输的配置; 该用户设备根 据该物理层信令和 /或无线资源控制层重配置信令以及该多流配置信息进行 多流传输的配置, 以便接收第一基站和第二基站作为多流服务小区为该用户 设备提供的多流传输服务。
另一方面, 提供一种基站, 包括: 接收器, 用于接收第一无线网络控制 器发送的第一检测指示,其中第一检测指示包含与另一基站建立连接的用户 设备的标识信息, 其中上述另一基站受第一无线网络控制器的控制; 检测处 理器, 用于根据第一检测指示检测该用户设备是否在该基站的覆盖范围内; 通知处理器, 用于将检测到用户设备在第二基站的覆盖范围内的信息通知第 一无线网络控制器, 以便第一无线网络控制器根据检测的结果进行多流传输 的配置; 配置处理器, 用于根据第一无线网络控制器的指示进行多流传输的 配置, 以便上述另一基站的小区和该基站的小区作为多流服务小区联合为该 用户设备提供多流传输服务。
另一方面, 提供了一种无线网络控制器, 包括: 发送器, 用于在用户设 备与第一基站之间建立连接的情况下, 向第二基站发送第一检测指示, 其中 第一基站受第一无线网络控制器的控制, 第一检测指示包含用户设备的标识 信息, 以便第二基站检测用户设备是否在第二基站的覆盖范围内; 配置处理 器, 用于根据用户设备发送的检测到用户设备在第二基站的覆盖范围内的信 息进行多流传输的配置, 以便第一基站的小区和第二基站的小区作为多流服 务小区联合为用户设备提供多流传输服务。
另一方面, 提供了一种用户设备, 用户设备与第一基站建立连接, 用户 设备包括: 接收器, 用于接收第一无线网络控制器发送的多流配置信息, 其 中第一基站受第一无线网络控制器的控制, 并且接收第二基站发送的物理层 信令和 /或无线资源控制层重配置信令, 物理层信令和 /或无线资源控制层重 配置信令指示用户设备根据多流配置信息进行多流传输的配置; 配置处理 器,用于根据物理层信令和 /或无线资源控制层重配置信令以及多流配置信息 进行多流传输的配置, 以便接收第一基站和第二基站作为多流服务小区为用 户设备提供的多流传输服务。
本申请的实施例可以由无线网络控制器指示第二基站检测与第一基站 建立连接的用户设备是否在第二基站的覆盖范围内, 并且根据上述检测的结 果进行多流传输的配置, 以便第一基站的小区和第二基站的小区联合为该用 户设备提供多流传输服务, 由于根据本申请实施例在实现多流传输的配置时 信令交互较少, 因此, 降低系统的资源消耗。 附图说明
为了更清楚地说明本申请实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本申请的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1 A是根据本申请的第一实施例的通信系统的示意图。
图 1B是根据本申请的第二实施例的通信系统的示意图。
图 2 是根据本申请的第三实施例的多流传输的配置方法的示意性流程 图。
图 3 是根据本申请的第四实施例的多流传输的配置方法的示意性流程 图。
图 4 是根据本申请的第五实施例的多流传输的配置方法的示意性流程 图。
图 5 是根据本申请的第六实施例的多流传输的配置过程的示意性流程 图。
图 6 是根据本申请的第七实施例的多流传输的配置过程的示意性流程 图。
图 7 是根据本申请的第八实施例的多流传输的配置过程的示意性流程 图。 图 8 是根据本申请的第九实施例的多流传输的配置过程的示意性流程 图。
图 9是根据本申请的第十实施例的基站的结构性示意图。
图 10是根据本申请的第十一实施例的无线网络控制器的结构性示意图。 图 11是根据本申请的第十二实施例的无线网络控制器的结构性示意图。 图 12是根据本申请的第十三实施例的用户设备的结构性示意图。 具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本申请一部分实施例, 而不是 全部的实施例。 基于本申请中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本申请保护的范围。
应理解, 本申请的技术方案可以应用于各种通信系统, 例如: GSM ( Global System of Mobile communication,全球移动通讯 )系统、 CDMA( Code Division Multiple Access ,码分多址)系统、 WCDMA( , Wideband Code Division Multiple Access, 宽带码分多址)系统、 GPRS ( General Packet Radio Service , 通用分组无线业务)、 LTE ( Long Term Evolution, 长期演进) 系统、 LTE-A ( Advanced long term evolution, 先进的长期演进) 系统、 UMTS ( Universal Mobile Telecommunication System, 通用移动通信系统)等, 本申请实施例并 不限定, 但为描述方便, 本申请实施例将以 WCDMA系统为例进行说明。
本申请实施例可以用于不同的制式的无线网络。无线接入网络在不同的 系统中可包括不同的网元。例如, LTE和 LTE-A中无线接入网络的网元包括 eNB ( eNodeB , 演进型基站), WCDMA 中无线接入网络的网元包括 RNC ( Radio Network Controller, 无线网络控制器)和 NodeB, 类似地, WiMax ( Worldwide Interoperability for Microwave Access , 全球微波互联接入 )等其 它无线网络也可以使用与本申请实施例类似的方案, 只^ ^站系统中的相关 模块可能有所不同, 本申请实施例并不限定, 但为描述方便, 下述实施例将 以 NodeB为例进行说明。
根据本发明的实施例的微基站可以包括 Pico基站、 Home基站、 femto 基站、 中继站、 RRH 以及其它低发射功率的小型基站。 本发明实施例将以 宏基站和微基站部署的异构网络为例进行说明,但是本发明实施例并不限于 此, 例如, 当 史基站为 RRH时, 本发明实施例同样适用。
还应理解, 在本申请实施例中, 用户设备(UE, User Equipment ) 包括 但不限于移动台 (MS , Mobile Station ), 移动终端( Mobile Terminal )、 移动 电话 ( Mobile Telephone )、 手机 ( handset )及便携设备 ( portable equipment ) 等, 该用户设备可以经无线接入网( RAN, Radio Access Network )与一个或 多个核心网进行通信, 例如, 计算机等, 用户设备还可以是便携式、袖珍式、 手持式、 计算机内置的或者车载的移动装置。 用户设备可以是移动电话(或 称为 "蜂窝" 电话)、 具有无线通信功能的计算机等, 用户设备还可以是便 携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置。
另外, 本文中术语"系统"和"网络"在本文中常被可互换使用。 本文中术 语"和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例如, A和 /或 B , 可以表示: 单独存在 A , 同时存在 A和 B , 单独存在 B 这三种情况。 另外, 本文中字符 "/" , 一般表示前后关联对象是一种 "或" 的关系。
多流传输指 UE 能够在至少一个频点上的至少两个小区接收下行
HS-DSCH 数据, 网络侧能够在至少一个频点上的至少两个小区调度下行 HS-DSCH数据。 例如, 基站 1有小区 1 , 小区 2, 小区 3 , 都在频点 1上, 此时如果小区 1和小区 2有共同的覆盖区域, 则小区 1和小区 2可以进行多 流传输。 例如, 基站 1有小区 1 , 小区 2, 小区 3 , 小区 4, 小区 5 , 小区 6, 其中小区 1、 2和 3在频点 1上, 小区 4、 5和 6在频点 2上, 如果小区 1、 2 和小区 4、 5有共同的覆盖区域, 则小区 1、 2、 4和 5可以进行多流传输。 再如, 基站 1有小区 1 , 基站 2有小区 2, 如果小区 1和小区 2有共同的覆 盖区域, 则小区 1和小区 2可以进行多流传输。
应理解, 本申请的实施例的第一基站和第二基站可以在逻辑上分开, 但 物理上可以属于不同的基站或属于同一个基站。
为了进一步提升多流传输技术的价值,可以考虑将多流传输技术应用到 小小区场景中,也即将至少一个宏小区和至少一个小小区联合为一个用户调 度下行数据, 这样可以解决 UE在小小区之间移动时存在的硬切换问题, 进 一步提升用户的数据服务体验, 并且对用户的实时类业务没有明显影响。
如果多流传输中宏小区作服务小区, 而小小区作辅助服务小区, 那么由 于小小区间通常彼此不相邻, 当 UE在不同的小小区之间移动时, 在按照常 规测量流程来检测小小区的情况下,需要进行较多的测量并触发较多的 RRC 信令, 这样导致耗费大量的空口资源的结果。 按照常规机制, 如果 UE无法 成功发送上行 RRC信令,则会导致掉话,因而会触发过多的空口 RRC信令, 从而增加 UE的掉话概率, 对用户体验(尤其是实时语音)影响非常明显。
根据本申请的实施例考虑在小小区场景中优化多流传输的配置流程, 以 期在提升 UE的吞吐速率的同时不会对网络侧的信令交互产生较大的影响。
图 1A是根据本申请的第一实施例的通信系统的示意图。参见图 1A,宏 基站 110的小区 Cell-1是宏小区, 主要通过广覆盖保证实时类业务(比如语 音通话)的用户体验;而微基站 120的小区 Cell-21、微基站 130的小区 Cell-22 和微基站 140的小区 Cell-23是小小区, 各自负责覆盖范围区域内的热点覆 盖, 主要提升数据类业务的体验。 宏基站 110、 微基站 120、 微基站 130和 基站 140可以受 RNC 150的控制。 当 UE在这些热点覆盖区域内时, 可以 获得较好的数据业务服务。 例如, 当 UE在 Cell-21和 Cell-1的覆盖区域内 时, 可以考虑同时配置 Cell-21和 Cell-1为 UE的 HS-DSCH服务小区, 此时 UE可以保证实时业务体验的前提下, 可进一步提升数据类业务的吞吐速率 从而提升用户体验。
图 1B是根据本申请的第二实施例的通信系统的示意图。 参见图 1B, 与 图 1A的实施例不同的是, 在图 1B的实施例中, 基站 120、 基站 130和 微基站 140可以受 RNC 160的控制, 在这种情况下, RNC 150和 RNC 160 可以通过 Iur接口通信。
图 2 是根据本申请的第三实施例的多流传输的配置方法的示意性流程 图。
210, 第二基站接收第一无线网络控制器发送的第一检测指示, 其中第 一检测指示包含与第一基站建立连接的用户设备的标识信息, 第一基站受第 一无线网络控制器的控制。
220, 第二基站根据第一检测指示检测该用户设备是否在第二基站的覆 盖范围内。
230, 第二基站将检测到用户设备在第二基站的覆盖范围内的信息通知 第一无线网络控制器, 以便第一无线网络控制器根据检测的结果进行多流传 输的配置。
240, 第二基站根据第一无线网络控制器发送的配置指示和多流配置信 息进行多流传输的配置, 以便第一基站的小区和第二基站的小区作为多流服 务小区联合为该用户设备提供多流传输服务。
下面以第一基站为宏基站、 第二基站为微基站, 第一无线网络控制器为
RNC为例, 对根据本申请的实施例进行具体的说明。
例如, 一个 RNC可以控制多个基站, 该 RNC可以通过 Iub接口与这些 基站通信, 即该 RNC终止通向这些基站方向的 Iub接口, 并且该 RNC用于 管理这些基站所属小区的负荷控制、 拥塞控制和接纳控制等等。 受 RNC控 制的基站可以是宏基站, 也可以是微基站。 根据本发明的实施例, 宏基站可 以受该 RNC的控制, 而微基站可以受该 RNC的控制, 也可以受其它 RNC 的控制。
根据本发明的实施例, 多流传输可以指多个服务小区与 UE建立连接, 并且联合与 UE之间进行多个数据流的传输。 例如, 可以指一个宏基站的小 区和一个或多个微基站的小区联合为 UE提供多流传输服务。 换句话说, 一 个宏基站通过一个链路向 UE传输一个数据流, 同时一个或多个微基站通过 其它链路向 UE传输其它数据流。
根据本发明的实施例, 一个宏基站的覆盖范围内可以部署多个微基站, 换句话说, 微基站的覆盖范围与宏基站的覆盖范围有交叠。 这些微基站可以 与宏基站共同受一个 RNC的控制。 可选地, 也可以是宏基站受一个 RNC的 控制, 而这些微基站受其它 RNC的控制, 并且控制宏基站的 RNC与控制微 基站的 RNC之间通过 Iur接口进行通信。
具体而言, 在 UE接入宏基站之后, 宏基站的小区可以作为 UE 的 HS-DSCH服务小区。 RNC可以在 UE接入宏基站的过程中获取该 UE的标 识信息, 并且可以向一个或多个微基站发送包含该 UE的标识信息的检测指 示, 以指示微基站检测 UE是否在其覆盖范围内。 微基站可以检测 UE发送 的上行信号 (例如, 上行同步过程中的 UE发送的上行专用信道的信号), 如果该微基站发现该上行信号中包含的 UE的标识信息与上述检测指示中包 含的 UE的标识信息相同, 则该微基站检测到 UE在该微基站覆盖范围内。 微基站还可以向 RNC发送检测响应,以通知 RNC微基站已经成功检测到该 UE在其覆盖范围内。 RNC在接收到该检测响应后, 可以触发对 UE、 微基 站和宏基站进行多流传输的配置, 这样, 微基站的小小区也作为 UE 的 HS-DSCH服务小区, 即微基站的小区和宏基站的小区作为多流服务小区联 合为该 UE提供多流传输服务。
换句话说, 微基站在成功检测到 UE在该微基站的覆盖范围内之后, 可 以将检测结果通知 RNC, 然后 RNC可根据微基站通知的检测结果进行多流 传输的配置。 如果微基站未成功检测到 UE在其覆盖范围内, 则不会向 RNC 发送检测响应或者通过检测响应通知 RNC微基站未成功检测到该 UE在其 覆盖范围内, 因此, RNC也就不会考虑将未成功检测 UE的微基站配置多流 传输。
例如, 上述标识信息至少包括以下信息的至少一个: UE 的上行扰码、 上行 DPCCH信道化码、 上行 DPCCH时隙格式, 根据本申请的实施例并不 限于此, 上述标识信息也可以是其它能够标识 UE的信息。
本申请的实施例可以由第一无线网络控制器指示第二基站检测与第一 基站建立连接的用户设备是否在第二基站的覆盖范围内, 并且根据上述检测 的结果进行多流传输的配置, 以便第一基站的小区和第二基站的小区联合为 该用户设备提供多流传输服务。 由于根据本申请实施例在实现多流传输的配 置时信令交互较少, 因此, 降低了系统的资源消耗, 并且可以降低 UE的掉 话概率, 提升用户体验。
在 230中, 第二基站在检测到该用户设备在第二基站的覆盖范围内的情 况下, 向第一无线网络控制器发送第一检测响应, 第一检测响应用于指示该 用户设备在第二基站的覆盖范围内。
例如, 该第一检测响应可以指第二基站示成功检测到 UE在其覆盖范围 内, 或者第一检测响应可以包含标志位, 例如, 标志位为 1指示微基站成功 检测到 UE在其的覆盖范围内, 标志位为 0指示第二基站未检测到 UE在其 的覆盖范围内, 反之亦然。
可选地, 作为另一实施例, 还包括: 第二基站接收第一无线网络控制器 根据第一检测响应发送的配置指示和多流配置信息。
例如, 第一无线网络控制器根据第一检测响应确定第二基站成功检测到 UE在第二基站的覆盖范围内的情况下, 可以向第一基站、 第二基站和 UE 发送配置指示和多流配置信息, 以便第一基站、 第二基站和 UE可以根据该 多流配置信息进行多流传输的配置。 例如, 第二基站接收到该多流配置信息 之后, 会根据该多流配置信息进行多流传输的配置, 使得第二基站的小区可 以作为 UE的多流传输服务小区。 该配置指示和多流配置信息可以是专用的 信令消息, 也可以用常规信令消息(例如, 无线链路建立消息)携带。 该配 置指示可以是标志位,也可以是将多流配置信息置于信令消息的固定信元上 来隐式地表示该配置指示。
可选地, 作为另一实施例, 第二基站接收第一无线网络控制器发送的多 流配置信息; 第二基站接收第一无线网络控制器根据第一检测响应发送的配 置指示。
例如, 第一无线网络控制器可以预先向第一基站、 第二基站和 UE发送 多流配置信息。 第一基站、 第二基站和 UE接收到该多流配置信息之后并不 进行多流传输的配置, 而是在接收到第一无线网络控制器的进一步发送的配 置指示之后才进行多流传输的配置。 在引入预先发送多流配置信息的机制 后, 网络侧可以预先将多流配置信息告知 UE, 并且当需要多流配置信息生 效时, 网络侧仅需要通过筒单的指示告知 UE即可, 这样可以避免使用较大 的 RRC信令, 从而提升了切换成功率, 并且缩短了切换时间。
图 2的多流传输的配置方法还包括:第二基站在接收到该配置指示之后, 通过物理层信令通知 UE根据该多流配置信息进行多流传输的配置; 和 /或, 第二基站向用户设备转发第一无线网络控制器发送的 RRC层重配置信令, 以通知用户设备根据多流配置信息进行多流传输的配置。
例如, 根据本申请的实施例可以采用两种方式通知 UE进行多流传输的 配置: 1 )通过物理层信令(例如, HS-DPCCH order )通知 UE进行多流传 输的配置; 2 )通过第一无线控制器发送的 RRC层信令(例如, RRC层重配 置信令)通知 UE进行多流传输的配置。 根据本申请的实施例可以采用上述 两种方式之一, 也可以采用这两种方式, 以提高 UE成功接收到上述配置指 示的概率。 通过物理层信令的方式通知 UE切换多流传输, 在切换时延上有 较大的优势, 并可以明显降低切换过程中的掉话比例。
根据本申请实施例, 该配置指示还携带激活时间, 用于指示第二基站在 该激活时间内根据该多流配置信息进行多流传输的配置, 其中在 240中, 第 二基站在接收到所述配置指示后,在该激活时间内根据该多流配置信息进行 多流传输的配置。
可选地, 也可以在该物理信令中携带激活时间, 用于指示用户设备在该 激活时间根据该多流配置信息进行多流传输的配置。
例如, 在配置指示和该物理层信令中携带激活时间的情况下, 可以使得 UE 和网络侧在该激活时间同时切换到新的多流传输服务小区进行多流传 输。
可选地, UE在完成切换到新的多流传输服务小区时, 可以向 RNC返回 切换响应。
图 2的多流传输的配置方法还包括: 第二基站接收第一无线网络控制器 发送的停止检测指示; 第二基站根据该停止检测指示停止检测该用户设备是 否在第二基站的覆盖范围内。
例如, 在第一无线网络控制器接收到第三基站发送检测响应时, 获知第 三基站已经检测到 UE在第三基站的覆盖范围内, 第一无线网络控制器可以 通知第二基站停止检测 UE是否在第二基站的覆盖范围内, 这样可以降低对 第二基站的系统资源消耗。
根据本申请的实施例, 第二基站可以根据 UE发送的上行信号中包含的 该用户设备的标识信息和第一检测指示中包含的该用户设备的标识信息是 否一致来确定该用户设备是否在第二基站的覆盖范围内。
根据本申请的实施例采用了微基站根据上行信号检测 UE是否在微基站 的覆盖范围内的方法,与 UE按照常规测量流程检测小小区的方法相比, RRC 信令显著减少, 节省了空口资源。
在 220中, 第二基站根据第一检测指示检测该用户设备是否在第二基站 的覆盖范围内可以采用如下几个方式。
第二基站根据上行同步规则来检测该用户设备是否在第二基站的覆盖 范围内。
例如, 如果在 UE进行上行同步过程中, 100ms内连续监测到 UE发送 的 10个上行信号, 则网络侧确定该 UE在其覆盖范围内, 否则, 网络侧确 定该 UE不在其覆盖范围内。
在本发明的另一实施例中, 第二基站根据第一检测指示中携带的规则来 检测该用户设备是否在第二基站的覆盖范围内, 比如, 该携带的规则为: 如 果第二基站在 X时间内,连续监测到 UE发送的上行信号至少为 Y个,则第 二基站认为该用户在该第二基站覆盖范围内,如果第二基站在 X时间内连续 监测到 UE发送的上行信号小于 Y个,第二基站认为该用户不在第二基站覆 盖范围内, 其中 X的单位可以为毫秒, Y为正整数, X和 Y在第一检测指 示中携带。 例如, X为 0到 5秒, Y为 0个到 100个。 优选地, X为 400ms, Y为 20个。
在本发明的另一实施例中, 第二基站根据预设的规则来检测该用户设备 是否在第二基站的覆盖范围内,比如预设规则为:如果第二基站在 X时间内, 连续监测到 UE发送的上行信号至少 Υ个,则第二基站认为该用户在该第二 基站覆盖范围内,如果第二基站在 X时间内连续监测到 UE发送的上行信号 小于 Υ个, 第二基站认为该用户不在第二基站覆盖范围内, 其中 X的单位 可以为毫秒, Υ为正整数。
可选地, 作为另一实施例, 图 2的多流传输的配置方法还包括: 第二基 站根据第一无线网络控制器发送的去配置指示进行该多流传输的去配置。
例如, 第一无线网络控制器可以根据 UE在小小区一段时间内的调度数 据量来确定是否对多流传输进行去配置。
可选地, 作为另一实施例, 图 2的多流传输的配置方法还包括: 第二基 站根据空口信道质量向第一无线网络控制器发送去配置请求; 第二基站接收 第一无线网络控制器根据该去配置请求发送的去配置指示; 第二基站根据该 去配置指示进行多流传输的去配置。
例如, 当第二基站根据 UE的反馈信息发现空口信道质量变差 (例如, 小于等于预设的阈值)时, 第二基站可以向第一无线网络控制器发送去配置 请求, 以请求第一无线网络控制器根据该去配置请求触发多流传输的去配 置。 第一无线网络控制器接收到该去配置请求之后, 可以向第一基站、 第二 基站和 UE发送去配置指示, 以指示第一基站、 第二基站和 UE进行多流传 输的去配置。 例如, 空口信道质量可以为信道质量指示符 (Channel Quality Indicator, CQI ), CQI的值越低, 空口信道质量越差, CQI的值越高, 空口 信道质量越好。
根据本申请的实施例, 第二基站受第一无线网络控制器的控制。
例如, 宏基站和微基站均受同一个无线网络控制器的控制。
可选地, 作为另一实施例, 第二基站受第二无线网络控制器的控制, 其 中第二基站通过第二无线网络控制器与第一无线网络控制器之间的接口与 第一无线网络控制器进行通信。
例如, 在 WCDMA 系统中, 敫基站和宏基站可以受不同的无线网络控 制器(RNC )控制, 不同的无线网络控制器之间可以通过 Iur接口通信。 在 这种情况下,根据本发明的实施例的第一无线网络控制器与第二基站(例如, 微基站)之间交互的上述检测指示、 上述检测响应和上述停止检测指示、 上 述多流配置信息以及上述多流配置信息的发送均通过第二无线网络控制器 和 Iur接口发送。
应理解, 上述检测指示、 检测响应、 停止检测指示、 配置指示、 以及多 流配置信息等信令消息可以是专用的信令消息,也可以是由常规信令消息携 带。
根据本申请的实施例在小小区场景使用多流传输的情况下, 能够有效减 少信令交互, 并且能够较为快速地触发对目标小小区的上报, 让 UE能有效 提体验多流传输的增益。
图 3 是根据本申请的第四实施例的多流传输的配置方法的示意性流程 图。 图 3的实施例与图 2的实施例相对应, 在此不再赘述。
310, 在用户设备与第一基站之间建立连接的情况下, 第一无线网络控 制器向第二基站发送第一检测指示,其中第一基站受第一无线网络控制器的 控制, 第一检测指示包含该用户设备的标识信息, 以便第二基站检测该用户 设备是否在第二基站的覆盖范围内;
320, 第一无线网络控制器根据用户设备发送的检测到用户设备在第二 基站的覆盖范围内的信息进行多流传输的配置, 以便第一基站的小区和第二 基站的小区作为多流服务小区联合为该用户设备提供多流传输服务。
例如, 以第一基站为宏基站, 第二基站为微基站, 第一无线网络控制器 为 RNC为例, 第一无线网络控制器可以在获知 UE接入宏基站的情况下, 向宏基站覆盖范围内的微基站发送上述检测指示。根据本申请的实施例并不 限于此, 例如, 当 UE离开一个小小区, 即离开一个微基站的覆盖范围时, 第一无线网络控制器会从 UE的多流服务小区中删除该小小区, 这时, 第一 无线网络控制器可以向宏基站的覆盖范围内的其它微基站发送检测指示, 或 者第一无线网络控制器可以周期性地向宏基站内所有微基站发送检测指示, 以便检测到该 UE的微基站的小小区作为新的多流服务小区进行多流传输, 从而实现小小区之间的切换。 由小在小小区的切换过程中, UE始终与宏基 站保持连接, 因此可以避免因硬切换而掉话。
本申请的实施例可以由第一无线网络控制器指示第二基站检测与第一 基站建立连接的用户设备是否在第二基站的覆盖范围内, 并且根据上述检测 的结果进行多流传输的配置, 以便第一基站的小区和第二基站的小区联合为 该用户设备提供多流传输服务, 由于根据本申请实施例在实现多流传输的配 置时信令交互较少, 因此, 降低系统的资源消耗。
可选地, 作为另一实施例, 图 3的多流传输配置方法还包括: 第一无线 网络控制器接收第二基站根据该检测的结果发送的第一检测响应, 第一检测 响应用于指示该用户设备在第二基站的覆盖范围内。
可选地, 作为另一实施例, 图 3的多流传输配置方法还包括: 第一无线 网络控制器根据第一检测响应向第一基站、第二基站和该用户设备发送配置 指示和多流配置信息, 以便第一基站、 第二基站和该用户设备根据该配置指 示和该多流配置信息进行多流传输的配置。
可选地, 作为另一实施例, 图 3的多流传输配置方法还包括: 第一无线 网络控制器向第二基站和该用户设备发送多流配置信息; 第一无线网络控制 器在接收第二基站发送的第一检测响应之后, 向第一基站和第二基站发送配 置指示, 以便第一基站和第二基站根据该配置指示和该多流配置信息进行多 流传输的配置。
可选地, 作为另一实施例, 图 3的多流传输配置方法还包括: 第一无线 网络控制器向该用户设备发送重配置信令, 用于指示该用户设备根据该多流 配置信息进行多流传输的配置。
根据本申请的实施例, 该配置指示还携带激活时间, 用于指示第一基站 和第二基站在该激活时间根据该多流配置信息进行多流传输的配置。
可选地, 作为另一实施例, 图 3的多流传输配置方法还包括: 第一无线 网络控制器在该用户设备接入第一基站的时,从第一基站接收该用户设备上 报的第二基站的测量信息, 其中在 310中, 第一无线网络控制器根据该测量 信息向第二基站发送第一检测指示。
可选地, 作为另一实施例, 图 3的多流传输配置方法还包括: 第一无线 网络控制器向第三基站发送第二检测指示, 第二检测指示包含该用户设备的 标识信息, 以便第三基站检测该用户设备是否在第三基站的覆盖范围内; 在 接收到第二基站发送的第一检测响应的情况下, 向第三基站发送停止检测指 示, 以便第三基站停止检测该用户设备是否在第三基站的覆盖范围内。
可选地, 作为另一实施例, 图 3的多流传输配置方法还包括: 第一无线 网络控制器接收第三基站发送的第二检测响应, 第二检测响应用于指示该用 户设备在第三基站的覆盖范围内; 根据预设的规则从第二基站和第三基站组 成的组中选择第二基站用以进行该多流传输, 其中在 310中, 可以向所选择 的第二基站发送第一检测指示。
例如, 在第二基站和第三基站均返回了检测响应的情况下, 可以按照接 收检测响应的顺序来选择, 例如, RNC先从第二基站接收到检测响应, 后 从第三基站收到检测响应, 则 RNC选择第二基站作为多流传输服务小区。
可选地, 可以根据微基站的小区负载、 和 /或接入小区的 UE的数目、 和 /或小区可用资源数等信息来选择, 例如, RNC选择小区负载较轻的小区作 为多流传输服务小区。
根据本申请的实施例, 第一基站为宏基站, 第二基站为微基站。
可选地, 作为另一实施例, 图 3的多流传输配置方法还包括: 第一无线 网络控制器从第二基站接收去配置请求, 并且根据该去配置请求向第二基站 和用户设备发送去配置指示, 以便第二基站和用户设备进行多流传输的去配 置。
例如, 可以由第二基站确定是否进行多流传输的去配置。 第二基站根据 空口信道质量向第一无线网络控制器发送去配置请求, 以请求第一无线网络 控制器触发多流传输的去配置。
可选地, 作为另一实施例, 图 3的多流传输配置方法还包括: 第一无线 网络控制器根据预设的数据调度条件向第二基站和所述用户设备发送去配 置指示, 以便第二基站和用户设备进行多流传输的去配置。
例如, 可以由第一无线网络控制器确定是否进行多流传输的去配置。 第 一无线网络控制器可以根据 UE在第二基站的小小区一段时间内的调度数据 量来确定是否对多流传输进行去配置。
根据本申请的实施例, 第二基站受第一无线网络控制器的控制。
可选地, 作为另一实施例, 第二基站受第二无线网络控制器的控制, 其 中第二基站通过第二无线网络控制器与第一无线网络控制器之间的接口与 第一无线网络控制器进行通信。
根据本申请的实施例, 上述标识信息包括与用户设备相对应的上行扰码 和 /或上行 DPCCH的信道化码和 /或上行高速专用物理控制信道 DPCCH时隙 格式。
根据本申请的实施例在小小区场景使用多流传输的情况下, 能够有效减 少信令交互, 并且能够较为快速地触发对目标小小区的上报, 让 UE能有效 提体验多流传输的增益。
图 4 是根据本申请的第五实施例的多流传输的配置方法的示意性流程 图。 图 4的实施例与图 2的实施例相对应, 在此不再赘述。
410, 与第一基站建立连接的用户设备从第一无线网络控制器接收多流 配置信息, 其中第一基站受第一无线网络控制器的控制;
420, 该用户设备接收第二基站发送的物理层信令和 /或无线资源控制层 重配置信令,该物理层信令和 /或无线资源控制层重配置信令指示该用户设备 根据该多流配置信息进行多流传输的配置;
430, 该用户设备根据该物理层信令和 /或无线资源控制层重配置信令以 及该多流配置信息进行多流传输的配置, 以便接收第一基站和第二基站作为 多流服务小区为该用户设备提供的多流传输服务。
本申请的实施例可以由第一无线网络控制器指示第二基站检测与第一 基站建立连接的用户设备是否在第二基站的覆盖范围内, 并且根据上述检测 的结果进行多流传输的配置, 以便第一基站的小区和第二基站的小区联合为 该用户设备提供多流传输服务, 由于根据本申请实施例在实现多流传输的配 置时信令交互较少, 因此, 降低了系统的资源消耗。
可选地, 作为另一实施例, 图 4的方法还包括: 该用户设备接收第一无 线网络控制器发送的重配置信令, 该重配置信令用于指示该用户设备根据该 多流配置信息进行多流传输的配置。
可选地, 作为另一实施例, 图 4的方法还包括: 该用户设备接收第一无 线网络控制器发送的去配置指示; 该用户设备根据该去配置指示进行多流传 输的去配置。
根据本申请的实施例在小小区场景使用多流传输的情况下, 能够有效减 少信令交互, 并且能够较为快速地触发对目标小小区的上报, 让 UE能有效 提体验多流传输的增益。
下面结合具体例子, 更加详细地描述本申请的实施例。
图 5 是根据本申请的第六实施例的多流传输的配置过程的示意性流程 图。 图 5的实施例是图 2、 图 3和图 4的实施例的例子。 图 5的实施例描述 了在宏基站和微基站受同一 RNC控制的情况下对多流传输进行配置和去配 置的过程。
510, UE接入宏基站。 例如, UE通过 RRC信令与宏基站建立 RRC连接, 即接入到宏基站, 并且可以通过宏基站接收数据。
520, RNC向微基站 1发送第一检测指示。
例如, 在 UE接入宏基站后, RNC可以向微基站 1发送第一检测指示, 微基站 1可以是在宏基站覆盖范围内的微基站。 第一检测指示为唯一标识该 UE的信息, 例如, 第一检测指示可以包含与该 UE相对应的上行扰码、 和 / 或上行 DPCCH的信道化码、 和 /或上行 DPCCH时隙格式。
可选地,当 UE离开一个小小区,即离开一个微基站的覆盖范围时, RNC 也可以向宏基站的覆盖范围内的微基站发送检测指示, 或者第一无线网络控 制器可以周期性地向微基站发送检测指示, 以便检测到该 UE的微基站的小 小区作为新的多流服务小区进行多流传输。
525, 微基站 1检测该 UE是否在其覆盖范围内。
例如, 微基站 1在接收到 RNC发送的第一检测指示之后, 可以按照常 规上行同步过程中定义的规则 ( 3GPP TS 25.214的 4.3.2章节定义的规则 ) 来检测该 UE。 基站 1可以通过上行同步检测, 确定上行发送的信号 (例 如, DPCCH ) 中包含的该 UE的标识信息是否与第一检测指示中包含的 UE 的标识信息相匹配, 如果两者匹配, 则微基站 1成功检测到 UE在其覆盖范 围内。
可选地, RNC可以在检测指示中携带检测规则, 微基站 1可以根据该 检测规则确定 UE是否在其覆盖范围内。
根据本申请的实施例并不限于上述检测 UE的方法, 例如, 还可以新定 义检测规则, 微基站可以按照该新定义的检测规则来检测 UE。
530, 微基站 1向 RNC返回第一检测响应。
例如, 微基站 1在检测到 UE在其覆盖范围内时, 可以在第一检测响应 中携带标志位 1 , 微基站 1在没有检测到 UE在其覆盖范围内时, 可以在第 一检测响应中携带标志位 0。 可选地, 微基站 1也可以在检测到 UE在其覆 盖范围内时, 向 RNC发送第一检测响应, 而在未检测到 UE在其覆盖范围 内时, 不向 RNC发送第一检测响应。
540, RNC向微基站 2发送第二检测指示。
在 UE接入宏基站后, RNC可以向微基站 2发送第二检测指示,微基站
2可以是在宏基站覆盖范围内的微基站。 第二检测指示为唯一标识该 UE的 信息, 例如, 第二检测指示可以包含与该 UE相对应的上行扰码和 /或上行 DPCCH时隙格式。
545 , 微基站 2检测该 UE是否在其覆盖范围内。
例如, 微基站 2接收到 RNC发送的第二检测指示之后, 可以按照常规 上行同步过程中定义的规则 ( 3GPP TS 25.214的 4.3.2节定义的规则)来检 测该 UE。 微基站 2可以通过上行同步检测, 确定上行发送的信号 (例如, DPCCH )中包含的该 UE的标识信息是否与第二检测指示中包含的 UE的标 识信息相匹配,如果两者匹配,则微基站 2成功检测到 UE在其覆盖范围内。
可选地, RNC可以在检测指示中携带检测规则, 微基站 2可以根据该 检测规则确定该 UE是否在其覆盖范围内。
根据本申请的实施例并不限于上述检测 UE的方法, 例如, 还可以新定 义检测规则, 微基站 2可以按照该新定义的检测规则来检测该 UE。
550 , 微基站 2向 RNC返回第二检测响应。
例如, 微基站 2在检测到 UE在其覆盖范围内时, 可以在第二检测响应 中携带标志位 1 , 微基站 2在没有检测到 UE在其覆盖范围内时, 可以在第 二检测响应中携带标志位 0。 可选地, 微基站 2也可以在检测到 UE在其覆 盖范围内时, 向 RNC发送第二检测响应, 而在未检测到 UE在其覆盖范围 内时, 不向 RNC发送第二检测响应。
560, RNC向微基站 2发送停止检测指示。
例如, RNC在从微基站 1接收到第一检测响应之后, 可以根据第一检 测响应确定 UE在微基站 1的覆盖范围内, 并通知其它微基站(例如, 微基 站 2 )停止检测 UE, 以避免微基站 2进行不必要的检测, 这样可以降低对 微基站 2的系统资源消耗。
570, RNC向微基站 1发送配置指示和多流配置信息, 以便微基站 1进 行多流的传输配置。
RNC在确定 UE在微基站 1的覆盖范围内之后,可以对微基站 1进行多 流传输的配置, 例如, 向微基站 1发送配置指示和多流配置信息, 并且在微 基站 1返回多流配置响应后完成多流传输的配置。
可选地, 例如, 如果出现多个 基站(例如, 图 5的实施例中 基站 1 和微基站 2 )都上报检测响应给 RNC的情况, 则 RNC需要选择一个合适的 微基站作为 UE的新的多流传输服务小区。 可以采用如下两种选择方式: 1 )按照接收检测响应的顺序来选择, 例如, RNC先从微基站 1收到该 检测响应, 后从微基站 2收到该检测响应, 则 RNC选择微基站 1作为多流 传输服务小区;
2 )根据微基站的小区负载、 接入小区的 UE 的数目、 小区可用资源数 等信息来选择, 例如, RNC选择小区负载较轻的小区作为多流传输服务小 区。
580, RNC向宏基站发送多流配置信息, 以便宏基站进行多流传输的配 置。
RNC还需要通知宏基站完成多流传输的配置, 因为在多流传输服务小 区个数发生变化时, 采用 HSDPA技术的系统的上行信道的格式可能发生变 化。 宏基站可以根据 RNC的通知对传输配置进行相应的变更。
590, RNC向 UE发送多流配置信息, 以便 UE进行多流传输的配置。 例如, RNC可以通过微基站 1向 UE发送多流配置信息, UE可以根据 接收到的多流配置信息进行多流传输的配置。 多流配置信息可以包括如下信 息的至少一个: 辅助服务小区的 HS-SCCH 信道化码、 辅助服务小区的 HS-PDSCH 信道化码、 UE 的上行 HS-DPCCH 信道化码、 UE 的上行 HS-DPCCH信道中的确认指示和非确认指示的发送功率偏置、 UE 的上行 HS-DPCCH信道中的信道质量指示的发送功率偏置、 UE的 HS-DSCH传输 信道到物理信道的映射信息、 UE的业务逻辑信道到 HS-DSCH传输信道的 映射信息等。
592, UE通过宏基站接收数据。
UE和宏基站完成多流传输的配置后, UE可以通过宏基站接收数据。
593, UE通过微基站 1接收数据。
UE和微基站 1完成多流传输的配置后,UE可以通过微基站 1接收数据, 从而实现多流传输。
进一步, 图 5的实施例还可以包括对多流传输进行去配置的过程。
594, RNC确定触发去配置多流传输。
RNC可以根据 UE在微基站 1的调度数据量来确定去配置多流传输。例 如, 在预设时段内, RNC检测到微基站 1请求的下行数据量少于某个门限, 或者 UE长时间(例如,超过预设时间)没有较多的下行数据调度,此时 RNC 可以触发去配置多流传输。 595, 微基站 1向 RNC发送去配置请求, 请求 RNC触发去配置多流传 输。
微基站 1根据空口信道质量请求 RNC去配置多流传输。 例如, 如果 UE 的反馈信息包含的信道质量和下行数据包的接收反馈长时间(例如, 超过预 设时间)较差, 则微基站 1可以发送去配置请求给 RNC, 以请求 RNC触发 针对该 UE的去配置多流传输。
应理解,根据本申请的实施例可以选择步骤 594的方式或步骤 595方式 触发去配置多流传输。
596, RNC向 UE发送去配置指示, 以便 UE根据该去配置指示对多流 传输进行去配置。
597, RNC向微基站 1发送去配置指示, 以便微基站 1对多流传输进行 去配置。
应理解, 步骤 540、 545和 550是可选的。 如果 UE在接入宏基站过程 中,在测量 告中携带了某个频点(小小区所在频点 )上小小区的测量信息, 那么 RNC在接收到该测量报告后, 可以仅向该小小区的微基站发送检测指 示, 这样可以对微基站的资源进行优化。 例如, 在图 5的实施例中, 可以仅 仅向微基站 1发送第一检测指示。
还应理解,根据本申请的实施例对向微基站 1和微基站 2发送检测指示 的顺序不作限制, 可以同时向 基站 1和 基站 2发送检测指示, 也可以先 向其中一个微基站发送检测指示,在确定该微基站没有检测到 UE的情况下, 再向另一个微基站发送检测指示。
还应理解, 根据本申请的实施例对向 UE、 微基站和宏基站发送多流配 置信息的顺序不作限制, 例如, 570、 580和 590可以同时执行, 也可以颠倒 顺序执行。
图 6 是根据本申请的第七实施例的多流传输的配置过程的示意性流程 图。 图 6的实施例是图 2、 图 3和图 4的实施例的例子。 图 6的实施例描述 了在微基站和宏基站受不同 RNC控制的情况下对多流传输进行配置和去配 置的过程。
图 6的 610至 697与图 5的 510至 597类似, 图 6与图 5的区别在于图 6的微基站和宏基站受不同 RNC控制。 例如, 在图 6的实施例中, 微基站 1 和微基站 2均受 S-RNC 的控制, 而宏基站受 M-RNC 的控制。 S-RNC与 M-RNC 之间通过常规的 Iur接口进行信令和数据的交互, 即 S-RNC 与 M-RNC之间通过标准的 Iur接口互连, 以实现两者之间的通信。
与图 5的实施例提及的多流传输的配置流程不同的是, 图 6的实施例增 加了对应的 S-RNC和 M-RNC之间的信令交互,交互的信息与图 5的流程中 交互的信息类似, 在此不再赘述。
610, UE接入宏基站。
620, M-RNC通过 S-RNC向微基站 1发送第一检测指示。
625, 微基站 1检测该 UE是否在其覆盖范围内。
630, 微基站 1通过 S-RNC向 M-RNC返回第一检测响应。
640, M-RNC通过 S-RNC向微基站 2发送第二检测指示。
645, 微基站 2检测该 UE是否在其覆盖范围内。
650 , 微基站 2通过 S-RNC向 M-RNC返回第二检测响应。
660, M-RNC通过 S-RNC向微基站 2发送停止检测指示。
670, M-RNC通过 S-RNC向微基站 1发送多流配置信息, 以便微基站 1 进行多流传输的配置,微基站 1可以通过 S-RNC向 M-RNC返回多流配置响 应。
680, M-RNC向宏基站发送配置指示和多流配置信息, 以便宏基站进行 多流传输的配置, 宏基站可以向 M-RNC返回多流配置响应。
690, M-RNC通过 S-RNC和微基站 1向 UE发送多流配置信息, 以便 UE进行多流传输的配置, UE可以向 M-RNC返回多流配置响应。
692, UE通过宏基站接收数据。
693, UE通过微基站 1接收数据。
进一步, 图 6的实施例还可以包括对多流传输进行去配置的过程。
694 , M-RNC确定触发去配置多流传输。
695, 微基站 1通过 S-RNC向 M-RNC发送去配置请求, 请求 M-RNC 触发去配置多流传输。
应理解,根据本申请的实施例可以选择 694和 695之一的方法触发去配 置多流传输。
696, M-RNC通过 S-RNC和微基站 1向 UE发送去配置指示, 以便 UE 根据该去配置指示对多流传输进行去配置。
697, RNC通过 S-RNC向微基站 1发送去配置指示, 以便 基站 1对多 流传输进行去配置。
图 7 是根据本申请的第八实施例的多流传输的配置过程的示意性流程 图。 图 7的实施例是图 2、 图 3和图 4的实施例的例子。 图 7的实施例描述 了在微基站和宏基站受同一 RNC控制的情况下进行多流传输的配置和去配 置的过程。 图 7的 710、 720、 725、 730、 740、 745、 750、 760、 792、 793、 794、 795、 796和 797与图 5的 510、 520、 525、 530、 540、 545、 550、 560、 592、 593、 594、 595、 596和 597类似, 在此适当省略详细的描述。
710, UE接入宏基站。
715 , RNC向宏基站、 微基站 1、 微基站 2和 UE发送多流配置信息。 UE接入宏基站后, RNC可以预先向微基站(例如, 微基站 1和微基站
2 )和 UE以及宏基站发送多流配置信息(以下称为多流预配置信息), 该多 流预配置信息可以在微基站的小小区被配置为多流传输服务小区时用作多 流配置信息。
720, RNC向微基站 1发送第一检测指示。
725 , 微基站 1检测该 UE是否在其覆盖范围内。
730, 微基站 1向 RNC返回第一检测响应。
740, RNC向微基站 2发送第二检测指示。
745 , 微基站 2检测该 UE是否在其覆盖范围内。
750 , 微基站 2向 RNC返回第二检测响应。
760, RNC向微基站 2发送停止检测指示。
770, RNC向微基站 1发送配置指示, 以便微基站 1进行多流传输的配 置。
例如, RNC在确定 UE在微基站 1的覆盖范围内之后可以指示微基站 1 进行多流传输的配置, 例如, 可以向 基站 1发送配置指示, 并且在 基站 1返回多流配置响应后完成多流传输的配置。 例如, 配置指示可以包含标志 位, 标志位的值为 1指示进行多流传输的配置。 微基站 1接收到该配置指示 后, 可以根据在 715中接收到的多流预配置信息进行多流传输的配置。
可选地, 在 RNC接收到第一检测响应和第二检测响应的情况下, RNC 可以根据接收到第一检测响应和第二检测响应的顺序选择微基站 1的小小区 或微基站 2的小小区作为多流传输服务小区进行多流传输的配置,选择方式 与图 550类似, 在此不再赘述。 可选地, 该配置指示中还可以携带激活时间, 用于指示 基站 1在该激 活时间进行多流传输的配置, 并且微基站 1的小小区作为新的多流传输服务 小区为 UE提供多流传输服务。
775, RNC向宏基站发送配置指示, 以便宏基站进行多流传输的配置。 RNC还需要通知宏基站完成多流传输的配置, 因为在多流传输服务小 区个数发生变化时, 采用 HSDPA技术的系统的上行信道的格式可能发生变 化。 宏基站可以根据 RNC的通知对传输配置进行相应的变更。 例如, 宏基 站接收到配置指示后,可以根据在 715中接收到的多流预配置信息进行多流 传输的配置。
可选地, 该配置指示中还可以携带激活时间, 用于指示宏基站在该激活 时间进行多流传输的配置, 并且宏基站的宏小区作为多流传输服务小区为
UE提供多流传输服务。 UE和宏基站、微基站 1可以在激活时间同时切换到 多流传输, 由新的多流传输服务小区(即宏基站的宏小区和微基站 1的小小 区) 为 UE提供多流传输服务, 然后 UE可以发送切换响应消息完成切换。
780, 微基站 1向 UE发送 HS-SCCH指令, 以便 UE进行多流传输的配 置。
例如, 微基站 1接收到 RNC发送的配置指示之后, 可以通过物理层信 令(例如, HS-SCCH order )指示 UE切换到多流传输。
与图 5的实施例相比, 在图 7的实施例中, 微基站 1通过物理层信令的 方式通知 UE切换到多流传输, 在切换时延上有较大的优势, 并可以明显降 低切换过程中的掉话比例。
可选地, 该配置指示中还可以携带激活时间, 用于指示 UE在该激活时 间进行多流传输的配置。
790, RNC向 UE发送重配置信令。
例如, RNC还可以通过微基站 1向 UE发送 RRC重配置信令, 即 RNC 可以通过 RRC重配置信令通知 UE切换到多流传输, 以增加切换成功的概 率。
791 , UE向 RNC返回重配置完成信令。
例如 UE通过微基站 1向 RNC返回 RRC重配置完成信令,以响应 RRC 重配置信令。 应理解, 790和 791是可选的。
792, UE通过宏基站接收数据。 793, UE通过微基站 1接收数据。
进一步, 图 7的实施例还可以包括对多流传输进行去配置的过程。
794, RNC确定触发去配置多流传输。
795, 微基站 1向 RNC发送去配置请求, 请求 RNC触发去配置多流传 输。
796, RNC向 UE发送去配置指示, 以便 UE根据该去配置指示对多流 传输进行去配置。
797, RNC向微基站 1发送去配置指示, 以使微基站 1对多流传输进行 去配置。
图 8 是根据本申请的第九实施例的多流传输的配置过程的示意性流程 图。 图 8的实施例是图 2、 图 3和图 4的实施例的例子。 图 8的实施例描述 了在微基站和宏基站受不同 RNC控制的情况下对多流传输进行配置和去配 置的过程。
图 8的 810至 897与图 7的 710至 797类似, 图 8与图 7的区别在于图 8的微基站和宏基站受不同 RNC控制。 例如, 在图 8的实施例中, 微基站 1 和微基站 2均受 S-RNC 的控制, 而宏基站受 M-RNC 的控制。 S-RNC与 M-RNC 之间通过常规的 Iur接口进行信令和数据的交互, 即 S-RNC 与 M-RNC之间通过标准的 Iur接口互连, 以实现两者之间的通信。
与图 7的实施例提及的多流传输的配置流程不同的是, 图 8的实施例增 加了对应的 S-RNC和 M-RNC之间的信令交互,交互的信息与图 7的流程中 交互的信息类似, 在此不再赘述。
810, UE接入宏基站。
815, M-RNC向宏基站、 微基站 1、 微基站 2和 UE发送多流预配置信 息。
例如, M-RNC可以通过 S-RNC向微基站发送多流预配置信息, 可以向 宏基站发送多流预配置信息, 并且可以通过宏基站或任何一个微基站向 UE 发送多流预配置信息, 以便宏基站、 微基站和 UE可以在需要时根据该多流 预配置信息进行多流传输的配置。
820, M-RNC通过 S-RNC向微基站 1发送第一检测指示。
825, 微基站 1检测该 UE是否在其覆盖范围内。
830, 微基站 1通过 S-RNC向 M-RNC返回第一检测响应。 840, M-RNC通过 S-RNC向微基站 2发送第二检测指示。
845, 微基站 2检测该 UE是否在其覆盖范围内。
850 , 微基站 2通过 S-RNC向 M-RNC返回第二检测响应。
860, M-RNC通过 S-RNC向微基站 2发送停止检测指示。
870, M-RNC通过 S-RNC向微基站 1发送配置指示, 以便 基站 1进 行多流传输的配置。
875, M-RNC向宏基站发送配置指示,以便宏基站进行多流传输的配置。 880, 微基站 1向 UE发送 HS-SCCH指令, 以便 UE进行多流传输的配 置。
890, M-RNC可以通过 S-RNC和微基站 1向 UE发送重配置信令。
891 , UE通过 S-RNC向 M-RNC返回重配置完成信令。
892, UE通过宏基站接收数据。
893, UE通过微基站 1接收数据。
进一步, 图 5的实施例还可以包括对多流传输进行去配置的过程。
894, M-RNC确定触发去配置多流传输。
895, 微基站 1通过 S-RNC向 M-RNC发送去配置请求, 请求 M-RNC 触发去配置多流传输。
896, M-RNC通过 S-RNC和微基站 1向 UE发送去配置指示, 以便 UE 根据该去配置指示对多流传输进行去配置。
897, M-RNC通过 S-RNC向微基站 1发送去配置指示, 以使 基站 1 对多流传输进行去配置。
上面描述了根据本申请实施例的多流传输的配置方法, 下面分别结合图 9至图 12描述根据本申请实施例的基站、 用户设备和无线网络控制器。
图 9是根据本申请的第十实施例的基站 900的结构性示意图。 基站 900 包括: 接收器 910、 检测处理器 920、 通知处理器 930和配置处理器 940。 图 9的基站 900与图 2的方法相对应, 在此不再赘述。
接收器 910, 用于接收第一无线网络控制器发送的第一检测指示, 其中 第一检测指示包含与另一基站建立连接的用户设备的标识信息,其中该另一 基站受第一无线网络控制器的控制。 检测处理器 920, 用于根据第一检测指 示检测该用户设备是否在该基站 900的覆盖范围内。 通知处理器 930, 用于 将检测到用户设备在第二基站的覆盖范围内的信息通知第一无线网络控制 器, 以便第一无线网络控制器根据检测的结果进行多流传输的配置。 配置处 理器 940, 用于根据第一无线网络控制器发送的的配置指示和多流配置信息 进行多流传输的配置, 以便该另一基站的小区和该基站 900的小区作为多流 服务小区联合为该用户设备提供多流传输服务。
本申请的实施例可以由第一无线网络控制器指示第二基站检测与第一 基站建立连接的用户设备是否在第二基站的覆盖范围内, 并且根据上述检测 的结果进行多流传输的配置, 以便第一基站的小区和第二基站的小区联合为 该用户设备提供多流传输服务, 由于根据本申请实施例在实现多流传输的配 置时信令交互较少, 因此, 降低了系统的资源消耗。
根据本申请的实施例,通知处理器 930用于在检测到该用户设备在该基 站 900的覆盖范围内的情况下, 向第一无线网络控制器发送第一检测响应, 第一检测响应用于指示该用户设备在该基站 900的覆盖范围内。
可选地, 作为另一实施例, 接收器 910还用于接收第一无线网络控制器 根据第一检测响应发送的配置指示和多流配置信息。
根据本申请的实施例,接收器 910还用于接收第一无线网络控制器发送 的多流配置信息, 并且接收第一无线网络控制器根据第一检测响应发送的配 置指示。
可选地, 作为另一实施例, 配置处理器 930还用于在接收到该配置指示 之后,通过物理层信令通知用户设备根据该多流配置信息进行多流传输的配 置。
可选地, 作为另一实施例, 配置处理器 930向该用户设备转发第一无线 网络控制器发送的无线资源控制层重配置信令, 以通知该用户设备根据该多 流配置信息进行多流传输的配置。
根据本申请的实施例, 该配置指示和该物理层信令还携带激活时间, 用 于指示该基站 900和该用户设备在该激活时间根据该多流配置信息进行多流 传输的配置, 该配置处理器用于在接收到所述配置指示后, 在该激活时间根 据该多流配置信息进行多流传输的配置。
可选地, 作为另一实施例, 接收器 910还接收第一无线网络控制器发送 的停止检测指示;检测处理器 920根据该停止检测指示停止检测该用户设备 是否在第二基站的覆盖范围内。
根据本申请的实施例, 检测处理器 920可以根据 UE发送的上行信号中 包含的用户设备的标识信息和第一检测指示中包含的用户设备的标识信息 是否一致来确定用户设备是否在基站 900的覆盖范围内。
根据本申请的实施例,检测处理器 920用于根据上行同步规则来检测该 用户设备是否在该基站 900的覆盖范围内,或者根据第一检测指示中携带的 规则来检测该用户设备是否在该基站 900的覆盖范围内, 或者根据预设的规 则来检测该用户设备是否在该基站 900的覆盖范围内。
可选地,作为另一实施例,第一检测指示还携带该基站 900的频点信息, 检测处理器 920用于在第一检测指示还携带该基站 900 的频点信息的情况 下, 检测该用户设备是否在该基站 900的覆盖范围内。
根据本申请的实施例, 上述另一基站为宏基站, 该基站 900为微基站。 可选地, 作为另一实施例, 配置处理器 930还根据第一无线网络控制器 发送的去配置指示进行该多流传输的去配置。
可选地, 作为另一实施例, 配置处理器 930还根据空口信道质量向第一 无线网络控制器发送去配置请求,接收第一无线网络控制器根据该去配置请 求发送的去配置指示, 并且该基站 900根据该去配置指示进行多流传输的去 配置。
根据本申请的实施例, 该基站 900受第一无线网络控制器的控制, 或者 该基站 900受第二无线网络控制器的控制,其中该基站 900通过第二无线网 络控制器与第一无线网络控制器之间的接口与第一无线网络控制器进行通 信。
根据本申请的实施例, 上述用户设备的标识信息包括与该用户设备相对 应的上行扰码和 /或上行 DPCCH 的信道化码和 /或上行高速专用物理控制信 道时隙格式。
图 10是根据本申请的第十一实施例的无线网络控制器 1000的结构性示 意图。 图 10的无线网络控制器 1000与图 3的方法相对应, 在此不再赘述。 无线网络控制器 1000包括: 发送器 1010和配置处理器 1020。
发送器 1010,用于在用户设备与第一基站之间建立连接的情况下, 向第 二基站发送第一检测指示, 其中第一基站受无线网络控制器 1000的控制, 第一检测指示包含该用户设备的标识信息, 以便第二基站检测该用户设备是 否在第二基站的覆盖范围内。 配置处理器 1020,用于根据用户设备发送的检 测到用户设备在第二基站的覆盖范围内的信息进行多流传输的配置, 以便第 一基站的小区和第二基站的小区作为多流服务小区联合为该用户设备提供 多流传输服务。
本申请的实施例可以由无线网络控制器指示第二基站检测与第一基站 建立连接的用户设备是否在第二基站的覆盖范围内, 并且根据上述检测的结 果进行多流传输的配置, 以便第一基站和第二基站联合为该用户设备提供多 流传输服务, 由于根据本申请实施例在实现多流传输的配置时信令交互较 少, 因此, 降低了系统的资源消耗。
图 11是根据本申请的第十二实施例的无线网络控制器 1100的结构性示 意图。 无线网络控制器 1100包括: 发送器 1110和配置处理器 1120。 图 11 的发送器 1100和配置处理器 1120与图 10的发送器 1010和配置处理器 1020 类似, 在此不再赘述。
可选地, 作为另一实施例, 还包括接收器 1130, 用于接收第二基站根据 该检测的结果发送的第一检测响应, 第一检测响应用于指示该用户设备在第 二基站的覆盖范围内。
可选地, 作为另一实施例, 所述发送器 1110还根据第一检测响应向第 一基站、 第二基站和该用户设备发送多流配置信息, 以便第一基站、 第二基 站和该用户设备根据该多流配置信息进行多流传输的配置。
可选地, 作为另一实施例, 发送器 1110还向第二基站和该用户设备发 送多流配置信息, 并且在接收第二基站发送的第一检测响应之后, 向第一基 站和第二基站发送配置指示, 以便第一基站和第二基站根据该配置指示和该 多流配置信息进行多流传输的配置。
可选地, 作为另一实施例, 发送器 1110还向该用户设备发送重配置信 令, 用于指示该用户设备根据该多流配置信息进行多流传输的配置。
可选地, 作为另一实施例, 该配置指示还携带激活时间, 用于指示第一 基站和第二基站在该激活时间根据该多流配置信息进行多流传输的配置。
可选地, 作为另一实施例, 图 11的无线网络控制器 1100还包括: 接收 器 1130,用于在该用户设备接入第一基站的时,从第一基站接收该用户设备 上报的第二基站的测量信息, 其中该发送器根据该测量信息向第二基站发送 第一检测指示。
可选地, 作为另一实施例, 发送器 1110还向第三基站发送第二检测指 示, 第二检测指示包含该用户设备的标识信息, 以便第三基站检测该用户设 备是否在第三基站的覆盖范围内, 并且在接收到第二基站发送的第一检测响 应的情况下, 向第三基站发送停止检测指示, 以便第三基站停止检测该用户 设备是否在第三基站的覆盖范围内。
可选地, 作为另一实施例, 图 11的无线网络控制器 1100还包括: 接收 器 1130,用于接收第三基站发送的第二检测响应, 第二检测响应用于指示该 用户设备在第三基站的覆盖范围内; 选择处理器 1140,用于根据预设的规则 从第二基站和第三基站组成的组中选择第二基站用以进行该多流传输, 其中 该发送器还向所选择的第二基站发送第一检测指示。
根据本申请的实施例, 第一基站为宏基站, 第二基站为微基站。
可选地, 作为另一实施例, 发送器 1110还用于根据从第二基站接收的 去配置请求向第二基站和用户设备发送去配置指示, 以便第二基站和用户设 备进行多流传输的去配置, 或者根据预设的数据调度条件向第二基站和用户 设备发送去配置指示, 以便第二基站和用户设备进行多流传输的去配置。
根据本申请的实施例, 第二基站受无线网络控制器 1100的控制。
可选地, 作为另一实施例, 第二基站受第二无线网络控制器的控制, 其 中第二基站通过第二无线网络控制器与无线网络控制器 1100之间的接口与 无线网络控制器 1100进行通信。
根据本申请的实施例, 上述标识信息包括与该用户设备相对应的上行扰 码和 /或上行 DPCCH的信道化码和 /或上行高速专用物理控制信道时隙格式。
图 12是根据本申请的第十三实施例的用户设备 1200的结构性示意图。 该用户设备与第一基站建立连接。 图 12的用户设备 1200与图 4的方法相对 应, 在此再赘述。 用户设备 1200包括: 接收器 1210和配置处理器 1220。
接收器 1210,用于接收第一无线网络控制器发送的多流配置信息,其中 第一基站受第一无线网络控制器的控制, 并且接收第二基站发送的物理层信 令和 /或无线资源控制层重配置信令, 该物理层信令和 /或无线资源控制层重 配置信令指示该用户设备根据该多流配置信息进行多流传输的配置。 配置处 理器 1220, 用于根据该物理层信令和 /或无线资源控制层重配置信令以及该 多流配置信息进行多流传输的配置, 以便接收第一基站和第二基站作为多流 服务小区为该用户设备提供的多流传输服务。
本申请的实施例可以由第一无线网络控制器指示第二基站检测与第一 基站建立连接的用户设备是否在第二基站的覆盖范围内, 并且根据上述检测 的结果进行多流传输的配置, 以便第一基站和第二基站联合为该用户设备提 供多流传输服务, 由于根据本申请实施例在实现多流传输的配置时信令交互 较少, 因此, 降低系统的资源消耗。
可选地, 作为另一实施例, 接收器 1210还接收第一无线网络控制器发 送的重配置信令, 该重配置信令用于指示该用户设备根据该多流配置信息进 行多流传输的配置。
可选地, 作为另一实施例, 接收器 1210还接收第一无线网络控制器发 送的去配置指示, 该配置处理器还根据该去配置指示进行多流传输的去配 置。
本申请实施例还提供一种通信系统可包括上述实施例所述的用户设备、 无线网络控制器和基站。
根据本申请的实施例在小小区场景使用多流传输的情况下, 能够有效减 少信令交互, 并且能够较为快速地触发对目标小小区的上报, 让 UE能有效 提体验多流传输的增益。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本申请各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本申请 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)或处理器(processor )执行本申请各个实施例所述方法的 全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 ( ROM , Read-Only Memory ), 随机存取存储器 (RAM , Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本申请的具体实施方式, 但本申请的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本申请揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本申请的保护范围之内。 因此, 本申请的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种多流传输的配置方法, 其特征在于, 包括:
第二基站接收第一无线网络控制器发送的第一检测指示, 其中所述第一 检测指示包含与第一基站建立连接的用户设备的标识信息, 其中所述第一基 站受所述第一无线网络控制器的控制;
所述第二基站根据所述第一检测指示检测所述用户设备是否在所述第 二基站的覆盖范围内;
所述第二基站将检测到所述用户设备在所述第二基站的覆盖范围内的 信息通知第一无线网络控制器, 以便所述第一无线网络控制器根据所述检测 的结果进行多流传输的配置;
所述第二基站根据所述第一无线网络控制器发送的配置指示和多流配 置信息进行多流传输的配置, 以便所述第一基站的小区和所述第二基站的小 区作为多流服务小区联合为所述用户设备提供多流传输服务。
2、 根据权利要求 1所述的配置方法, 其特征在于, 所述第二基站将所 述检测到所述用户设备在所述第二基站的覆盖范围内的信息通知所述第一 无线网络控制器, 包括:
所述第二基站在检测到所述用户设备在所述第二基站的覆盖范围内的 情况下, 向所述第一无线网络控制器发送第一检测响应, 所述第一检测响应 用于指示所述用户设备在所述第二基站的覆盖范围内。
3、 根据权利要求 2所述的配置方法, 其特征在于, 还包括:
所述第二基站接收所述第一无线网络控制器根据所述第一检测响应发 送的所述配置指示和所述多流配置信息。
4、 根据权利要求 2所述的配置方法, 其特征在于, 还包括:
所述第二基站接收所述第一无线网络控制器发送的所述多流配置信息; 所述第二基站接收所述第一无线网络控制器根据所述第一检测响应发 送的所述配置指示。
5、 根据权利要求 4所述的配置方法, 其特征在于, 还包括:
所述第二基站在接收到所述配置指示之后,通过物理层信令通知所述用 户设备根据所述多流配置信息进行多流传输的配置,
和 /或,
所述第二基站向所述用户设备转发所述第一无线网络控制器发送的无 线资源控制层重配置信令, 以通知所述用户设备根据所述多流配置信息进行 多流传输的配置。
6、 根据权利要求 1至 5中的任一项所述的配置方法, 其特征在于, 所 述配置指示还携带激活时间, 用于指示所述第二基站在所述激活时间内根据 所述多流配置信息进行多流传输的配置,
其中所述第二基站根据所述第一无线网络控制器发送的配置指示和多 流配置信息进行多流传输的配置, 包括:
所述第二基站在接收到所述配置指示后,在所述激活时间内根据所述多 流配置信息进行多流传输的配置。
7、 根据权利要求 1至 6中的任一项所述的配置方法, 其特征在于, 还 包括:
所述第二基站接收所述第一无线网络控制器发送的停止检测指示; 所述第二基站根据所述停止检测指示停止检测所述用户设备是否在所 述第二基站的覆盖范围内。
8、 根据权利要求 1至 7中的任一项所述的配置方法, 其特征在于, 所 述第二基站根据所述第一检测指示检测所述用户设备是否在所述第二基站 的覆盖范围内, 包括:
所述第二基站根据上行同步规则来检测所述用户设备是否在所述第二 基站的覆盖范围内;
或者,
所述第二基站根据所述第一检测指示中携带的规则来检测所述用户设 备是否在所述第二基站的覆盖范围内;
或者,
所述第二基站根据预设的规则来检测所述用户设备是否在所述第二基 站的覆盖范围内。
9、 根据权利要求 1至 8中的任一项所述的配置方法, 其特征在于, 所 述第一基站为宏基站, 所述第二基站为微基站。
10、 根据权利要求 1至 9中的任一项所述的配置方法, 其特征在于, 还 包括:
所述第二基站根据所述第一无线网络控制器发送的去配置指示进行所 述多流传输的去配置。
11、 根据权利要求 1至 9中的任一项所述的配置方法, 其特征在于, 还 包括:
所述第二基站根据空口信道质量向所述第一无线网络控制器发送去配 置请求;
所述第二基站接收所述第一无线网络控制器根据所述去配置请求发送 的去配置指示;
所述第二基站根据所述去配置指示进行多流传输的去配置。
12、 根据权利要求 1至 11 中的任一项所述的配置方法, 其特征在于, 所述第二基站受所述第一无线网络控制器的控制;
或者,
所述第二基站受第二无线网络控制器的控制,其中所述第二基站通过所 述第二无线网络控制器与所述第一无线网络控制器之间的接口与所述第一 无线网络控制器进行通信。
13、 根据权利要求 1至 12中的任一项所述的配置方法, 其特征在于, 所述用户设备的标识信息包括与所述用户设备相对应的上行扰码和 /或上行 高速专用物理控制信道的信道化码和 /或上行高速专用物理控制信道时隙格 式。
14、 根据权利要求 1至 13中的任一项所述的配置方法, 其特征在于, 所述第二基站根据所述第一检测指示检测所述用户设备是否在所述第二基 站的覆盖范围内, 包括:
所述第二基站根据 UE发送的上行信号中包含的所述用户设备的标识信 息和所述第一检测指示中包含的所述用户设备的标识信息是否一致来确定 所述用户设备是否在所述第二基站的覆盖范围内。
15、 一种多流传输的配置方法, 其特征在于, 包括:
在用户设备与第一基站之间建立连接的情况下, 第一无线网络控制器向 第二基站发送第一检测指示, 其中所述第一基站受所述第一无线网络控制器 的控制, 所述第一检测指示包含所述用户设备的标识信息, 以便所述第二基 站检测所述用户设备是否在所述第二基站的覆盖范围内;
所述第一无线网络控制器根据所述用户设备发送的检测到所述用户设 备在所述第二基站的覆盖范围内的信息进行多流传输的配置, 以便所述第一 基站的小区和所述第二基站的小区作为多流服务小区联合为所述用户设备 提供多流传输服务。
16、 根据权利要求 15所述的配置方法, 其特征在于, 还包括: 所述第一无线网络控制器接收所述第二基站根据所述检测的结果发送 的第一检测响应, 所述第一检测响应用于指示所述用户设备在所述第二基站 的覆盖范围内。
17、 根据权利要求 16所述的配置方法, 其特征在于, 还包括: 所述第一无线网络控制器根据所述第一检测响应向所述第一基站、所述 第二基站和所述用户设备发送配置指示和多流配置信息, 以便所述第一基 站、所述第二基站和所述用户设备 居所述配置指示和所述多流配置信息进 行多流传输的配置。
18、 根据权利要求 16所述的配置方法, 其特征在于, 还包括: 所述第一无线网络控制器向所述第二基站和所述用户设备发送多流配 置信息;
所述第一无线网络控制器在接收所述第二基站发送的所述第一检测响 应之后, 向所述第一基站和所述第二基站发送所述配置指示, 以便所述第一 基站和所述第二基站根据所述配置指示和所述多流配置信息进行多流传输 的配置。
19、 根据权利要求 18所述的配置方法, 其特征在于, 还包括: 所述第一无线网络控制器向所述用户设备发送重配置信令,用于指示所 述用户设备根据所述多流配置信息进行多流传输的配置。
20、 根据权利要求 18或 19所述的配置方法, 其特征在于, 所述配置指 示还携带激活时间, 用于指示所述第一基站和所述第二基站在所述激活时间 根据所述多流配置信息进行多流传输的配置。
21、 根据权利要求 15至 20中的任一项所述的配置方法, 其特征在于, 还包括:
所述第一无线网络控制器在所述用户设备接入所述第一基站的时,从所 述第一基站接收所述用户设备上报的所述第二基站的测量信息,
其中所述向第二基站发送第一检测指示, 包括:
所述第一无线网络控制器根据所述测量信息向所述第二基站发送所述 第一检测指示。
22、 根据权利要求 16至 20中的任一项所述的配置方法, 其特征在于, 还包括:
所述第一无线网络控制器向第三基站发送所述第二检测指示, 所述第二 检测指示包含所述用户设备的标识信息, 以便所述第三基站检测所述用户设 备是否在所述第三基站的覆盖范围内;
所述第一无线网络控制器在接收到所述第二基站发送的所述第一检测 响应的情况下, 向所述第三基站发送停止检测指示, 以便所述第三基站停止 检测所述用户设备是否在所述第三基站的覆盖范围内。
23、 根据权利要求 22所述的配置方法, 其特征在于, 还包括: 所述第一无线网络控制器接收所述第三基站发送的第二检测响应, 所述 第二检测响应用于指示所述用户设备在所述第三基站的覆盖范围内;
所述第一无线网络控制器根据预设的规则从所述第二基站和所述第三 基站组成的组中选择所述第二基站用以进行所述多流传输,
其中所述第一无线网络控制器向第二基站发送第一检测指示, 包括: 所述第一无线网络控制器向所选择的所述第二基站发送所述第一检测 指示。
24、 根据权利要求 15至 23中的任一项所述的配置方法, 其特征在于, 所述第一基站为宏基站, 所述第二基站为微基站。
25、 根据权利要求 15至 24中的任一项所述的配置方法, 其特征在于, 还包括:
所述第一无线网络控制器从所述第二基站接收去配置请求, 并且根据所 述去配置请求向所述第二基站和所述用户设备发送去配置指示, 以便所述第 二基站和所述用户设备进行多流传输的去配置,
或者,
所述第一无线网络控制器根据预设的数据调度条件向所述第二基站和 所述用户设备发送去配置指示, 以便所述第二基站和所述用户设备进行多流 传输的去配置。
26、 根据权利要求 15至 25中的任一项所述的配置方法, 其特征在于, 所述第二基站受所述第一无线网络控制器的控制;
或者,
所述第二基站受第二无线网络控制器的控制,其中所述第二基站通过所 述第二无线网络控制器与所述第一无线网络控制器之间的接口与所述第一 无线网络控制器进行通信。
27、 根据权利要求 15至 26中的任一项所述的配置方法, 其特征在于, 所述标识信息包括与所述用户设备相对应的上行扰码和 /或上行高速专用物 理控制信道的信道化码和 /或上行高速专用物理控制信道时隙格式。
28、 一种多流传输的配置方法, 其特征在于, 包括:
与第一基站建立连接的用户设备从所述第一无线网络控制器接收多流 配置信息, 其中所述第一基站受所述第一无线网络控制器的控制;
所述用户设备接收所述第二基站发送的物理层信令和 /或无线资源控制 层重配置信令,所述物理层信令和 /或无线资源控制层重配置信令指示所述用 户设备根据所述多流配置信息进行多流传输的配置;
所述用户设备根据所述物理层信令和 /或无线资源控制层重配置信令以 及所述多流配置信息进行多流传输的配置, 以便接收所述第一基站的小区和 所述第二基站的小区作为多流服务小区为所述用户设备提供的多流传输服 务。
29、 根据权利要求 28所述的配置方法, 其特征在于, 还包括: 所述用户设备接收所述第一无线网络控制器发送的去配置指示; 所述用户设备根据所述去配置指示进行多流传输的去配置。
30、 一种基站, 其特征在于, 包括:
接收器, 用于接收第一无线网络控制器发送的第一检测指示, 其中所述 第一检测指示包含与另一基站建立连接的用户设备的标识信息,其中所述另 一基站受所述第一无线网络控制器的控制;
检测处理器, 用于根据所述第一检测指示检测所述用户设备是否在所述 基站的覆盖范围内;
通知处理器, 用于将检测到所述用户设备在所述第二基站的覆盖范围内 的信息通知所述第一无线网络控制器, 以便所述第一无线网络控制器根据所 述检测的结果进行多流传输的配置;
配置处理器,根据所述第一无线网络控制器发送的配置指示和多流配置 信息进行多流传输的配置, 以便所述另一基站的小区和所述基站的小区作为 多流服务小区联合为所述用户设备提供多流传输服务。
31、 根据权利要求 30所述的基站, 其特征在于, 所述通知处理器用于 在检测到所述用户设备在所述基站的覆盖范围内的情况下, 向所述第一无线 网络控制器发送第一检测响应, 所述第一检测响应用于指示所述用户设备在 所述基站的覆盖范围内。
32、 根据权利要求 31所述的基站, 其特征在于, 所述接收器还用于接 收所述第一无线网络控制器根据所述第一检测响应发送的所述配置指示和 所述多流配置信息。
33、 根据权利要求 31所述的基站, 其特征在于, 所述接收器还用于接 收所述第一无线网络控制器发送的所述多流配置信息, 并且接收所述第一无 线网络控制器根据所述第一检测响应发送的所述配置指示。
34、 根据权利要求 33所述的基站, 其特征在于, 所述配置处理器还用 于在接收到所述配置指示之后,通过物理层信令通知所述用户设备根据所述 多流配置信息进行多流传输的配置,或者所述配置处理器向所述用户设备转 发所述第一无线网络控制器发送的无线资源控制层重配置信令, 以通知所述 用户设备根据所述多流配置信息进行多流传输的配置。
35、 根据权利要求 30至 34中的任一项所述的基站, 其特征在于, 所述 配置指示还携带激活时间, 用于指示所述基站在所述激活时间根据所述多流 配置信息进行多流传输的配置, 所述配置处理器用于在接收到所述配置指示 后, 在所述激活时间根据所述多流配置信息进行多流传输的配置。
36、 根据权利要求 30至 35中的任一项所述的基站, 其特征在于, 所述 接收器还接收所述第一无线网络控制器发送的停止检测指示; 所述检测处理 器根据该停止检测指示停止检测所述用户设备是否在所述第二基站的覆盖 范围内。
37、 根据权利要求 30至 36中的任一项所述的基站, 其特征在于, 所述 覆盖范围内, 或者根据所述第一检测指示中携带的规则来检测所述用户设备 是否在所述基站的覆盖范围内, 或者根据预设的规则来检测所述用户设备是 否在所述基站的覆盖范围内。
38、 根据权利要求 30至 37中的任一项所述的基站, 其特征在于, 所述 另一基站为宏基站, 所述基站为微基站。
39、 根据权利要求 30至 38中的任一项所述的基站, 其特征在于, 所述 配置处理器还根据所述第一无线网络控制器发送的去配置指示进行所述多 流传输的去配置。
40、 根据权利要求 30至 38中的任一项所述的基站, 其特征在于, 所述 配置处理器还根据空口信道质量向所述第一无线网络控制器发送去配置请 求, 接收所述第一无线网络控制器根据所述去配置请求发送的去配置指示, 并且所述基站根据所述去配置指示进行多流传输的去配置。
41、 根据权利要求 30至 40中的任一项所述的基站, 其特征在于, 所述 基站受所述第一无线网络控制器的控制, 或者所述基站受第二无线网络控制 器的控制, 其中所述基站通过所述第二无线网络控制器与所述第一无线网络 控制器之间的接口与所述第一无线网络控制器进行通信。
42、 根据权利要求 30至 41中的任一项所述的基站, 其特征在于, 所述 用户设备的标识信息包括与所述用户设备相对应的上行扰码和 /或上行高速 专用物理控制信道的信道化码和 /或上行高速专用物理控制信道时隙格式。
43、 根据权利要求 30至 42中的任一项所述的基站, 其特征在于, 所述 检测处理器根据 UE发送的上行信号中包含的所述用户设备的标识信息和所 述第一检测指示中包含的所述用户设备的标识信息是否一致来确定所述用 户设备是否在所述基站的覆盖范围内。
44、 一种无线网络控制器, 其特征在于, 包括:
发送器, 用于在用户设备与第一基站之间建立连接的情况下, 向第二基 站发送第一检测指示, 其中所述第一基站受所述无线网络控制器的控制, 所 述第一检测指示包含所述用户设备的标识信息, 以便所述第二基站检测所述 用户设备是否在所述第二基站的覆盖范围内;
配置处理器, 用于根据所述用户设备发送的检测到所述用户设备在所述 第二基站的覆盖范围内的信息进行多流传输的配置, 以便所述第一基站的小 区和所述第二基站的小区作为多流服务小区联合为所述用户设备提供多流 传输服务。
45、 根据权利要求 44所述的无线网络控制器, 其特征在于, 还包括: 接收器, 用于接收所述第二基站根据所述检测的结果发送的第一检测响应, 所述第一检测响应用于指示所述用户设备在所述第二基站的覆盖范围内。
46、 根据权利要求 45所述的无线网络控制器, 其特征在于, 所述发送 器还根据所述第一检测响应向所述第一基站、所述第二基站和所述用户设备 发送多流配置信息, 以便所述第一基站、 所述第二基站和所述用户设备根据 所述多流配置信息进行多流传输的配置。
47、 根据权利要求 45所述的无线网络控制器, 其特征在于, 所述发送 器还向所述第二基站和所述用户设备发送多流配置信息, 并且在接收所述第 二基站发送的所述第一检测响应之后, 向所述第一基站和所述第二基站发送 所述配置指示, 以便所述第一基站和所述第二基站根据所述配置指示和所述 多流配置信息进行多流传输的配置。
48、 根据权利要求 47所述的无线网络控制器, 其特征在于, 所述发送 器还向所述用户设备发送重配置信令, 用于指示所述用户设备根据所述多流 配置信息进行多流传输的配置。
49、 根据权利要求 47或 48所述的无线网络控制器, 其特征在于, 所述 配置指示还携带激活时间, 用于指示所述第一基站和所述第二基站在所述激 活时间根据所述多流配置信息进行多流传输的配置。
50、 根据权利要求 44至 49中的任一项所述的无线网络控制器, 其特征 在于, 还包括:
接收器, 用于在所述用户设备接入所述第一基站的时, 从所述第一基站 接收所述用户设备上报的所述第二基站的测量信息, 其中所述发送器根据所 述测量信息向所述第二基站发送所述第一检测指示。
51、 根据权利要求 45至 49中的任一项所述的无线网络控制器, 其特征 在于, 所述发送器还向第三基站发送所述第二检测指示, 所述第二检测指示 包含所述用户设备的标识信息, 以便所述第三基站检测所述用户设备是否在 所述第三基站的覆盖范围内, 并且在接收到所述第二基站发送的所述第一检 测响应的情况下, 向所述第三基站发送停止检测指示, 以便所述第三基站停 止检测所述用户设备是否在所述第三基站的覆盖范围内。
52、 根据权利要求 51所述的无线网络控制器, 其特征在于, 还包括: 接收器, 用于接收所述第三基站发送的第二检测响应, 所述第二检测响 应用于指示所述用户设备在所述第三基站的覆盖范围内;
选择处理器, 用于根据预设的规则从所述第二基站和所述第三基站组成 的组中选择所述第二基站用以进行所述多流传输,其中所述发送器还向所选 择的所述第二基站发送所述第一检测指示。
53、 根据权利要求 44至 52中的任一项所述的无线网络控制器, 其特征 在于, 所述第一基站为宏基站, 所述第二基站为微基站。
54、 根据权利要求 44至 53中的任一项所述的无线网络控制器, 其特征 在于, 所述发送器根据从所述第二基站接收的去配置请求向所述第二基站和 所述用户设备发送去配置指示, 以便所述第二基站和所述用户设备进行多流 传输的去配置,或者根据预设的数据调度条件向所述第二基站和所述用户设 备发送去配置指示, 以便所述第二基站和所述用户设备进行多流传输的去配 置。
55、 根据权利要求 44至 54中的任一项所述的无线网络控制器, 其特征 在于, 所述第二基站受所述无线网络控制器的控制; 或者所述第二基站受第 二无线网络控制器的控制, 其中所述第二基站通过所述第二无线网络控制器 与所述无线网络控制器之间的接口与所述无线网络控制器进行通信。
56、 根据权利要求 44至 55中的任一项所述的无线网络控制器, 其特征 在于,所述标识信息包括与所述用户设备相对应的上行扰码和 /或上行高速专 用物理控制信道的信道化码和 /或上行高速专用物理控制信道时隙格式。
57、 一种用户设备, 所述用户设备与所述第一基站建立连接, 其特征在 于, 所述用户设备包括:
接收器, 用于接收所述第一无线网络控制器发送的多流配置信息, 其中 所述第一基站受所述第一无线网络控制器的控制, 并且接收所述第二基站发 送的物理层信令和 /或无线资源控制层重配置信令, 所述物理层信令和 /或无 线资源控制层重配置信令指示所述用户设备根据所述多流配置信息进行多 流传输的配置;
配置处理器,用于根据所述物理层信令和 /或无线资源控制层重配置信令 以及所述多流配置信息进行多流传输的配置, 以便接收所述第一基站的小区 和所述第二基站的小区作为多流服务小区为所述用户设备提供的多流传输 服务。
58、 根据权利要求 57所述的用户设备, 其特征在于, 所述接收器还接 收所述第一无线网络控制器发送的去配置指示, 所述配置处理器还根据所述 去配置指示进行多流传输的去配置。
PCT/CN2012/076300 2012-05-30 2012-05-30 多流传输的配置方法、基站、无线网络控制器和用户设备 WO2013177768A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280000558.9A CN103650365B (zh) 2012-05-30 2012-05-30 多流传输的配置方法、基站、无线网络控制器和用户设备
EP12878014.5A EP2858263B1 (en) 2012-05-30 2012-05-30 Configuration method of multiflow transmission, base station, radio network controller and user equipment
PCT/CN2012/076300 WO2013177768A1 (zh) 2012-05-30 2012-05-30 多流传输的配置方法、基站、无线网络控制器和用户设备
US14/554,412 US20150078342A1 (en) 2012-05-30 2014-11-26 Method for configuring multiflow, base station, radio network controller, and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/076300 WO2013177768A1 (zh) 2012-05-30 2012-05-30 多流传输的配置方法、基站、无线网络控制器和用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/554,412 Continuation US20150078342A1 (en) 2012-05-30 2014-11-26 Method for configuring multiflow, base station, radio network controller, and user equipment

Publications (1)

Publication Number Publication Date
WO2013177768A1 true WO2013177768A1 (zh) 2013-12-05

Family

ID=49672296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076300 WO2013177768A1 (zh) 2012-05-30 2012-05-30 多流传输的配置方法、基站、无线网络控制器和用户设备

Country Status (4)

Country Link
US (1) US20150078342A1 (zh)
EP (1) EP2858263B1 (zh)
CN (1) CN103650365B (zh)
WO (1) WO2013177768A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106937340A (zh) * 2015-12-31 2017-07-07 华为技术有限公司 一种终端的切换方法和控制器、终端、基站以及系统
US11632271B1 (en) 2022-02-24 2023-04-18 T-Mobile Usa, Inc. Location-based channel estimation in wireless communication systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6055255B2 (ja) * 2012-09-26 2016-12-27 株式会社Nttドコモ 移動通信方法
KR102072417B1 (ko) * 2013-08-05 2020-02-04 삼성전자 주식회사 무선 통신 시스템에서 빠른 다중 기지국 검색 및 접속 방법 및 장치
US20170188273A1 (en) * 2014-04-25 2017-06-29 Intel IP Corporation User equipment and methods for handover initiation
US10390217B2 (en) * 2016-12-27 2019-08-20 Neutrino8, Inc. Wireless configuration of wireless distribution system (WDS) Wi-Fi range extenders using non-Wi-Fi-wireless communication channels
US11019560B2 (en) 2015-09-16 2021-05-25 Neutrino8, Inc. Selective cloud-based SSID (service set identifier) steering for allowing different levels of access for wireless network friends when onboarding on Wi-Fi networks
JP2020127146A (ja) * 2019-02-05 2020-08-20 シャープ株式会社 基地局装置、通信システム、通信方法、及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932091A (zh) * 2009-06-22 2010-12-29 中国移动通信集团公司 协作多点传输系统、方法及相关装置
CN101931439A (zh) * 2009-06-24 2010-12-29 中兴通讯股份有限公司 一种多点协作传输方法及系统
CN102013903A (zh) * 2009-09-29 2011-04-13 大唐移动通信设备有限公司 小区间进行空间协调的方法和设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018945B2 (en) * 2004-04-29 2011-09-13 Interdigital Technology Corporation Method and apparatus for forwarding non-consecutive data blocks in enhanced uplink transmissions
US7945263B2 (en) * 2005-11-29 2011-05-17 Treble Investments Limited Liability Company Mobile station handover for base stations with adaptive antenna system
JP4800067B2 (ja) * 2006-02-21 2011-10-26 株式会社エヌ・ティ・ティ・ドコモ 通信ノード及びルーティング方法
KR100782342B1 (ko) * 2006-07-12 2007-12-06 삼성전자주식회사 방송 메시지 필터링을 위한 장치 및 방법
US8654627B2 (en) * 2007-01-03 2014-02-18 Harris Corporation Data-path dynamic link maintenance in mobile ad hoc networks
JP5217459B2 (ja) * 2008-01-29 2013-06-19 富士通株式会社 基地局装置、及び移動通信システム
US8699455B2 (en) * 2008-03-20 2014-04-15 Telefonaktiebolaget L M Ericsson (Publ) Providing a serving HS-DSCH cell change acknowledgement
US8490156B2 (en) * 2008-05-13 2013-07-16 At&T Mobility Ii Llc Interface for access management of FEMTO cell coverage
CN101742583B (zh) * 2008-11-04 2012-08-08 华为技术有限公司 一种服务小区切换的通知方法、装置和系统
KR101574670B1 (ko) * 2008-12-02 2015-12-04 삼성전자주식회사 협력 기지국 클러스터를 이용한 기지국 협력 기법 및 이를 위한 시스템
US9351201B2 (en) * 2012-03-08 2016-05-24 Qualcomm Incorporated System and method for reducing data loss during a serving cell change in a multi-flow HSDPA communication network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932091A (zh) * 2009-06-22 2010-12-29 中国移动通信集团公司 协作多点传输系统、方法及相关装置
CN101931439A (zh) * 2009-06-24 2010-12-29 中兴通讯股份有限公司 一种多点协作传输方法及系统
CN102013903A (zh) * 2009-09-29 2011-04-13 大唐移动通信设备有限公司 小区间进行空间协调的方法和设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106937340A (zh) * 2015-12-31 2017-07-07 华为技术有限公司 一种终端的切换方法和控制器、终端、基站以及系统
US10638390B2 (en) 2015-12-31 2020-04-28 Huawei Technologies Co., Ltd. Terminal handover method, controller, terminal, base station, and system
US11632271B1 (en) 2022-02-24 2023-04-18 T-Mobile Usa, Inc. Location-based channel estimation in wireless communication systems
US11881966B2 (en) 2022-02-24 2024-01-23 T-Mobile Usa, Inc. Location-based channel estimation in wireless communication systems

Also Published As

Publication number Publication date
CN103650365A (zh) 2014-03-19
EP2858263A4 (en) 2015-10-14
EP2858263B1 (en) 2017-05-10
EP2858263A1 (en) 2015-04-08
CN103650365B (zh) 2016-08-24
US20150078342A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
US11963030B2 (en) Apparatus and method for measurement in wireless communication system
US11057814B2 (en) Seamless mobility for 5G and LTE systems and devices
EP3095271B1 (en) Techniques for switching bearers between radio access technologies (rats)
KR101968586B1 (ko) 이동 통신 시스템에서 장치 내 상호 공존 간섭 보고 제어 방법 및 장치
EP2879432B1 (en) Method, base station, and user equipment for handover between wireless networks
CN105075343B (zh) 用于在异构通信环境中选择网络和分发业务的方法和装置
EP2765806B1 (en) Method and apparatus for reselecting a cell in heterogeneous networks in a wireless communication system
US10149219B2 (en) User terminal, cellular base station, and processor
WO2013177768A1 (zh) 多流传输的配置方法、基站、无线网络控制器和用户设备
JP2015504296A (ja) 無線アクセス・ネットワークにおけるハンドオーバ・パラメータの適応的選択のためのユーザ装置及び方法
US20200314725A1 (en) Method and apparatus for carrier aggregation communication in wireless communication system
EP3777302B1 (en) Apparatus and method for measurement in wireless communication system
US11621823B2 (en) Method and apparatus for performing communication in mobile communication system
CN114846836A (zh) 通信系统、基站及通信终端
EP4170930B1 (en) Method and apparatus for carrier aggregation communication in wireless communication system
JP7314439B1 (ja) ユーザ装置、ノード、及び通信方法
KR20130050196A (ko) Mbms 서비스의 연속성을 위한 혼잡 제어장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012878014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012878014

Country of ref document: EP