WO2020153070A1 - 分光測定装置および分光測定方法 - Google Patents

分光測定装置および分光測定方法 Download PDF

Info

Publication number
WO2020153070A1
WO2020153070A1 PCT/JP2019/050199 JP2019050199W WO2020153070A1 WO 2020153070 A1 WO2020153070 A1 WO 2020153070A1 JP 2019050199 W JP2019050199 W JP 2019050199W WO 2020153070 A1 WO2020153070 A1 WO 2020153070A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum data
light
spectrum
wavelength band
exposure time
Prior art date
Application number
PCT/JP2019/050199
Other languages
English (en)
French (fr)
Inventor
和也 井口
英樹 増岡
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201980089626.5A priority Critical patent/CN113396317B/zh
Priority to KR1020217022159A priority patent/KR20210113994A/ko
Priority to CN202410376316.4A priority patent/CN118089945A/zh
Priority to CN202410376227.XA priority patent/CN118129910A/zh
Priority to US17/423,948 priority patent/US11892352B2/en
Priority to CN202410376037.8A priority patent/CN118089943A/zh
Priority to EP19911798.7A priority patent/EP3916367A4/en
Priority to CN202410376149.3A priority patent/CN118089944A/zh
Publication of WO2020153070A1 publication Critical patent/WO2020153070A1/ja
Priority to US18/092,603 priority patent/US11828653B2/en
Priority to US18/388,632 priority patent/US20240077360A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/32Investigating bands of a spectrum in sequence by a single detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0254Spectrometers, other than colorimeters, making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/40Measuring the intensity of spectral lines by determining density of a photograph of the spectrum; Spectrography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1208Prism and grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/28132D-array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/283Investigating the spectrum computer-interfaced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/065Integrating spheres

Definitions

  • the present disclosure relates to a spectroscopic measurement device and a spectroscopic measurement method.
  • the spectroscopic measurement device can receive the spectral image of the measured light generated on the object by the photodetector and acquire the spectrum of the measured light, and analyze the composition of the object based on the spectrum. It is possible to monitor a phenomenon in an object.
  • the spectroscopic measurement device may be required to acquire a spectrum with a high dynamic range (see Patent Document 1).
  • light is generated due to the gas used for the etching, and light is also generated due to the material of the etching object.
  • the wavelength band of light caused by these gases and the wavelength band of light caused by materials may be different from each other.
  • the etching end timing can be detected by monitoring the temporal change in the light intensity due to the material.
  • Light due to gas has high intensity, and light due to material has low intensity in many cases.
  • the opening formed by dry etching becomes smaller, and the intensity of light generated by the material (light for detecting the end timing of etching) becomes weaker. Is coming.
  • the step of dry etching an object by a plasma process it is important to monitor the gas state, and it is also important to detect the etching end timing. Therefore, it is necessary to acquire the spectrum of the measured light including both the high-intensity light due to the gas and the low-intensity light due to the material by the spectroscopic measurement device.
  • Such a dynamic range of the spectrum of the measured light (the ratio between the maximum level and the minimum level of the light intensity of each wavelength) is large.
  • the spectrum of the excitation light is measured in the state where the sample is not placed in the integrating sphere, and the state where the sample is placed in the integrating sphere.
  • the spectrum of the excitation light absorbed by the sample and the spectrum of the generated light (for example, fluorescence) generated in the sample are simultaneously measured.
  • the excitation light intensity is orders of magnitude higher than the generated light intensity, it is necessary to shorten the exposure time in order to measure the strong excitation light intensity, although it is necessary to measure the weak generated light intensity. I have no choice. Therefore, the generated light cannot be measured with a good S/N ratio. In a sample with low emission efficiency, it is desired to increase the intensity of the excitation light, but it is not easy to increase the intensity of the excitation light because the photodetector will be saturated with the excitation light having a certain intensity or more. ..
  • the dynamic range of the spectrum of the measured light may be large, and it may be desired to acquire the spectrum of the measured light at the same time.
  • the dynamic range of the photodetector (the ratio between the maximum and minimum levels of light intensity that can be detected by the photodetector). If the dynamic range of the spectrum of the light to be measured is larger than the dynamic range of the photodetector, the spectrum of the light to be measured cannot be acquired by receiving the spectral image once by the photodetector. That is, when the signal level output for the light of the low intensity wavelength band is set to be the noise level or higher, the signal level output for the light of the high intensity wavelength band is the saturation level or higher. On the contrary, if the signal level output for the light of the high intensity wavelength band is set to the saturation level or lower, the signal level output for the light of the low intensity wavelength band becomes the noise level or lower.
  • a high-intensity light spectrum is acquired by a short-time photodetector, and a low-intensity light spectrum is acquired by a long-exposure photodetector.
  • the wavelength axis or the spectrum acquisition operation may be different between the two photodetectors due to a machine difference or a temperature difference. Therefore, it is desirable to use one photodetector to acquire the spectrum of the measured light including both the high intensity light and the low intensity light.
  • the embodiment aims to provide a spectroscopic measurement device and a spectroscopic measurement method capable of acquiring an optical spectrum in a high dynamic range by using one photodetector.
  • the embodiment is a spectroscopic measurement device.
  • the spectroscopic measurement device has (1) an optical system that forms a spectroscopic image by dispersing the measured light, and (2) a light-receiving surface in which a plurality of pixels are arranged in each of a plurality of rows, and a plurality of light-receiving surfaces are provided.
  • a spectral image having a wavelength axis in the pixel array direction of each row is formed, and the spectral image is formed over the first exposure time by the plurality of pixels arranged in one or a plurality of rows in the first region on the light receiving surface.
  • the first spectrum data of the measured light is received and output, and the spectral image is received over the second exposure time by the plurality of pixels arranged in one or a plurality of rows in the second area on the light receiving surface.
  • the second exposure time is longer than the exposure time, and the analysis unit sets the spectrum wavelength band to a saturated wavelength band including a wavelength band whose value in the second spectrum data is equal to or higher than the saturation level, and a non-saturated wavelength band other than this saturation wavelength band.
  • the embodiment is a spectroscopic measurement method.
  • the spectroscopic measurement method uses (1) a photodetector having a light receiving surface in which a plurality of pixels are arranged in each of a plurality of rows, and the measured light having a wavelength axis in the pixel arrangement direction of each of the plurality of rows on the light receiving surface. And a plurality of pixels arranged in one or a plurality of rows in the first region on the light receiving surface to receive the spectral image over the first exposure time to obtain the first spectral data of the measured light.
  • the spectral image is received over the second exposure time by the plurality of pixels arranged in one or a plurality of rows in the second region on the light receiving surface, and the second spectrum data of the measured light is output.
  • the second exposure is performed from the first exposure time. It takes a long time, and in the analysis step, the wavelength band of the spectrum is divided into a saturated wavelength band including a wavelength band whose value is equal to or higher than the saturation level in the second spectrum data, and an unsaturated wavelength band other than this saturated wavelength band.
  • the spectrum of the measured light is obtained based on the first partial spectrum data of the saturated wavelength band of the first spectrum data and the second partial spectrum data of the non-saturation wavelength band of the second spectrum data. ..
  • the spectroscopic measurement device and the spectroscopic measurement method of the embodiment it is possible to acquire an optical spectrum in a high dynamic range using one photodetector.
  • FIG. 1 is a diagram showing a configuration of a spectroscopic measurement device.
  • FIG. 2 is a diagram showing an example of a spectral image.
  • FIG. 3 is a diagram schematically showing the configuration of the photodetector.
  • FIG. 4 is a timing chart showing a first operation example of the photodetector.
  • FIG. 5 is a timing chart showing a second operation example of the photodetector.
  • FIG. 6 is a diagram showing an example of the first spectrum data.
  • FIG. 7 is a diagram showing an example of the second spectrum data.
  • FIG. 8 is a diagram showing an example in which the value of the predetermined wavelength band is set to 0 in the first spectrum data (FIG. 6).
  • FIG. 6 is a diagram showing a configuration of a spectroscopic measurement device.
  • FIG. 2 is a diagram showing an example of a spectral image.
  • FIG. 3 is a diagram schematically showing the configuration of the photodetector.
  • FIG. 9 is a diagram showing an example in which the value of a predetermined wavelength band is set to 0 in the second spectrum data (FIG. 7).
  • FIG. 10 is a diagram showing the spectrum of the measured light obtained based on the adjusted first partial spectrum data and second partial spectrum data.
  • FIG. 11 is a graph showing an example of the relationship between the exposure time of the first region and the dynamic range for each of the example and the comparative example.
  • FIG. 1 is a diagram showing the configuration of the spectroscopic measurement device 1.
  • the spectroscopic measurement device 1 includes an optical system 10, a photodetector 20, an analysis unit 30, a display unit 40, and an input unit 50, and acquires the spectrum of the measured light that has arrived from the object S.
  • the object S is an object of dry etching by a plasma process, and the measured light from the object S is due to the light caused by the gas used for the etching and the material of the etching object. Including light.
  • the object S is an object of the emission quantum yield measurement placed in the integrating sphere, and the light to be measured from the object S includes excitation light and generated light (for example, fluorescence).
  • the optical system 10 guides the measured light from the object S to the light receiving surface of the photodetector 20, and forms a spectral image of the measured light on the light receiving surface of the photodetector 20.
  • the optical system 10 may include an optical fiber that guides light.
  • the optical system 10 disperses the measured light into each wavelength component by a spectroscopic element such as a grating or a prism, and forms a spectroscopic image on the light receiving surface of the photodetector 20.
  • the optical system 10 may include optical elements such as lenses and mirrors. Further, the optical system 10 may be, for example, a Zernitana spectroscope.
  • the photodetector 20 has a light receiving surface in which a plurality of pixels are arranged in each of a plurality of rows. A spectroscopic image having a wavelength axis in the pixel array direction of each of the plurality of rows is formed on the light receiving surface.
  • the photodetector 20 is, for example, a CCD image sensor or a CMOS image sensor formed on a semiconductor substrate.
  • the photodetector 20 is thinned by grinding the back surface of the semiconductor substrate (the surface opposite to the image sensor formation surface), and is capable of highly sensitive light detection in a wide wavelength band. preferable. Further, the CCD image sensor is preferable because it has higher sensitivity than the CMOS image sensor.
  • the CCD image sensor may be any of an interline CCD type, a frame transfer CCD type and a full frame transfer CCD type.
  • the light receiving surface of the photodetector 20 is divided into a first area and a second area.
  • the photodetector 20 receives a spectroscopic image over a first exposure time by a plurality of pixels arranged in one or a plurality of rows in a first region on the light receiving surface, and outputs first spectral data of the measured light. Output. Further, the photodetector 20 receives the spectroscopic image over the second exposure time by the plurality of pixels arranged in one or a plurality of rows in the second region on the light receiving surface and receives the second spectrum of the measured light. Output the data.
  • the second exposure time is longer than the first exposure time.
  • the analysis unit 30 obtains the spectrum of the measured light based on the first spectrum data and the second spectrum data. The contents of the analysis by the analysis unit 30 will be described later.
  • the analysis unit 30 includes a storage unit that stores the input first spectrum data and second spectrum data, analysis results, and the like. The analysis unit 30 may also control the photodetector 20.
  • the analysis unit 30 may be, for example, a computer or a tablet terminal including a processor such as a CPU (Central Processing Unit) and a storage medium such as a RAM (Random Access Memory) or a ROM (Read Only Memory), and in that case, a display It can be integrated with the unit 40 and the input unit 50.
  • the analysis unit 30 may be configured by a microcomputer or FPGA (Field-Programmable Gate Array).
  • the display unit 40 displays a spectrum based on the first spectrum data and the second spectrum data input by the analysis unit 30, and also displays the analysis result by the analysis unit 30.
  • the input unit 50 is, for example, a keyboard or a mouse, receives an input instruction from an operator who performs spectroscopic measurement using the spectroscopic measurement device 1, and inputs the input information (for example, measurement condition or display condition) to the analysis unit 30. give. Further, the display unit 40 and the input unit 50 may be an integrated touch panel or the like.
  • FIG. 2 is a diagram showing an example of a spectral image.
  • the wavelength axis extends in the horizontal direction
  • the image for each wavelength extends in the vertical direction.
  • a spectral image has a vertically symmetrical shape with a certain center line (broken line in the drawing) extending in the lateral direction as the axis of symmetry.
  • the image for each wavelength may have an arched shape.
  • FIG. 3 is a diagram schematically showing the configuration of the photodetector 20.
  • the photodetector 20 is a CCD image sensor.
  • the light receiving surface of the photodetector 20 is divided into a first region 21 and a second region 22 with a symmetry axis (broken line in FIG. 2) of the formed spectral image as a boundary.
  • Each of the first region 21 and the second region 22 has a plurality of pixels arranged in one or a plurality of rows.
  • Each pixel can generate and store an amount of electric charge according to the intensity of the received light.
  • each of the first region 21 and the second region 22 has 128 rows in the vertical direction, and 2048 pixels are arranged in the horizontal direction in each row.
  • the charges generated and accumulated in each pixel are transferred to the horizontal shift register 23, and the charges of one or a plurality of pixels in each column are added to each column in the horizontal shift register 23. (Hereinafter, this operation is called “vertical transfer”). After that, the charges added up for each column in the horizontal shift register 23 are sequentially read out from the horizontal shift register 23 (hereinafter, this operation is referred to as “transverse transfer”). Then, a voltage value corresponding to the amount of charges read from the horizontal shift register 23 is output from the amplifier 25, and the voltage value is AD-converted by the AD converter to be a digital value. In this way, the first spectrum data is acquired.
  • the charges generated and accumulated in each pixel are transferred to the horizontal shift register 24, and the charges of one or a plurality of pixels in each column are added together in the horizontal shift register 24 for each column. (Vertical transfer). After that, the charges added up for each column in the horizontal shift register 24 are sequentially read out from the horizontal shift register 24 (horizontal transfer). Then, a voltage value corresponding to the amount of charges read from the horizontal shift register 24 is output from the amplifier 26, and the voltage value is AD-converted by the AD converter to be a digital value. In this way, the second spectrum data is acquired.
  • the second exposure time in the second area 22 is longer than the first exposure time in the first area 21.
  • the exposure time of each area can be set by an electronic shutter.
  • the electronic shutter can be realized by using an anti-blooming gate (ABG).
  • the photodetector 20 performs the output operation of the first spectrum data and the output operation of the second spectrum data in synchronization. It is also preferable that the photodetector 20 has an output cycle of the second spectrum data that is an integral multiple of the output cycle of the first spectrum data.
  • FIG. 4 is a timing chart showing a first operation example of the photodetector 20. This figure is a timing chart when a full frame transfer type CCD image sensor is used. In this case, half of the charges accumulated during the vertical transfer period are transferred to the horizontal shift register in the vertical transfer, and the other half are transferred to the horizontal shift register in the next vertical transfer.
  • the ABG is always in the off state, and the electric charge is always accumulated.
  • the output cycle of the second spectrum data from the second area 22 is five times the output cycle of the first spectrum data from the first area 21. Therefore, the second exposure time in the second region 22 is about 5 times the first exposure time in the first region 21.
  • the analysis unit 30 may average a plurality (for example, five) of first spectrum data that are continuously output from the photodetector 20, and process the averaged first spectrum data.
  • FIG. 5 is a timing chart showing a second operation example of the photodetector 20. This figure is also a timing chart when a full frame transfer type CCD image sensor is used.
  • the ABG is always off and the electric charge is always accumulated. Therefore, in the second region 22, it is possible to measure the pulse phenomenon that occurs only for a moment.
  • the ABG periodically repeats on/off. Therefore, in the first region 21, the charges generated while the ABG is in the on state are discarded, and the charges generated while the ABG is in the off state are accumulated. In the first region 21, the unread charges at the time of vertical transfer are discarded before the next vertical transfer.
  • the signal instructing one output operation is the other output operation. May be superimposed as noise on the signal instructing. Therefore, when performing the output operation of each of the first region 21 and the second region 22 at the same timing, it is preferable to completely synchronize the output operation of each of the first region 21 and the second region 22.
  • FIG. 6 is a diagram showing an example of the first spectrum data.
  • FIG. 7 is a diagram showing an example of the second spectrum data.
  • the first spectral data and the second spectral data are acquired by the photodetector 20 substantially at the same time.
  • the first spectrum data (FIG. 6) is acquired in the first region 21 with a short exposure time, and is below the saturation level in all wavelength bands.
  • the second spectrum data (FIG. 7) is acquired in the second region 22 with a long exposure time, and is above the saturation level in a certain wavelength band.
  • the analysis unit 30 determines that the entire wavelength band of the spectrum (approximately 200 nm to 880 nm in these figures) is the saturated wavelength band (approximately 400 nm to 880 nm) including the wavelength band whose value is equal to or higher than the saturation level in the second spectrum data. , And a non-saturated wavelength band (about 200 nm to 400 nm) other than this saturated wavelength band.
  • the saturation wavelength band the first spectrum data is below the saturation level even if the second spectrum data is above the saturation level.
  • the second spectral data is below the saturation level and can have a better S/N ratio than the first spectral data.
  • the analysis unit 30 determines the spectrum of the measured light based on the first partial spectrum data in the saturated wavelength band of the first spectrum data and the second partial spectrum data in the non-saturated wavelength band of the second spectrum data. Ask for.
  • the analysis unit 30 connects the first partial spectrum data of the saturated wavelength band of the first spectrum data and the second partial spectrum data of the unsaturated wavelength band of the second spectrum data to each other as follows. Thus, the spectrum of one measurement light can be obtained.
  • the analysis unit 30 obtains the ratio of the integrated values of the first spectrum data and the second spectrum data in the wavelength band in which both the first spectrum data and the second spectrum data are below the saturation level. Specifically, the analysis unit 30 first determines the respective values of the first spectrum data and the second spectrum data in a wavelength band in which both or one of the first spectrum data and the second spectrum data is at a saturation level or higher. Set to 0.
  • FIG. 8 is a diagram showing an example in which the value of a predetermined wavelength band (wavelength band equal to or higher than the saturation level) is set to 0 in the first spectrum data (FIG. 6).
  • FIG. 9 is a diagram showing an example in which the value of a predetermined wavelength band (wavelength band equal to or higher than the saturation level) is set to 0 in the second spectrum data (FIG. 7).
  • the analysis unit 30 obtains the integrated value of each of the first spectral data and the second spectral data after the value of the predetermined wavelength band is set to 0, and obtains the ratio of these two integrated values.
  • the ratio of the integrated values represents the intensity ratio of the output signals from each of the first region 21 and the second region 22, and represents the ratio of the exposure time.
  • the analysis unit 30 adjusts both or either of the first partial spectrum data and the second partial spectrum data by using the ratio of the integrated values, and adjusts the adjusted first partial spectrum data and the second partial spectrum.
  • the entire spectrum of the measured light is obtained based on the data.
  • the first partial spectrum data may be multiplied by the integrated value ratio, or the second partial spectrum data may be divided by the integrated value ratio.
  • FIG. 10 is a diagram showing the spectrum of the measured light obtained based on the adjusted first partial spectrum data and second partial spectrum data.
  • the spectroscopic measurement method of the present embodiment performs measurement using the spectroscopic measurement device of the present embodiment described above, and a photodetection step of outputting the first spectrum data and the second spectrum data using the photodetector 20. And an analysis step of obtaining the spectrum of the measured light based on the first spectrum data and the second spectrum data.
  • the content of the photodetection step is as described as the configuration and operation of the photodetector 20.
  • the content of the analysis step is as described as the analysis content of the analysis unit 30.
  • FIG. 11 is a graph showing an example of the relationship between the exposure time of the first region and the dynamic range for each of the example and the comparative example.
  • the dynamic range of the comparative example is that when the spectrum of the measured light is acquired without being divided into the first region and the second region.
  • the dynamic range of the embodiment is larger than that of the comparative example.
  • the dynamic range is represented by the ratio between the maximum level and the minimum level that can be detected.
  • the maximum level that can be detected is the saturation charge amount (eg, 300 ke ⁇ ) of the horizontal shift register, and the minimum level that can be detected is the noise level.
  • the minimum detectable level (noise level) of the second partial spectrum data is reduced and the dynamic range is increased by dividing the second partial spectrum data by the integrated value ratio (the intensity ratio of the output signal). ..
  • a single photodetector 20 can be used to acquire an optical spectrum in a high dynamic range. Moreover, both high intensity light and low intensity light can be measured substantially simultaneously. Therefore, in the step of dry-etching the object by the plasma process, it is possible to acquire the spectrum of the measured light including both the high-intensity light caused by the gas and the low-intensity light caused by the material, and determine the state of the gas. It is possible to monitor and detect the etching end timing. Further, when measuring the emission quantum yield of a sample using an integrating sphere, the spectrum of the excitation light absorbed by the sample and the generated light (eg fluorescence) generated by the sample in the state where the sample is placed in the integrating sphere. The spectra can be measured simultaneously.
  • the spectroscopic measurement device and the spectroscopic measurement method of the present embodiment not only measure both high-intensity light and low-intensity light substantially simultaneously, but also differ from each other in high-intensity light and low-intensity light. It can also be measured over a period of time. In the latter case, the same measurement condition can be used for high intensity light measurement and low intensity light measurement.
  • the ND filter need not be inserted during high intensity light measurement.
  • the applications include, for example, measurement of a spectrum of weak output light when a minute current is applied to a light emitting diode (LED) and a spectrum of bright output light when a rated current is applied to the LED. In such applications, high dynamic range measurement of light can be performed with wavelength accuracy.
  • the spectroscopic measurement device and spectroscopic measurement method are not limited to the above-described embodiments and configuration examples, and various modifications are possible.
  • the spectroscopic measurement device has (1) an optical system that disperses light under measurement to form a spectroscopic image, and (2) a light-receiving surface in which a plurality of pixels are arranged in each of a plurality of rows, A spectral image having a wavelength axis in the pixel array direction of each of a plurality of rows is formed on the surface, and the plurality of pixels arranged in one or a plurality of rows in the first region on the light receiving surface cover the first exposure time. And outputs the first spectrum data of the measured light, and the plurality of pixels arranged in one or a plurality of rows in the second area on the light-receiving surface spread the spectrum image over the second exposure time.
  • a photodetector for receiving and outputting second spectrum data of the measured light and (3) an analysis unit for obtaining the spectrum of the measured light based on the first spectrum data and the second spectrum data, 4)
  • the second exposure time is longer than the first exposure time, and the analysis unit sets the wavelength band of the spectrum to a saturated wavelength band including a wavelength band whose value is equal to or higher than the saturation level in the second spectrum data, and the saturated wavelength band.
  • the first partial spectrum data of the saturation wavelength band of the first spectrum data and the second partial spectrum data of the non-saturation wavelength band of the second spectrum data Based on this, the spectrum of the measured light is obtained.
  • the spectroscopic measurement method uses (1) a photodetector having a light receiving surface in which a plurality of pixels are arranged in each of a plurality of rows, and a wavelength axis is arranged on the light receiving surface in the pixel arrangement direction of each of the plurality of rows. A spectroscopic image of the measured light is formed, and the spectroscopic image is received over the first exposure time by the plurality of pixels arranged in one or a plurality of rows in the first area on the light receiving surface to detect the measured light.
  • the second spectrum of the measured light is output by outputting the first spectrum data and receiving the spectral image over the second exposure time by the plurality of pixels arranged in one or a plurality of rows in the second region on the light receiving surface.
  • the first exposure time The second exposure time is longer than the above, and in the analysis step, the spectrum wavelength band includes a saturated wavelength band including a wavelength band whose value is equal to or higher than the saturation level in the second spectrum data, and a non-saturated wavelength band other than this saturated wavelength band
  • the second partial spectrum data of the non-saturated wavelength band of the second spectral data the measured light is measured based on the first partial spectrum data of the saturated wavelength band of the first spectral data. The spectrum is obtained.
  • the above-mentioned spectroscopic measurement device may be configured such that the photodetector is a CCD image sensor. Further, in the above-described spectroscopic measurement method, a CCD image sensor may be used as a photodetector in the photodetection step.
  • the photodetector may be configured to set at least one of the first exposure time and the second exposure time by an anti-blooming gate. Further, in the above-mentioned spectroscopic measurement method, at least one of the first exposure time and the second exposure time may be set by the anti-blooming gate in the light detection step.
  • the photodetector may be configured to perform the output operation of the first spectrum data and the output operation of the second spectrum data in synchronization. Further, the above-described spectroscopic measurement method may be configured such that the output operation of the first spectrum data and the output operation of the second spectrum data are performed in synchronization in the light detection step.
  • the photodetector may have a configuration in which the output cycle of the second spectrum data is an integral multiple of the output cycle of the first spectrum data. Further, in the above-described spectroscopic measurement method, the output cycle of the second spectrum data may be an integral multiple of the output cycle of the first spectrum data in the light detection step.
  • the analysis unit uses the ratio of the integrated value of each of the first spectrum data and the second spectrum data in the wavelength band in which both the first spectrum data and the second spectrum data are below the saturation level, A configuration may be adopted in which both or either of the first partial spectrum data and the second partial spectrum data are adjusted, and the spectrum of the measured light is obtained based on the adjusted first partial spectrum data and second adjusted partial spectrum data.
  • the above-described spectroscopic measurement method uses the ratio of the integrated values of the first spectrum data and the second spectrum data in the wavelength band in which both the first spectrum data and the second spectrum data are at the saturation level or less, It is also possible to adjust either or both of the first partial spectrum data and the second partial spectrum data, and obtain the spectrum of the measured light based on the adjusted first partial spectrum data and second partial spectrum data.
  • the embodiment can be used as a spectroscopic measurement device and a spectroscopic measurement method that can acquire an optical spectrum in a high dynamic range using one photodetector.
  • Spectroscopic measurement device 10... Optical system, 20... Photodetector, 21... First area, 22... Second area, 30... Analysis section, 40... Display section, 50... Input section.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

分光測定装置1は、光学系10、光検出器20および解析部30を備える。光学系10は、対象物Sからの被測定光を光検出器20の受光面へ導くとともに、被測定光の分光像を光検出器20の受光面上に形成する。光検出器20は、複数の行それぞれに複数の画素が配列された受光面を有する。光検出器20は、受光面上の第1領域にある1または複数の行に配列された複数の画素により第1露光時間に亘って分光像を受光して被測定光の第1スペクトルデータを出力する。光検出器20は、受光面上の第2領域にある1または複数の行に配列された複数の画素により第2露光時間に亘って分光像を受光して被測定光の第2スペクトルデータを出力する。第1露光時間より第2露光時間が長い。これにより、一つの光検出器を用いて高ダイナミックレンジの光スペクトルを取得することができる分光測定装置および分光測定方法が実現される。

Description

分光測定装置および分光測定方法
 本開示は、分光測定装置および分光測定方法に関するものである。
 分光測定装置は、対象物で生じた被測定光の分光像を光検出器により受光して該被測定光のスペクトルを取得することができ、そのスペクトルに基づいて対象物の組成を分析したり対象物における現象をモニタしたりすることができる。分光測定装置は、高ダイナミックレンジのスペクトルを取得することが要求される場合がある(特許文献1参照)。
 例えば、プラズマプロセスにより対象物をドライエッチングする工程において、そのエッチングに使用するガスに起因する光が発生し、また、エッチング対象物の材料に起因する光も発生する。これらのガス起因の光の波長帯と材料起因の光の波長帯とが互いに異なる場合がある。ガス起因の光の強度をモニタすることにより、ガスの状態を監視することができる。材料起因の光の強度の時間的変化をモニタすることにより、エッチング終了タイミングを検知することができる。ガス起因の光は高強度であり、これと比べて材料起因の光は低強度であることが多い。
 近年の半導体プロセスの微細化の進展に伴い、ドライエッチングにより形成される開口部が小さくなり、そこから発生する材料起因の光(エッチング終了タイミングを検知する為の光)の強度が更に微弱になってきている。プラズマプロセスにより対象物をドライエッチングする工程において、ガスの状態を監視することは重要であり、エッチング終了タイミングを検知することも重要である。したがって、ガス起因の高強度の光および材料起因の低強度の光の双方を含む被測定光のスペクトルを分光測定装置により取得することが必要である。このような被測定光のスペクトルのダイナミックレンジ(各波長の光強度の最大レベルと最小レベルとの比)は大きい。
 また、積分球を用いてサンプルの発光量子収率を測定する際には、積分球内にサンプルを入れていない状態において励起光のスペクトルを測定し、また、積分球内にサンプルを入れた状態においてサンプルにより吸収された励起光のスペクトルおよびサンプルで発生した発生光(例えば蛍光)のスペクトルを同時に測定する。サンプルにより吸収された励起光を精密に見積もる為に、一般的には、励起光スペクトルおよび発生光スペクトルを同一露光期間に測定することが必要である。
 このとき、発生光強度と比較して励起光強度が桁違いに高いことから、弱い発生光強度を測定する必要があるにも拘わらず、強い励起光強度を測定する為に露光時間を短くせざるを得ない。それ故、S/N比よく発生光を測定することができない。発光効率の低いサンプルにおいては、励起光強度を高くしたいところであるが、一定光量以上の強度の励起光においては光検出器が飽和してしまうことから、励起光強度を高くすることも容易ではない。
 これらの例に限らず、被測定光のスペクトルのダイナミックレンジが大きい場合があり、その被測定光のスペクトルを同時に取得することが望まれる場合がある。
特表2007-527516号公報
 光検出器のダイナミックレンジ(光検出器により検出が可能な光強度の最大レベルと最小レベルとの比)には限界がある。光検出器のダイナミックレンジと比べて被測定光のスペクトルのダイナミックレンジが大きいと、光検出器による一度の分光像の受光により被測定光のスペクトルを取得することができない。すなわち、低強度の波長帯の光に対して出力される信号レベルがノイズレベル以上となるようにすると、高強度の波長帯の光に対して出力される信号レベルは飽和レベル以上となる。逆に、高強度の波長帯の光に対して出力される信号レベルが飽和レベル以下となるようにすると、低強度の波長帯の光に対して出力される信号レベルはノイズレベル以下となる。
 露光時間が互いに異なる二つの光検出器を用いて、高強度の光のスペクトルを短時間露光の光検出器により取得し、低強度の光のスペクトルを長時間露光の光検出器により取得することが考えられる。しかし、この場合、二つの光検出器の間で機差または温度差により波長軸またはスペクトル取得動作が互いに異なる場合がある。したがって、一つの光検出器を用いて、高強度の光および低強度の光の双方を含む被測定光のスペクトルを取得することが望ましい。
 実施形態は、一つの光検出器を用いて高ダイナミックレンジの光スペクトルを取得することができる分光測定装置および分光測定方法を提供することを目的とする。
 実施形態は、分光測定装置である。分光測定装置は、(1)被測定光を分光して分光像を形成する光学系と、(2)複数の行それぞれに複数の画素が配列された受光面を有し、受光面上において複数の行それぞれの画素配列方向に波長軸を有する分光像が形成され、受光面上の第1領域にある1または複数の行に配列された複数の画素により第1露光時間に亘って分光像を受光して被測定光の第1スペクトルデータを出力し、受光面上の第2領域にある1または複数の行に配列された複数の画素により第2露光時間に亘って分光像を受光して被測定光の第2スペクトルデータを出力する光検出器と、(3)第1スペクトルデータおよび第2スペクトルデータに基づいて被測定光のスペクトルを求める解析部と、を備え、(4)第1露光時間より第2露光時間が長く、解析部は、スペクトルの波長帯を、第2スペクトルデータのうち値が飽和レベル以上である波長帯を含む飽和波長帯と、この飽和波長帯以外の非飽和波長帯とに区分したときに、第1スペクトルデータのうちの飽和波長帯の第1部分スペクトルデータと、第2スペクトルデータのうちの非飽和波長帯の第2部分スペクトルデータとに基づいて、被測定光のスペクトルを求める。
 実施形態は、分光測定方法である。分光測定方法は、(1)複数の行それぞれに複数の画素が配列された受光面を有する光検出器を用い、受光面上において複数の行それぞれの画素配列方向に波長軸を有する被測定光の分光像を形成し、受光面上の第1領域にある1または複数の行に配列された複数の画素により第1露光時間に亘って分光像を受光して被測定光の第1スペクトルデータを出力し、受光面上の第2領域にある1または複数の行に配列された複数の画素により第2露光時間に亘って分光像を受光して被測定光の第2スペクトルデータを出力する光検出ステップと、(2)第1スペクトルデータおよび第2スペクトルデータに基づいて被測定光のスペクトルを求める解析ステップと、を備え、(3)光検出ステップにおいて、第1露光時間より第2露光時間が長く、解析ステップにおいて、スペクトルの波長帯を、第2スペクトルデータのうち値が飽和レベル以上である波長帯を含む飽和波長帯と、この飽和波長帯以外の非飽和波長帯とに区分したときに、第1スペクトルデータのうちの飽和波長帯の第1部分スペクトルデータと、第2スペクトルデータのうちの非飽和波長帯の第2部分スペクトルデータとに基づいて、被測定光のスペクトルを求める。
 実施形態の分光測定装置および分光測定方法によれば、一つの光検出器を用いて高ダイナミックレンジの光スペクトルを取得することができる。
図1は、分光測定装置の構成を示す図である。 図2は、分光像の例を示す図である。 図3は、光検出器の構成を模式的に示す図である。 図4は、光検出器の第1動作例を示すタイミングチャートである。 図5は、光検出器の第2動作例を示すタイミングチャートである。 図6は、第1スペクトルデータの例を示す図である。 図7は、第2スペクトルデータの例を示す図である。 図8は、第1スペクトルデータ(図6)において所定の波長帯の値を0にした例を示す図である。 図9は、第2スペクトルデータ(図7)において所定の波長帯の値を0にした例を示す図である。 図10は、調整後の第1部分スペクトルデータおよび第2部分スペクトルデータに基づいて得られた被測定光のスペクトルを示す図である。 図11は、実施例および比較例それぞれについて第1領域の露光時間とダイナミックレンジとの関係の一例を示すグラフである。
 以下、添付図面を参照して、分光測定装置および分光測定方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。本発明は、これらの例示に限定されるものではない。
 図1は、分光測定装置1の構成を示す図である。分光測定装置1は、光学系10、光検出器20、解析部30、表示部40および入力部50を備え、対象物Sから到達した被測定光のスペクトルを取得する。例えば、対象物Sは、プラズマプロセスによるドライエッチングの対象物であり、その対象物Sからの被測定光は、そのエッチングに使用するガスに起因する光、および、エッチング対象物の材料に起因する光を含む。また、例えば、対象物Sは、積分球内に入れられた発光量子収率測定の対象物であり、その対象物Sからの被測定光は、励起光および発生光(例えば蛍光)を含む。
 光学系10は、対象物Sからの被測定光を光検出器20の受光面へ導くとともに、被測定光の分光像を光検出器20の受光面上に形成する。光学系10は、光を導光する光ファイバを含んでいてもよい。光学系10は、グレーティングまたはプリズム等の分光素子によって被測定光を各波長成分に分光して、その分光像を光検出器20の受光面上に形成する。光学系10は、レンズおよびミラー等の光学素子を含んでいてもよい。また、光学系10は、例えばツェルニターナ分光器であってもよい。
 光検出器20は、複数の行それぞれに複数の画素が配列された受光面を有する。その受光面上において複数の行それぞれの画素配列方向に波長軸を有する分光像が形成される。光検出器20は、例えば半導体基板上に形成されたCCDイメージセンサまたはCMOSイメージセンサである。
 光検出器20は、半導体基板の裏面(イメージセンサ形成面と反対側の面)が研削されることで薄型化されていて、広波長帯域で高感度の光検出が可能なものであるのが好ましい。また、CCDイメージセンサは、CMOSイメージセンサと比べて高感度であるので好ましい。なお、CCDイメージセンサは、インターラインCCD型、フレームトランスファーCCD型およびフルフレームトランスファーCCD型のいずれでもよい。
 光検出器20の受光面は、第1領域と第2領域とに区分されている。光検出器20は、受光面上の第1領域にある1または複数の行に配列された複数の画素により第1露光時間に亘って分光像を受光して被測定光の第1スペクトルデータを出力する。また、光検出器20は、受光面上の第2領域にある1または複数の行に配列された複数の画素により第2露光時間に亘って分光像を受光して被測定光の第2スペクトルデータを出力する。第1露光時間より第2露光時間が長い。
 解析部30は、第1スペクトルデータおよび第2スペクトルデータに基づいて被測定光のスペクトルを求める。解析部30による解析の内容については後述する。解析部30は、入力した第1スペクトルデータおよび第2スペクトルデータや解析結果等を記憶する記憶部を含む。また、解析部30は、光検出器20を制御してもよい。
 解析部30は、例えばCPU(Central Processing Unit)等のプロセッサ及びRAM(Random Access Memory)やROM(Read Only Memory)等の記憶媒体を備えるコンピュータやタブレット端末であってもよく、その場合には表示部40および入力部50とともに一体とすることができる。また、解析部30は、マイコンやFPGA(Field-Programmable Gate Array)で構成されていてもよい。
 表示部40は、解析部30が入力した第1スペクトルデータおよび第2スペクトルデータに基づいてスペクトルを表示し、また、解析部30による解析結果を表示する。入力部50は、例えばキーボードやマウスなどであり、分光測定装置1を用いて分光測定を行なう操作者からの入力指示を受け付け、その入力情報(例えば測定条件や表示条件など)を解析部30に与える。また、表示部40及び入力部50は、一体化されたタッチパネル等でもよい。
 図2は、分光像の例を示す図である。この図において、横方向に波長軸が延び、上下方向に波長毎の像が延びている。一般に、分光像は、横方向に延びる或る中心線(図中の破線)を対称軸として上下対称な形状を有している。また、光学系10の特性により、波長毎の像は弓形の形状を有する場合がある。
 図3は、光検出器20の構成を模式的に示す図である。以下では、光検出器20がCCDイメージセンサであるとして説明をする。光検出器20の受光面は、形成される分光像の対称軸(図2中の破線)を境にして第1領域21と第2領域22とに区分されている。第1領域21および第2領域22それぞれは、1または複数の行に複数の画素が配列されている。各画素は、受光した光の強度に応じた量の電荷を生成し蓄積することができる。例えば、第1領域21および第2領域22それぞれは、上下方向に128行を有し、各行において横方向に2048個の画素が配列されている。
 第1領域21では、各画素で生成されて蓄積されていた電荷は水平シフトレジスタ23へ転送されて、各列にある1または複数の画素の電荷が水平シフトレジスタ23において列毎に足し合わされる(以下では、この動作を「縦転送」という)。その後、水平シフトレジスタ23において列毎に足し合わされた電荷は、順次に水平シフトレジスタ23から読み出される(以下では、この動作を「横転送」という)。そして、水平シフトレジスタ23から読み出された電荷の量に応じた電圧値がアンプ25から出力され、その電圧値がAD変換器によりAD変換されてデジタル値とされる。このようにして第1スペクトルデータが取得される。
 第2領域22では、各画素で生成されて蓄積されていた電荷は水平シフトレジスタ24へ転送されて、各列にある1または複数の画素の電荷が水平シフトレジスタ24において列毎に足し合わされる(縦転送)。その後、水平シフトレジスタ24において列毎に足し合わされた電荷は、順次に水平シフトレジスタ24から読み出される(横転送)。そして、水平シフトレジスタ24から読み出された電荷の量に応じた電圧値がアンプ26から出力され、その電圧値がAD変換器によりAD変換されてデジタル値とされる。このようにして第2スペクトルデータが取得される。
 光検出器20において、第1領域21における第1露光時間より、第2領域22における第2露光時間が長い。各領域の露光時間は、電子シャッタにより設定することができる。電子シャッタは、アンチブルーミングゲート(ABG: anti-blooming gate)を利用することで実現することができる。
 光検出器20は、第1スペクトルデータの出力動作と第2スペクトルデータの出力動作とを同期して行うのが好適である。また、光検出器20は、第1スペクトルデータの出力周期に対して第2スペクトルデータの出力周期が整数倍であるのも好適である。
 図4は、光検出器20の第1動作例を示すタイミングチャートである。この図は、フルフレームトランスファー型CCDイメージセンサを用いた場合のタイミングチャートである。この場合、縦転送期間中に蓄積された電荷の半分がその縦転送で水平シフトレジスタへ転送され、残りの半分は次回の縦転送で水平シフトレジスタへ転送される。
 この第1動作例では、第1領域21および第2領域22の双方において、ABGは常時オフ状態であり電荷は常時蓄積されていく。第1領域21からの第1スペクトルデータの出力周期に対して、第2領域22からの第2スペクトルデータの出力周期は5倍である。したがって、第1領域21における第1露光時間に対して、第2領域22における第2露光時間は約5倍である。解析部30は、光検出器20から連続して出力される複数(例えば5個)の第1スペクトルデータを平均化して、この平均化した第1スペクトルデータを処理してもよい。
 図5は、光検出器20の第2動作例を示すタイミングチャートである。この図も、フルフレームトランスファー型CCDイメージセンサを用いた場合のタイミングチャートである。
 この第2動作例では、第2領域22において、ABGは常時オフ状態であり電荷は常時蓄積されていく。したがって、第2領域22では、一瞬だけ発生するパルス現象を計測することができる。これに対して、第1領域21においては、ABGは周期的にオン/オフを繰り返す。したがって、第1領域21では、ABGがオン状態である期間に発生した電荷が捨てられ、ABGがオフ状態である期間に発生した電荷が蓄積されていく。第1領域21では、縦転送時の読み残しの電荷は次の縦転送の前に捨てられる。
 第1動作例および第2動作例の何れにおいても、もし、第1領域21および第2領域22それぞれの出力動作が同期していないと、一方の出力動作を指示する信号が、他方の出力動作を指示する信号に対してノイズとして重畳する場合がある。したがって、第1領域21および第2領域22それぞれの出力動作を同じタイミングで行うときには、第1領域21および第2領域22それぞれの出力動作を完全に同期させることが好ましい。
 また、第1動作例および第2動作例の何れにおいても、或る画素において電荷蓄積が飽和すると、その画素の周辺にある画素に悪影響を与える場合がある。そこで、ABGを用いることで、一定量を超える電荷を捨てるのも好ましい。
 図6は、第1スペクトルデータの例を示す図である。図7は、第2スペクトルデータの例を示す図である。これらの第1スペクトルデータおよび第2スペクトルデータは光検出器20により実質的に同時に取得されたものである。第1スペクトルデータ(図6)は、第1領域21において短い露光時間で取得されたものであり、全ての波長帯において飽和レベル以下となっている。これに対して、第2スペクトルデータ(図7)は、第2領域22において長い露光時間で取得されたものであり、或る波長帯において飽和レベル以上となっている。
 解析部30は、スペクトルの全体の波長帯(これらの図では凡そ200nm~880nm)を、第2スペクトルデータのうち値が飽和レベル以上である波長帯を含む飽和波長帯(凡そ400nm~880nm)と、この飽和波長帯以外の非飽和波長帯(凡そ200nm~400nm)とに区分する。飽和波長帯では、第2スペクトルデータが飽和レベル以上であっても、第1スペクトルデータは飽和レベル未満である。非飽和波長帯では、第2スペクトルデータは、飽和レベル未満であり、しかも、第1スペクトルデータより良好なS/N比を有することができる。
 解析部30は、第1スペクトルデータのうちの飽和波長帯の第1部分スペクトルデータと、第2スペクトルデータのうちの非飽和波長帯の第2部分スペクトルデータとに基づいて、被測定光のスペクトルを求める。
 解析部30は、次のようにして、第1スペクトルデータのうちの飽和波長帯の第1部分スペクトルデータと、第2スペクトルデータのうちの非飽和波長帯の第2部分スペクトルデータと互いに繋ぎ合わせることで、一つの測定光のスペクトルを求めることができる。
 解析部30は、第1スペクトルデータおよび第2スペクトルデータの双方が飽和レベル以下である波長帯における第1スペクトルデータおよび第2スペクトルデータそれぞれの積算値の比を求める。具体的には、解析部30は、まず、第1スペクトルデータおよび第2スペクトルデータの双方または何れか一方が飽和レベル以上である波長帯で、第1スペクトルデータおよび第2スペクトルデータそれぞれの値を0にする。
 図8は、第1スペクトルデータ(図6)において所定の波長帯(飽和レベル以上である波長帯)の値を0にした例を示す図である。図9は、第2スペクトルデータ(図7)において所定の波長帯(飽和レベル以上である波長帯)の値を0にした例を示す図である。解析部30は、所定の波長帯の値を0にした後の第1スペクトルデータおよび第2スペクトルデータそれぞれの積算値を求め、これら2つの積算値の比を求める。この積算値の比は、第1領域21および第2領域22それぞれからの出力信号の強度比を表し、露光時間の比を表す。
 そして、解析部30は、この積算値の比を用いて、第1部分スペクトルデータおよび第2部分スペクトルデータの双方または何れ一方を調整し、その調整後の第1部分スペクトルデータおよび第2部分スペクトルデータに基づいて被測定光の全体のスペクトルを求める。この調整に際しては、第1部分スペクトルデータに積算値比を掛けてもよいし、第2部分スペクトルデータを積算値比で割ってもよい。ノイズレベル低減の為には、第2部分スペクトルデータを積算値比で割るのが好ましい。図10は、調整後の第1部分スペクトルデータおよび第2部分スペクトルデータに基づいて得られた被測定光のスペクトルを示す図である。
 本実施形態の分光測定方法は、上記の本実施形態の分光測定装置を用いて測定を行うものであり、光検出器20を用いて第1スペクトルデータおよび第2スペクトルデータを出力する光検出ステップと、第1スペクトルデータおよび第2スペクトルデータに基づいて被測定光のスペクトルを求める解析ステップと、を備える。光検出ステップの内容は、光検出器20の構成および動作として説明したとおりである。解析ステップの内容は、解析部30の解析内容として説明したとおりである。
 図11は、実施例および比較例それぞれについて第1領域の露光時間とダイナミックレンジとの関係の一例を示すグラフである。比較例のダイナミックレンジは、第1領域と第2領域とに区分することなく被測定光のスペクトルを取得した場合のものである。比較例と比べて実施例のダイナミックレンジは大きい。ダイナミックレンジは、検出可能な最大レベルと最小レベルとの比で表される。検出可能な最大レベルは水平シフトレジスタの飽和電荷量(例えば300ke)であり、検出可能な最小レベルはノイズレベルである。本実施形態では、第2部分スペクトルデータを積算値比(出力信号の強度比)で割ることで第2部分スペクトルデータの検出可能な最小レベル(ノイズレベル)が小さくなって、ダイナミックレンジが大きくなる。
 以上のように、本実施形態では、一つの光検出器20を用いて高ダイナミックレンジの光スペクトルを取得することができる。しかも、高強度の光および低強度の光の双方を実質的に同時に測定することができる。したがって、プラズマプロセスにより対象物をドライエッチングする工程において、ガス起因の高強度の光および材料起因の低強度の光の双方を含む被測定光のスペクトルを取得することができて、ガスの状態を監視することができるとともに、エッチング終了タイミングを検知することができる。また、積分球を用いてサンプルの発光量子収率を測定する際に、積分球内にサンプルを入れた状態においてサンプルにより吸収された励起光のスペクトルおよびサンプルで発生した発生光(例えば蛍光)のスペクトルを同時に測定することができる。
 また、本実施形態の分光測定装置および分光測定方法は、高強度の光および低強度の光の双方を実質的に同時に測定するだけでなく、高強度の光と低強度の光とを互いに異なる期間に測定することもできる。後者の場合、高強度光の測定時と低強度光の測定時とで互いに同じ測定条件とすることができ、例えば、高強度光の測定時にNDフィルタを挿入しなくてもよい。用途としては、例えば、発光ダイオード(LED)に微少電流を与えたときの弱い出力光のスペクトル、および、LEDに定格電流を与えたときの明るい出力光のスペクトルの測定が挙げられる。このような用途において、光の高ダイナミックレンジ測定を波長精度よく行うことができる。
 分光測定装置および分光測定方法は、上述した実施形態及び構成例に限られるものではなく、他に様々な変形が可能である。
 上記実施形態による分光測定装置は、(1)被測定光を分光して分光像を形成する光学系と、(2)複数の行それぞれに複数の画素が配列された受光面を有し、受光面上において複数の行それぞれの画素配列方向に波長軸を有する分光像が形成され、受光面上の第1領域にある1または複数の行に配列された複数の画素により第1露光時間に亘って分光像を受光して被測定光の第1スペクトルデータを出力し、受光面上の第2領域にある1または複数の行に配列された複数の画素により第2露光時間に亘って分光像を受光して被測定光の第2スペクトルデータを出力する光検出器と、(3)第1スペクトルデータおよび第2スペクトルデータに基づいて被測定光のスペクトルを求める解析部と、を備え、(4)第1露光時間より第2露光時間が長く、解析部は、スペクトルの波長帯を、第2スペクトルデータのうち値が飽和レベル以上である波長帯を含む飽和波長帯と、この飽和波長帯以外の非飽和波長帯とに区分したときに、第1スペクトルデータのうちの飽和波長帯の第1部分スペクトルデータと、第2スペクトルデータのうちの非飽和波長帯の第2部分スペクトルデータとに基づいて、被測定光のスペクトルを求める構成としている。
 上記実施形態による分光測定方法は、(1)複数の行それぞれに複数の画素が配列された受光面を有する光検出器を用い、受光面上において複数の行それぞれの画素配列方向に波長軸を有する被測定光の分光像を形成し、受光面上の第1領域にある1または複数の行に配列された複数の画素により第1露光時間に亘って分光像を受光して被測定光の第1スペクトルデータを出力し、受光面上の第2領域にある1または複数の行に配列された複数の画素により第2露光時間に亘って分光像を受光して被測定光の第2スペクトルデータを出力する光検出ステップと、(2)第1スペクトルデータおよび第2スペクトルデータに基づいて被測定光のスペクトルを求める解析ステップと、を備え、(3)光検出ステップにおいて、第1露光時間より第2露光時間が長く、解析ステップにおいて、スペクトルの波長帯を、第2スペクトルデータのうち値が飽和レベル以上である波長帯を含む飽和波長帯と、この飽和波長帯以外の非飽和波長帯とに区分したときに、第1スペクトルデータのうちの飽和波長帯の第1部分スペクトルデータと、第2スペクトルデータのうちの非飽和波長帯の第2部分スペクトルデータとに基づいて、被測定光のスペクトルを求める構成としている。
 上記の分光測定装置は、光検出器が、CCDイメージセンサである構成としても良い。また、上記の分光測定方法は、光検出ステップにおいて、光検出器としてCCDイメージセンサを用いる構成としても良い。
 上記の分光測定装置は、光検出器が、アンチブルーミングゲートにより第1露光時間および第2露光時間の少なくとも一方を設定する構成としても良い。また、上記の分光測定方法は、光検出ステップにおいて、アンチブルーミングゲートにより第1露光時間および第2露光時間の少なくとも一方を設定する構成としても良い。
 上記の分光測定装置は、光検出器が、第1スペクトルデータの出力動作と第2スペクトルデータの出力動作とを同期して行う構成としても良い。また、上記の分光測定方法は、光検出ステップにおいて、第1スペクトルデータの出力動作と第2スペクトルデータの出力動作とを同期して行う構成としても良い。
 上記の分光測定装置は、光検出器が、第1スペクトルデータの出力周期に対して第2スペクトルデータの出力周期が整数倍である構成としても良い。また、上記の分光測定方法は、光検出ステップにおいて、第1スペクトルデータの出力周期に対して第2スペクトルデータの出力周期が整数倍である構成としても良い。
 上記の分光測定装置は、解析部が、第1スペクトルデータおよび第2スペクトルデータの双方が飽和レベル以下である波長帯における第1スペクトルデータおよび第2スペクトルデータそれぞれの積算値の比を用いて、第1部分スペクトルデータおよび第2部分スペクトルデータの双方または何れ一方を調整し、その調整後の第1部分スペクトルデータおよび第2部分スペクトルデータに基づいて被測定光のスペクトルを求める構成としても良い。
 上記の分光測定方法は、解析ステップにおいて、第1スペクトルデータおよび第2スペクトルデータの双方が飽和レベル以下である波長帯における第1スペクトルデータおよび第2スペクトルデータそれぞれの積算値の比を用いて、第1部分スペクトルデータおよび第2部分スペクトルデータの双方または何れ一方を調整し、その調整後の第1部分スペクトルデータおよび第2部分スペクトルデータに基づいて被測定光のスペクトルを求める構成としても良い。
 実施形態は、一つの光検出器を用いて高ダイナミックレンジの光スペクトルを取得することができる分光測定装置および分光測定方法として利用可能である。
 1…分光測定装置、10…光学系、20…光検出器、21…第1領域、22…第2領域、30…解析部、40…表示部、50…入力部。

Claims (12)

  1.  被測定光を分光して分光像を形成する光学系と、
     複数の行それぞれに複数の画素が配列された受光面を有し、前記受光面上において前記複数の行それぞれの画素配列方向に波長軸を有する前記分光像が形成され、前記受光面上の第1領域にある1または複数の行に配列された複数の画素により第1露光時間に亘って前記分光像を受光して前記被測定光の第1スペクトルデータを出力し、前記受光面上の第2領域にある1または複数の行に配列された複数の画素により第2露光時間に亘って前記分光像を受光して前記被測定光の第2スペクトルデータを出力する光検出器と、
     前記第1スペクトルデータおよび前記第2スペクトルデータに基づいて前記被測定光のスペクトルを求める解析部と、
    を備え、
     前記第1露光時間より前記第2露光時間が長く、
     前記解析部は、前記スペクトルの波長帯を、前記第2スペクトルデータのうち値が飽和レベル以上である波長帯を含む飽和波長帯と、この飽和波長帯以外の非飽和波長帯とに区分したときに、前記第1スペクトルデータのうちの前記飽和波長帯の第1部分スペクトルデータと、前記第2スペクトルデータのうちの前記非飽和波長帯の第2部分スペクトルデータとに基づいて、前記被測定光のスペクトルを求める、分光測定装置。
  2.  前記光検出器は、CCDイメージセンサである、請求項1に記載の分光測定装置。
  3.  前記光検出器は、アンチブルーミングゲートにより前記第1露光時間および前記第2露光時間の少なくとも一方を設定する、請求項2に記載の分光測定装置。
  4.  前記光検出器は、前記第1スペクトルデータの出力動作と前記第2スペクトルデータの出力動作とを同期して行う、請求項1~3の何れか1項に記載の分光測定装置。
  5.  前記光検出器は、前記第1スペクトルデータの出力周期に対して前記第2スペクトルデータの出力周期が整数倍である、請求項1~4の何れか1項に記載の分光測定装置。
  6.  前記解析部は、前記第1スペクトルデータおよび前記第2スペクトルデータの双方が飽和レベル以下である波長帯における前記第1スペクトルデータおよび前記第2スペクトルデータそれぞれの積算値の比を用いて、前記第1部分スペクトルデータおよび前記第2部分スペクトルデータの双方または何れ一方を調整し、その調整後の前記第1部分スペクトルデータおよび前記第2部分スペクトルデータに基づいて前記被測定光のスペクトルを求める、請求項1~5の何れか1項に記載の分光測定装置。
  7.  複数の行それぞれに複数の画素が配列された受光面を有する光検出器を用い、前記受光面上において前記複数の行それぞれの画素配列方向に波長軸を有する被測定光の分光像を形成し、前記受光面上の第1領域にある1または複数の行に配列された複数の画素により第1露光時間に亘って前記分光像を受光して前記被測定光の第1スペクトルデータを出力し、前記受光面上の第2領域にある1または複数の行に配列された複数の画素により第2露光時間に亘って前記分光像を受光して前記被測定光の第2スペクトルデータを出力する光検出ステップと、
     前記第1スペクトルデータおよび前記第2スペクトルデータに基づいて前記被測定光のスペクトルを求める解析ステップと、
    を備え、
     前記光検出ステップにおいて、前記第1露光時間より前記第2露光時間が長く、
     前記解析ステップにおいて、前記スペクトルの波長帯を、前記第2スペクトルデータのうち値が飽和レベル以上である波長帯を含む飽和波長帯と、この飽和波長帯以外の非飽和波長帯とに区分したときに、前記第1スペクトルデータのうちの前記飽和波長帯の第1部分スペクトルデータと、前記第2スペクトルデータのうちの前記非飽和波長帯の第2部分スペクトルデータとに基づいて、前記被測定光のスペクトルを求める、分光測定方法。
  8.  前記光検出ステップにおいて、前記光検出器としてCCDイメージセンサを用いる、請求項7に記載の分光測定方法。
  9.  前記光検出ステップにおいて、アンチブルーミングゲートにより前記第1露光時間および前記第2露光時間の少なくとも一方を設定する、請求項8に記載の分光測定方法。
  10.  前記光検出ステップにおいて、前記第1スペクトルデータの出力動作と前記第2スペクトルデータの出力動作とを同期して行う、請求項7~9の何れか1項に記載の分光測定方法。
  11.  前記光検出ステップにおいて、前記第1スペクトルデータの出力周期に対して前記第2スペクトルデータの出力周期が整数倍である、請求項7~10の何れか1項に記載の分光測定方法。
  12.  前記解析ステップにおいて、前記第1スペクトルデータおよび前記第2スペクトルデータの双方が飽和レベル以下である波長帯における前記第1スペクトルデータおよび前記第2スペクトルデータそれぞれの積算値の比を用いて、前記第1部分スペクトルデータおよび前記第2部分スペクトルデータの双方または何れ一方を調整し、その調整後の前記第1部分スペクトルデータおよび前記第2部分スペクトルデータに基づいて前記被測定光のスペクトルを求める、請求項7~11の何れか1項に記載の分光測定方法。
PCT/JP2019/050199 2019-01-21 2019-12-20 分光測定装置および分光測定方法 WO2020153070A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201980089626.5A CN113396317B (zh) 2019-01-21 2019-12-20 分光测定装置及分光测定方法
KR1020217022159A KR20210113994A (ko) 2019-01-21 2019-12-20 분광 측정 장치 및 분광 측정 방법
CN202410376316.4A CN118089945A (zh) 2019-01-21 2019-12-20 分光测定装置及分光测定方法
CN202410376227.XA CN118129910A (zh) 2019-01-21 2019-12-20 分光测定装置及分光测定方法
US17/423,948 US11892352B2 (en) 2019-01-21 2019-12-20 Spectrometric device and spectrometric method
CN202410376037.8A CN118089943A (zh) 2019-01-21 2019-12-20 分光测定装置及分光测定方法
EP19911798.7A EP3916367A4 (en) 2019-01-21 2019-12-20 SPECTROMETRIC DEVICE AND SPECTROMETRIC METHOD
CN202410376149.3A CN118089944A (zh) 2019-01-21 2019-12-20 分光测定装置及分光测定方法
US18/092,603 US11828653B2 (en) 2019-01-21 2023-01-03 Spectrometric device and spectrometric method
US18/388,632 US20240077360A1 (en) 2019-01-21 2023-11-10 Spectrometric device and spectrometric method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019007632A JP7219096B2 (ja) 2019-01-21 2019-01-21 分光測定装置および分光測定方法
JP2019-007632 2019-01-21

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US17/423,948 A-371-Of-International US11892352B2 (en) 2019-01-21 2019-12-20 Spectrometric device and spectrometric method
US18/092,603 Continuation US11828653B2 (en) 2019-01-21 2023-01-03 Spectrometric device and spectrometric method
US18/388,632 Continuation US20240077360A1 (en) 2019-01-21 2023-11-10 Spectrometric device and spectrometric method

Publications (1)

Publication Number Publication Date
WO2020153070A1 true WO2020153070A1 (ja) 2020-07-30

Family

ID=71735739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050199 WO2020153070A1 (ja) 2019-01-21 2019-12-20 分光測定装置および分光測定方法

Country Status (6)

Country Link
US (3) US11892352B2 (ja)
EP (1) EP3916367A4 (ja)
JP (3) JP7219096B2 (ja)
KR (1) KR20210113994A (ja)
CN (5) CN118089944A (ja)
WO (1) WO2020153070A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228453A1 (ja) * 2022-05-27 2023-11-30 浜松ホトニクス株式会社 分光装置、ラマン分光測定装置、及び分光方法
WO2023228452A1 (ja) * 2022-05-27 2023-11-30 浜松ホトニクス株式会社 分光装置、ラマン分光測定装置、及び分光方法
WO2024053243A1 (ja) * 2022-09-06 2024-03-14 浜松ホトニクス株式会社 分光測定装置及び分光測定方法
JP7479584B1 (ja) 2022-12-06 2024-05-08 浜松ホトニクス株式会社 半導体プロセス監視装置及び半導体プロセス監視方法
WO2024122134A1 (ja) * 2022-12-06 2024-06-13 浜松ホトニクス株式会社 半導体プロセス監視装置及び半導体プロセス監視方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070165222A1 (en) * 2005-03-02 2007-07-19 Li-Cor, Inc. On-Chip Spectral Filtering Using CCD Array For Imaging and Spectroscopy
JP2007527516A (ja) 2003-07-02 2007-09-27 ヴェリティー インストルメンツ,インコーポレイテッド 電荷結合装置に基づく分光計のダイナミックレンジ拡張装置および方法
WO2016088568A1 (ja) * 2014-12-02 2016-06-09 浜松ホトニクス株式会社 分光測定装置および分光測定方法
US20170067782A1 (en) * 2015-09-04 2017-03-09 Bwt Property, Inc. Laser Induced Breakdown Spectroscopy (LIBS) Apparatus Based on High Repetition Rate Pulsed Laser

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2021052C (en) 1990-07-12 1995-08-29 Clifford D. Anger Pushbroom spectrographic imager
US5986297A (en) 1996-05-22 1999-11-16 Eastman Kodak Company Color active pixel sensor with electronic shuttering, anti-blooming and low cross-talk
JP4408150B2 (ja) 1999-07-08 2010-02-03 浜松ホトニクス株式会社 固体撮像装置
JP2001061765A (ja) * 1999-08-26 2001-03-13 Fuji Photo Film Co Ltd 撮像方法および装置
EP1169624A4 (en) 2000-02-15 2008-02-20 Varian Australia METHOD AND APPARATUS FOR SPECTROCHEMICAL ANALYSIS
JP2003523509A (ja) * 2000-02-15 2003-08-05 ベアリアン・オーストラリア・プロプライエタリー・リミテッド 分光計器のための光シャッタ
JP2002062189A (ja) 2000-08-24 2002-02-28 Shimadzu Corp 分光測定用検出器及びこれを用いた積分球測定器および分光光度計
IL165237A0 (en) * 2004-11-16 2005-12-18 Method and system for spectral measurements
JP5161755B2 (ja) * 2008-12-25 2013-03-13 浜松ホトニクス株式会社 分光測定装置、分光測定方法、及び分光測定プログラム
US8013911B2 (en) * 2009-03-30 2011-09-06 Texas Instruments Incorporated Method for mixing high-gain and low-gain signal for wide dynamic range image sensor
US9100600B2 (en) * 2013-07-10 2015-08-04 Samsung Electronics Co., Ltd. Anti-blooming shutter control in image sensors
WO2015046045A1 (ja) 2013-09-27 2015-04-02 富士フイルム株式会社 撮像装置及び撮像方法
US9163986B2 (en) * 2013-10-17 2015-10-20 The Boeing Company Method and system for enhancing spectrometer function
JP6693694B2 (ja) * 2014-12-02 2020-05-13 浜松ホトニクス株式会社 分光測定装置および分光測定方法
US9560296B2 (en) 2014-12-05 2017-01-31 Qualcomm Incorporated Pixel readout architecture for full well capacity extension
JP6059411B1 (ja) 2015-05-29 2017-01-11 浜松ホトニクス株式会社 光源装置及び検査装置
JP2018128326A (ja) * 2017-02-07 2018-08-16 大塚電子株式会社 光学スペクトル測定装置および光学スペクトル測定方法
US11424115B2 (en) * 2017-03-31 2022-08-23 Verity Instruments, Inc. Multimode configurable spectrometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527516A (ja) 2003-07-02 2007-09-27 ヴェリティー インストルメンツ,インコーポレイテッド 電荷結合装置に基づく分光計のダイナミックレンジ拡張装置および方法
US20070165222A1 (en) * 2005-03-02 2007-07-19 Li-Cor, Inc. On-Chip Spectral Filtering Using CCD Array For Imaging and Spectroscopy
WO2016088568A1 (ja) * 2014-12-02 2016-06-09 浜松ホトニクス株式会社 分光測定装置および分光測定方法
US20170067782A1 (en) * 2015-09-04 2017-03-09 Bwt Property, Inc. Laser Induced Breakdown Spectroscopy (LIBS) Apparatus Based on High Repetition Rate Pulsed Laser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Resistive gate type CCD linear image sensor with an electronic shutter function", TECHNICAL DATA, May 2016 (2016-05-01), JP, pages 1 - 35, XP009527533 *

Also Published As

Publication number Publication date
US20230147189A1 (en) 2023-05-11
CN113396317B (zh) 2024-04-16
CN118089943A (zh) 2024-05-28
JP2024026464A (ja) 2024-02-28
US20220082439A1 (en) 2022-03-17
EP3916367A1 (en) 2021-12-01
US20240077360A1 (en) 2024-03-07
JP7219096B2 (ja) 2023-02-07
JP2023052650A (ja) 2023-04-11
JP7410340B2 (ja) 2024-01-09
EP3916367A4 (en) 2022-10-26
CN118089945A (zh) 2024-05-28
US11828653B2 (en) 2023-11-28
CN118089944A (zh) 2024-05-28
CN118129910A (zh) 2024-06-04
US11892352B2 (en) 2024-02-06
TW202040108A (zh) 2020-11-01
KR20210113994A (ko) 2021-09-17
JP2020118477A (ja) 2020-08-06
CN113396317A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2020153070A1 (ja) 分光測定装置および分光測定方法
JP2016145829A (ja) ディスプレイ検査のための測色システム
US20140192209A1 (en) Parallel sensing configuration covers spectrum and colorimetric quantities with spatial resolution
WO2009147908A1 (ja) 光測定装置、光測定方法、およびプログラム
KR20030044752A (ko) 발광분광처리장치 및 그것을 사용한 플라즈마처리방법
JPH043492B2 (ja)
JP7201868B2 (ja) 分光測定装置および分光測定方法
JP7479584B1 (ja) 半導体プロセス監視装置及び半導体プロセス監視方法
WO2024122134A1 (ja) 半導体プロセス監視装置及び半導体プロセス監視方法
TW202126993A (zh) 光反射光譜法設備、光反射光譜法系統及光反射光譜法方法
JP4622216B2 (ja) 光スペクトラムアナライザ
WO2024122133A1 (ja) 膜厚計測装置及び膜厚計測方法
JP7497544B1 (ja) 膜厚計測装置及び膜厚計測方法
WO2023228449A1 (ja) 分光装置、ラマン分光測定装置、及び分光方法
WO2023286657A1 (ja) 波長測定装置及び波長測定方法
WO2023228452A1 (ja) 分光装置、ラマン分光測定装置、及び分光方法
JP5239892B2 (ja) 発光分析装置
JP2003229415A (ja) 発光分光処理装置及びプラズマ処理方法
JPH10281998A (ja) 発光分光分析装置
TW202430834A (zh) 膜厚計測裝置及膜厚計測方法
ILX511B et al. Line Array Sensor Comparison
TW202429051A (zh) 分光測定裝置及分光測定方法
JP2003287499A (ja) 発光分光処理装置及びプラズマ処理方法
JPH01259226A (ja) フーリエ変換分光器
JPH11337481A (ja) 青果物内部品質測定装置及び測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019911798

Country of ref document: EP

Effective date: 20210823