WO2020152834A1 - Machine tool - Google Patents

Machine tool Download PDF

Info

Publication number
WO2020152834A1
WO2020152834A1 PCT/JP2019/002345 JP2019002345W WO2020152834A1 WO 2020152834 A1 WO2020152834 A1 WO 2020152834A1 JP 2019002345 W JP2019002345 W JP 2019002345W WO 2020152834 A1 WO2020152834 A1 WO 2020152834A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
storage tank
pump
pressure side
relief
Prior art date
Application number
PCT/JP2019/002345
Other languages
French (fr)
Japanese (ja)
Inventor
合津秀雄
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2019/002345 priority Critical patent/WO2020152834A1/en
Priority to CN201980085657.3A priority patent/CN113226636B/en
Priority to JP2020567322A priority patent/JP7132361B2/en
Publication of WO2020152834A1 publication Critical patent/WO2020152834A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a machine tool adapted to prevent clogging of a mesh net provided in a storage tank corresponding to a coolant suction port.
  • Patent Document 1 discloses a technique for preventing clogging of a filter element in an industrial liquid filtering device.
  • the cleaning liquid sent from the supply pump is filtered by flowing from the outer peripheral side to the inner side of the filter element. Therefore, foreign matter adheres to the outer peripheral surface of the filter element when the cleaning liquid flows inward from the outer peripheral side.
  • a cleaning structure using a drain circuit is provided in order to eliminate clogging that occurs on the outer peripheral side of the filter element. Specifically, the flow path that has been blocked by the electromagnetic on-off valve communicates, the cleaning liquid flows back to the liquid storage tank side of the supply pump, and the flow of the cleaning liquid cleans the filter element outer peripheral side. ing.
  • the conventional clogging prevention technology is designed to clean the filter element by opening the electromagnetic on-off valve. Therefore, during the normal operation when the electromagnetic opening/closing valve is closed, the clogging is progressing, and the suction capability is reduced as time passes. Further, when the conventional technique is replaced with a machine tool, it is difficult to adopt a structure in which the normal flow is switched to the flow for eliminating clogging. Even if the chips and the like clogged in the storage tank are removed, there is no method for positively discharging the chips and the like. Therefore, unless it is carried out of the machine along with the chips by the conveyor, it will ride on the flow of the coolant again and return to the filter or the like.
  • an object of the present invention is to provide a machine tool that is unlikely to cause clogging in order to solve such problems.
  • a machine tool includes a processing device that performs processing on a work in a processing chamber, a storage tank that stores coolant together with processing waste generated from the work, and a coolant pump for the coolant in the storage tank by the processing chamber.
  • a mesh net attached to the suction port of the coolant pump located in the storage tank, and a branch on the secondary side of the coolant pump in the coolant supply circuit, And a relief circuit provided with a first ejection port for ejecting the coolant inside the net.
  • the coolant in the storage tank is sent to the processing chamber side by the coolant pump, and at that time, chips and the like are filtered by the mesh net at the position where the coolant flows into the suction port of the coolant pump.
  • the coolant from the relief circuit branched on the secondary side of the coolant pump is ejected from the first ejection port inside the stiffness net, and clogging of the stiffness net is less likely to occur.
  • FIG. 1 is a perspective view of the internal structure showing the machining center.
  • the machining center 1 is wholly covered with a machine body cover, and a machining chamber 10 shown by a chain line for executing cutting work of a work is formed therein.
  • the machining center 1 is assembled on a movable bed 11 and has a structure capable of moving in the front-rear direction on a base 3.
  • the vertical direction parallel to the main axis will be described as the Z-axis direction, the longitudinal direction of the machine body as the Y-axis, and the width direction as the X-axis.
  • the machining center 1 is provided with a spindle head 12 for holding a tool in the front part.
  • the spindle head 12 includes a spindle chuck 13 to which a tool such as a drill can be attached and detached, and the attached tool is rotated by a spindle motor 14.
  • the spindle head 12 is mounted on the machining drive device 5 so that it can be moved in the three axial directions in accordance with machining, parts replacement, and the like.
  • an X-axis slide 22 is mounted on the Y-axis slide 21, and a Z-axis slide 23 is sequentially mounted on the X-axis slide 22. The movement of each slide is configured so that the rotation output of the servo motor is converted into a linear movement by the ball screw mechanism.
  • a chuck device 15 that rotatably holds a work is provided below the spindle head 12 that is moved by the processing drive device 5.
  • a tool magazine 18 is incorporated inside the chuck device 15 in the machine.
  • the tool magazine 18 stores a plurality of tools between the chuck device 15 and the spindle head 12, and an automatic tool changer is incorporated inside the opening/closing door.
  • the machining center 1 is equipped with a spindle head 12, a chuck device 15, a machining drive device 5, and a control device 7 for controlling the drive of a tool magazine 18 and the like.
  • the base 3 of the machining center 1 is provided with a storage tank 24 for receiving chips generated in the processing chamber 10 and injected coolant. Lubrication for processing and washing of chips are performed in the processing chamber 10, and the washed chips enter the input port 241 and are stored in the storage tank 24.
  • a screw conveyor is incorporated in the storage tank 24, and the chips accumulated in the storage tank 24 are discharged backward by the rotation of the screw, so that the chips can be collected outside the machine body.
  • FIG. 2 is a circuit diagram showing a simplified coolant device of the machining center 1.
  • the coolant device 9 is configured to use the coolant for lubrication and flushing of chips, and also for spraying from a jet port at the tip of a gun drill mounted on the spindle chuck 13.
  • the coolant device 9 has a first pump 31 and a second pump 32, and a coolant supply circuit that sucks up the coolant and sends it to the processing chamber 10 is configured in each.
  • the machining center 1 is capable of drilling while injecting a coolant at high pressure during machining through a center hole formed in a drill, and the first pump 31 is a high-pressure pump therefor.
  • the second pump 32 which has a lower pressure than that of the first pump 31, is for flushing chips generated during machining, and for feeding a coolant used for lubrication and flushing of a machining point of a workpiece.
  • FIG. 3 is a perspective view showing a part of the coolant device 9.
  • a coolant suction chamber 25 is formed on the rear side of the storage tank 24, and a first coolant pipe 41 connected to the high-pressure first pump 31 and a second coolant pipe 42 connected to the second pump 32 are suctioned therein. The mouth is inserted.
  • a columnar strainer 26 is provided in the suction chamber 25, and the suction port of the first coolant pipe 41 is connected thereto.
  • the cyclone filter 33 (see FIG. 2) is provided on the secondary side of the second pump 32.
  • the strainer 26 is made of punching metal with a hole having a diameter of 3 mm, and prevents chips and the like from entering the first coolant pipe 41.
  • the chips and the like removed by a certain amount of use cause the strainer 26 to be clogged. Therefore, the strainer 26 needs to be cleaned in order to maintain its function.
  • the strainer 26 since the strainer 26 is incorporated in the suction chamber 25, it cannot be easily cleaned. This is because the suction chamber 25 and the machining center 1 located thereabove must be moved or disassembled for cleaning. Therefore, the machining center 1 has a structure for preventing the strainer 26 from being clogged.
  • a mesh net basket 27 is installed in front of the suction chamber 25 where the strainer 26 is located.
  • the mesh net basket 27 is formed of an 18-mesh wire mesh of about 1 mm square in the shape of a rectangular cylinder, and is attached to the corner of the storage tank 24 so as to close the opening 251 of the suction chamber 25.
  • the mesh net basket 27 directly closes the opening 251 of the suction chamber 25 by the surface on the short side (the surface that is paired with the second surface 272), and the space inside the mesh net 28 is formed in the front part thereof. Therefore, in the coolant sucked into the first pump 31 via the strainer 26, chips and the like are mainly filtered by the first surface 271 and the second surface 272 of the mesh net cage 27.
  • the mesh net cage 27 uses a wire mesh with very fine mesh, it is apt to be clogged and if left as it is, the suction capacity of the coolant in the first and second pumps 31 and 32 is deteriorated. ..
  • the mesh net basket 27 is located under the machining center 1, so cleaning it becomes a difficult task.
  • a configuration is adopted in which the mesh net cage 27 is less likely to be clogged, and in particular, the coolant device 9 originally included in the machining center 1 is used.
  • the coolant device 9 includes a high-pressure side flow path in which a first coolant pipe 41 connected to a first pump 31 extends to the processing chamber 10 side, and a second coolant connected to a second pump 32.
  • a pipe 42 extends to the processing chamber 10 via the cyclone filter 33 to form a coolant supply circuit by a low-pressure side flow path.
  • the high pressure side relief flow path by the first relief pipe 43 branched from the first coolant pipe 41 and the second coolant pipe 42 are provided on the secondary side of the first pump 31 and the second pump 32.
  • a relief circuit is formed by the second relief pipe 44 and the low-pressure side relief flow passage.
  • leaf valves 35 and 36 are arranged in the first and second relief pipes 43 and 44, and extend into the storage tank 24.
  • the coolant is not always ejected on the processing chamber 10 side, and adjustment is performed by an electromagnetic opening/closing valve (not shown) provided in the Courant supply circuit.
  • the first and second pumps 31 and 32 are constantly driven to suck up the coolant in the storage tank 24. This is because the first and second pumps 31 and 32 may be out of order if the drive is frequently switched according to the amount of coolant used. Therefore, an excessive amount of coolant is relieved, and the relieved coolant is almost always returned to the storage tank 24 side.
  • the coolant that has been simply returned to the storage tank 24 is used to prevent clogging of the newly provided mesh net cage 27.
  • the coolant in the storage tank 24 enters the inside of the mesh net basket 27 from the outside and flows into the suction chamber 25. Therefore, chips and the like are filtered by the outer surface of the mesh net cage 27 facing the inside of the storage tank 24, that is, the first surface 271 and the second surface 272. Therefore, the relief coolant is configured to flow from the inside to the outside of the mesh net cage 27 so that the chips are unlikely to adhere to the outer surface of the mesh net basket 27.
  • the ejection port 431 of the first relief pipe 43 is provided in the space 28 inside the mesh net inside the mesh net cage 27.
  • the spout 431 is arranged at a position near the opening 251 of the suction chamber 25, and the spouting direction thereof faces the first surface 271 of the mesh net cage 27. Therefore, the backwash relief flow ejected from the ejection port 431 flows toward the first surface 271 as indicated by the arrow, and is particularly applied obliquely instead of directly in front.
  • the backwash relief flow allows the coolant to flow into the suction chamber 25 and acts as a resistance to prevent chips and the like from sticking to the mesh net basket 27.
  • the coolant device 9 of the machining center 1 is provided with a high-pressure first pump 31, but there are machine tools without such a high-pressure pump.
  • the ejection port 441 of the second relief pipe 44 connected to the second pump 32 is piped so as to be located in the space 28 in the net.
  • the coolant sent from the second pump 32 is given another role, and the above-described function of the first pump 31 for preventing clogging in the backwash coolant.
  • the configuration is taken to assist.
  • the ejection port 441 of the second relief pipe 44 is provided outside the mesh net cage 27.
  • the ejection port 441 is provided at a position close to the opening 251 of the suction chamber 25, and its ejection direction is substantially parallel to the first surface 271 and is provided laterally. Therefore, the auxiliary relief flow ejected from the ejection port 441 flows along the first surface 271 as indicated by the arrow.
  • Such an auxiliary relief flow acts so as to disperse chips and the like whose sticking to the first surface 271 is stopped by the backwash relief flow from the first pump 31 from the spot.
  • the machining center 1 the tool mounted on the spindle head 12 is rotated, and at the same time, the tool is moved in the three axis directions by the drive control of the machining drive device 5, and the workpiece gripped by the chuck device 15 is moved. Processing is performed on the other hand.
  • the coolant sucked up by the second pump 32 is sent to the processing chamber 10 through the second coolant pipe 42 to lubricate or wash the work processing point, and after the processing, near the inlet 241.
  • the coolant is flown from the nozzle, and the chips and the like remaining in the processing chamber 10 are washed off into the storage tank 24.
  • the coolant is sent from the first pump 31 through the first coolant pipe 41.
  • the first and second pumps 31 and 32 are driven so that a coolant flows into the suction chamber 25 in the storage tank 24.
  • the strainer since there is a fine mesh basket 27 in front of it, chips and the like are hardly filtered, and the strainer rarely reaches the strainer 26. Then, in the mesh net basket 27, the sticking of chips and the like is restricted by the backwash relief flow ejected from the ejection port 431, and the chips and the like are scattered from the spot by the auxiliary relief flow ejected from the ejection port 441. Therefore, the mesh net cage 27 is less likely to be clogged, and the chips floating in the storage tank 24 are discharged by the screw conveyor.
  • the present invention is not limited to these, and various modifications can be made without departing from the spirit of the present invention.
  • the position and direction of the ejection port of the relief pipe provided in the medium net space 28 may be appropriately changed depending on the characteristics of the coolant flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

A machine tool which is unlikely to clog, the machine tool having a machining device for machining a workpiece inside a machining chamber, a storage tank for retaining a coolant and machining waste produced from the workpiece, a coolant supply circuit through which the coolant inside the storage tank is delivered to the machining chamber side by means of a coolant pump; a filter mesh that is located inside the storage tank and attached at a position corresponding to the intake port of the coolant pump; and a relief circuit which branches off from the secondary side of the coolant pump in the coolant supply circuit and is provided with a first spray port for spraying coolant on the inside of the filter mesh.

Description

工作機械Machine Tools
 本発明は、クーラントの吸込み口部分に対応して貯留槽内に設けられたコシ網の目詰まりを防止するようにした工作機械に関する。 The present invention relates to a machine tool adapted to prevent clogging of a mesh net provided in a storage tank corresponding to a coolant suction port.
 工作機械では、切削加工したワークから生じる切粉や切屑はクーラントによって洗い流され、機体下の貯留槽に溜められてコンベアによって機外へと排出される。また、工作機械では、貯留槽に溜められたクーラントがポンプによって吸い上げられ、加工室側へと送り込まれるようにして繰り返し使用される。そうした場合、クーラントから切屑などを除去する必要があり、フィルタやストレーナなどの除去部材が使用されるが、次にフィルタなどの目詰まりが問題となる。この点について、下記特許文献1には、工業用液体のろ過装置に関して、フィルタエレメントの目詰まりを防止する技術が開示されている。 In a machine tool, chips and chips generated from a machined work are washed away with coolant, stored in a storage tank below the machine, and discharged outside the machine by a conveyor. Further, in the machine tool, the coolant stored in the storage tank is sucked up by the pump and is repeatedly fed to the processing chamber side. In such a case, it is necessary to remove chips and the like from the coolant, and a removing member such as a filter or a strainer is used, but then clogging of the filter or the like becomes a problem. In this regard, Patent Document 1 below discloses a technique for preventing clogging of a filter element in an industrial liquid filtering device.
 当該ろ過装置では、供給用ポンプから送り出された洗浄液がフィルタエレメントの外周側から内側に流入することによりろ過が行われる。そのため、洗浄液が外周側から内側に流入する際に異物がフィルタエレメントの外周面に付着する。当該従来例では、フィルタエレメントの外周側に生じる目詰まりを解消させるべく、ドレン回路による洗浄構造が設けられている。具体的には、電磁開閉弁によって遮断されていた流路が連通し、洗浄液が供給用ポンプの液体貯留タンク側に還流し、その洗浄液の流れによりフィルタエレメント外周側の洗浄が行われるようになっている。 In the filtration device, the cleaning liquid sent from the supply pump is filtered by flowing from the outer peripheral side to the inner side of the filter element. Therefore, foreign matter adheres to the outer peripheral surface of the filter element when the cleaning liquid flows inward from the outer peripheral side. In the conventional example, a cleaning structure using a drain circuit is provided in order to eliminate clogging that occurs on the outer peripheral side of the filter element. Specifically, the flow path that has been blocked by the electromagnetic on-off valve communicates, the cleaning liquid flows back to the liquid storage tank side of the supply pump, and the flow of the cleaning liquid cleans the filter element outer peripheral side. ing.
実用新案登録第3182493号公報Utility Model Registration No. 3182493
 従来の目詰まり防止技術は、電磁開閉弁が開弁することによってフィルタエレメントの洗浄が行われるようなっている。従って、その電磁開閉弁が閉弁した通常作動時には目詰まりが進行しており、時間が経過するのに従い吸込み能力は低下してしまう。また、従来技術を工作機械に置き換えた場合、通常の流れを目詰まり解消の流れに切り換える構造にすることは困難である。そして、貯留槽内で目詰まりした切屑などを除去したとしても、その切屑などを積極的に排出処理する方法がない。そのため、コンベアによって切屑とともに機外に運ばれなければ、再びクーラントの流れに乗ってフィルタなどに戻ってしまうことになる。 The conventional clogging prevention technology is designed to clean the filter element by opening the electromagnetic on-off valve. Therefore, during the normal operation when the electromagnetic opening/closing valve is closed, the clogging is progressing, and the suction capability is reduced as time passes. Further, when the conventional technique is replaced with a machine tool, it is difficult to adopt a structure in which the normal flow is switched to the flow for eliminating clogging. Even if the chips and the like clogged in the storage tank are removed, there is no method for positively discharging the chips and the like. Therefore, unless it is carried out of the machine along with the chips by the conveyor, it will ride on the flow of the coolant again and return to the filter or the like.
 そこで、本発明は、かかる課題を解決すべく、目詰まりを生じさせ難い工作機械を提供することを目的とする。 Therefore, an object of the present invention is to provide a machine tool that is unlikely to cause clogging in order to solve such problems.
 本発明の一態様における工作機械は、加工室内のワークに対する加工を実行する加工装置と、ワークから発生する加工屑とともにクーラントを溜める貯留槽と、前記貯留槽内のクーラントをクーラントポンプによって前記加工室側へ送り込むクーラント供給回路と、前記貯留槽内に位置する前記クーラントポンプの吸込み口に対応して取り付けられたコシ網と、前記クーラント供給回路における前記クーラントポンプの二次側で分岐し、前記コシ網の内側でクーラントを噴き出す第1噴出口が設けられたリリーフ回路とを有する。 A machine tool according to an aspect of the present invention includes a processing device that performs processing on a work in a processing chamber, a storage tank that stores coolant together with processing waste generated from the work, and a coolant pump for the coolant in the storage tank by the processing chamber. To the side of the coolant pump, a mesh net attached to the suction port of the coolant pump located in the storage tank, and a branch on the secondary side of the coolant pump in the coolant supply circuit, And a relief circuit provided with a first ejection port for ejecting the coolant inside the net.
 前記構成によれば、クーラント供給回路では、貯留槽内のクーラントがクーラントポンプによって加工室側へと送り込まれ、その際、クーラントポンプの吸込み口にクーラントが流れ込む位置にあるコシ網によって切屑などは濾されるが、クーラントポンプの二次側で分岐したリリーフ回路からのクーラントがコシ網の内側の第1噴出口から噴き出され、コシ網への目詰まりが生じ難くなる。 According to the above configuration, in the coolant supply circuit, the coolant in the storage tank is sent to the processing chamber side by the coolant pump, and at that time, chips and the like are filtered by the mesh net at the position where the coolant flows into the suction port of the coolant pump. However, the coolant from the relief circuit branched on the secondary side of the coolant pump is ejected from the first ejection port inside the stiffness net, and clogging of the stiffness net is less likely to occur.
マシニングセンタを示した内部構造の斜視図である。It is a perspective view of the internal structure which showed the machining center. マシニングセンタのクーラント装置を簡略化して示した回路図である。It is the circuit diagram which simplified and showed the coolant device of a machining center. クーラント装置の一部を示した斜視図である。It is a perspective view showing a part of coolant device.
 本発明に係る工作機械の一実施形態について、図面を参照しながら以下に説明する。本実施形態では、工作機械としてマシニングセンタを例に挙げて説明する。図1は、そのマシニングセンタを示した内部構造の斜視図である。マシニングセンタ1は、全体が機体カバーによって覆われ、その内部にワークの切削加工などを実行する一点鎖線で示す加工室10が構成されている。マシニングセンタ1は可動ベッド11上に組み付けられ、ベース3上を前後方向に移動可能な構造となっている。本実施形態では、主軸に平行な上下方向をZ軸方向とし、機体の前後方向をY軸、幅方向をX軸として説明する。 An embodiment of a machine tool according to the present invention will be described below with reference to the drawings. In this embodiment, a machining center will be described as an example of a machine tool. FIG. 1 is a perspective view of the internal structure showing the machining center. The machining center 1 is wholly covered with a machine body cover, and a machining chamber 10 shown by a chain line for executing cutting work of a work is formed therein. The machining center 1 is assembled on a movable bed 11 and has a structure capable of moving in the front-rear direction on a base 3. In the present embodiment, the vertical direction parallel to the main axis will be described as the Z-axis direction, the longitudinal direction of the machine body as the Y-axis, and the width direction as the X-axis.
 マシニングセンタ1は、工具を保持する主軸ヘッド12が前部に設けられている。主軸ヘッド12は、ドリルなど工具の着脱可能な主軸チャック13を備え、取り付けられた工具が主軸用モータ14によって回転するものである。そして、その主軸ヘッド12は、加工や部品交換などに伴う3軸方向の移動ができるように加工駆動装置5に搭載されている。加工駆動装置5は、Y軸スライド21に対してX軸スライド22が搭載され、そのX軸スライド22に対してZ軸スライド23が順に搭載されている。そして、各スライドの移動は、サーボモータの回転出力をボールネジ機構によって直進運動に変換するよう構成されている。 The machining center 1 is provided with a spindle head 12 for holding a tool in the front part. The spindle head 12 includes a spindle chuck 13 to which a tool such as a drill can be attached and detached, and the attached tool is rotated by a spindle motor 14. The spindle head 12 is mounted on the machining drive device 5 so that it can be moved in the three axial directions in accordance with machining, parts replacement, and the like. In the processing drive device 5, an X-axis slide 22 is mounted on the Y-axis slide 21, and a Z-axis slide 23 is sequentially mounted on the X-axis slide 22. The movement of each slide is configured so that the rotation output of the servo motor is converted into a linear movement by the ball screw mechanism.
 加工駆動装置5によって移動する主軸ヘッド12の下方には、ワークを回転可能に把持するチャック装置15が設けられている。そして、チャック装置15の機内奥側にはツールマガジン18が組み込まれている。ツールマガジン18は、チャック装置15と主軸ヘッド12との間に複数の工具を収納したものであり、開閉扉の内側には自動工具交換機が組み込まれている。また、マシニングセンタ1には、主軸ヘッド12やチャック装置15あるいは加工駆動装置5、さらにツールマガジン18などの駆動を制御するための制御装置7が搭載されている。 A chuck device 15 that rotatably holds a work is provided below the spindle head 12 that is moved by the processing drive device 5. A tool magazine 18 is incorporated inside the chuck device 15 in the machine. The tool magazine 18 stores a plurality of tools between the chuck device 15 and the spindle head 12, and an automatic tool changer is incorporated inside the opening/closing door. Further, the machining center 1 is equipped with a spindle head 12, a chuck device 15, a machining drive device 5, and a control device 7 for controlling the drive of a tool magazine 18 and the like.
 マシニングセンタ1のベース3には、加工室10内で発生する切屑や噴射されるクーラントを受けるための貯留槽24が設けられている。加工室10内では加工に対する潤滑や切屑の洗い流しなどが行われ、洗い落とされた切屑は投入口241から入って貯留槽24内に溜められるようになっている。その貯留槽24にはスクリューコンベアが組み込まれ、スクリューの回転によって貯留槽24内に溜められた切屑が後方へと排出され、機体外部における切屑の回収が可能になっている。 The base 3 of the machining center 1 is provided with a storage tank 24 for receiving chips generated in the processing chamber 10 and injected coolant. Lubrication for processing and washing of chips are performed in the processing chamber 10, and the washed chips enter the input port 241 and are stored in the storage tank 24. A screw conveyor is incorporated in the storage tank 24, and the chips accumulated in the storage tank 24 are discharged backward by the rotation of the screw, so that the chips can be collected outside the machine body.
 一方、マシニングセンタ1にはクーラント装置が設けられ、貯留槽24内に溜められた使用済のクーラントが繰り返し加工室10側へ送り込まれるようになっている。図2は、マシニングセンタ1のクーラント装置を簡略化して示した回路図である。クーラント装置9は、クーラントを潤滑や切屑の洗い流しに使用するほか、主軸チャック13に装着されたガンドリル先端の噴出口からの噴射にも使用できるように構成されている。 On the other hand, the machining center 1 is provided with a coolant device so that the used coolant accumulated in the storage tank 24 is repeatedly fed to the machining chamber 10 side. FIG. 2 is a circuit diagram showing a simplified coolant device of the machining center 1. The coolant device 9 is configured to use the coolant for lubrication and flushing of chips, and also for spraying from a jet port at the tip of a gun drill mounted on the spindle chuck 13.
 クーラント装置9は、第1ポンプ31と第2ポンプ32とを有し、それぞれにおいてクーラントを吸い上げ、加工室10へと送り込むクーラント供給回路が構成されている。マシニングセンタ1には、ドリルに形成された中心孔を通して加工時に高圧でクーラントを噴射させながら穴あけ加工が可能であり、第1ポンプ31はそのための高圧ポンプである。第1ポンプ31に比べて低圧の第2ポンプ32は、加工時に発生する切屑を洗い流しや、ワークの加工点の潤滑や洗い流しなどに使用されるクーラントを送るためのものである。 The coolant device 9 has a first pump 31 and a second pump 32, and a coolant supply circuit that sucks up the coolant and sends it to the processing chamber 10 is configured in each. The machining center 1 is capable of drilling while injecting a coolant at high pressure during machining through a center hole formed in a drill, and the first pump 31 is a high-pressure pump therefor. The second pump 32, which has a lower pressure than that of the first pump 31, is for flushing chips generated during machining, and for feeding a coolant used for lubrication and flushing of a machining point of a workpiece.
 ここで、図3は、クーラント装置9の一部を示した斜視図である。貯留槽24の後方側にクーラントの吸込み室25が形成され、そこに高圧の第1ポンプ31に接続された第1クーラントパイプ41と、第2ポンプ32に接続された第2クーラントパイプ42の吸込み口が挿入されている。特に、吸込み室25内に円柱形状のストレーナ26が設けられ、第1クーラントパイプ41の吸込み口が接続されている。一方、第2クーラントパイプ42では、第2ポンプ32の二次側にサイクロンフィルタ33(図2参照)が設けられている。 Here, FIG. 3 is a perspective view showing a part of the coolant device 9. A coolant suction chamber 25 is formed on the rear side of the storage tank 24, and a first coolant pipe 41 connected to the high-pressure first pump 31 and a second coolant pipe 42 connected to the second pump 32 are suctioned therein. The mouth is inserted. In particular, a columnar strainer 26 is provided in the suction chamber 25, and the suction port of the first coolant pipe 41 is connected thereto. On the other hand, in the second coolant pipe 42, the cyclone filter 33 (see FIG. 2) is provided on the secondary side of the second pump 32.
 ストレーナ26は、直径3mmの孔をあけたパンチングメタルで構成されたものであり、第1クーラントパイプ41内に切屑などが入り込むことを防止している。しかし、ある程度の使用により除去した切屑などがストレーナ26の目詰まりを生じさせる。そのため、機能を維持するためにはストレーナ26について清掃が必要になる。ところが、このストレーナ26は、吸込み室25内に組み込まれているため容易に清掃することができない。清掃するには吸込み室25およびその上に位置するマシニングセンタ1を移動させ或いは分解などしなくてはならないからである。そこで、マシニングセンタ1にはストレーナ26の目詰まりを防止する構造がとられている。 The strainer 26 is made of punching metal with a hole having a diameter of 3 mm, and prevents chips and the like from entering the first coolant pipe 41. However, the chips and the like removed by a certain amount of use cause the strainer 26 to be clogged. Therefore, the strainer 26 needs to be cleaned in order to maintain its function. However, since the strainer 26 is incorporated in the suction chamber 25, it cannot be easily cleaned. This is because the suction chamber 25 and the machining center 1 located thereabove must be moved or disassembled for cleaning. Therefore, the machining center 1 has a structure for preventing the strainer 26 from being clogged.
 具体的には、ストレーナ26が位置する吸込み室25の手前にコシ網かご27が設置されている。コシ網かご27は、約1mm四方の18メッシュの金網が角形筒状に形成され、吸込み室25の開口部251を塞ぐようにして貯留槽24の角部に組み付けられている。コシ網かご27は、短辺側の面(第2面272と対になる面)によって吸込み室25の開口部251を直接塞ぎ、その前部にはコシ網中スペース28が構成されている。従って、ストレーナ26を介して第1ポンプ31に吸い込まれるクーラントは、コシ網かご27の第1面271及び第2面272によって主に切屑などが濾されることとなる。 Specifically, a mesh net basket 27 is installed in front of the suction chamber 25 where the strainer 26 is located. The mesh net basket 27 is formed of an 18-mesh wire mesh of about 1 mm square in the shape of a rectangular cylinder, and is attached to the corner of the storage tank 24 so as to close the opening 251 of the suction chamber 25. The mesh net basket 27 directly closes the opening 251 of the suction chamber 25 by the surface on the short side (the surface that is paired with the second surface 272), and the space inside the mesh net 28 is formed in the front part thereof. Therefore, in the coolant sucked into the first pump 31 via the strainer 26, chips and the like are mainly filtered by the first surface 271 and the second surface 272 of the mesh net cage 27.
 ところで、コシ網かご27は非常に目の細かい金網が使用されているため、目詰まりが生じ易く、そのまま放置したのでは第1及び第2ポンプ31,32におけるクーラントの吸込み能力を低下させてしまう。その一方で、コシ網かご27にしてもマシニングセンタ1の下に位置しているため、その清掃を行うのは大変な作業になってしまう。この点、本実施形態では、コシ網かご27の目詰まりを生じに難くする構成がとられており、特に、マシニングセンタ1に本来備わっているクーラント装置9が利用される。 By the way, since the mesh net cage 27 uses a wire mesh with very fine mesh, it is apt to be clogged and if left as it is, the suction capacity of the coolant in the first and second pumps 31 and 32 is deteriorated. .. On the other hand, even the mesh net basket 27 is located under the machining center 1, so cleaning it becomes a difficult task. In this respect, in the present embodiment, a configuration is adopted in which the mesh net cage 27 is less likely to be clogged, and in particular, the coolant device 9 originally included in the machining center 1 is used.
 クーラント装置9は、図2に示すように、第1ポンプ31に接続された第1クーラントパイプ41が加工室10側に延びた高圧側流路と、第2ポンプ32に接続された第2クーラントパイプ42がサイクロンフィルタ33を介して加工室10にまで延びた低圧側流路によるクーラント供給回路が構成されている。さらにクーラント装置9には、第1ポンプ31や第2ポンプ32の二次側に、第1クーラントパイプ41から分岐した第1リリーフパイプ43による高圧側リリーフ流路と、第2クーラントパイプ42から分岐した第2リリーフパイプ44による低圧側リリーフ流路とからなるリリーフ回路が構成されている。リリーフ回路は、第1及び第2リリーフパイプ43,44にリーフ弁35,36が配管され、貯留槽24内にまで延びている。 As shown in FIG. 2, the coolant device 9 includes a high-pressure side flow path in which a first coolant pipe 41 connected to a first pump 31 extends to the processing chamber 10 side, and a second coolant connected to a second pump 32. A pipe 42 extends to the processing chamber 10 via the cyclone filter 33 to form a coolant supply circuit by a low-pressure side flow path. Further, in the coolant device 9, the high pressure side relief flow path by the first relief pipe 43 branched from the first coolant pipe 41 and the second coolant pipe 42 are provided on the secondary side of the first pump 31 and the second pump 32. A relief circuit is formed by the second relief pipe 44 and the low-pressure side relief flow passage. In the relief circuit, leaf valves 35 and 36 are arranged in the first and second relief pipes 43 and 44, and extend into the storage tank 24.
 ところで、加工室10側では常にクーラントが噴き出されているわけではなく、クーラン供給回路に設けられた不図示の電磁開閉弁によって調整が行われている。それでもマシニングセンタ1の稼働中は常に第1及び第2ポンプ31,32が駆動し、貯留槽24内のクーラントが吸い上げられている。第1及び第2ポンプ31,32は、クーラントの使用量に応じて頻繁に駆動の切り換えを行った場合、故障につながるおそれがあるからである。よって、必要以上のクーラントはリリーフされ、貯留槽24側へは概ね常にリリーフされたクーラントが戻されている。 By the way, the coolant is not always ejected on the processing chamber 10 side, and adjustment is performed by an electromagnetic opening/closing valve (not shown) provided in the Courant supply circuit. Still, while the machining center 1 is in operation, the first and second pumps 31 and 32 are constantly driven to suck up the coolant in the storage tank 24. This is because the first and second pumps 31 and 32 may be out of order if the drive is frequently switched according to the amount of coolant used. Therefore, an excessive amount of coolant is relieved, and the relieved coolant is almost always returned to the storage tank 24 side.
 本実施形態では、これまで単に貯留槽24に戻されていたクーラントを利用し、新たに設けられたコシ網かご27の目詰まり防止が図られている。貯留槽24内のクーラントは、コシ網かご27の外側から内側に入って吸込み室25へと流れる。そのため、貯留槽24内に面するコシ網かご27の外側面つまり第1面271及び第2面272で切屑などが濾されることとなる。そこで、切屑がコシ網かご27の外面に付着し難いように、リリーフされたクーラントがコシ網かご27の内側から外側に向けて流れるように構成されている。 In the present embodiment, the coolant that has been simply returned to the storage tank 24 is used to prevent clogging of the newly provided mesh net cage 27. The coolant in the storage tank 24 enters the inside of the mesh net basket 27 from the outside and flows into the suction chamber 25. Therefore, chips and the like are filtered by the outer surface of the mesh net cage 27 facing the inside of the storage tank 24, that is, the first surface 271 and the second surface 272. Therefore, the relief coolant is configured to flow from the inside to the outside of the mesh net cage 27 so that the chips are unlikely to adhere to the outer surface of the mesh net basket 27.
 マシニングセンタ1には高圧の第1ポンプ31が設けられているため、その第1リリーフパイプ43の噴出口431が、コシ網かご27の内側になるコシ網中スペース28に設けられている。噴出口431は、吸込み室25の開口部251に近い位置に配置され、その噴出方向がコシ網かご27の第1面271に対向している。よって、噴出口431から噴き出した逆洗リリーフ流は、矢印で示すように第1面271に向けて流れ、特に真正面ではなく斜めから当てられている。その逆洗リリーフ流は、吸込み室25に向けたクーラントの流れ込みを許容しつつ、切屑などがコシ網かご27に張り付かないようにするための抵抗となるように作用させるものである。 Since the machining center 1 is provided with the high-pressure first pump 31, the ejection port 431 of the first relief pipe 43 is provided in the space 28 inside the mesh net inside the mesh net cage 27. The spout 431 is arranged at a position near the opening 251 of the suction chamber 25, and the spouting direction thereof faces the first surface 271 of the mesh net cage 27. Therefore, the backwash relief flow ejected from the ejection port 431 flows toward the first surface 271 as indicated by the arrow, and is particularly applied obliquely instead of directly in front. The backwash relief flow allows the coolant to flow into the suction chamber 25 and acts as a resistance to prevent chips and the like from sticking to the mesh net basket 27.
 ところで、マシニングセンタ1のクーラント装置9は、高圧の第1ポンプ31が備えられているが、こうした高圧ポンプが存在しない工作機械もある。その場合には、第2ポンプ32に接続された第2リリーフパイプ44の噴出口441がコシ網中スペース28に位置するように配管される。そこで次に、本実施形態には第1ポンプ31があるため、第2ポンプ32から送り出されたクーラントには別の役割が与えられ、前述した第1ポンプ31の逆洗クーラントにおける目詰まり防止機能を補助する構成がとられている。 By the way, the coolant device 9 of the machining center 1 is provided with a high-pressure first pump 31, but there are machine tools without such a high-pressure pump. In that case, the ejection port 441 of the second relief pipe 44 connected to the second pump 32 is piped so as to be located in the space 28 in the net. Then, next, since the first pump 31 is provided in the present embodiment, the coolant sent from the second pump 32 is given another role, and the above-described function of the first pump 31 for preventing clogging in the backwash coolant. The configuration is taken to assist.
 本実施形態では、第2リリーフパイプ44の噴出口441がコシ網かご27の外側に設けられている。特に、噴出口441は、吸込み室25の開口部251に近い位置にあり、その噴出方向が第1面271に沿ってほぼ平行な方向であって横向きになるように設けられている。よって、噴出口441から噴き出された補助リリーフ流は、矢印で示すように第1面271に沿って流れる。こうした補助リリーフ流は、第1ポンプ31からの逆洗リリーフ流により第1面271に対する張り付きが止められた切屑などを、その場から散らすように作用させるものである。 In this embodiment, the ejection port 441 of the second relief pipe 44 is provided outside the mesh net cage 27. In particular, the ejection port 441 is provided at a position close to the opening 251 of the suction chamber 25, and its ejection direction is substantially parallel to the first surface 271 and is provided laterally. Therefore, the auxiliary relief flow ejected from the ejection port 441 flows along the first surface 271 as indicated by the arrow. Such an auxiliary relief flow acts so as to disperse chips and the like whose sticking to the first surface 271 is stopped by the backwash relief flow from the first pump 31 from the spot.
 従って、マシニングセンタ1によれば、主軸ヘッド12に装着された工具に回転が与えられ、それと同時に加工駆動装置5に対する駆動制御により工具が3軸方向に移動し、チャック装置15に把持されたワークに対して加工が行われる。その間、第2ポンプ32によって吸い上げられたクーラントが第2クーラントパイプ42を通って加工室10へと送られ、ワーク加工点の潤滑や洗い流しなどが行われる、また、加工後には投入口241近くのノズルからクーラントが流され、加工室10内に残る切屑などが貯留槽24へと洗い落とされる。一方で、ドリルによるクーラントの高圧噴射による穴あけ加工では、第1ポンプ31から第1クーラントパイプ41を通してクーラントが送られる。 Therefore, according to the machining center 1, the tool mounted on the spindle head 12 is rotated, and at the same time, the tool is moved in the three axis directions by the drive control of the machining drive device 5, and the workpiece gripped by the chuck device 15 is moved. Processing is performed on the other hand. In the meantime, the coolant sucked up by the second pump 32 is sent to the processing chamber 10 through the second coolant pipe 42 to lubricate or wash the work processing point, and after the processing, near the inlet 241. The coolant is flown from the nozzle, and the chips and the like remaining in the processing chamber 10 are washed off into the storage tank 24. On the other hand, in the drilling process by the high pressure injection of the coolant by the drill, the coolant is sent from the first pump 31 through the first coolant pipe 41.
 マシニングセンタ1の稼動中は、第1及び第2ポンプ31,32の駆動により、貯留槽24内には吸込み室25へと入るクーラントの流れができている。しかし、その手前には目の細かいコシ網かご27があるため、切屑などは濾されてしまいストレーナ26にまで達することはほとんどない。そして、コシ網かご27では、噴出口431から噴き出した逆洗リリーフ流により切屑などの張り付きが制限され、噴出口441から噴き出された補助リリーフ流により切屑などがその場から散らされる。従って、コシ網かご27の目詰まりが生じ難くなり、貯留槽24内を漂う切屑はスクリューコンベアによって排出されるようなる。 During operation of the machining center 1, the first and second pumps 31 and 32 are driven so that a coolant flows into the suction chamber 25 in the storage tank 24. However, since there is a fine mesh basket 27 in front of it, chips and the like are hardly filtered, and the strainer rarely reaches the strainer 26. Then, in the mesh net basket 27, the sticking of chips and the like is restricted by the backwash relief flow ejected from the ejection port 431, and the chips and the like are scattered from the spot by the auxiliary relief flow ejected from the ejection port 441. Therefore, the mesh net cage 27 is less likely to be clogged, and the chips floating in the storage tank 24 are discharged by the screw conveyor.
 以上、本発明の一実施形態について説明したが、本発明はこれらに限定されるものではなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 例えば、コシ網中スペース28に設けられるリリーフパイプの噴出口について、その位置や向きはクーラントの流れの特徴などによって適宜変化させてもよい。
Although one embodiment of the present invention has been described above, the present invention is not limited to these, and various modifications can be made without departing from the spirit of the present invention.
For example, the position and direction of the ejection port of the relief pipe provided in the medium net space 28 may be appropriately changed depending on the characteristics of the coolant flow.
1…マシニングセンタ 5…加工駆動装置 7…制御装置 9…クーラント装置 10…加工室 24…貯留槽 26…ストレーナ 27…コシ網かご 31…第1ポンプ 32…第2ポンプ 33…サイクロンフィルタ 41…第1クーラントパイプ 42…第2クーラントパイプ 43…第1リリーフパイプ 44…第2リリーフパイプ 35,36…リーフ弁
 
1... Machining center 5... Machining drive device 7... Control device 9... Coolant device 10... Machining room 24... Storage tank 26... Strainer 27... Mesh net basket 31... First pump 32... Second pump 33... Cyclone filter 41... First Coolant pipe 42...Second coolant pipe 43...First relief pipe 44... Second relief pipe 35,36...Leaf valve

Claims (4)

  1.  加工室内のワークに対する加工を実行する加工装置と、
     ワークから発生する加工屑とともにクーラントを溜める貯留槽と、
     前記貯留槽内のクーラントをクーラントポンプによって前記加工室側へ送り込むクーラント供給回路と、
     前記貯留槽内に位置する前記クーラントポンプの吸込み口に対応して取り付けられたコシ網と、
     前記クーラント供給回路における前記クーラントポンプの二次側で分岐し、前記コシ網の内側でクーラントを噴き出す第1噴出口が設けられたリリーフ回路と、
    を有する工作機械。
    A processing device that performs processing on a workpiece in a processing chamber,
    A storage tank that collects coolant together with the processing waste generated from the work,
    A coolant supply circuit that sends the coolant in the storage tank to the processing chamber side by a coolant pump,
    A mesh net attached corresponding to the suction port of the coolant pump located in the storage tank,
    A relief circuit provided with a first ejection port that branches off on the secondary side of the coolant pump in the coolant supply circuit and ejects coolant inside the mesh net;
    Machine tool having.
  2.  前記リリーフ回路の第1噴出口は、前記コシ網の面に対向する方向から当てられるように設置されている請求項1に記載の工作機械。 The machine tool according to claim 1, wherein the first ejection port of the relief circuit is installed so as to be applied from a direction facing the surface of the stiffness net.
  3.  前記クーラント供給回路は、吐出圧力が高い高圧側クーラントポンプが配管された高圧側流路と、吐出圧力が前記高圧側クーラントポンプより低い低圧側クーラントポンプが配管された低圧側流路とを有し、
     前記リリーフ回路は、前記高圧側流路から分岐した高圧側リリーフ流路に前記第1噴出口が設けられ、前記低圧側流路から分岐した低圧側リリーフ流路に、前記コシ網の外側に位置するクーラントの第2噴出口が設けられた、
    請求項1又は請求項2に記載の工作機械。
    The coolant supply circuit has a high pressure side flow passage in which a high pressure side coolant pump having a high discharge pressure is piped, and a low pressure side flow passage in which a low pressure side coolant pump whose discharge pressure is lower than the high pressure side coolant pump is piped. ,
    In the relief circuit, the first ejection port is provided in a high-pressure side relief flow path branched from the high-pressure side flow path, and the low-pressure side relief flow path branched from the low-pressure side flow path is located outside the knot net. A second outlet for coolant is provided,
    The machine tool according to claim 1 or 2.
  4.  前記リリーフ回路の第2噴出口は、前記コシ網の面に沿った方向に向けられている請求項3に記載の工作機械。
     
     
    The machine tool according to claim 3, wherein the second ejection port of the relief circuit is oriented in a direction along the surface of the stiffness net.

PCT/JP2019/002345 2019-01-24 2019-01-24 Machine tool WO2020152834A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/002345 WO2020152834A1 (en) 2019-01-24 2019-01-24 Machine tool
CN201980085657.3A CN113226636B (en) 2019-01-24 2019-01-24 Machine tool
JP2020567322A JP7132361B2 (en) 2019-01-24 2019-01-24 Machine Tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002345 WO2020152834A1 (en) 2019-01-24 2019-01-24 Machine tool

Publications (1)

Publication Number Publication Date
WO2020152834A1 true WO2020152834A1 (en) 2020-07-30

Family

ID=71736684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002345 WO2020152834A1 (en) 2019-01-24 2019-01-24 Machine tool

Country Status (3)

Country Link
JP (1) JP7132361B2 (en)
CN (1) CN113226636B (en)
WO (1) WO2020152834A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021698A1 (en) * 2021-08-20 2023-02-23 Dmg森精機株式会社 Coolant treatment device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279509U (en) * 1985-11-07 1987-05-21
JP2003266272A (en) * 2002-03-14 2003-09-24 Makino Milling Mach Co Ltd Working fluid supply device for machine tool
JP2005040936A (en) * 2003-07-24 2005-02-17 Cnk:Kk Coolant cleaning device
WO2013065097A1 (en) * 2011-10-31 2013-05-10 日本オイルポンプ株式会社 Coolant supply device and supply method
JP2014136194A (en) * 2013-01-17 2014-07-28 Ckd Corp Liquid clarification device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136960B2 (en) * 2008-10-16 2013-02-06 ブラザー工業株式会社 Coolant tank
CN204639785U (en) * 2015-04-03 2015-09-16 南通钜盛数控机床有限公司 A kind of gantry mill cooling fluid automatic circulation device
CN108145522B (en) * 2018-02-28 2024-06-11 马鞍山成宏机械制造有限公司 Machine tool chip liquid treatment device and treatment method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279509U (en) * 1985-11-07 1987-05-21
JP2003266272A (en) * 2002-03-14 2003-09-24 Makino Milling Mach Co Ltd Working fluid supply device for machine tool
JP2005040936A (en) * 2003-07-24 2005-02-17 Cnk:Kk Coolant cleaning device
WO2013065097A1 (en) * 2011-10-31 2013-05-10 日本オイルポンプ株式会社 Coolant supply device and supply method
JP2014136194A (en) * 2013-01-17 2014-07-28 Ckd Corp Liquid clarification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021698A1 (en) * 2021-08-20 2023-02-23 Dmg森精機株式会社 Coolant treatment device

Also Published As

Publication number Publication date
CN113226636B (en) 2023-03-14
JP7132361B2 (en) 2022-09-06
CN113226636A (en) 2021-08-06
JPWO2020152834A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP5815037B2 (en) Coolant supply device
JP6585715B2 (en) Filter device, hydraulic system and backwash method
JP6007309B1 (en) Filtration device
JP2019048339A (en) Dry polishing device
JP6375424B1 (en) Filtration device
JP6331474B2 (en) Machine tool cleaning fluid filtration device
WO2020152834A1 (en) Machine tool
JP5402668B2 (en) Tool cleaning equipment for machine tools
CN110103070B (en) Flat lathe body for lathe with sweeps clearance function
KR101603170B1 (en) The chip removing device of the lathe and a method using the air intake
JP4781036B2 (en) Shower coolant equipment
JP5321404B2 (en) Tool cleaning equipment for machine tools
KR200404946Y1 (en) Detergent device of cutting fluid for machine tools
CN115485099A (en) Fine chip processing device for machine tool
CN108687566B (en) Cleaning device and cleaning method
US20110180493A1 (en) Device and method for processing a cooling and rinsing liquid
JP3979223B2 (en) Coolant filtration device for machine tools
KR102071360B1 (en) Supply apparatus of coolant with filter cleaning function
JP7438039B2 (en) cutting fluid tank
JP5526253B1 (en) Filtration device
KR20190045447A (en) Coolant tank filter clogging device
JP7406426B2 (en) Machine Tools
CN115139147A (en) Cutting fluid tank of machine tool
JP7031395B2 (en) Cleaning mechanism and cleaning method
KR20200087528A (en) Coolant filter apparatus for machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911867

Country of ref document: EP

Kind code of ref document: A1