WO2020152829A1 - 地上無線装置および列車制御システム - Google Patents

地上無線装置および列車制御システム Download PDF

Info

Publication number
WO2020152829A1
WO2020152829A1 PCT/JP2019/002297 JP2019002297W WO2020152829A1 WO 2020152829 A1 WO2020152829 A1 WO 2020152829A1 JP 2019002297 W JP2019002297 W JP 2019002297W WO 2020152829 A1 WO2020152829 A1 WO 2020152829A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless device
ground
power supply
unit
power
Prior art date
Application number
PCT/JP2019/002297
Other languages
English (en)
French (fr)
Inventor
建郎 板谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/002297 priority Critical patent/WO2020152829A1/ja
Priority to JP2020567319A priority patent/JP7062093B2/ja
Publication of WO2020152829A1 publication Critical patent/WO2020152829A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a ground wireless device and a train control system.
  • the wireless train control system performs wireless communication between the ground equipment and the onboard equipment.
  • the Japanese Industrial Standards JISE3801-1 and JISE3801-2 define the standards for wireless train control systems.
  • the wireless system of the wireless train control system described in Patent Document 1 controls the train by performing wireless data communication between the ground wireless device and the on-board wireless device.
  • the on-board device installed in the train calculates train position information and transmits it to the ground device via the ground wireless device.
  • the ground device transmits the position information to the succeeding train.
  • the succeeding train travels by calculating the travelable speed based on the position information.
  • the ground wireless device In the wireless train control system, when a power failure occurs, the ground wireless device cannot communicate with the onboard device and the ground device. Even if a generator, uninterruptible power supply, etc. are installed at the source of the power supply facility as an emergency facility, if the power line wired from that facility to the ground wireless device is disconnected, Communication becomes impossible. In this way, when the power supply to the ground wireless device is stopped, the ground wireless device cannot communicate with the on-board device and the ground device.
  • the present invention has been made in order to solve the above problems, and a terrestrial wireless device capable of communicating with an on-vehicle wireless device and a ground device even when power is not supplied from the outside. For the purpose of provision.
  • the ground wireless device constitutes a train control system together with an on-board wireless device installed on a train car and a ground device installed on the ground.
  • the ground wireless device is installed along the railroad track and communicates with the on-board wireless device and the ground device.
  • the ground wireless device includes a communication unit and a battery.
  • the communication unit communicates with the on-board wireless device and the ground device by the electric power supplied from the external power source.
  • the battery supplies power to the communication unit when the power supplied from the external power supply is stopped.
  • the present invention it is possible to provide a terrestrial wireless device that communicates with an on-vehicle wireless device and a terrestrial device even when power is not supplied from the outside.
  • FIG. 3 is a diagram showing a configuration of a train control system in the first embodiment.
  • FIG. 3 is a block diagram showing a configuration of a terrestrial wireless device according to the first embodiment.
  • FIG. 6 is a block diagram showing a configuration of a terrestrial wireless device according to the second embodiment.
  • FIG. 11 is a block diagram showing a configuration of a terrestrial wireless device according to the third embodiment.
  • FIG. 16 is a block diagram showing a configuration of a terrestrial wireless device according to the fourth embodiment.
  • FIG. 1 is a diagram showing the configuration of the train control system in the first embodiment.
  • the train control system includes an on-board wireless device 200 installed on a train car 210, a ground wireless device 100 installed along a railroad track, and a ground device 300 installed on the ground. ..
  • the train control system wirelessly communicates between the on-board wireless device 200 mounted on the train and the ground wireless device 100 installed along the railway, and also communicates between the ground wireless device 100 and the ground device 300. Communicate via cable 120.
  • the train control system for example, generates a train speed control pattern on the vehicle 210 to control the train speed.
  • the ground wireless device 100 is connected to the power line 110. Electric power is supplied to the terrestrial radio apparatus 100 from an external power source provided independently of the terrestrial radio apparatus 100 via a power line 110.
  • the external power supply in the first embodiment includes a commercial power supply 340, a generator 320, and an uninterruptible power supply (UPS) 330.
  • the generator 320 and the UPS 330 are installed in the equipment room 350 as a power failure countermeasure for the commercial power supply 340, and are connected to the power supply line 110.
  • the ground device 300 installed in the equipment room 350 is connected to the communication cable 120 via an L2 switch 310 for connecting to a network.
  • the ground wireless device 100 is also connected to the communication cable 120 and can communicate with the ground device 300 via the communication cable 120.
  • FIG. 2 is a block diagram showing the configuration of the terrestrial wireless device 100 according to the first embodiment.
  • the ground wireless device 100 includes a communication unit 10, a battery 20, and a power supply control unit 30.
  • the communication unit 10 includes a wireless unit 11 and an L2 switch 12.
  • the power supply control unit 30 includes an ACDC conversion circuit 31, a charging circuit 32, and a voltage conversion circuit 33.
  • the power control unit 30 is connected to the power line 110. Electric power is supplied to the power supply control unit 30 from an external power supply through the power supply line 110.
  • the ACDC conversion circuit 31 converts AC power supplied from an external power supply into DC power.
  • the charging circuit 32 controls the battery 20.
  • the charging circuit 32 has a function of switching between charging and power supply so that the battery 20 is floating-charged during normal operation and power is automatically supplied from the battery 20 to the power supply control unit 30 during power failure.
  • the voltage conversion circuit 33 converts a voltage supplied from the external power supply or the battery 20 into a power supply voltage used by the wireless unit 11 and the L2 switch 12. The voltage conversion circuit 33 may be omitted when the output voltage of the battery 20 matches the power supply voltage used by the wireless unit 11 and the L2 switch 12.
  • the communication unit 10 communicates with the on-board wireless device 200 and the ground device 300 by the power supplied from the external power source via the power line 110 and the power control unit 30.
  • the wireless unit 11 communicates with the onboard wireless device 200 by a wireless signal.
  • the L2 switch 12 is a switch for communicating with the ground apparatus 300 via the communication cable 120.
  • the battery 20 stores the electric power supplied from the external power supply. In addition, the battery 20 supplies power to the communication unit 10 when the supply of power from the external power supply is stopped.
  • the power supply control unit 30 of the terrestrial wireless device 100 is supplied with power from an external power supply via the power supply line 110.
  • the wireless unit 11 of the communication unit 10 operates by the power supply voltage controlled by the power supply control unit 30, and the ground wireless device 100 wirelessly communicates with the onboard wireless device 200.
  • the L2 switch 12 also operates by the power supply voltage controlled by the power supply control unit 30, and the ground wireless device 100 communicates with the ground device 300 via the L2 switch 12.
  • the charging circuit 32 floatingly charges the battery 20 with the electric power supplied from the external power source.
  • the charging circuit 32 detects a power failure and switches to power supply from the battery 20.
  • the wireless unit 11 and the L2 switch 12 continue to operate with the power supplied from the battery 20.
  • the terrestrial wireless device 100 is no longer supplied with power from an external power source, it is, for example, a large-scale disaster or a power failure due to disconnection of the power line 110.
  • the ground wireless device 100 constitutes a train control system together with the on-board wireless device 200 installed on the train vehicle 210 and the ground device 300 installed on the ground.
  • the ground wireless device 100 is installed along a railroad track and communicates with the onboard wireless device 200 and the ground device 300.
  • the terrestrial wireless device 100 includes a communication unit 10 and a battery 20.
  • the communication unit 10 communicates with the on-board wireless device 200 and the ground device 300 by the electric power supplied from the external power supply.
  • the battery 20 supplies power to the communication unit 10 when the power supplied from the external power supply is stopped.
  • Such a terrestrial wireless device 100 enables communication with the onboard wireless device 200 and the terrestrial device 300 even when power is not supplied from the outside such as a power failure due to a large-scale disaster or the like. Further, the train control system allows the train to continue operating.
  • a ground wireless device and a train control system according to the second embodiment will be described.
  • the second embodiment is a subordinate concept of the first embodiment, and the terrestrial radio apparatus according to the second embodiment includes each component of the terrestrial radio apparatus 100 according to the first embodiment. Note that the description of the same configuration and operation as in the first embodiment will be omitted.
  • FIG. 3 is a block diagram showing the configuration of the terrestrial wireless device 101 according to the second embodiment.
  • the ground wireless device 101 in the second embodiment is the same as the ground wireless device 100 described in the first embodiment.
  • the solar panel 360 is connected to the charging circuit 32.
  • the battery 20 is connected to the solar panel 360 via the charging circuit 32 and stores the electric power generated by the solar panel 360.
  • the communication operation with the on-board wireless device 200 and the ground device 300 in the normal time is the same as that of the ground wireless device 101 according to the first embodiment.
  • the charging circuit 32 floatingly charges the battery 20 with the electric power supplied from the external power source and the electric power generated by the solar panel 360.
  • the charging circuit 32 detects a power failure and switches to power supply from the battery 20.
  • the wireless unit 11 and the L2 switch 12 continue to operate with the power supplied from the battery 20.
  • the battery 20 may be connected to another power generation device such as wind power generation instead of the solar panel 360, and may store the electric power generated by the other power generation device.
  • the battery 20 of the ground wireless device 101 according to the second embodiment is connected to the solar panel 360 and stores the electric power generated by the solar panel 360.
  • Such a ground wireless device 101 enables communication with the on-board wireless device 200 and the ground device 300 even when power is not supplied from the outside such as a power failure due to a large-scale disaster or the like. Further, the train control system allows the train to continue operating.
  • the third embodiment is a subordinate concept of the first embodiment, and the terrestrial radio apparatus according to the third embodiment includes each configuration of the terrestrial radio apparatus 100 according to the first embodiment. Note that description of the same configuration and operation as in the first or second embodiment will be omitted.
  • FIG. 4 is a block diagram showing the configuration of the terrestrial wireless device 102 according to the third embodiment.
  • the ground wireless device 102 according to the third embodiment differs from the ground wireless device 101 according to the first embodiment in that the communication unit 10 includes two wireless units 11A and 11B and two L2 switches 12A and 12B. Different. As described above, the communication unit 10 is redundantly configured by including the plurality of wireless units 11 and the plurality of L2 switches 12.
  • the charging operation to the battery 20 in the normal time is the same as the operation in the ground wireless device 102 of the first embodiment.
  • the one wireless unit 11A and the one L2 switch 12A are in the operating state in communication with the onboard wireless device 200 or the ground device 300
  • the other wireless unit 11B and the other L2 switch 12B are The communication state with the upper wireless device 200 and the ground device 300 is the standby state.
  • the two wireless units 11A and 11B communicate with each other and recognize that one of them is in an operating state and the other is in a standby state.
  • the charging circuit 32 of the power supply control unit 30 detects a power failure.
  • the charging circuit 32 notifies the two wireless units 11A and 11B that the power failure state is the power failure information. Since the other wireless unit 11B that has received the power failure information is in the standby state, it stops transmitting the wireless signal and shifts to the power saving state. On the other hand, since the one wireless unit 11A that has received the power failure information is in the operating state itself, the wireless communication with the on-board wireless device 200 is performed by the power supplied from the battery 20 as in the first embodiment. continue.
  • the charging circuit 32 of the power supply control unit 30 causes the other wireless unit 11B in the standby state among the plurality of wireless units 11 to operate when the power supplied from the external power supply is stopped. Control to stop. After that, the condition for restarting the other wireless unit 11B is, for example, when the power outage is resolved or when the wireless unit 11B shifts to the operating state.
  • the terrestrial wireless device 102 may perform control to stop the other L2 switch 12B in the standby state among the plurality of L2 switches 12 when the power supplied from the external power supply is stopped.
  • the charging circuit 32 notifies the two L2 switches 12A and 12B of the power failure state as power failure information.
  • the other L2 switch 12B that has received the power failure information stops its operation and shifts to the power saving state because it is in the standby state.
  • the ground wireless device 102 further includes the power supply control unit 30 that controls the operation of the communication unit 10.
  • the communication unit 10 is redundantly configured by including a plurality of wireless units 11 that wirelessly communicate with the on-board wireless device 200 and a plurality of L2 switches 12 that communicate with the ground device 300.
  • the power supply control unit 30 sets the communication state with the on-board wireless device 200 and the ground device 300 among the plurality of wireless units 11 and the plurality of L2 switches 12 to the standby state. Control is performed to stop a certain wireless unit or L2 switch.
  • Such a terrestrial wireless device 102 enables communication with the onboard wireless device 200 and the terrestrial device 300 even when power is not supplied from the outside such as a power failure due to a large-scale disaster or the like. Furthermore, the train control system allows the train to continue operating. Further, the ground wireless device 102 automatically stops the operation of the wireless unit 11 or the L2 switch 12 in the standby state at the time of power failure, so that it is possible to suppress the consumption of the battery 20 and extend the operation time. Therefore, the environmental load is reduced.
  • the third embodiment is a subordinate concept of the first embodiment, and the terrestrial radio apparatus in the fourth embodiment includes each configuration of terrestrial radio apparatus 100 in the first embodiment. Note that description of the same configuration and operation as in any of the first to third embodiments will be omitted.
  • FIG. 5 is a block diagram showing the configuration of the terrestrial wireless device 103 according to the fourth embodiment.
  • the ground wireless device 103 according to the fourth embodiment differs from the ground wireless device 100 according to the first embodiment in that it includes two units 50A and 50B.
  • Each of the two units 50A and 50B includes a communication unit 10, a power supply control unit 30, and a battery 20.
  • the terrestrial wireless device 103 includes the plurality of units 50, so that the communication unit 10, the battery 20, and the power supply control unit 30 are configured redundantly.
  • the charging operation to the battery 20 in the normal time is the same as the operation in the ground wireless device 103 of the first embodiment.
  • the communication unit 10 of the one unit 50A is in an operating state with the on-board wireless device 200 or the ground device 300
  • the communication unit 10 of the other unit 50B is on-board wireless device 200 and the ground device.
  • the communication state with the device 300 is the standby state.
  • the two units 50A and 50B communicate with each other and recognize that one of them is in an operating state and the other is in a standby state.
  • the charging circuits 32 in the two units 50A and 50B detect a power failure.
  • Each charging circuit 32 notifies the communication unit 10 (the wireless unit 11 and the L2 switch 12) in the same unit that it is in a power failure state as power failure information.
  • the communication unit 10 included in the other unit 50B that has received the power failure information stops its operation because it is in the standby state.
  • the on-board wireless device 200 is powered by the power supplied from the battery 20 as in the first embodiment. Alternatively, the communication with the ground device 300 is continued.
  • the charging circuit 32 of the power supply control unit 30 included in the other unit 50B in the standby state among the plurality of units 50 does not operate. , Control for stopping the communication unit 10 is performed.
  • the charging circuit 32 disconnects the voltage conversion circuit 33. As a result, the other unit 50B is brought into a no-load state and power consumption is suppressed.
  • the condition for restarting the other unit 50B is, for example, when the power failure is resolved or when the unit 50B shifts to the operating state.
  • the switching request from the one unit 50A is accepted.
  • the charging circuit 32 of the other unit 50B receives a switching request from the wireless unit 11 of the one unit 50A. Then, when the charging circuit 32 in the other unit 50B is reconnected to the voltage conversion circuit 33, the other unit 50B shifts to the operating state and performs normal operation.
  • the ground wireless device 103 further includes a plurality of units 50 each including the communication unit 10, the battery 20, and the power supply control unit 30.
  • the communication unit 10, the battery 20, and the power supply control unit 30 are redundantly configured by a plurality of units 50.
  • the power supply control unit 30 included in a unit in which the communication state with the on-board wireless device 200 and the ground device 300 is in the standby state is in the standby state when the power supplied from the external power source fails. The control for stopping the communication unit 10 included in the unit is performed.
  • Such a ground wireless device 103 enables communication with the onboard wireless device 200 and the ground device 300 even when power is not supplied from the outside such as a power failure due to a large-scale disaster or the like. Further, the train control system allows the train to continue operating. Further, the terrestrial wireless device 103 automatically stops the operation of the unit in the standby state at the time of a power failure, so that it is possible to suppress the consumption of the battery 20 and extend the operation time. Therefore, the environmental load is reduced.

Abstract

外部から電力が供給されない事態が生じた場合あっても、車上装置および地上装置と通信可能な地上無線装置の提供を目的とする。地上無線装置は、列車の車両上に設置されている車上無線装置と、地上に設置されている地上装置とともに列車制御システムを構成する。地上無線装置は、鉄道の線路に沿って設置されており、車上無線装置および地上装置と通信する。地上無線装置は、通信部とバッテリーとを含む。通信部は、外部電源から供給される電力によって、車上無線装置および地上装置と通信する。バッテリーは、外部電源から供給される電力が停止した場合に、通信部に電力を供給する。

Description

地上無線装置および列車制御システム
 本発明は、地上無線装置および列車制御システムに関する。
 無線式列車制御システムは、地上装置と車上装置との間で無線による交信を行う。日本工業規格JISE3801-1およびJISE3801-2には、無線式列車制御システムの規格が定められている。
 特許文献1に記載の無線式列車制御システムの無線システムは、地上無線装置と車上無線装置との間で、無線によるデータ通信を行うことにより、列車を制御している。
 無線式列車制御システムは、列車に搭載された車上装置が列車の位置情報を算出し、地上無線装置を経由して地上装置に伝達する。地上装置は、その位置情報を後続列車に伝達する。後続列車は、その位置情報に基づき走行可能速度を計算して走行する。
特開2018-56736号公報
 無線式列車制御システムにおいて、停電が発生した場合、地上無線装置は車上装置および地上装置と通信できない。発電機、無停電電源装置等が非常用設備として電源設備の供給元に設置されていたとしても、その設備から地上無線装置まで配線された電源線が切断された場合には、各装置間の通信が不可能となる。このように、地上無線装置への電力供給が停止した場合、地上無線装置は車上装置および地上装置と通信ができない。
 本発明は、以上のような課題を解決するためになされたものであり、外部から電力が供給されない事態が生じた場合あっても、車上無線装置および地上装置と通信可能な地上無線装置の提供を目的とする。
 本発明に係る地上無線装置は、列車の車両上に設置されている車上無線装置と、地上に設置されている地上装置とともに列車制御システムを構成する。地上無線装置は、鉄道の線路に沿って設置されており、車上無線装置および地上装置と通信する。地上無線装置は、通信部とバッテリーとを含む。通信部は、外部電源から供給される電力によって、車上無線装置および地上装置と通信する。バッテリーは、外部電源から供給される電力が停止した場合に、通信部に電力を供給する。
 本発明によれば、外部から電力が供給されない事態が生じた場合であっても、車上無線装置および地上装置と通信する地上無線装置の提供が可能である。
 本発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白になる。
実施の形態1における列車制御システムの構成を示す図である。 実施の形態1における地上無線装置の構成を示すブロック図である。 実施の形態2における地上無線装置の構成を示すブロック図である。 実施の形態3における地上無線装置の構成を示すブロック図である。 実施の形態4における地上無線装置の構成を示すブロック図である。
 <実施の形態1>
 図1は、実施の形態1における列車制御システムの構成を示す図である。列車制御システムは、列車の車両210上に設置されている車上無線装置200、鉄道の線路に沿って設置されている地上無線装置100、および地上に設置されている地上装置300で構成される。列車制御システムは、列車に搭載された車上無線装置200と鉄道の沿線に設置された地上無線装置100との間で無線により交信し、また地上無線装置100と地上装置300との間で通信ケーブル120を介して交信する。列車制御システムは、例えば、車両210上において列車の速度制御パターンを生成して、列車の速度制御を行う。
 地上無線装置100は、電源線110に接続されている。地上無線装置100には、その地上無線装置100とは独立して設けられた外部電源から電源線110を介して電力が供給される。実施の形態1における外部電源は、商用電源340、発電機320および無停電電源装置(Uninterruptible Power Supply, UPS)330を含む。発電機320およびUPS330は、機器室350に商用電源340の停電対策として設置されており、各々が電源線110に接続されている。また、機器室350に設置された地上装置300は、ネットワークと接続するためのL2スイッチ310を介して通信ケーブル120に接続されている。地上無線装置100も、通信ケーブル120に接続されており、その通信ケーブル120を介して地上装置300と通信可能である。
 図2は、実施の形態1における地上無線装置100の構成を示すブロック図である。
 地上無線装置100は、通信部10、バッテリー20および電源制御部30を含む。通信部10は、無線部11およびL2スイッチ12を含む。電源制御部30は、ACDC変換回路31、充電回路32および電圧変換回路33を含む。
 電源制御部30は、電源線110に接続されている。電源制御部30には、外部電源から電源線110を介して電力が供給される。ACDC変換回路31は、外部電源から供給される交流電源を直流電源に変換する。充電回路32は、バッテリー20を制御する。充電回路32は、通常時にはバッテリー20を浮動充電し、停電時には自動でバッテリー20から電源制御部30に電力が供給されるよう、充電および電源供給を切り替える機能を有する。電圧変換回路33は、外部電源もしくはバッテリー20から供給される電圧を、無線部11およびL2スイッチ12で使用される電源電圧に変換する。なお、電圧変換回路33は、バッテリー20の出力電圧が、無線部11およびL2スイッチ12で使用される電源電圧と一致している場合、省略してもよい。
 通信部10は、外部電源から電源線110および電源制御部30を介して供給される電力によって、車上無線装置200および地上装置300と通信する。無線部11は、車上無線装置200と無線信号で通信する。L2スイッチ12は、通信ケーブル120を介して地上装置300と通信するためのスイッチである。
 バッテリー20は、外部電源から供給される電力を蓄電する。また、バッテリー20は、外部電源からの電力の供給が停止した場合に、通信部10に電力を供給する。
 次に実施の形態1における地上無線装置100の動作を説明する。
 通常時、地上無線装置100の電源制御部30には、外部電源から電源線110を介して電力が供給される。通信部10の無線部11は、電源制御部30によって制御された電源電圧によって動作し、地上無線装置100は車上無線装置200と無線通信する。同様に、L2スイッチ12も電源制御部30によって制御された電源電圧によって動作し、地上無線装置100はL2スイッチ12を介して地上装置300と通信する。また、通常時、充電回路32は、外部電源から供給される電力をバッテリー20に浮動充電している。
 地上無線装置100に外部電源から電力が供給されなくなった場合、充電回路32は、停電を検出し、バッテリー20からの電源供給に切り替える。無線部11およびL2スイッチ12は、バッテリー20から供給される電力で動作を継続する。地上無線装置100に外部電源から電力が供給されなくなった場合とは、例えば、大規模災害もしくは電源線110の切断による停電などである。
 以上をまとめると、実施の形態1における地上無線装置100は、列車の車両210上に設置されている車上無線装置200と、地上に設置されている地上装置300とともに列車制御システムを構成する。地上無線装置100は、鉄道の線路に沿って設置されており、車上無線装置200および地上装置300と通信する。地上無線装置100は、通信部10とバッテリー20とを含む。通信部10は、外部電源から供給される電力によって、車上無線装置200および地上装置300と通信する。バッテリー20は、外部電源から供給される電力が停止した場合に、通信部10に電力を供給する。
 このような地上無線装置100は、大規模災害等による停電など、外部から電力が供給されない事態が生じた場合あっても、車上無線装置200および地上装置300との通信を可能にする。さらには、列車制御システムは、列車の運行の継続を可能にする。
 <実施の形態2>
 実施の形態2における地上無線装置および列車制御システムを説明する。実施の形態2は実施の形態1の下位概念であり、実施の形態2における地上無線装置は、実施の形態1における地上無線装置100の各構成を含む。なお、実施の形態1と同様の構成および動作については説明を省略する。
 図3は、実施の形態2における地上無線装置101の構成を示すブロック図である。実施の形態2における地上無線装置101は、実施の形態1に示された地上無線装置100と同様である。ただし、充電回路32に太陽光パネル360が接続されている。バッテリー20は、充電回路32を介して、太陽光パネル360に接続され、その太陽光パネル360によって発電された電力を蓄電する。
 次に、実施の形態2における地上無線装置101の動作を説明する。
 通常時における車上無線装置200および地上装置300との通信動作は、実施の形態1の地上無線装置101におけるその動作と同様である。一方で、バッテリー20への充電動作に関して、充電回路32は、外部電源から供給される電力、および太陽光パネル360によって発電された電力をバッテリー20に浮動充電する。
 災害等で、地上無線装置101に外部電源から交流電源が供給されなくなった場合、充電回路32は、停電を検出し、バッテリー20からの電源供給に切り替える。無線部11およびL2スイッチ12は、バッテリー20から供給される電力で動作を継続する。
 なお、バッテリー20は、太陽光パネル360に代えて、風力発電等の他の発電機器に接続され、他の発電機器によって発電された電力を蓄電してもよい。
 以上をまとめると、実施の形態2における地上無線装置101のバッテリー20は、太陽光パネル360に接続され、太陽光パネル360によって発電された電力を蓄電する。
 このような地上無線装置101は、大規模災害等による停電など、外部から電力が供給されない事態が生じた場合あっても、車上無線装置200および地上装置300との通信を可能にする。さらには、列車制御システムは、列車の運行の継続を可能にする。
 <実施の形態3>
 実施の形態3における地上無線装置および列車制御システムを説明する。実施の形態3は実施の形態1の下位概念であり、実施の形態3における地上無線装置は、実施の形態1における地上無線装置100の各構成を含む。なお、実施の形態1または2と同様の構成および動作については説明を省略する。
 図4は、実施の形態3における地上無線装置102の構成を示すブロック図である。実施の形態3における地上無線装置102は、実施の形態1に示された地上無線装置101に対し、通信部10が2つの無線部11A,11Bと、2つのL2スイッチ12A,12Bとを含む点で異なる。このように通信部10は、複数の無線部11と複数のL2スイッチ12を有することにより、冗長に構成されている。
 次に、実施の形態3における地上無線装置102の動作を説明する。
 通常時におけるバッテリー20への充電動作は、実施の形態1の地上無線装置102におけるその動作と同様である。通信動作に関して、一の無線部11Aおよび一のL2スイッチ12Aは、車上無線装置200または地上装置300との通信状態が運用状態であり、他の無線部11Bおよび他のL2スイッチ12Bは、車上無線装置200および地上装置300との通信状態が待機状態である。2つの無線部11A,11Bは、互いに通信し、いずれか一方が運用状態であり、他方が待機状態であることを認識している。
 地上無線装置102に外部電源から交流電源が供給されなくなった場合、電源制御部30の充電回路32が停電を検出する。充電回路32は、停電状態であることを停電情報として、2つの無線部11A,11Bに通知する。停電情報を受け取った他の無線部11Bは、自身が待機状態であるため、無線信号の送信を停止し、省電力状態に移行する。一方で、停電情報を受け取った一の無線部11Aは、自身が運用状態であるため、実施の形態1と同様に、バッテリー20から供給される電力により、車上無線装置200との無線通信を継続する。このように、実施の形態3における電源制御部30の充電回路32は、外部電源から供給される電力が停止した場合に、複数の無線部11のうち、待機状態である他の無線部11Bを停止させる制御を行う。その後、他の無線部11Bが再起動する条件は、停電が解消した場合、もしくは運用状態に移行する場合等である。
 さらに、地上無線装置102は、外部電源から供給される電力が停止した場合に、複数のL2スイッチ12のうち、待機状態の他のL2スイッチ12Bを停止させる制御を行ってもよい。例えば、充電回路32は、停電状態であることを停電情報として、2つのL2スイッチ12A,12Bに通知する。停電情報を受け取った他のL2スイッチ12Bは、自身が待機状態であるため、動作を停止し、省電力状態に移行する。
 以上をまとめると、実施の形態3における地上無線装置102は、通信部10の動作を制御する電源制御部30をさらに含み。通信部10は、車上無線装置200と無線通信する複数の無線部11と、地上装置300と通信するための複数のL2スイッチ12とを含むことにより、冗長に構成されている。電源制御部30は、外部電源から供給される電力が停止した場合に、複数の無線部11および複数のL2スイッチ12のうち、車上無線装置200および地上装置300との通信状態が待機状態である無線部またはL2スイッチを停止させる制御を行う。
 このような地上無線装置102は、大規模災害等による停電など、外部から電力が供給されない事態が生じた場合あっても、車上無線装置200および地上装置300との通信を可能にする。さらには、列車制御システムは、列車の運行の継続を可能にする。また、地上無線装置102は、停電時に、待機状態の無線部11またはL2スイッチ12を自動的に運用停止するため、バッテリー20の消費を抑制し、その運用時間を延長することを可能にする。よって環境負荷が軽減する。
 <実施の形態4>
 実施の形態4における地上無線装置および列車制御システムを説明する。実施の形態3は実施の形態1の下位概念であり、実施の形態4における地上無線装置は、実施の形態1における地上無線装置100の各構成を含む。なお、実施の形態1から3のいずれかと同様の構成および動作については説明を省略する。
 図5は、実施の形態4における地上無線装置103の構成を示すブロック図である。実施の形態4における地上無線装置103は、実施の形態1に示された地上無線装置100に対し、2つのユニット50A,50Bを含む点で異なる。2つのユニット50A,50Bの各々は、通信部10と電源制御部30とバッテリー20とを含む。このように、地上無線装置103が複数のユニット50を含むことにより、通信部10、バッテリー20および電源制御部30は冗長に構成されている。
 次に、実施の形態4における地上無線装置103の動作を説明する。
 通常時におけるバッテリー20への充電動作は、実施の形態1の地上無線装置103におけるその動作と同様である。通信動作に関して、一のユニット50Aの通信部10は、車上無線装置200または地上装置300との通信状態が運用状態であり、他のユニット50Bの通信部10は、車上無線装置200および地上装置300との通信状態が待機状態である。2つのユニット50A,50Bは、互いに通信し、いずれか一方が運用状態であり、他方が待機状態であることを認識している。
 地上無線装置103に外部電源から交流電源が供給されなくなった場合、2つのユニット50A,50Bにおける充電回路32は停電を検出する。各充電回路32は、停電状態であることを停電情報として、同じユニット内の通信部10(無線部11およびL2スイッチ12)に通知する。停電情報を受け取った他のユニット50Bに含まれる通信部10は、自身が待機状態であるため、動作を停止する。一方で、停電情報を受け取った一のユニット50Aに含まれる通信部10は、自身が運用状態であるため、実施の形態1と同様に、バッテリー20から供給される電力により、車上無線装置200または地上装置300との通信を継続する。このように、実施の形態4においては、外部電源から供給される電力が停止した場合、複数のユニット50のうち、待機状態である他のユニット50Bに含まれる電源制御部30の充電回路32は、通信部10を停止させる制御を行う。
 他のユニット50Bの通信部10の動作停止後、充電回路32は、電圧変換回路33を切り離す。それにより、他のユニット50Bは無負荷状態となり、消費電力が抑制される。その後、他のユニット50Bが再起動する条件は、停電が解消した場合、もしくは運用状態に移行する場合等である。他のユニット50Bが運用状態に移行する場合、一のユニット50Aからの切替要求を受け付ける。例えば、他のユニット50Bの充電回路32は、一のユニット50Aの無線部11から切替要求を受け付ける。そして、他のユニット50Bにおける充電回路32が電圧変換回路33と再接続することにより、他のユニット50Bは、運用状態に移行し、通常の動作を行う。
 以上をまとめると、実施の形態4における地上無線装置103は、各々が、通信部10と、バッテリー20と、電源制御部30と、を含む複数のユニット50をさらに含む。通信部10と、バッテリー20と、電源制御部30とは、複数のユニット50により冗長に構成されている。複数のユニット50のうち、車上無線装置200および地上装置300との通信状態が待機状態であるユニットに含まれる電源制御部30は、外部電源から供給される電力が停電した場合に、待機状態のユニットに含まれる通信部10を停止させる制御を行う。
 このような地上無線装置103は、大規模災害等による停電など、外部から電力が供給されない場合あっても、車上無線装置200および地上装置300との通信を可能にする。さらには、列車制御システムは、列車の運行の継続を可能にする。また、地上無線装置103は、停電時に、待機状態のユニットを自動的に運用停止するため、バッテリー20の消費を抑制し、その運用時間を延長することを可能にする。よって、環境負荷が軽減する。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 本発明は詳細に説明されたが、上記した説明は、全ての局面において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 10 通信部、11 無線部、12 L2スイッチ、20 バッテリー、30 電源制御部、31 ACDC変換回路、32 充電回路、33 電圧変換回路、50 ユニット、100 地上無線装置、110 電源線、120 通信ケーブル、200 車上無線装置、210 車両、300 地上装置、310 L2スイッチ、320 発電機、330 UPS、340 商用電源、350 機器室、360 太陽光パネル。

Claims (5)

  1.  列車の車両上に設置されている車上無線装置と、地上に設置されている地上装置とともに列車制御システムを構成し、かつ、鉄道の線路に沿って設置され、前記車上無線装置および前記地上装置と通信する地上無線装置であって、
     外部電源から供給される電力によって、前記車上無線装置および前記地上装置と通信する通信部と、
     前記外部電源から供給される前記電力が停止した場合に、前記通信部に電力を供給するバッテリーと、を備える地上無線装置。
  2.  前記バッテリーは、太陽光パネルに接続され、前記太陽光パネルによって発電された電力を蓄電する、請求項1に記載の地上無線装置。
  3.  前記通信部の動作を制御する電源制御部をさらに備え、
     前記通信部は、前記車上無線装置と無線通信する複数の無線部と、前記地上装置と通信するための複数のL2スイッチとを含むことにより、冗長に構成されており、
     前記電源制御部は、前記外部電源から供給される前記電力が停止した場合に、前記複数の無線部および前記複数のL2スイッチのうち、前記車上無線装置および前記地上装置との通信状態が待機状態である無線部またはL2スイッチを停止させる制御を行う、請求項1または請求項2に記載の地上無線装置。
  4.  各々が、前記通信部と、前記バッテリーと、前記通信部の動作を制御する電源制御部と、を含む複数のユニットをさらに備え、
     前記通信部と前記バッテリーと前記電源制御部とは、前記複数のユニットにより冗長に構成されており、
     前記複数のユニットのうち、前記車上無線装置および前記地上装置との通信状態が待機状態であるユニットに含まれる前記電源制御部は、前記外部電源から供給される前記電力が停電した場合に、前記待機状態の前記ユニットに含まれる前記通信部を停止させる制御を行う、請求項1または請求項2に記載の地上無線装置。
  5.  請求項1から請求項4のいずれか一項に記載の地上無線装置と、
     前記車上無線装置と、
     前記地上装置と、を備える列車制御システム。
PCT/JP2019/002297 2019-01-24 2019-01-24 地上無線装置および列車制御システム WO2020152829A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/002297 WO2020152829A1 (ja) 2019-01-24 2019-01-24 地上無線装置および列車制御システム
JP2020567319A JP7062093B2 (ja) 2019-01-24 2019-01-24 地上無線装置および列車制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002297 WO2020152829A1 (ja) 2019-01-24 2019-01-24 地上無線装置および列車制御システム

Publications (1)

Publication Number Publication Date
WO2020152829A1 true WO2020152829A1 (ja) 2020-07-30

Family

ID=71736698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002297 WO2020152829A1 (ja) 2019-01-24 2019-01-24 地上無線装置および列車制御システム

Country Status (2)

Country Link
JP (1) JP7062093B2 (ja)
WO (1) WO2020152829A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124800A (ja) * 1997-07-03 1999-01-29 Nec Eng Ltd 電源バックアップシステム及び電源バックアップ方法並びに電源バックアップ制御プログラムを記憶した記憶媒体
JP2009296424A (ja) * 2008-06-06 2009-12-17 Mitsubishi Electric Corp 通信システムおよび子局端末
JP2011061268A (ja) * 2009-09-07 2011-03-24 Kyosan Electric Mfg Co Ltd 通信制御方法及び通信制御システム
JP2013121128A (ja) * 2011-12-08 2013-06-17 Hitachi Ltd 管理サーバ及び省電力化方法
JP2013172315A (ja) * 2012-02-21 2013-09-02 Nec Corp 通信システム、管理装置、電波制御方法および電波制御用プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779757A (en) * 1980-11-04 1982-05-19 Nec Corp Power feeding system for exchanger
JP2894984B2 (ja) * 1996-03-13 1999-05-24 埼玉日本電気株式会社 冗長構成の通信装置
JP4961247B2 (ja) * 2007-04-04 2012-06-27 株式会社日立製作所 フェールセーフ制御方式

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124800A (ja) * 1997-07-03 1999-01-29 Nec Eng Ltd 電源バックアップシステム及び電源バックアップ方法並びに電源バックアップ制御プログラムを記憶した記憶媒体
JP2009296424A (ja) * 2008-06-06 2009-12-17 Mitsubishi Electric Corp 通信システムおよび子局端末
JP2011061268A (ja) * 2009-09-07 2011-03-24 Kyosan Electric Mfg Co Ltd 通信制御方法及び通信制御システム
JP2013121128A (ja) * 2011-12-08 2013-06-17 Hitachi Ltd 管理サーバ及び省電力化方法
JP2013172315A (ja) * 2012-02-21 2013-09-02 Nec Corp 通信システム、管理装置、電波制御方法および電波制御用プログラム

Also Published As

Publication number Publication date
JPWO2020152829A1 (ja) 2021-09-09
JP7062093B2 (ja) 2022-05-02

Similar Documents

Publication Publication Date Title
US10069330B2 (en) Unit having a switching function for Ethernet
CN103229382A (zh) 用于交通工具的电力控制系统
CN103042945A (zh) 磁悬浮列车电源系统
US20150207329A1 (en) Station-building power supply device and method of controlling the same
US7071580B2 (en) Uninterruptible power supply apparatus
JP6158445B2 (ja) 蓄電池放電制御システムを備える軌条車両
CN108725521A (zh) 一种轨道交通主备控制中心热备冗余管理系统及方法
KR100986627B1 (ko) 병렬운전형 ups에 구비되는 각 축전지의 방전을 위한 이중화장치
JP2014007930A (ja) 非常用発電装置
WO2020152829A1 (ja) 地上無線装置および列車制御システム
CN105083022A (zh) 一种动车组低压供电系统
CN109774479B (zh) 一种基于网络控制的辅助逆变器系统并网供电方法
KR102545246B1 (ko) 철도 신호용 전력 공급 장치 및 방법
JP2010148297A (ja) 無停電電源システム
KR20180096090A (ko) 무정전 전원 공급 시스템
JP2014093791A (ja) 電気車制御装置
CN205853893U (zh) 轨道车辆的辅助电源系统
JP2006103907A (ja) エレベーターの制御装置
CN111969855B (zh) 导轨电力机车辅助供电装置、导轨电力机车及其供电方法
KR200366913Y1 (ko) 듀얼 방식의 무정전 전원장치
JP2008172864A (ja) 無停電電源設備及びその増設方法
JP2000245076A (ja) 電源相互監視および供給可能なups装置
JP2007306713A (ja) 電気車用電源装置
CN213705185U (zh) 一种扩展供电的控制电路及系统
RU153541U1 (ru) Электрическая система тягового агрегата

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911229

Country of ref document: EP

Kind code of ref document: A1