WO2020152822A1 - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
WO2020152822A1
WO2020152822A1 PCT/JP2019/002247 JP2019002247W WO2020152822A1 WO 2020152822 A1 WO2020152822 A1 WO 2020152822A1 JP 2019002247 W JP2019002247 W JP 2019002247W WO 2020152822 A1 WO2020152822 A1 WO 2020152822A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat pipe
pipe
refrigerant
cooling device
Prior art date
Application number
PCT/JP2019/002247
Other languages
English (en)
French (fr)
Inventor
幸夫 中嶋
裕之 牛房
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020567313A priority Critical patent/JP6932276B2/ja
Priority to US17/421,032 priority patent/US20220057144A1/en
Priority to PCT/JP2019/002247 priority patent/WO2020152822A1/ja
Priority to DE112019006726.5T priority patent/DE112019006726T5/de
Publication of WO2020152822A1 publication Critical patent/WO2020152822A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures

Definitions

  • the present invention relates to a cooling device composed of a heat pipe.
  • the cooling member is thermally connected to the electronic components to prevent damage due to heat generation when the electronic components are energized.
  • the cooling member radiates the heat transferred from the electronic component to the air around the cooling member. As a result, the electronic component is cooled.
  • a heat sink having a heat pipe is an example of the cooling member.
  • Patent Document 1 discloses an example of this type of heat sink.
  • the heat sink disclosed in Patent Document 1 includes a base plate to which heat is transferred from electronic components, and a heat pipe.
  • the heat pipe is composed of a plate heat pipe fixed to the base plate and a tubular heat pipe that communicates with the plate heat pipe.
  • the heat pipe of the heat sink disclosed in Patent Document 1 is filled with a refrigerant in a gas-liquid two-phase state.
  • the refrigerant that has transferred heat from the electronic components and vaporized flows from the plate heat pipe into the tubular heat pipe. Then, the vaporized refrigerant transfers heat to the air around the tubular heat pipe through the tubular heat pipe while moving inside the tubular heat pipe.
  • the temperature of the refrigerant decreases and the refrigerant liquefies.
  • the liquefied refrigerant flows through the tubular heat pipe and flows into the plate heat pipe. In this way, the refrigerant is repeatedly vaporized and liquefied and circulates inside the heat pipe, whereby the electronic component is cooled.
  • the refrigerant may freeze.
  • the pure water enclosed in the heat pipe may freeze.
  • the coolant freezes in this way, the coolant does not circulate inside the heat pipe, so the cooling performance of the heat sink decreases.
  • the electronic component may not be cooled sufficiently, the temperature of the electronic component may become too high, and the electronic component may fail.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a cooling device capable of cooling even in a low temperature environment.
  • the cooling device of the present invention includes a heat receiving block, a first heat pipe, a second heat pipe, a first refrigerant in a gas-liquid two-phase state, and a gas-liquid two-phase state. And a second refrigerant.
  • a heating element is fixed to the first main surface of the heat receiving block.
  • the first heat pipe is fixed to the heat receiving block.
  • the second heat pipe is fixed to the heat receiving block and is adjacent to the first heat pipe.
  • the first refrigerant is sealed in the first heat pipe.
  • the second refrigerant is enclosed in the second heat pipe.
  • the ratio of the second refrigerant in the liquid state to the volume of the second heat pipe is higher than the ratio of the first refrigerant in the liquid state to the volume of the first heat pipe.
  • the cooling device includes a second heat pipe adjacent to the first heat pipe.
  • the ratio of the second refrigerant in the liquid state to the volume of the second heat pipe is higher than the ratio of the first refrigerant in the liquid state to the volume of the first heat pipe. Since the second heat pipe, which is harder to freeze than the first heat pipe, is adjacent to the first heat pipe, the frozen first refrigerant inside the first heat pipe can be quickly melted. As a result, it becomes possible to cool with the cooling device even in a low temperature environment.
  • the perspective view of the cooling device which concerns on Embodiment 1 of this invention. 1 is a sectional view of the cooling device according to the first embodiment taken along the line AA of FIG. The figure which shows the 2nd heat pipe which concerns on Embodiment 1.
  • Sectional drawing of the power converter device which concerns on Embodiment 1. 4 is a cross-sectional view of the power conversion device according to the first embodiment taken along the line BB in FIG.
  • the perspective view of the cooling device which concerns on Embodiment 2 of this invention. 6 is a sectional view of the cooling device according to the second embodiment taken along the line CC of FIG.
  • Perspective view of a modified example of the cooling device according to the embodiment Schematic diagram of a loop heat pipe according to an embodiment
  • a cooling device 1 that cools the electronic component is thermally connected to the electronic component.
  • a cooling device 1 cools a heat receiving block 11 to which a heating element is fixed and a heating element fixed to the heat receiving block 11 to radiate the heat transmitted from the heating element to cool the heating element.
  • the first heat pipe 12 and the second heat pipe 13 fixed to the heat receiving block 11 and adjacent to the first heat pipe 12 are provided.
  • the first heat pipe 12 includes a mother pipe 12 a fixed to the heat receiving block 11 and a branch pipe 12 b communicating with the mother pipe 12 a and extending in a direction away from the heat receiving block 11.
  • the fixing includes being integrally formed.
  • the mother pipe 12 a fixed to the heat receiving block 11 may be formed integrally with the heat receiving block 11.
  • the second heat pipe 13 fixed to the heat receiving block 11 may be formed integrally with the heat receiving block 11.
  • the cooling device 1 further includes fins 14 fixed to the branch pipe 12b. Note that, in FIG. 1, the fins 14 are omitted for clarity.
  • the cooling device 1 further includes a first refrigerant 15 in a gas-liquid two-phase state sealed in the first heat pipe 12, and a second refrigerant 16 in a gas-liquid two-phase state sealed in the second heat pipe 13. Is further provided.
  • the Z axis is the vertical direction.
  • the X axis is a direction orthogonal to each of the first main surface 11a and the second main surface 11b of the heat receiving block 11, and the Y axis is a direction orthogonal to the X axis and the Z axis.
  • each part of the cooling device 1 having the above configuration will be described by taking as an example a configuration in which the cooling device 1 includes four mother pipes 12a, and four branch pipes 12b communicate with each mother pipe 12a.
  • a heating element 31 composed of electronic components that generate heat when energized is fixed to the first main surface 11 a of the heat receiving block 11.
  • a plurality of grooves 11c extending in the Y-axis direction and a plurality of grooves 11d extending in the Y-axis direction are formed on the second main surface 11b of the heat receiving block 11 located on the opposite side of the first main surface 11a.
  • the mother pipe 12a is inserted into each groove 11c, and the mother pipe 12a is fixed to the heat receiving block 11 by an arbitrary fixing method such as bonding with an adhesive or soldering.
  • the second heat pipe 13 is inserted into each groove 11d, and the second heat pipe 13 is fixed to the heat receiving block 11 by an arbitrary fixing method such as bonding with an adhesive or soldering.
  • the groove 11d is adjacent to the groove 11c. Specifically, the groove 11d may transfer heat from the second heat pipe 13 inserted in the groove 11d to the mother tube 12a inserted in the groove 11c to melt the frozen first refrigerant 15 as described later. It is formed near the groove 11c as much as possible.
  • the heat receiving block 11 is formed of a material having a high thermal conductivity, for example, a metal such as copper or aluminum.
  • the first heat pipe 12 includes a mother pipe 12a and a plurality of branch pipes 12b communicating with the mother pipe 12a.
  • the first refrigerant 15 is enclosed in the first heat pipe 12.
  • the mother tube 12 a is inserted into the groove 11 c and fixed to the heat receiving block 11.
  • the mother tube 12a is fixed to the heat receiving block 11 with a part thereof exposed.
  • the mother tube 12a is formed of a material having a high thermal conductivity, for example, a metal such as copper or aluminum.
  • the branch pipe 12b is fixed to the mother pipe 12a by welding, soldering or the like, and communicates with the mother pipe 12a. Further, the branch pipe 12b extends in a direction away from the second main surface 11b.
  • the branch pipe 12b is made of a material having a high thermal conductivity, for example, a metal such as copper or aluminum.
  • the one end of the second heat pipe 13 is inserted into the groove 11d and fixed to the heat receiving block 11.
  • the second heat pipe 13 has a flow path whose start point and end point coincide with each other, and forms a meandering flow path between an end portion close to the heat receiving block 11 and an end portion far from the heat receiving block 11.
  • the second heat pipe 13 fixed to the heat receiving block 11 has a cross section orthogonal to the Y axis, that is, a shape that extends along a part of the outer circumference of the mother pipe 12a in the XZ plane. Specifically, as shown in FIG.
  • a self-excited vibration type second heat pipe 13 having a meandering flow path whose start point and end point coincide with each other and is bent 90 degrees along a bending line L1 shown by a one-dot chain line. Is inserted into the groove 11d and fixed to the heat receiving block 11.
  • the second heat pipe 13 has a surface 13a facing the Z-axis positive direction and a surface 13b facing the X-axis negative direction.
  • the second heat pipe 13 is adjacent to the first heat pipe 12.
  • the second heat pipe 13 is capable of transferring the heat transferred from the heating element 31 to the mother pipe 12a from each of the surfaces 13a and 13b and melting the frozen first refrigerant 15. And adjacent to the mother tube 12a.
  • the distance between the mother tube 12a and the second heat pipe 13 is set to 100 mm or less.
  • each of the surfaces 13a and 13b may abut the mother tube 12a.
  • the fin 14 has a through hole, and is fixed to the branch pipe 12b with the branch pipe 12b passing through the through hole. By providing the fins 14, it is possible to improve the cooling efficiency of the cooling device 1.
  • the first refrigerant 15 is sealed in the first heat pipe 12 in a gas-liquid two-phase state.
  • the first refrigerant 15 is composed of a substance, for example, water, which is liquefied by being vaporized by the heat transmitted from the heating element 31 and radiating heat to the air around the cooling device 1.
  • the second refrigerant 16 is enclosed in the second heat pipe 13 in a gas-liquid two-phase state. Due to the effect of the surface tension of the second refrigerant 16, the inside of the second heat pipe 13 is blocked by the droplets of the second refrigerant 16, and the second refrigerant 16 in the liquid state and the second refrigerant 16 in the gas state are closed. Are distributed and located.
  • the second refrigerant 16 is composed of a substance that is liquefied by being vaporized by the heat transmitted from the heating element 31 and radiating to the air around the cooling device 1, for example, water.
  • the ratio of the liquid second refrigerant 16 to the volume of the second heat pipe 13 is higher than the ratio of the liquid first refrigerant 15 to the volume of the first heat pipe 12. Therefore, the second heat pipe 13 is less likely to freeze than the first heat pipe 12. As an example, it is preferable that the ratio of the liquid second refrigerant 16 to the volume of the second heat pipe 13 is 50% and the ratio of the liquid first refrigerant 15 to the volume of the first heat pipe 12 is 20%. ..
  • the cooling device 1 having the above configuration is mounted on the power conversion device 30, as shown in FIGS. 4 and 5.
  • 5 is a sectional view taken along the line BB in FIG.
  • the power conversion device 30 includes a housing 32, a heating element 31 housed inside the housing 32, and a cooling device 1 that cools the heating element 31.
  • the housing 32 has a partition 33 that divides the interior of the housing 32 into a sealed portion 32a and an open portion 32b.
  • the heating element 31 is housed in the sealing portion 32a.
  • the cooling device 1 is housed in the opening 32b.
  • the partition 33 has an opening 33a.
  • the opening 33a is closed by the first main surface 11a of the heat receiving block 11 included in the cooling device 1.
  • the heating element 31 is attached to the first main surface 11a that closes the opening 33a.
  • the housing 32 has the intake/exhaust ports 34 on the two surfaces facing the opening 32b and orthogonal to the Y-axis direction.
  • the cooling air that has flowed in from one of the intake/exhaust ports 34 passes along the fins 14 between the branch pipes 12b and is exhausted from the other of the intake/exhaust ports 34.
  • the cooling device 1 transfers the heat transferred from the heating element 31 to the cooling air, whereby the heating element 31 is cooled.
  • the mechanism of cooling the heating element 31 by the cooling device 1 having the above configuration will be described.
  • the heating element 31 When the heating element 31 generates heat, the heat is transferred from the heating element 31 to the first refrigerant 15 via the heat receiving block 11 and the mother pipe 12a.
  • the temperature of the first refrigerant 15 rises and a part of the first refrigerant 15 vaporizes.
  • the vaporized first refrigerant 15 flows from the mother pipe 12a into the branch pipe 12b, and further moves inside the branch pipe 12b toward the upper end in the vertical direction of the branch pipe 12b.
  • the first refrigerant 15 While moving inside the branch pipe 12b toward the upper end in the vertical direction of the branch pipe 12b, the first refrigerant 15 radiates heat to the air around the cooling device 1 via the branch pipe 12b and the fins 14. The temperature of the first refrigerant 15 decreases as the first refrigerant 15 radiates heat. As a result, the first refrigerant 15 is liquefied. The liquefied first refrigerant 15 returns to the mother pipe 12a along the inner wall of the branch pipe 12b. The liquefied first refrigerant 15 is vaporized again when heat is transferred from the heating element 31 through the heat receiving block 11, flows into the branch pipe 12b, and moves toward the upper end of the branch pipe 12b in the vertical direction.
  • the heat generated in the heating element 31 is radiated to the air around the cooling device 1, specifically, the air around the branch pipes 12b and the fins 14, as the first refrigerant 15 circulates by repeating the above vaporization and liquefaction. Then, the heating element 31 is cooled.
  • One refrigerant 15 has a temperature difference, and convection occurs.
  • the first refrigerant 15 diffuses the heat transferred from the heating element 31 in the Y-axis direction and is transferred, so that the heating element 31 is efficiently cooled.
  • the heating element 31 When the heating element 31 generates heat, the heat is transferred from the heating element 31 to the second refrigerant 16 via the heat receiving block 11 and the second heat pipe 13. As a result, a part of the second refrigerant 16 that was in a liquid state is vaporized.
  • the second refrigerant 16 in the liquid state and the second refrigerant 16 in the gas state are pushed by the second refrigerant 16 whose volume is increased by vaporization, and the end portion far from the heat receiving block 11, in other words, the upper end in the vertical direction. Move to. While moving vertically inside the second heat pipe 13, the vaporized second refrigerant 16 radiates heat to the air around the cooling device 1 via the second heat pipe 13.
  • the temperature of the second refrigerant 16 decreases as the second refrigerant 16 radiates heat. As a result, the second refrigerant 16 is liquefied. The liquefied second refrigerant 16 travels along the inner wall of the second heat pipe 13 and moves vertically downward. The liquefied second refrigerant 16 is vaporized again when heat is transferred from the heating element 31 via the heat receiving block 11. As the second refrigerant 16 circulates by repeating vaporization and liquefaction in this way, the heat generated in the heating element 31 is transferred to the air around the cooling device 1, specifically, the air around the second heat pipe 13. The heat is dissipated and the heating element 31 is cooled.
  • the cooling device 1 cannot cool the heating element 31. Specifically, when the air around the cooling device 1 becomes 0 degrees Celsius or less while the electronic components forming the heating element 31 are not energized, the first refrigerant 15 formed of water may freeze. .. In order to suppress the decrease in the cooling efficiency of the cooling device 1, it is necessary to melt the first refrigerant 15.
  • the cooling device 1 that melts the frozen first refrigerant 15.
  • the heating element 31 generates heat
  • the heat is transferred to the first refrigerant 15 via the heat receiving block 11 and the first heat pipe 12.
  • the heat generated in the heating element 31 is transmitted to the second heat pipe 13, and is transferred from the surfaces 13a and 13b of the second heat pipe 13 adjacent to the mother pipe 12a to the first refrigerant 15 via the mother pipe 12a. Transmitted. Therefore, not only the portion of the mother pipe 12a facing the heat receiving block 11 but also the portion of the mother pipe 12a not facing the heat receiving block 11 passes through the second heat pipe 13 to the frozen first refrigerant 15. Heat is transferred from multiple sides. Therefore, the cooling device 1 can quickly melt the frozen first refrigerant 15 as compared with the conventional heat pipe cooling device that does not include the second heat pipe 13.
  • the second heat pipe 13 is provided so that the frozen first refrigerant 15 can be quickly melted.
  • the heating device 31 can be cooled by the cooling device 1 even in a low temperature environment.
  • the structure of the second heat pipe 13 is arbitrary as long as it is harder to freeze than the first heat pipe 12 and can melt the frozen first refrigerant 15.
  • the cooling device 2 according to the second embodiment shown in FIGS. 6 and 7 includes a second heat pipe 17 instead of the second heat pipe 13.
  • the structure of the cooling device 2 is the same as the structure of the cooling device 1 except for the second heat pipe 17 and the shape of the heat receiving block 11. Further, the cooling device 2 can be mounted on the power conversion device 30 similarly to the cooling device 1.
  • the heat receiving block 11 of the cooling device 2 is formed with a plurality of grooves 11e in addition to the plurality of grooves 11d. One end of the second heat pipe 17 is inserted into each groove 11d.
  • the one end of the second heat pipe 17 is inserted into the groove 11d and is fixed to the heat receiving block 11 by bonding with an adhesive, soldering, or the like.
  • the second heat pipe 17 is composed of a plate-shaped member 19 having a flow path 18 inside. Specifically, as shown in FIG. 8, a flat plate-like member 19 in which the start point and the end point coincide with each other and in which a meandering flow path 18 is formed is bent 90 degrees along a bending line L2 indicated by a chain line. Then, the second heat pipe 17 is obtained.
  • the second refrigerant 16 in a gas-liquid two-phase state is sealed in the flow path 18 as in the first embodiment.
  • the plate-shaped member 19 is made of a material having a high thermal conductivity and easy to process, for example, a metal such as copper or aluminum.
  • the second heat pipe 17 formed by bending the plate-like member 19 as described above has a surface 17a facing the Z-axis positive direction and a surface 17b facing the X-axis negative direction, as shown in FIG.
  • the second heat pipe 17 is adjacent to the first heat pipe 12.
  • the second heat pipe 17 is capable of transferring the heat transferred from the heating element 31 to the mother pipe 12a from each of the surfaces 17a and 17b and melting the frozen first refrigerant 15. And adjacent to the mother tube 12a.
  • the surfaces 17a, 17b each abut the mother tube 12a.
  • the ratio of the liquid second refrigerant 16 to the volume of the flow path 18 of the second heat pipe 17 is such that the liquid first refrigerant 15 occupies the volume of the first heat pipe 12. Higher than the ratio. Therefore, the second heat pipe 17 is less likely to freeze than the first heat pipe 12.
  • the ratio of the liquid second refrigerant 16 to the volume of the flow path 18 of the second heat pipe 17 is 50%, and the ratio of the liquid first refrigerant 15 to the volume of the first heat pipe 12 is 20%.
  • the ratio of the liquid second refrigerant 16 to the volume of the flow path 18 of the second heat pipe 17 is 50%
  • the ratio of the liquid first refrigerant 15 to the volume of the first heat pipe 12 is 20%.
  • the ratio of the liquid first refrigerant 15 to the volume of the first heat pipe 12 is 20%.
  • a mechanism for cooling the heating element 31 by the cooling device 2 having the above configuration will be described. Since the mechanism by which the first heat pipe 12 cools the heating element 31 is the same as that in the first embodiment, the mechanism by which the second heat pipe 17 cools the heating element 31 will be described.
  • the heating element 31 When the heating element 31 generates heat, the heat is transferred from the heating element 31 to the second refrigerant 16 via the heat receiving block 11 and the plate member 19. As a result, a part of the second refrigerant 16 that was in a liquid state is vaporized.
  • the second refrigerant 16 in the liquid state and the second refrigerant 16 in the gas state are pushed by the second refrigerant 16 whose volume is increased by vaporization, and the end portion far from the heat receiving block 11, in other words, the upper end in the vertical direction. Move to. While moving vertically in the flow path 18, the vaporized second refrigerant 16 radiates heat to the air around the cooling device 2 through the plate-shaped member 19.
  • the temperature of the second refrigerant 16 decreases as the second refrigerant 16 radiates heat. As a result, the second refrigerant 16 is liquefied. The liquefied second refrigerant 16 travels along the inner wall of the flow path 18 and moves vertically downward. The liquefied second refrigerant 16 is vaporized again when heat is transferred from the heating element 31 via the heat receiving block 11 and the plate-shaped member 19. As the second refrigerant 16 circulates by repeating vaporization and liquefaction in this way, the heat generated in the heating element 31 is transferred to the air around the cooling device 2, specifically, the air around the second heat pipe 17. The heat is dissipated and the heating element 31 is cooled.
  • the mechanism of the cooling device 2 that melts the frozen first refrigerant 15 will be described. Similar to the first embodiment, when the heat generating element 31 generates heat, the heat is transferred to the first refrigerant 15 via the heat receiving block 11 and the first heat pipe 12. Further, the heat generated in the heating element 31 is transferred to the second heat pipe 17, and is transferred from each of the surfaces 17a and 17b of the second heat pipe 17 adjacent to the mother pipe 12a to the first refrigerant 15 via the mother pipe 12a. Transmitted. Therefore, not only the portion of the mother pipe 12a facing the heat receiving block 11 but also the portion of the mother pipe 12a not facing the heat receiving block 11 passes through the second heat pipe 17 to the frozen first refrigerant 15. Heat is transferred from multiple sides. Therefore, the cooling device 1 can quickly melt the frozen first refrigerant 15 as compared with the conventional heat pipe cooling device that does not include the second heat pipe 17.
  • the second heat pipe 17 is provided so that the frozen first refrigerant 15 can be quickly melted.
  • the heating device 31 can be cooled by the cooling device 2 even in a low temperature environment.
  • the flow path 18 of the second heat pipe 17 is formed inside the plate-shaped member 19, it is less susceptible to the temperature change of the air around the cooling device 1, and the cooling device 1 according to the first embodiment can be realized. It is harder to freeze than the second heat pipe 13 that it has.
  • the distance between the second heat pipe 17 and the heating element 31 is shorter than the distance between the mother tube 12a and the heating element 31. Therefore, the heat generated in the heating element 31 is transmitted to the second heat pipe 17 faster than the mother pipe 12a. As a result, it is possible to efficiently transfer heat from the second heat pipe 17 to the first refrigerant 15 via the mother pipe 12a and quickly melt the frozen first refrigerant 15.
  • the structure of the second heat pipe 13 is arbitrary as long as it is harder to freeze than the first heat pipe 12 and can melt the frozen first refrigerant 15.
  • the cooling device 3 according to the third embodiment shown in FIG. 9 includes a second heat pipe 20 instead of the second heat pipe 13.
  • the structure of the cooling device 3 is the same as the structure of the cooling device 1 except for the second heat pipe 20 and the shape of the heat receiving block 11.
  • the cooling device 3 can be mounted on the power conversion device 30 like the cooling devices 1 and 2.
  • a groove 11e similar to the heat receiving block 11 of the cooling device 2 and a plurality of grooves 11f are formed in the heat receiving block 11 of the cooling device 3.
  • One end of the second heat pipe 20 is inserted into each groove 11e, and the other end of the second heat pipe 20 is inserted into the groove 11f located vertically above the groove 11e with the two grooves 11c interposed between the groove 11d and the groove 11d. Is inserted.
  • the one end of the second heat pipe 20 is inserted into the groove 11e, and the other end is inserted into the groove 11f. Then, the second heat pipe 20 is fixed to the heat receiving block 11 by adhesion with an adhesive, soldering, or the like.
  • the second heat pipe 20 is formed by bending the plate member 19 similar to that of the second embodiment. Specifically, a flat plate-shaped member 19 in which the start point and the end point are coincident with each other in the inside shown in FIG. 10 and the meandering flow path 18 is formed is formed by bending lines L3 and L4 indicated by alternate long and short dash lines. The second heat pipe 20 is obtained by bending 90 degrees. The direction in which the plate member 19 is bent along the bending line L3 and the direction in which the plate member 19 is bent along the bending line L4 are the same.
  • the second heat pipe 20 formed by bending the plate member 19 as described above has a surface 20a facing the Z-axis positive direction, a surface 20b facing the X-axis negative direction, and a Z-axis. 20c facing in the negative direction.
  • the second heat pipe 20 is adjacent to the first heat pipe 12.
  • the second heat pipe 20 is adjacent to the mother pipe 12a to the extent that the heat transmitted from the heating element 31 can be transferred to the mother pipe 12a from each of the surfaces 20a, 20b, 20c.
  • the surfaces 20a, 20b, 20c of the second heat pipe 20 are in contact with the mother pipe 12a, respectively.
  • the ratio of the liquid second refrigerant 16 to the volume of the flow path 18 of the second heat pipe 20 at room temperature is the same as that of the liquid first refrigerant 15 to the volume of the first heat pipe 12. Higher than the ratio. Therefore, the second heat pipe 20 is less likely to freeze than the first heat pipe 12.
  • the ratio of the liquid second refrigerant 16 to the volume of the flow path 18 of the second heat pipe 20 is 50%, and the ratio of the liquid first refrigerant 15 to the volume of the first heat pipe 12 is 20%.
  • the ratio of the liquid second refrigerant 16 to the volume of the flow path 18 of the second heat pipe 20 is 50%
  • the ratio of the liquid first refrigerant 15 to the volume of the first heat pipe 12 is 20%.
  • the ratio of the liquid first refrigerant 15 to the volume of the first heat pipe 12 is 20%.
  • the mechanism by which the first heat pipe 12 cools the heating element 31 is the same as in the first embodiment.
  • the mechanism by which the second heat pipe 20 cools the heating element 31 is the same as that in the second embodiment.
  • both ends of the plate-shaped member 19 forming the second heat pipe 20 are fixed to the heat receiving block 11, and both ends of the flow path 18 are warmed by the heat transferred from the heating element 31 via the heat receiving block 11. Therefore, the second refrigerant 16 in the liquid state and the second refrigerant 16 in the gas state are pushed by the second refrigerant 16 whose volume is increased by vaporization, and the second refrigerant 16 in the gas state is the central portion of the flow path 18, in other words, the plate.
  • the member 19 moves toward the central portion in the longitudinal direction.
  • the mechanism of the cooling device 3 that melts the frozen first refrigerant 15 will be described.
  • the heating element 31 generates heat
  • the heat is transferred to the first refrigerant 15 via the heat receiving block 11 and the first heat pipe 12.
  • the heat generated in the heating element 31 is transferred to the second heat pipe 20, and the first refrigerant 15 is transferred from the surfaces 20a, 20b, 20c of the second heat pipe 20 adjacent to the mother pipe 12a via the mother pipe 12a. Be transmitted to. Therefore, not only the portion of the mother pipe 12a facing the heat receiving block 11 but also the portion of the mother pipe 12a not facing the heat receiving block 11 passes through the second heat pipe 20 to the frozen first refrigerant 15. Heat is transferred from multiple sides. Therefore, the cooling device 3 can quickly melt the frozen first refrigerant 15 as compared with the conventional heat pipe cooling device that does not include the second heat pipe 20.
  • both ends of the second heat pipe 20 are fixed to the heat receiving block 11, the heat generated by the heating element 31 is transferred from the both ends of the second heat pipe 20 to the second heat pipe 20. Therefore, heat is transferred to the entire second heat pipe 20 faster than the second heat pipes 13 and 17. As a result, the first refrigerant 15 can be melted more quickly than the second heat pipes 13 and 17.
  • the second heat pipe 20 causes the heat transferred from the heating element 31 to be transferred from the surfaces 20a, 20b, 20c to the first pipe 12a via the mother pipe 12a.
  • the frozen first refrigerant 15 can be quickly melted.
  • the heating element 31 can be cooled by the cooling device 3 even in a low temperature environment.
  • the second heat pipes 13, 17, 20 having a shape along the outer circumference of the mother tube 12a in the XZ plane have been described.
  • the second heat pipes 13, 17, 20 have the XZ plane. It may have a flat shape along a part of the outer circumference of the mother pipe 12a and a shape extending along the branch pipe 12b.
  • the cooling device 4 according to the fourth embodiment includes a second heat pipe 21 instead of the second heat pipe 13.
  • the structure of the cooling device 4 is the same as the structure of the cooling device 1 except for the second heat pipe 21 and the shape of the heat receiving block 11.
  • the cooling device 4 can be mounted on the power conversion device 30 like the cooling devices 1-3.
  • the heat receiving block 11 included in the cooling device 4 is formed with a plurality of grooves 11g instead of the plurality of grooves 11d.
  • the second heat pipe 21 is inserted into each groove 11g.
  • Each groove 11g is formed at a position vertically above the groove 11c and adjacent to the groove 11c. Specifically, the groove 11g transmits heat from the second heat pipe 21 inserted in the groove 11g to the mother pipe 12a inserted in the groove 11c, and melts the frozen first refrigerant 15 to such an extent that It is formed adjacent to the groove 11c.
  • the second heat pipe 21 is inserted into the groove 11g and fixed to the heat receiving block 11 by bonding with an adhesive, soldering, or the like. Further, the second heat pipe 21 has the flow path 18 inside. Specifically, the flat plate member 19 in which the start point and the end point coincide with each other in the inside shown in FIG. 12 and the meandering flow path 18 is formed is bent at 90 degrees along a bending line L5 indicated by a dashed line. The second heat pipe 21 is obtained by bending the plate member 19 in accordance with the angle formed by the horizontal line and the extending direction of the branch pipe 12b along the bending line L6 indicated by the alternate long and short dash line.
  • the bending direction when the plate member 19 is bent along the bending line L5 is opposite to the bending direction when the plate member 19 is bent along the bending line L6.
  • the second heat pipe 21 is formed by bending the plate member 19 at an angle formed by the horizontal direction and the direction in which the branch pipe 12b extends. Therefore, the second heat pipe 21 is fixed to the heat receiving block 11 along the branch pipe 12b. Extend.
  • the second heat pipe 21 formed by bending the plate member 19 as described above has a surface 21a facing the Z-axis negative direction, a surface 21b facing the X-axis negative direction, and the branch pipe 12b. And a surface 21c extending along.
  • the second heat pipe 21 is adjacent to the mother pipe 12a.
  • the second heat pipe 21 is adjacent to the mother pipe 12a to such an extent that the heat transmitted from the heating element 31 can be transferred to the mother pipe 12a from each of the surfaces 21a and 21b.
  • the surfaces 21a and 21b of the second heat pipe 21 may contact the mother tube 12a, respectively.
  • the second heat pipe 21 is adjacent to the branch pipe 12b and extends along the branch pipe 12b to the extent that the heat transmitted from the heating element 31 can be transferred from the surface 21c to the branch pipe 12b.
  • the surface 21c of the second heat pipe 21 may abut the branch pipe 12b.
  • the ratio of the liquid second refrigerant 16 to the volume of the flow path 18 of the second heat pipe 21 at room temperature is the same as that of the liquid first refrigerant 15 to the volume of the first heat pipe 12. Higher than the ratio. Therefore, the second heat pipe 21 is less likely to freeze than the first heat pipe 12.
  • the ratio of the liquid second refrigerant 16 to the volume of the flow path 18 of the second heat pipe 21 is 50%, and the ratio of the liquid first refrigerant 15 to the volume of the first heat pipe 12 is 20%.
  • the ratio of the liquid second refrigerant 16 to the volume of the flow path 18 of the second heat pipe 21 is 50%
  • the ratio of the liquid first refrigerant 15 to the volume of the first heat pipe 12 is 20%.
  • the ratio of the liquid first refrigerant 15 to the volume of the first heat pipe 12 is 20%.
  • the mechanism by which the first heat pipe 12 cools the heating element 31 is the same as in the first embodiment.
  • the mechanism by which the second heat pipe 20 cools the heating element 31 is the same as that in the second embodiment.
  • the mechanism of the cooling device 4 that melts the frozen first refrigerant 15 will be described.
  • the heating element 31 generates heat
  • the heat is transferred to the first refrigerant 15 via the heat receiving block 11 and the first heat pipe 12.
  • the heat generated in the heating element 31 is transferred to the second heat pipe 21, and is transferred from the surfaces 21a and 21b of the second heat pipe 21 adjacent to the mother pipe 12a to the first refrigerant 15 via the mother pipe 12a.
  • the portion of the mother pipe 12a facing the heat receiving block 11 passes through the second heat pipe 20 to the frozen first refrigerant 15. Heat is transferred from multiple sides.
  • the heat transferred to the second heat pipe 21 is transferred from the surface 21c to the first refrigerant 15 via the branch pipe 12b. Therefore, heat is also transferred to the first refrigerant 15 frozen in the branch pipe 12b. Therefore, the cooling device 4 can quickly melt the frozen first refrigerant 15 as compared with the conventional heat pipe type cooling device that does not include the second heat pipe 21. Further, the cooling device 1 can quickly melt the first refrigerant 15 frozen in the branch pipe 12b.
  • the second heat pipe 21 causes the heat transmitted from the heat generating element 31 to pass through the mother pipe 12a from each of the surfaces 21a and 21b.
  • the frozen first coolant 15 can be quickly melted.
  • the heating device 31 can be cooled by the cooling device 4 even in a low temperature environment.
  • the present invention is not limited to the above embodiment.
  • a plurality of embodiments may be arbitrarily combined among the above-mentioned embodiments.
  • the shape of the second heat pipe 13 included in the cooling device 1 may be the same as that of the second heat pipes 20 and 21.
  • the shape of the heat receiving block 11 is not limited to a plate shape, and may be any shape as long as the heating element 31 can be fixed to the first main surface 11a and the first heat pipe 12 can be fixed. ..
  • the structure and shape of the first heat pipe 12 are arbitrary as long as they can radiate the heat transmitted from the heat generating element 31.
  • the first heat pipe 12 may be composed of only the mother pipe 12a.
  • the shape of the cross section of the mother tube 12a orthogonal to the longitudinal direction is not limited to the circular shape and may be a flat shape.
  • the shape of the cross section of the branch pipe 12b orthogonal to the longitudinal direction is not limited to the circular shape, and may be a flat shape.
  • the flat shape is a shape obtained by deforming the width of a part of a circle to be narrower than the original circle, and includes an ellipse, a streamline, an ellipse, and the like.
  • the oval means a shape in which the outer edges of circles having the same diameter are connected by a straight line.
  • the mother tube 12a is fixed to the heat receiving block 11 with the longitudinal direction of the flat shape parallel to the Z-axis direction, the efficiency of heat transfer from the heat receiving block 11 to the mother tube 12a is improved.
  • the branch pipe 12b is fixed to the mother pipe 12a in a direction in which the longitudinal direction of the branch pipe 12b coincides with the flow direction of the cooling air, turbulent flow near the branch pipe 12b is suppressed, and the cooling efficiency is improved.
  • the shapes of the second heat pipes 13, 17, 20, 21, and 22 are arbitrary as long as they can melt the frozen first refrigerant 15.
  • the second heat pipes 17, 20, 21, 22 may be configured by members having an arbitrary shape having the flow path 18 inside.
  • FIG. 13 shows a second heat pipe 22 in which a part of the second heat pipe 22 has a shape in the XZ plane and extends along a part of the outer circumference of the mother pipe 12a, and another part thereof has a shape extending along the branch pipe 12b. Show.
  • the second heat pipe 22 has a bent portion 22a having a shape along the outer circumference of the mother tube 12a in the XZ plane and the second main surface 11b of the heat receiving block 11 to the branch pipe 12b. And a straight portion 22b having a shape extending along it.
  • the shape of the flow path 18 is arbitrary as long as the second refrigerant 16 enclosed therein can be circulated.
  • the shape of the flow path 18 may be annular.
  • the second heat pipes 13, 17, 20, 21 are not limited to the self-excited heat pipes, but may be configured by the loop heat pipes 23 shown in FIG.
  • the loop heat pipe 23 transfers the heat generated in the heating element 31 to the second refrigerant 16 to vaporize the second refrigerant 16, an evaporator 23a through which the vaporized second refrigerant 16 passes, and a second A condenser 23c for liquefying the second refrigerant 16 by radiating the heat transferred from the refrigerant 16, a liquid pipe 23d through which the liquefied second refrigerant 16 passes, and a part of the second refrigerant 16 flowing through the liquid pipe 23d. And a reservoir 23e for adjusting the amount of the second refrigerant 16 flowing from the liquid pipe 23d to the evaporator 23a.
  • the evaporator 23a is fixed to the heat receiving block 11.
  • the loop heat pipe 23 may be formed inside the plate-like member like the second heat pipes 17, 20, and 21.
  • the plate-shaped member having the loop heat pipe 23 formed therein is fixed to the heat receiving block 11 so that the evaporator 23 a is adjacent to the heat receiving block 11.
  • a switching element formed of a wide band gap semiconductor may be attached to the heat receiving block 11.
  • the wide band gap semiconductor includes, for example, silicon carbide, gallium nitride-based material, or diamond. Since the switching element formed of the wide band gap semiconductor is smaller than the switching element using silicon, it generates a large amount of heat per unit area. When the second heat pipes 13, 17, 20, 21, 22 that are harder to freeze than the first heat pipe 12 receive the heat generated by the wide band gap semiconductor, the frozen first refrigerant 15 can be quickly melted. ..
  • 11 heat receiving block 11a first main surface, 11b second main surface, 11c, 11d, 11e, 11f, 11g groove, 12 first heat pipe, 12a mother pipe, 12b branch pipe, 13, 17, 20, 21, 21, 22 second heat pipe, 13a, 13b, 17a, 17b, 20a, 20b, 20c, 21a, 21b, 21c surface, 14 fins, 15 first refrigerant, 16 second refrigerant, 18 flow Road, 19 plate-shaped member, 22a bent portion, 22b linear portion, 23 loop heat pipe, 23a evaporator, 23b steam pipe, 23c condenser, 23d liquid pipe, 23e reservoir, 30 power conversion device, 31 heating element, 32 casing Body, 32a closed part, 32b open part, 33 partition, 33a opening part, 34 intake/exhaust port, L1, L2, L3, L4, L5, L6 fold line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

冷却装置(1)は、発熱体(31)が取り付けられる受熱ブロック(11)と、受熱ブロック(11)に固定される第1ヒートパイプ(12)と、第1ヒートパイプ(12)に隣接する第2ヒートパイプ(13)と、を備える。第1ヒートパイプ(12)に第1冷媒(15)が気液二相の状態で封入され、第2ヒートパイプ(13)に第2冷媒(16)が気液二相の状態で封入される。第2ヒートパイプ(13)の体積に占める液体の状態の第2冷媒(16)の割合は、第1ヒートパイプ(12)の体積に占める液体の状態の第1冷媒(15)の割合より高い。

Description

冷却装置
 この発明は、ヒートパイプで構成される冷却装置に関する。
 電子部品の通電時の発熱による損傷を防ぐため、冷却部材が電子部品に熱的に接続される。冷却部材は、電子部品から伝達された熱を、冷却部材の周囲の空気に放熱する。その結果、電子部品が冷却される。冷却部材の一例として、ヒートパイプを有するヒートシンクがある。この種のヒートシンクの一例が特許文献1に開示されている。特許文献1に開示されているヒートシンクは、電子部品から熱が伝達されるベース板と、ヒートパイプと、を備える。ヒートパイプは、ベース板に固定された板型ヒートパイプと、板型ヒートパイプと連通する筒型ヒートパイプとで構成される。
特開2003-336976号公報
 特許文献1に開示されるヒートシンクが有するヒートパイプには、気液二相の状態の冷媒が封入される。電子部品から熱を伝達されて気化した冷媒は、板型ヒートパイプから筒型ヒートパイプに流入する。そして、気化した冷媒は、筒型ヒートパイプの内部を移動しながら、筒型ヒートパイプを介して筒型ヒートパイプの周囲の空気に熱を伝達する。冷媒が空気に熱を伝達すると、冷媒の温度は下がり、冷媒は液化する。液化した冷媒は、筒型ヒートパイプを伝って板型ヒートパイプに流入する。このように冷媒が気化と液化を繰り返してヒートパイプの内部を循環することで、電子部品が冷却される。
 ヒートシンクが冷媒の融点以下の空気に接触する場所に設置されていると、冷媒が凍ることがある。例えば、冷媒として純水がヒートパイプに封入されていて、ヒートシンクが摂氏0度以下の空気に接触する場所に設置されている場合、ヒートパイプの内部に封入された純水が凍ることがある。このように冷媒が凍ると、ヒートパイプの内部で冷媒が循環しないため、ヒートシンクの冷却性能が低下する。その結果、電子部品を十分に冷却することができず、電子部品の温度が高くなり過ぎて、電子部品が故障してしまうことがある。
 本発明は上述の事情に鑑みてなされたものであり、低温の環境でも冷却可能な冷却装置を提供することを目的とする。
 上記目的を達成するために、本発明の冷却装置は、受熱ブロックと、第1ヒートパイプと、第2ヒートパイプと、気液二相の状態の第1冷媒と、気液二相の状態の第2冷媒と、を備える。受熱ブロックの第1主面には、発熱体が固定される。第1ヒートパイプは、受熱ブロックに固定される。第2ヒートパイプは、受熱ブロックに固定され、第1ヒートパイプに隣接する。第1冷媒は、第1ヒートパイプに封入されている。第2冷媒は、第2ヒートパイプに封入されている。常温において、第2ヒートパイプの体積に占める液体の状態の第2冷媒の割合は、第1ヒートパイプの体積に占める液体の状態の第1冷媒の割合より高い。
 本発明に係る冷却装置は、第1ヒートパイプに隣接する第2ヒートパイプを備える。常温において、第2ヒートパイプの体積に占める液体の状態の第2冷媒の割合は、第1ヒートパイプの体積に占める液体の状態の第1冷媒の割合より高い。第1ヒートパイプより凍りにくい第2ヒートパイプが第1ヒートパイプに隣接することで、第1ヒートパイプの内部の凍った第1冷媒を速やかに溶かすことが可能である。その結果、低温の環境でも冷却装置による冷却が可能となる。
本発明の実施の形態1に係る冷却装置の斜視図 実施の形態1に係る冷却装置の図1のA-A線での矢視断面図 実施の形態1に係る第2ヒートパイプを示す図 実施の形態1に係る電力変換装置の断面図 実施の形態1に係る電力変換装置の図4のB-B線での矢視断面図 本発明の実施の形態2に係る冷却装置の斜視図 実施の形態2に係る冷却装置の図6のC-C線での矢視断面図 実施の形態2に係る第2ヒートパイプを構成する板状部材の上面図 本発明の実施の形態3に係る冷却装置の断面図 実施の形態3に係る第2ヒートパイプを構成する板状部材の上面図 本発明の実施の形態4に係る冷却装置の断面図 実施の形態4に係る第2ヒートパイプを構成する板状部材の上面図 実施の形態に係る冷却装置の変形例の斜視図 実施の形態に係るループヒートパイプの概要図
 以下、本発明の実施の形態に係る冷却装置について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。
 (実施の形態1)
 通電時の電子部品の発熱による電子部品の故障を防止するため、電子部品には、電子部品を冷却する冷却装置が熱的に接続される。図1に示す実施の形態1に係る冷却装置1は、発熱体が固定された受熱ブロック11と、受熱ブロック11に固定され、発熱体から伝達された熱を放熱することで発熱体を冷却する第1ヒートパイプ12と、受熱ブロック11に固定され、第1ヒートパイプ12に隣接する第2ヒートパイプ13と、を備える。第1ヒートパイプ12は、受熱ブロック11に固定された母管12aと、母管12aと連通して受熱ブロック11から離れる方向に延びる支管12bとで構成される。なお固定は、一体に形成されることを含むものとする。具体的には、受熱ブロック11に固定された母管12aは、受熱ブロック11と一体に形成されてもよい。同様に、受熱ブロック11に固定された第2ヒートパイプ13は、受熱ブロック11と一体に形成されてもよい。
 図1におけるA-A線での矢視断面図である図2に示すように、冷却装置1はさらに、支管12bに固定されたフィン14を備える。なお図1においては、図をわかりやすくするために、フィン14の記載を省略した。冷却装置1はさらに、第1ヒートパイプ12に封入された気液二相の状態の第1冷媒15と、第2ヒートパイプ13に封入された気液二相の状態の第2冷媒16と、をさらに備える。
 図1および図2において、Z軸を鉛直方向とする。またX軸は、受熱ブロック11の第1主面11aおよび第2主面11bのそれぞれと直交する方向であり、Y軸は、X軸およびZ軸に直交する方向である。
 上記構成を有する冷却装置1の各部について、冷却装置1が4本の母管12aを備え、各母管12aに4本の支管12bが連通する構成を例にして説明する。
 図2に示すように、受熱ブロック11の第1主面11aには、通電時に発熱する電子部品で構成される発熱体31が固定される。また第1主面11aの反対側に位置する受熱ブロック11の第2主面11bには、Y軸方向に延びる複数の溝11cと、Y軸方向に延びる複数の溝11dが形成される。各溝11cに母管12aが挿入され、接着剤による接着、はんだ付け等の任意の固定方法によって、母管12aが受熱ブロック11に固定される。
 また各溝11dに第2ヒートパイプ13が挿入され、接着剤による接着、はんだ付け等の任意の固定方法によって、第2ヒートパイプ13が受熱ブロック11に固定される。なお溝11dは、溝11cに隣接する。具体的には、溝11dは、後述するように、溝11dに挿入された第2ヒートパイプ13から溝11cに挿入された母管12aに熱を伝えて凍った第1冷媒15を溶かすことが可能な程度に、溝11cの近傍に形成される。なお受熱ブロック11は、熱伝導率の高い材料、例えば、銅、アルミニウム等の金属で形成される。
 第1ヒートパイプ12は、母管12aと、母管12aに連通する複数の支管12bとで構成される。第1ヒートパイプ12に第1冷媒15が封入される。
 母管12aは、溝11cに挿入され、受熱ブロック11に固定されている。なお母管12aは、一部が露出した状態で受熱ブロック11に固定されている。なお母管12aは、熱伝導率の高い材料、例えば、銅、アルミニウム等の金属で形成される。
 支管12bは、溶接、はんだ付け等によって、母管12aに固定され、母管12aに連通している。また支管12bは、第2主面11bから離れる方向に延びる。なお支管12bは、熱伝導率の高い材料、例えば、銅、アルミニウム等の金属で形成される。
 第2ヒートパイプ13の一端は、溝11dに挿入され、受熱ブロック11に固定されている。第2ヒートパイプ13は、始点と終点が一致する流路であって、受熱ブロック11に近い端部と受熱ブロック11から遠い端部との間で蛇行する流路を形成する。また受熱ブロック11に固定された第2ヒートパイプ13は、Y軸に直交する断面で、すなわち、XZ平面で母管12aの外周の一部に沿う形状を有する。具体的には、図3に示すように、始点と終点が一致し、蛇行した流路を有する自励振動式の第2ヒートパイプ13を、一点鎖線で示す折り曲げ線L1で90度折り曲げたものが溝11dに挿入され、受熱ブロック11に固定される。
 第2ヒートパイプ13は、図2に示すように、Z軸正方向に向く面13aと、X軸負方向に向く面13bとを有する。また第2ヒートパイプ13は、第1ヒートパイプ12に隣接する。具体的には、第2ヒートパイプ13は、発熱体31から伝達された熱を、面13a,13bのそれぞれから母管12aに伝達して、凍った第1冷媒15を溶かすことが可能な程度に、母管12aに隣接する。例えば、母管12aと第2ヒートパイプ13との間隔は、100mm以下に設定される。好ましくは、面13a,13bはそれぞれ、母管12aに当接してもよい。
 フィン14は、貫通孔を有し、貫通孔を支管12bが通った状態で、支管12bに固定される。フィン14を設けることで、冷却装置1の冷却効率を高めることが可能である。
 第1冷媒15は、気液二相の状態で、第1ヒートパイプ12に封入される。なお第1冷媒15は、発熱体31から伝達される熱で気化し、冷却装置1の周囲の空気に放熱することで液化する物質、例えば、水で構成される。
 第2冷媒16は、気液二相の状態で、第2ヒートパイプ13に封入される。第2冷媒16の表面張力の作用により、第2ヒートパイプ13の内部は、第2冷媒16の液滴で塞がれ、液体の状態の第2冷媒16と気体の状態の第2冷媒16とが分散して位置する。なお第2冷媒16は、発熱体31から伝達される熱で気化し、冷却装置1の周囲の空気に放熱することで液化する物質、例えば、水で構成される。
 なお常温において、第2ヒートパイプ13の体積に占める液体の第2冷媒16の割合は、第1ヒートパイプ12の体積に占める液体の第1冷媒15の割合より高い。このため、第2ヒートパイプ13は、第1ヒートパイプ12よりも凍りにくい。一例として、第2ヒートパイプ13の体積に占める液体の第2冷媒16の割合を50%とし、第1ヒートパイプ12の体積に占める液体の第1冷媒15の割合を20%とすることが好ましい。
 上記構成を有する冷却装置1は、図4および図5に示すように、電力変換装置30に搭載される。なお図5は、図4におけるB-B線での矢視断面図である。電力変換装置30は、筐体32、筐体32の内部に収容される発熱体31、および、発熱体31を冷却する冷却装置1を備える。筐体32は、筐体32の内部を密閉部32aと開放部32bとに分ける仕切り33を有する。密閉部32aには、発熱体31が収容される。開放部32bには、冷却装置1が収容される。仕切り33は、開口部33aを有する。開口部33aは、冷却装置1が有する受熱ブロック11の第1主面11aによって塞がれる。発熱体31は、開口部33aを塞ぐ第1主面11aに取り付けられる。開口部33aが第1主面11aによって塞がれることで、密閉部32aに外部の空気、水分、塵埃等が流入することが抑制される。
 また筐体32は、開放部32bに面し、かつ、Y軸方向と直交する二面に、吸排気口34を有する。一方の吸排気口34から流入した冷却風は、フィン14に沿って、支管12bの間を通り、他方の吸排気口34から排出される。冷却装置1が発熱体31から伝達された熱を、冷却風に伝達することで、発熱体31が冷却される。
 上記構成を有する冷却装置1が発熱体31を冷却する仕組みについて説明する。発熱体31が発熱すると、発熱体31から受熱ブロック11および母管12aを介して、第1冷媒15に熱が伝達される。その結果、第1冷媒15の温度が上昇し、第1冷媒15の一部が気化する。気化した第1冷媒15は、母管12aから支管12bに流入し、さらに支管12bの内部を支管12bの鉛直方向上端に向かって移動する。支管12bの内部を支管12bの鉛直方向上端に向かって移動する間に、第1冷媒15は、支管12bとフィン14とを介して、冷却装置1の周囲の空気に放熱する。第1冷媒15が放熱することで、第1冷媒15の温度は下がる。この結果、第1冷媒15は、液化する。液化した第1冷媒15は、支管12bの内壁を伝って母管12aに戻る。液化した第1冷媒15は、受熱ブロック11を介して発熱体31から熱を伝達されると、再び気化し、支管12bに流入し、支管12bの鉛直方向上端に向かって移動する。第1冷媒15が上述の気化と液化を繰り返して循環することで、発熱体31で生じた熱は、冷却装置1の周囲の空気、具体的には支管12bとフィン14の周囲の空気に放熱されて、発熱体31は冷却される。
 また発熱体31が発熱し、発熱体31から受熱ブロック11および母管12aを介して第1冷媒15に熱が伝達されると、気化しなかった第1冷媒15、すなわち、液体の状態の第1冷媒15に温度差が生じて、対流が生じる。対流によって、第1冷媒15が、発熱体31から伝達された熱をY軸方向に拡散して伝達されるため、発熱体31は効率よく冷却される。
 また発熱体31が発熱すると、発熱体31から受熱ブロック11および第2ヒートパイプ13を介して、第2冷媒16に熱が伝達される。その結果、液体の状態であった第2冷媒16の一部が気化する。気化によって体積が増大した第2冷媒16に押されて、液体の状態の第2冷媒16と気体の状態の第2冷媒16とが、受熱ブロック11から遠い端部、換言すれば、鉛直方向上端に移動する。第2ヒートパイプ13の内部を鉛直方向上方に移動する間に、気化した第2冷媒16は、第2ヒートパイプ13を介して、冷却装置1の周囲の空気に放熱する。第2冷媒16が放熱することで、第2冷媒16の温度は下がる。この結果、第2冷媒16は、液化する。液化した第2冷媒16は、第2ヒートパイプ13の内壁を伝って鉛直方向下方に移動する。液化した第2冷媒16は、受熱ブロック11を介して発熱体31から熱を伝達されると、再び気化する。このように第2冷媒16が気化と液化を繰り返して循環することで、発熱体31で生じた熱は、冷却装置1の周囲の空気、具体的には第2ヒートパイプ13の周囲の空気に放熱されて、発熱体31は冷却される。
 第1冷媒15が凍った状態では、上述した第1冷媒15の循環と対流が起こらないため、冷却装置1は発熱体31を冷却することができない。具体的には、発熱体31を構成する電子部品が通電されていない状態で、冷却装置1の周囲の空気が摂氏0度以下になると、水で構成される第1冷媒15が凍ることがある。冷却装置1の冷却効率の低下を抑制するためには、第1冷媒15を溶かす必要がある。
 凍った第1冷媒15を溶かす冷却装置1の仕組みについて説明する。発熱体31が発熱すると、受熱ブロック11および第1ヒートパイプ12を介して、第1冷媒15に熱が伝達される。さらに発熱体31で生じた熱は、第2ヒートパイプ13に伝達され、母管12aに隣接する第2ヒートパイプ13の面13a,13bのそれぞれから、母管12aを介して第1冷媒15に伝達される。このため、母管12aの受熱ブロック11に面している部分だけでなく、母管12aの受熱ブロック11に面していない部分からも第2ヒートパイプ13を介して凍った第1冷媒15に多面的に熱が伝達される。したがって、冷却装置1は、第2ヒートパイプ13を備えない従来のヒートパイプ式冷却装置と比べて、凍った第1冷媒15を速やかに溶かすことが可能である。
 以上説明したとおり、本実施の形態1に係る冷却装置1によれば、第2ヒートパイプ13を備えることで、凍った第1冷媒15を速やかに溶かすことが可能である。その結果、低温の環境でも、冷却装置1による発熱体31の冷却が可能である。
 (実施の形態2)
 第2ヒートパイプ13の構造は、第1ヒートパイプ12より凍りにくく、凍った第1冷媒15を溶かすことができる構造であれば、任意である。図6および図7に示す実施の形態2に係る冷却装置2は、第2ヒートパイプ13に代えて、第2ヒートパイプ17を備える。冷却装置2の構造は、第2ヒートパイプ17と、受熱ブロック11の形状とを除いて、冷却装置1の構造と同じである。また冷却装置2は、冷却装置1と同様に、電力変換装置30に搭載可能である。
 冷却装置2が有する受熱ブロック11には、複数の溝11dに加えて、複数の溝11eが形成される。各溝11dに第2ヒートパイプ17の一端が挿入される。
 第2ヒートパイプ17は、一端が溝11dに挿入され、接着剤による接着、はんだ付け等によって、受熱ブロック11に固定される。また第2ヒートパイプ17は、内部に流路18を有する板状部材19で構成される。具体的には、図8に示すように、内部に始点と終点が一致し、蛇行する流路18が形成された平らな板状部材19を、一点鎖線で示す折り曲げ線L2で90度折り曲げることで、第2ヒートパイプ17が得られる。流路18には、実施の形態1と同様に、気液二相の状態の第2冷媒16が封入される。なお板状部材19は、熱伝導率が高く、加工が容易な材料、例えば、銅、アルミニウム等の金属で構成される。
 上述のように板状部材19を折り曲げて形成された第2ヒートパイプ17は、図7に示すように、Z軸正方向に向く面17aと、X軸負方向に向く面17bとを有する。また第2ヒートパイプ17は、第1ヒートパイプ12に隣接する。具体的には、第2ヒートパイプ17は、発熱体31から伝達された熱を、面17a,17bのそれぞれから母管12aに伝達して、凍った第1冷媒15を溶かすことが可能な程度に、母管12aに隣接する。好ましくは、面17a,17bはそれぞれ、母管12aに当接する。
 なお実施の形態1と同様に、常温において、第2ヒートパイプ17の流路18の体積に占める液体の第2冷媒16の割合は、第1ヒートパイプ12の体積に占める液体の第1冷媒15の割合より高い。このため、第2ヒートパイプ17は、第1ヒートパイプ12よりも凍りにくい。一例として、第2ヒートパイプ17の流路18の体積に占める液体の第2冷媒16の割合を50%とし、第1ヒートパイプ12の体積に占める液体の第1冷媒15の割合を20%とすることが好ましい。
 上記構成を有する冷却装置2が発熱体31を冷却する仕組みについて説明する。第1ヒートパイプ12が発熱体31を冷却する仕組みは、実施の形態1と同様であるため、第2ヒートパイプ17が発熱体31を冷却する仕組みについて説明する。
 発熱体31が発熱すると、発熱体31から受熱ブロック11と板状部材19を介して、第2冷媒16に熱が伝達される。その結果、液体の状態であった第2冷媒16の一部が気化する。気化によって体積が増大した第2冷媒16に押されて、液体の状態の第2冷媒16と気体の状態の第2冷媒16とが、受熱ブロック11から遠い端部、換言すれば、鉛直方向上端に移動する。流路18を鉛直方向上方に移動する間に、気化した第2冷媒16は、板状部材19を介して、冷却装置2の周囲の空気に放熱する。第2冷媒16が放熱することで、第2冷媒16の温度は下がる。この結果、第2冷媒16は、液化する。液化した第2冷媒16は、流路18の内壁を伝って、鉛直方向下方に移動する。液化した第2冷媒16は、受熱ブロック11と板状部材19を介して発熱体31から熱を伝達されると、再び気化する。このように第2冷媒16が気化と液化を繰り返して循環することで、発熱体31で生じた熱は、冷却装置2の周囲の空気、具体的には第2ヒートパイプ17の周囲の空気に放熱されて、発熱体31は冷却される。
 また発熱体31から受熱ブロック11を介して第2ヒートパイプ17を構成する板状部材19に伝達された熱の一部は、板状部材19から周囲の空気に直接的に放熱されて、発熱体31は冷却される。
 次に、凍った第1冷媒15を溶かす冷却装置2の仕組みについて説明する。実施の形態1と同様に、発熱体31が発熱すると、受熱ブロック11および第1ヒートパイプ12を介して、第1冷媒15に熱が伝達される。
 さらに発熱体31で生じた熱は、第2ヒートパイプ17に伝達され、母管12aに隣接する第2ヒートパイプ17の面17a,17bのそれぞれから、母管12aを介して第1冷媒15に伝達される。このため、母管12aの受熱ブロック11に面している部分だけでなく、母管12aの受熱ブロック11に面していない部分からも第2ヒートパイプ17を介して凍った第1冷媒15に多面的に熱が伝達される。したがって、冷却装置1は、第2ヒートパイプ17を備えない従来のヒートパイプ式冷却装置と比べて、凍った第1冷媒15を速やかに溶かすことが可能である。
 以上説明したとおり、本実施の形態2に係る冷却装置2によれば、第2ヒートパイプ17を備えることで、凍った第1冷媒15を速やかに溶かすことが可能である。その結果、低温の環境でも、冷却装置2による発熱体31の冷却が可能である。
 また第2ヒートパイプ17の流路18は板状部材19の内部に形成されているため、冷却装置1の周囲の空気の温度変化の影響を受けにくく、実施の形態1に係る冷却装置1が有する第2ヒートパイプ13よりも凍りにくい。
 また第2ヒートパイプ17と発熱体31との距離は、母管12aと発熱体31との距離より短い。そのため、発熱体31で生じた熱は、第2ヒートパイプ17に、母管12aよりも速く伝達される。その結果、第2ヒートパイプ17から母管12aを介して第1冷媒15に効率よく熱を伝達し、凍っている第1冷媒15を速やかに溶かすことが可能である。
 (実施の形態3)
 第2ヒートパイプ13の構造は、第1ヒートパイプ12より凍りにくく、凍った第1冷媒15を溶かすことができる構造であれば、任意である。図9に示す実施の形態3に係る冷却装置3は、第2ヒートパイプ13に代えて、第2ヒートパイプ20を備える。冷却装置3の構造は、第2ヒートパイプ20と、受熱ブロック11の形状とを除いて、冷却装置1の構造と同じである。また冷却装置3は、冷却装置1,2と同様に、電力変換装置30に搭載可能である。
 冷却装置3が有する受熱ブロック11には、冷却装置2が有する受熱ブロック11と同様の溝11eと、複数の溝11fが形成される。各溝11eに第2ヒートパイプ20の一端が挿入され、この溝11dとの間に2つの溝11cを挟んで溝11eより鉛直方向上側に位置する溝11fに第2ヒートパイプ20の他端が挿入される。
 第2ヒートパイプ20の一端は、溝11eに挿入され、他端は、溝11fに挿入される。そして第2ヒートパイプ20は、接着剤による接着、はんだ付け等によって、受熱ブロック11に固定される。また第2ヒートパイプ20は、実施の形態2と同様の板状部材19を折り曲げて形成される。具体的には、図10に示す内部に始点と終点が一致し、蛇行した流路18が形成された平らな板状部材19を一点鎖線で示す折り曲げ線L3,L4のそれぞれで板状部材19を90度折り曲げることで、第2ヒートパイプ20が得られる。なお折り曲げ線L3で板状部材19を折り曲げる方向と、折り曲げ線L4で板状部材19を折り曲げる方向とは同じである。
 上述のように板状部材19を折り曲げて形成された第2ヒートパイプ20は、図9に示すように、Z軸正方向に向く面20aと、X軸負方向に向く面20bと、Z軸負方向に向く20cと、を有する。また第2ヒートパイプ20は、第1ヒートパイプ12に隣接する。具体的には、第2ヒートパイプ20は、発熱体31から伝達された熱を、面20a,20b,20cのそれぞれから母管12aに伝達可能な程度に、母管12aに隣接する。好ましくは、第2ヒートパイプ20の面20a,20b,20cはそれぞれ、母管12aに当接する。
 なお実施の形態1と同様に、常温において、第2ヒートパイプ20の流路18の体積に占める液体の第2冷媒16の割合は、第1ヒートパイプ12の体積に占める液体の第1冷媒15の割合より高い。このため、第2ヒートパイプ20は、第1ヒートパイプ12よりも凍りにくい。一例として、第2ヒートパイプ20の流路18の体積に占める液体の第2冷媒16の割合を50%とし、第1ヒートパイプ12の体積に占める液体の第1冷媒15の割合を20%とすることが好ましい。
 第1ヒートパイプ12が発熱体31を冷却する仕組みは、実施の形態1と同様である。また第2ヒートパイプ20が発熱体31を冷却する仕組みは、実施の形態2と同様である。ただし、第2ヒートパイプ20を構成する板状部材19の両端が受熱ブロック11に固定されており、流路18の両端が発熱体31から受熱ブロック11を介して伝達された熱によって暖められる。このため、気化によって体積が増大した第2冷媒16に押されて、液体の状態の第2冷媒16と気体の状態の第2冷媒16とは、流路18の中央部分、換言すれば、板状部材19の長手方向の中央部分に向かって移動する。
 次に、凍った第1冷媒15を溶かす冷却装置3の仕組みについて説明する。発熱体31が発熱すると、受熱ブロック11および第1ヒートパイプ12を介して、第1冷媒15に熱が伝達される。
 さらに発熱体31で生じた熱は第2ヒートパイプ20に伝達され、母管12aに隣接する第2ヒートパイプ20の面20a,20b,20cのそれぞれから、母管12aを介して第1冷媒15に伝達される。このため、母管12aの受熱ブロック11に面している部分だけでなく、母管12aの受熱ブロック11に面していない部分からも第2ヒートパイプ20を介して凍った第1冷媒15に多面的に熱が伝達される。したがって、冷却装置3は、第2ヒートパイプ20を備えない従来のヒートパイプ式冷却装置と比べて、凍った第1冷媒15を速やかに溶かすことが可能である。
 また第2ヒートパイプ20の両端は受熱ブロック11に固定されているため、発熱体31で生じた熱は、第2ヒートパイプ20の両端から第2ヒートパイプ20に伝達される。そのため、第2ヒートパイプ13,17よりも速く、第2ヒートパイプ20の全体に熱が伝達される。その結果、第2ヒートパイプ13,17と比べて、より速やかに第1冷媒15を溶かすことができる。
 以上説明したとおり、本実施の形態3に係る冷却装置3によれば、第2ヒートパイプ20は、発熱体31から伝達された熱を面20a,20b,20cから母管12aを介して第1冷媒15に伝達することで、凍った第1冷媒15を速やかに溶かすことが可能である。その結果、低温の環境でも、冷却装置3による発熱体31の冷却が可能である。
 (実施の形態4)
 実施の形態1-3では、XZ平面で母管12aの外周の一部に沿う形状を有する第2ヒートパイプ13,17,20について説明したが、第2ヒートパイプ13,17,20は、XZ平面で母管12aの外周の一部に沿う形状を有し、かつ、支管12bに沿って延びる形状を有してもよい。図11に示すように、実施の形態4に係る冷却装置4は、第2ヒートパイプ13に代えて、第2ヒートパイプ21を備える。冷却装置4の構造は、第2ヒートパイプ21と、受熱ブロック11の形状とを除いて、冷却装置1の構造と同じである。また冷却装置4は、冷却装置1-3と同様に、電力変換装置30に搭載可能である。
 冷却装置4が有する受熱ブロック11には、複数の溝11dの代わりに、複数の溝11gが形成される。各溝11gに、第2ヒートパイプ21が挿入される。なお各溝11gは、溝11cの鉛直方向上側の位置で、溝11cに隣接して形成される。具体的には、溝11gは、溝11gに挿入された第2ヒートパイプ21から溝11cに挿入された母管12aに熱を伝えて凍った第1冷媒15を溶かすことが可能な程度に、溝11cに隣接して形成される。
 第2ヒートパイプ21は、溝11gに挿入され、接着剤による接着、はんだ付け等によって、受熱ブロック11に固定される。また第2ヒートパイプ21は、内部に流路18を有する。具体的には、図12に示す内部に始点と終点が一致し、蛇行した流路18が形成された平らな板状部材19を一点鎖線で示す折り曲げ線L5で板状部材19を90度折り曲げ、一点鎖線で示す折り曲げ線L6で水平方向と支管12bが延びる方向とが成す角にあわせて板状部材19を折り曲げることで、第2ヒートパイプ21が得られる。なお折り曲げ線L5で板状部材19を折り曲げる際の折り曲げる方向と、折り曲げ線L6で板状部材19を折り曲げる際の折り曲げる方向とは逆である。第2ヒートパイプ21は、水平方向と支管12bが延びる方向とが成す角にあわせて板状部材19を折り曲げて形成されているため、受熱ブロック11に固定された状態で、支管12bに沿って延びる。
 上述のように板状部材19を折り曲げて形成された第2ヒートパイプ21は、図11に示すように、Z軸負方向に向く面21aと、X軸負方向に向く面21bと、支管12bに沿って延びる面21cと、を有する。また第2ヒートパイプ21は、母管12aに隣接する。具体的には、第2ヒートパイプ21は、発熱体31から伝達された熱を、面21a,21bのそれぞれから母管12aに伝達可能な程度に、母管12aに隣接する。好ましくは、第2ヒートパイプ21の面21a,21bはそれぞれ、母管12aに当接してもよい。また第2ヒートパイプ21は、発熱体31から伝達された熱を、面21cから支管12bに伝達可能な程度に、支管12bに隣接し、支管12bに沿って延びる。好ましくは、第2ヒートパイプ21の面21cは支管12bに当接してもよい。
 なお実施の形態1と同様に、常温において、第2ヒートパイプ21の流路18の体積に占める液体の第2冷媒16の割合は、第1ヒートパイプ12の体積に占める液体の第1冷媒15の割合より高い。このため、第2ヒートパイプ21は、第1ヒートパイプ12よりも凍りにくい。一例として、第2ヒートパイプ21の流路18の体積に占める液体の第2冷媒16の割合を50%とし、第1ヒートパイプ12の体積に占める液体の第1冷媒15の割合を20%とすることが好ましい。
 第1ヒートパイプ12が発熱体31を冷却する仕組みは、実施の形態1と同様である。また第2ヒートパイプ20が発熱体31を冷却する仕組みは、実施の形態2と同様である。
 次に、凍った第1冷媒15を溶かす冷却装置4の仕組みについて説明する。発熱体31が発熱すると、受熱ブロック11および第1ヒートパイプ12を介して、第1冷媒15に熱が伝達される。
 さらに発熱体31で生じた熱は第2ヒートパイプ21に伝達され、母管12aに隣接する第2ヒートパイプ21の面21a,21bのそれぞれから、母管12aを介して第1冷媒15に伝達される。このため、母管12aの受熱ブロック11に面している部分だけでなく、母管12aの受熱ブロック11に面していない部分からも第2ヒートパイプ20を介して凍った第1冷媒15に多面的に熱が伝達される。
 また第2ヒートパイプ21に伝達された熱は、面21cから、支管12bを介して第1冷媒15に伝達される。このため、支管12bで凍った第1冷媒15にも熱が伝達される。したがって、冷却装置4は、第2ヒートパイプ21を備えない従来のヒートパイプ式冷却装置と比べて、凍った第1冷媒15を速やかに溶かすことが可能である。また冷却装置1は、支管12bで凍った第1冷媒15を速やかに溶かすことが可能である。
 以上説明したとおり、本実施の形態4に係る冷却装置4によれば、第2ヒートパイプ21は、発熱体31から伝達された熱を面21a,21bのそれぞれから母管12aを介して第1冷媒15に伝達し、面21cから支管12bを介して第1冷媒15に伝達することで、凍った第1冷媒15を速やかに溶かすことが可能である。その結果、低温の環境でも、冷却装置4による発熱体31の冷却が可能である。
 本発明は、上述の実施の形態に限られない。一例として、上述の実施の形態の内、複数の実施の形態を任意に組み合わせてもよい。具体的には、冷却装置1が有する第2ヒートパイプ13の形状を、第2ヒートパイプ20,21と同様の形状としてもよい。
 受熱ブロック11の形状は、板状の形状に限られず、第1主面11aに発熱体31が固定可能であって、かつ、第1ヒートパイプ12が固定可能な形状であれば、任意である。
 第1ヒートパイプ12の構造および形状は、発熱体31から伝達された熱を放熱可能な構造および形状であれば、任意である。一例として、第1ヒートパイプ12は、母管12aのみから構成されてもよい。
 また母管12aの長手方向に直交する断面の形状は、円形に限られず、扁平形状でもよい。同様に、支管12bの長手方向に直交する断面の形状は、円形に限られず、扁平形状でもよい。なお扁平形状は、円の一部の幅を元の円より狭く変形することで得られる形状であり、楕円、流線型、長円等を含む。なお長円は、同一の直径の円の外縁を直線で繋いだ形状を意味する。この場合、扁平形状の長手方向がZ軸方向に平行する向きで母管12aを受熱ブロック11に固定すると、受熱ブロック11から母管12aへの熱の伝達効率が向上する。また支管12bの長手方向が冷却風の流れる方向に一致する向きで支管12bを母管12aに固定すると、支管12bの近傍での乱流が抑制され、冷却効率が向上する。
 第2ヒートパイプ13,17,20,21,22の形状は、凍った第1冷媒15を溶かすことが可能な形状であれば、任意である。一例として、第2ヒートパイプ17,20,21,22は、内部に流路18を有する任意の形状の部材で構成されてもよい。
 また他の一例として、一部がXZ平面で母管12aの外周の一部に沿う形状を有し、他の一部が支管12bに沿って延びる形状を有する第2ヒートパイプ22を図13に示す。第2ヒートパイプ22は、第2ヒートパイプ17と同様に、XZ平面で母管12aの外周の一部に沿う形状を有する折り曲げ部22aと、受熱ブロック11の第2主面11bから支管12bに沿って延びる形状を有する直線部22bとで、構成される。
 流路18の形状は、内部に封入された第2冷媒16が循環可能な形状であれば、任意である。一例として、流路18の形状は、環状でもよい。
 また第2ヒートパイプ13,17,20,21は、自励式のヒートパイプに限られず、図14に示すループヒートパイプ23で構成されてもよい。ループヒートパイプ23は、発熱体31で生じた熱を第2冷媒16に伝達して、第2冷媒16を気化させる蒸発器23aと、気化した第2冷媒16が通る蒸気管23bと、第2冷媒16から伝達された熱を放熱することで、第2冷媒16を液化させる凝縮器23cと、液化した第2冷媒16が通る液管23dと、液管23dを流れる第2冷媒16の一部を貯留することで、液管23dから蒸発器23aに流れる第2冷媒16の量を調整するリザーバ23eと、を備える。この場合、蒸発器23aが受熱ブロック11に固定される。
 またループヒートパイプ23は、第2ヒートパイプ17,20,21のように、板状部材の内部に形成されてもよい。この場合、蒸発器23aが受熱ブロック11に隣接するように、ループヒートパイプ23が内部に形成された板状部材が受熱ブロック11に固定される。
 発熱体31として、ワイドバンドギャップ半導体によって形成されるスイッチング素子を受熱ブロック11に取り付けてもよい。ワイドバンドギャップ半導体は、例えば、炭化ケイ素、窒化ガリウム系材料、またはダイヤモンドを含む。ワイドバンドギャップ半導体によって形成されたスイッチング素子は、ケイ素を用いたスイッチング素子に比べて、小型化されているため、単位面積当たりの発熱量が大きい。第1ヒートパイプ12より凍りにくい第2ヒートパイプ13,17,20,21,22がワイドバンドギャップ半導体で生じた熱を受けることで、凍った第1冷媒15を速やかに溶かすことが可能である。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 1,2,3,4 冷却装置、11 受熱ブロック、11a 第1主面、11b 第2主面、11c,11d,11e,11f,11g 溝、12 第1ヒートパイプ、12a 母管、12b 支管、13,17,20,21,22 第2ヒートパイプ、13a,13b,17a,17b,20a,20b,20c,21a,21b,21c 面、14 フィン、15 第1冷媒、16 第2冷媒、18 流路、19 板状部材、22a 折り曲げ部、22b 直線部、23 ループヒートパイプ、23a 蒸発器、23b 蒸気管、23c 凝縮器、23d 液管、23e リザーバ、30 電力変換装置、31 発熱体、32 筐体、32a 密閉部、32b 開放部、33 仕切り、33a 開口部、34 吸排気口、L1,L2,L3,L4,L5,L6 折り曲げ線。

Claims (10)

  1.  発熱体が第1主面に固定される受熱ブロックと、
     前記受熱ブロックに固定される第1ヒートパイプと、
     前記受熱ブロックに固定され、前記第1ヒートパイプに隣接する第2ヒートパイプと、
     前記第1ヒートパイプに封入された気液二相の状態の第1冷媒と、
     前記第2ヒートパイプに封入された気液二相の状態の第2冷媒と、
     を備え、
     常温において、前記第2ヒートパイプの体積に占める液体の状態の前記第2冷媒の割合は、前記第1ヒートパイプの体積に占める液体の状態の前記第1冷媒の割合より高い、
     冷却装置。
  2.  前記第2ヒートパイプは、内部に流路を有する部材で構成される、
     請求項1に記載の冷却装置。
  3.  前記第2ヒートパイプは、始点と終点が一致する流路を形成する、
     請求項1または2に記載の冷却装置。
  4.  前記第2ヒートパイプは、前記受熱ブロックに近い端部と前記受熱ブロックから遠い端部との間で蛇行する流路を形成する、
     請求項1から3のいずれか1項に記載の冷却装置。
  5.  前記第1ヒートパイプは、前記受熱ブロックに固定され、前記第1主面に沿って延びる母管を有する、
     請求項1から4のいずれか1項に記載の冷却装置。
  6.  前記第2ヒートパイプは、前記母管が延びる方向に直交する断面で、前記母管の外周の一部に沿う形状を有する、
     請求項5に記載の冷却装置。
  7.  前記第2ヒートパイプは、前記母管に当接する、
     請求項5または6に記載の冷却装置。
  8.  前記第1ヒートパイプは、前記母管と連通し、前記第1主面と向き合う前記受熱ブロックの第2主面から離れる方向に延びる支管をさらに備える、
     請求項5から7のいずれか1項に記載の冷却装置。
  9.  前記第2ヒートパイプは、前記支管に沿って延びる、
     請求項8に記載の冷却装置。
  10.  前記第2ヒートパイプは、前記支管に当接する、
     請求項8または9に記載の冷却装置。
PCT/JP2019/002247 2019-01-24 2019-01-24 冷却装置 WO2020152822A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020567313A JP6932276B2 (ja) 2019-01-24 2019-01-24 冷却装置
US17/421,032 US20220057144A1 (en) 2019-01-24 2019-01-24 Cooling device
PCT/JP2019/002247 WO2020152822A1 (ja) 2019-01-24 2019-01-24 冷却装置
DE112019006726.5T DE112019006726T5 (de) 2019-01-24 2019-01-24 Kühleinrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002247 WO2020152822A1 (ja) 2019-01-24 2019-01-24 冷却装置

Publications (1)

Publication Number Publication Date
WO2020152822A1 true WO2020152822A1 (ja) 2020-07-30

Family

ID=71736821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002247 WO2020152822A1 (ja) 2019-01-24 2019-01-24 冷却装置

Country Status (4)

Country Link
US (1) US20220057144A1 (ja)
JP (1) JP6932276B2 (ja)
DE (1) DE112019006726T5 (ja)
WO (1) WO2020152822A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752478A (zh) * 2020-12-14 2021-05-04 中车永济电机有限公司 一体式双面风冷散热器及简统化功率模块

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6813197B2 (ja) * 2019-04-26 2021-01-13 Necプラットフォームズ株式会社 放熱構造体
JP7072547B2 (ja) * 2019-09-10 2022-05-20 古河電気工業株式会社 冷却装置および冷却装置を用いた冷却システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116950A (en) * 1976-03-26 1977-09-30 Hitachi Ltd Heat-transmitting apparatus
JP3020790B2 (ja) * 1993-12-28 2000-03-15 株式会社日立製作所 ヒートパイプ式冷却装置とこれを用いた車両制御装置
JP2005032771A (ja) * 2003-07-07 2005-02-03 Fujikura Ltd 電子素子の冷却装置
JP2012013373A (ja) * 2010-07-02 2012-01-19 Hitachi Cable Ltd ヒートパイプ式冷却装置及びこれを用いた車両制御装置
JP2012184913A (ja) * 2011-03-04 2012-09-27 崇賢 ▲黄▼ 放熱装置とその組立方法
JP2014159915A (ja) * 2013-02-20 2014-09-04 Uacj Copper Tube Corp 自然空冷型ヒートパイプ式ヒートシンク
WO2016104729A1 (ja) * 2014-12-25 2016-06-30 三菱アルミニウム株式会社 冷却器
JP2016205745A (ja) * 2015-04-27 2016-12-08 中部抵抗器株式会社 ヒートパイプ式ヒートシンク

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274487A (ja) * 1997-03-31 1998-10-13 Toshiba Transport Eng Kk ヒートパイプ式冷却器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116950A (en) * 1976-03-26 1977-09-30 Hitachi Ltd Heat-transmitting apparatus
JP3020790B2 (ja) * 1993-12-28 2000-03-15 株式会社日立製作所 ヒートパイプ式冷却装置とこれを用いた車両制御装置
JP2005032771A (ja) * 2003-07-07 2005-02-03 Fujikura Ltd 電子素子の冷却装置
JP2012013373A (ja) * 2010-07-02 2012-01-19 Hitachi Cable Ltd ヒートパイプ式冷却装置及びこれを用いた車両制御装置
JP2012184913A (ja) * 2011-03-04 2012-09-27 崇賢 ▲黄▼ 放熱装置とその組立方法
JP2014159915A (ja) * 2013-02-20 2014-09-04 Uacj Copper Tube Corp 自然空冷型ヒートパイプ式ヒートシンク
WO2016104729A1 (ja) * 2014-12-25 2016-06-30 三菱アルミニウム株式会社 冷却器
JP2016205745A (ja) * 2015-04-27 2016-12-08 中部抵抗器株式会社 ヒートパイプ式ヒートシンク

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752478A (zh) * 2020-12-14 2021-05-04 中车永济电机有限公司 一体式双面风冷散热器及简统化功率模块

Also Published As

Publication number Publication date
US20220057144A1 (en) 2022-02-24
DE112019006726T5 (de) 2021-09-30
JPWO2020152822A1 (ja) 2021-11-04
JP6932276B2 (ja) 2021-09-08

Similar Documents

Publication Publication Date Title
WO2020152822A1 (ja) 冷却装置
US20050051304A1 (en) Heat transport device and electronic device
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
WO2018179314A1 (ja) 冷却装置および車両用電力変換装置
EP3907455B1 (en) Phase-change heat dissipation device
JP2018194197A (ja) ヒートパイプ及び電子機器
WO2015146110A1 (ja) 相変化冷却器および相変化冷却方法
JP2007263427A (ja) ループ型ヒートパイプ
JP2005229102A (ja) ヒートシンク
WO2020170428A1 (ja) 冷却装置および電力変換装置
JP6825615B2 (ja) 冷却システムと冷却器および冷却方法
JP6710320B2 (ja) 車両用電力変換装置
JP7199574B2 (ja) 冷却装置および電力変換装置
KR101619720B1 (ko) 열전소자 구동형 냉장고의 방열기
JP7439559B2 (ja) 沸騰冷却器
WO2016208180A1 (ja) 冷却装置およびこれを搭載した電子機器
JP7452080B2 (ja) 沸騰冷却器
JPS6111591A (ja) ヒ−トパイプ熱交換器
JP7079169B2 (ja) 冷却装置
JP2014239174A (ja) 空調装置
US20230147067A1 (en) Cooling device having a boiling chamber with submerged condensation and method
JP2009264719A (ja) 熱交換器
WO2023189070A1 (ja) ヒートシンク
JP2018031557A (ja) 冷却装置およびこれを搭載した電子機器、および電気自動車
JP2022160275A (ja) 冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567313

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19912018

Country of ref document: EP

Kind code of ref document: A1