WO2020151578A1 - 一种集成主动间隙控制装置的涡轮机匣及涡轮机 - Google Patents

一种集成主动间隙控制装置的涡轮机匣及涡轮机 Download PDF

Info

Publication number
WO2020151578A1
WO2020151578A1 PCT/CN2020/072598 CN2020072598W WO2020151578A1 WO 2020151578 A1 WO2020151578 A1 WO 2020151578A1 CN 2020072598 W CN2020072598 W CN 2020072598W WO 2020151578 A1 WO2020151578 A1 WO 2020151578A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
casing
shunt pipe
clearance control
side flow
Prior art date
Application number
PCT/CN2020/072598
Other languages
English (en)
French (fr)
Inventor
高爱琼
塞巴斯蒂安·让·洛伦·濮睿德
Original Assignee
北京南方斯奈克玛涡轮技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京南方斯奈克玛涡轮技术有限公司 filed Critical 北京南方斯奈克玛涡轮技术有限公司
Publication of WO2020151578A1 publication Critical patent/WO2020151578A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings

Definitions

  • the utility model relates to the technical field of turbine casings, in particular to a turbine casing and a turbine integrated with an active clearance control device.
  • the aero-engine turbine in the prior art is composed of a casing, guide blades, working blades, turbine discs and the like.
  • an active clearance control device is usually set on the casing.
  • the basic principle is that when the engine is working, the high-temperature gas of the turbine causes the casing to expand and deform, and the outer ring of the turbine is radially displaced by the deformation of the casing, thereby changing the rotor tip clearance, and the active clearance control device controls different working conditions
  • the deformation of the casing can always control the tip clearance within a reasonable range, and the active clearance control device can improve the engine efficiency.
  • FIG. 1 is a schematic diagram of an active clearance control device of an aviation engine turbine part in the prior art, and the bracket and the connecting member are not shown.
  • the active clearance control device of the aviation engine turbine part in the prior art is composed of an intake pipe 1, an air collecting box 2, a shunt pipe 3 and a casing 4, and a hook 6 is provided on the lower end surface of the casing 4.
  • the cooling airflow is introduced by the engine's low-pressure compressor or fan, enters the air collecting box 2 from the intake pipe 1, and is distributed to the branch pipes 3.
  • FIG. 1 is a schematic diagram of an active clearance control device of an aviation engine turbine part in the prior art, and the bracket and the connecting member are not shown.
  • the active clearance control device of the aviation engine turbine part in the prior art is composed of an intake pipe 1, an air collecting box 2, a shunt pipe 3 and a casing 4, and a hook 6 is provided on the lower end surface of the casing 4.
  • the cooling airflow is introduced by the engine's low-pressure compressor or fan, enters
  • the side wall of the shunt pipe 3 (close to the casing side) is provided with impingement cooling holes H, and the cooling airflow passes through these holes and impacts the outer surface of the casing 4 for cooling the casing.
  • the shunt tube 3 is located at the periphery of the hook structure of the receiver 4, and the size of the receiver 4 can be controlled by controlling the temperature at the positions of the hooks 6.
  • each annular shunt pipe is also divided into several sections, which are installed on the gas collecting box through joints.
  • the shunt pipe cools the casing through the impact air flow, so the distance between the impact air hole at the bottom of the shunt pipe and the outer surface of the casing determines the cooling effect.
  • the distance between the shunt pipe and the outer surface of the casing cannot be guaranteed, which affects the effect of cooling and effective clearance control, and further affects the efficiency of the engine.
  • the structure of the active clearance control device for the turbine part of the existing aero engine is too complicated, the assembly cost is high and the weight of the engine is increased, and a new type of turbine casing integrated with the active clearance control device is provided, which can save assembly space.
  • the present utility model achieves the stated purpose in the following manner.
  • the turbine casing of the integrated active clearance control device of the present invention includes: a casing, an intake pipe, an air collecting box and a shunt pipe, and the casing, the air intake pipe, the air collecting box and the shunt pipe are an integrated structure;
  • the shunt pipe is fixedly connected to the casing through a side flow cavity below the shunt pipe, and the shunt pipe communicates with the side flow cavity through a plurality of spaced impact cooling holes; two side walls of the side flow cavity are provided There are side flow holes for cooling other parts of the turbine casing.
  • the cross-sectional shape of the lateral flow cavity perpendicular to the airflow input direction is a "U" shape.
  • the present invention also provides a turbine, which is provided with a turbine casing integrated with an active clearance control device as described above.
  • the turbine casing of the integrated active gap control device provided by the utility model adopts an integrated structure and can be manufactured by 3D printing, so that a large number of passes are no longer required between the air collecting box and the shunt pipe and between the various parts of the shunt pipe.
  • the connection is realized by fittings and other fittings; the air collecting box and the shunt pipe no longer need to be installed on the receiver through brackets and other parts. Therefore, it can save a lot of manpower, time cost and part weight required for assembly.
  • the shunt pipe and the casing are integral parts, the distance between the impact airflow hole at the bottom of the shunt pipe and the outer surface of the casing can be kept constant during the operation of the engine.
  • the gap control can be effectively performed, thereby improving engine efficiency.
  • the additional side flow cavity below the shunt pipe can not only effectively cool the part fixedly connected to the casing, but also the high-speed air flow from the side flow holes provided on the side wall of the side flow cavity. Efficient secondary cooling is formed on the exposed upper surface of the casing, resulting in a substantial increase in cooling efficiency compared to the original structure, which can more effectively improve the technical effect of gap control, and thereby obtain higher engine operating efficiency.
  • the turbine provided by the present utility model has the excellent use effect that can be achieved by the aforementioned improvement through the turbine casing with the integrated active clearance control device according to one of the aforementioned embodiments.
  • Figure 1 shows a schematic diagram of the structure of the cooling casing in the prior art.
  • Fig. 2 is a schematic diagram of the enlarged structure of position A in Fig. 1.
  • Fig. 3 is a schematic structural diagram of a turbine casing integrated with an active clearance control device in one of the embodiments of the application.
  • Fig. 4 is a schematic diagram of the enlarged structure of position B in Fig. 3.
  • this embodiment provides a novel turbine casing integrated with an active clearance control device, including: casing 100, air intake pipe 200, air collecting box 300, and shunt pipe 400.
  • the casing 100 and the air intake pipe 200 , The air collecting box 300 and the shunt pipe 400 are an integrated structure; the lower part of the shunt pipe 400 is fixedly connected with the casing 100 through a side flow cavity 500.
  • the shunt pipe 400 in FIG. 3 communicates with the lateral flow cavity 500 through a plurality of spaced impingement cooling holes 410; the lateral flow cavity 500 is not used to connect the side wall of the casing 100
  • a side flow hole 510 is provided on the side facing the casing 100.
  • the cooling airflow is introduced by the engine's low-pressure compressor or fan, enters the air collecting box 300 from the intake pipe 200, and is distributed to each branch pipe 400.
  • the bottom of the shunt pipe 400 (near the casing side) is provided with impingement cooling holes 410, and the cooling air flows through these holes and impacts the upper surface of the casing 100.
  • the shunt pipe 400 is located at the periphery of the hook structure of the receiver 100 according to the prior art, and the size of the receiver 100 can be controlled by controlling the temperature of the hook positions.
  • the cooling air in the manifold 400 flows out through the side flow holes 510 to further cool other parts of the turbine casing 100, and can be guided into the turbine rear casing through an outer ring (not shown) to cool the turbine rear casing .
  • the manufacturing of the turbine casing of the integrated active gap control device can be realized by additive manufacturing, that is, 3D printing.
  • the intake pipe 200, the air collecting box 300, and the shunt pipe 400 are all integrally formed with the casing 100.
  • a large number of joints and other fittings are no longer required between the air collecting box 300 and the shunt pipe 400, and between various parts of the shunt pipe 400; the air collecting box 300 and the shunt pipe 400 no longer need to be installed to the receiver 100 through brackets and other parts. . Therefore, it can save a lot of manpower, time cost and part weight required for assembly.
  • the shunt pipe 400 and the casing 100 are integral parts, the distance between the impact airflow hole 410 at the bottom of the shunt pipe 400 and the outer surface of the casing 100 can be kept constant during the operation of the engine. Therefore, the gap control can be effectively performed, thereby improving engine efficiency.
  • This application can be realized through additive manufacturing, that is, 3D printing.
  • the improved turbine casing not only eliminates the need for extensive assembly between the components of the active gap control device, but also eliminates the assembly of the components of the active gap control device and the casing. Therefore, it saves a lot of manpower, time cost and part weight required for assembly.
  • the utility model integrates the shunt pipe and the turbine casing, it solves the problem that the shunt pipe and the turbine casing in the existing active clearance control device deform inconsistently during engine operation, which makes the distance between the impact cooling hole and the outer surface of the casing unstable. The problem. Improve the efficiency of impingement cooling, can effectively control the gap, thereby improving the efficiency of the engine.
  • the cross-sectional shape of the lateral flow cavity 500 perpendicular to the airflow input direction is a "U" shape.
  • turbomachine provided by the present invention has the excellent use effect that can be achieved by the foregoing improvement through the turbomachine case with the integrated active clearance control device according to one of the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一种集成主动间隙控制装置的涡轮机匣,包括机匣(100)、进气管(200)、集气箱(300)和分流管(400),所述机匣(100)、进气管(200)、集气箱(300)和分流管(400)为一体式结构;所述分流管(400)的下方通过有侧流腔(500)与所述机匣(100)固定连接,所述分流管(400)通过多个间隔设置的冲击冷却孔(410)与所述侧流腔(500)连通;所述侧流腔(500)的两侧壁上设置有侧流孔(510),用于冷却涡轮机匣其它部分。涡轮机,设置有集成主动间隙控制装置的涡轮机匣。这种涡轮机匣及涡轮机,能节省装配所需的人力成本,并能更进一步提升机匣的冷却效果,使冷却效率相比原有结构得到大幅的提高,能够更为有效的提升间隙控制的技术效果,进而获得更高的发动机工作效率。

Description

一种集成主动间隙控制装置的涡轮机匣及涡轮机 技术领域
本实用新型涉及涡轮机机匣技术领域,特别是一种集成主动间隙控制装置的涡轮机匣及涡轮机。
背景技术
现有技术中的航空发动机涡轮由机匣、导向叶片、工作叶片、涡轮盘等组成。为了涡轮能在各种不同工作状态下均保持高气动效率,通常在机匣上设置主动间隙控制装置。其基本原理是发动机工作时,涡轮的高温燃气使机匣受热而膨胀变形,涡轮外环随机匣的变形而发生径向位移,从而改变转子叶尖间隙,通过主动间隙控制装置控制不同工作状态下机匣的变形量,从而将叶尖间隙始终控制在合理的范围内,主动间隙控制装置从而提高发动机效率。
主动间隙控制装置通常采用冲击冷却的方式冷却机匣。图1为现有技术中航空发动涡轮部分的主动间隙控制装置简图,支架与连接件未示出。如图1所示,现有技术中航空发动涡轮部分的主动间隙控制装置由进气管1、集气箱2、分流管3和机匣4组成,在机匣4的下端面设置有挂钩6。冷却气流由发动机低压压气机或风扇引入,从进气管1进入集气箱2后,分至各分流管3。图2所示,分流管3侧壁(靠近机匣侧)设有冲击冷却孔H,冷却气流穿过这些孔并冲击机匣4的外表面,用于对机匣实施冷却。分流管3位于机匣4挂钩结构的外围,通过控制这些挂钩6位置的温度,可以控制机匣4的尺寸。
现有的航空发动涡轮部分的主动间隙控制装置结构太复杂,增加 了制造成本与发动机重量。根据机匣内叶片的级数不同,每台发动机需要的环状分流管的数量为几个至上十个不等。为保证机匣得到更均匀的冷却分布,冷却气流通常由一个环形的进气管道进入若干个周向均匀分布的进气口,并进入周向均匀分布在机匣外部若干个集气箱,用于将冷却气流分入分流管内。因此,每一个环形的分流管也被分成若干段,通过接头安装在集气箱上。通常仅一个集气箱就由数十个零件通过焊接等组成,时间和劳动力成本均很高。另外,由于数量多,分流管的装配工作量也相当大。而且,分流管需要通过支架5等方式固定在机匣上,增加了发动机重量与装配成本。
分流管通过冲击气流对机匣进行冷却,故分流管底部的冲击气流孔与机匣外表面的距离决定冷却的效果。而在发动机工作过程中,由于机匣与分流管的温度不同,两者变形不一致。因此,分流管与机匣外表面的距离无法保证,影响冷却与有效间隙控制的效果,进而影响发动机效率。
因此研发一款集成主动间隙控制装置的涡轮机匣以克服上述技术缺陷中的至少一种,成为一种必需。
实用新型内容
本实用新型的针对现有航空发动机涡轮部分的主动间隙控制装置结构太复杂,其装配成本高并增加了发动机重量的问题,提供一种新型的集成主动间隙控制装置的涡轮机匣,能节省装配所需的人力成本,并能更进一步提升机匣的冷却效果。
具体地,本实用新型通过下述方式实现所述目的。
一方面,本实用新型的集成主动间隙控制装置的涡轮机匣包括:机匣、进气管、集气箱和分流管,所述机匣、进气管、集气箱和分流管为一体式结构;所述分流管的下方通过有侧流腔与所述机匣固定连接,所述分流管通过多个间隔设置的冲击冷却孔与所述侧流腔连通;所述侧流腔的两侧壁上设置有侧流孔,用于冷却涡轮机匣其它部分。
优选地,所述侧流腔垂直于气流输入方向的截面形状为“U”形。
另一方面,本实用新型还提供一种涡轮机,设置有如前所述的集成主动间隙控制装置的涡轮机匣。
本实用新型提供的集成主动间隙控制装置的涡轮机匣通过采用一体式结构,能够通过3D打印的方式制作出来,致使集气箱与分流管之间、分流管各部分之间不再需要通过数量繁多的接头等装配件来实现连接;集气箱、分流管亦不再需要通过支架等零件安装至机匣上。因此,可以节省大量装配所需的人力、时间成本与零件重量。另外,由于分流管与机匣为整体零件,在发动机工作过程中,分流管底部的冲击气流孔与机匣外表面的距离能保持恒定。故能有效进行间隙控制,从而提高发动机效率。此外,在分流管的下方进一步增设的侧流腔不仅能够对其与机匣相固定连接的部位形成高效的冷却,从侧流腔侧壁上设置的侧流孔流出的高速气流还能更进一步对机匣外露的上表面形成高效的二次冷却,致使冷却效率相比原有结构得到大幅的提高,能够更为有效的提升间隙控制的技术效果,进而获得更高的发动机工作效率。
本实用新型提供的涡轮机通过具有根据前述实施方式之一所述的集成主动间隙控制装置的涡轮机匣,具有前述改进所能达到的优异的使用效果。
附图说明
根据下文的详细描述,本领域技术人员将会更加明了本实用新型的其他目的、优点和特征。
图1示出了现有技术中冷却机匣的结构示意简图。
图2为图1中A位置放大后的结构示意图。
图3为本申请其中一个实施例中集成主动间隙控制装置的涡轮机匣的结构示意图。
图4为图3中B位置放大后的结构示意图。
具体实施例
图3所示,本实施例提供一种新型的集成主动间隙控制装置的涡轮机匣,包括:机匣100、进气管200、集气箱300和分流管400,所述机匣100、进气管200、集气箱300和分流管400为一体式结构;所述分流管400的下方通过有侧流腔500与所述机匣100固定连接。如图4所示,图3中的分流管400通过多个间隔设置的冲击冷却孔410与所述侧流腔500连通;所述侧流腔500未用于连接所述机匣100的侧壁,在面向所述机匣100的一侧设置有侧流孔510。
使用状态下,冷却气流由发动机低压压气机或风扇引入,从进气管200进入集气箱300后,分至各分流管400。如图4所示,分流管400底部(靠近机匣侧)设有冲击冷却孔410,冷却气流穿过这些孔 并冲击机匣100上表面。分流管400依现有技术位于机匣100挂钩结构外围,通过控制这些挂钩位置的温度,可以控制机匣100的尺寸。冷却后,分流管400内的冷却气通过侧流孔510流出,以进一步冷却涡轮机匣100其它部分,并可通过外环(未示出)引导引入涡轮后机匣中,以冷却涡轮后机匣。
该集成主动间隙控制装置的涡轮机匣的制造可通过增材制造、即3D打印来实现,进气管200、集气箱300、分流管400均与机匣100一体成形。集气箱300与分流管400之间、分流管400各部分之间不再需要通过数量繁多的接头等装配件;集气箱300、分流管400不再需要通过支架等零件安装至机匣100。因此,可以节省大量装配所需的人力、时间成本与零件重量。另外,由于分流管400与机匣100为整体零件,在发动机工作过程中,分流管400底部的冲击气流孔410与机匣100外表面的距离能保持恒定。故能有效进行间隙控制,从而提高发动机效率。
本申请可通过增材制造、即3D打印的制造方式来实现。改进后的涡轮机匣不仅省去了主动间隙控制装置各部件之间繁多的装配,也省去了主动间隙控制装置各部件与机匣的装配。因此,节省了大量装配所需的人力、时间成本与零件重量。另外,由于本实用新型将分流管与涡轮机匣进行了集成,解决了现有主动间隙控制装置中分流管与涡轮机匣在发动机工作过程中变形不一致,使冲击冷却孔与机匣外表面距离不稳定的问题。提高了冲击冷却的效率,能有效地进行间隙控制,从而提高了发动机效率。
进一步地,如图4所示,在本实施例的其中一个优选实施方式中,所述侧流腔500垂直于气流输入方向的截面形状为“U”形。
可以理解的是,本实用新型提供的涡轮机通过具有根据前述实施方式之一所述的集成主动间隙控制装置的涡轮机匣,具有前述改进所能达到的优异的使用效果。
虽然本文示出和描述了示例性的优选实施例,但本领域技术人员可以据此推导出符合本实用新型原理的其他实施例,这些实施例也应被认为落入本实用新型的保护范围内。

Claims (3)

  1. 一种集成主动间隙控制装置的涡轮机匣,包括机匣、进气管、集气箱和分流管,其特征在于,所述机匣、进气管、集气箱和分流管为一体式结构;所述分流管的下方通过有侧流腔与所述机匣固定连接,所述分流管通过多个间隔设置的冲击冷却孔与所述侧流腔连通;所述侧流腔的两侧壁上设置有侧流孔,用于冷却涡轮机匣其它部分。
  2. 根据权利要求1所述的集成主动间隙控制装置的涡轮机匣,其特征在于,所述侧流腔垂直于气流输入方向的截面形状为“U”形。
  3. 一种涡轮机,所述涡轮机设置有根据前述权利要求1-2中任一项所述的集成主动间隙控制装置的涡轮机匣。
PCT/CN2020/072598 2019-01-22 2020-01-17 一种集成主动间隙控制装置的涡轮机匣及涡轮机 WO2020151578A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920101953.5 2019-01-22
CN201920101953.5U CN209761503U (zh) 2019-01-22 2019-01-22 一种集成主动间隙控制装置的涡轮机匣及涡轮机

Publications (1)

Publication Number Publication Date
WO2020151578A1 true WO2020151578A1 (zh) 2020-07-30

Family

ID=68749734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072598 WO2020151578A1 (zh) 2019-01-22 2020-01-17 一种集成主动间隙控制装置的涡轮机匣及涡轮机

Country Status (2)

Country Link
CN (1) CN209761503U (zh)
WO (1) WO2020151578A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209761503U (zh) * 2019-01-22 2019-12-10 北京南方斯奈克玛涡轮技术有限公司 一种集成主动间隙控制装置的涡轮机匣及涡轮机
CN114952164B (zh) * 2022-07-07 2023-11-28 河南航天液压气动技术有限公司 一种用于复杂管路装配焊接定位工装

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362572A (zh) * 2012-04-09 2013-10-23 通用电气公司 用于燃气涡轮机的间隙控制系统
CN205277511U (zh) * 2015-11-24 2016-06-01 中国燃气涡轮研究院 用于涡轮主动间隙控制的冷却结构
CN106555619A (zh) * 2015-09-30 2017-04-05 中航商用航空发动机有限责任公司 燃气轮机叶尖间隙的控制装置和方法
CN107035426A (zh) * 2017-05-05 2017-08-11 南方科技大学 一种带冷却的整体轮盘及其制造方法
CN207348905U (zh) * 2017-05-05 2018-05-11 西北工业大学 一种具有叶尖间隙控制和叶顶流动控制的机匣结构
WO2018093479A1 (en) * 2016-11-15 2018-05-24 General Electric Company Monolithic superstructure for load path optimization
CN108798901A (zh) * 2017-05-01 2018-11-13 通用电气公司 包括冲击结构的增材制造部件
CN209761503U (zh) * 2019-01-22 2019-12-10 北京南方斯奈克玛涡轮技术有限公司 一种集成主动间隙控制装置的涡轮机匣及涡轮机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362572A (zh) * 2012-04-09 2013-10-23 通用电气公司 用于燃气涡轮机的间隙控制系统
CN106555619A (zh) * 2015-09-30 2017-04-05 中航商用航空发动机有限责任公司 燃气轮机叶尖间隙的控制装置和方法
CN205277511U (zh) * 2015-11-24 2016-06-01 中国燃气涡轮研究院 用于涡轮主动间隙控制的冷却结构
WO2018093479A1 (en) * 2016-11-15 2018-05-24 General Electric Company Monolithic superstructure for load path optimization
CN108798901A (zh) * 2017-05-01 2018-11-13 通用电气公司 包括冲击结构的增材制造部件
CN107035426A (zh) * 2017-05-05 2017-08-11 南方科技大学 一种带冷却的整体轮盘及其制造方法
CN207348905U (zh) * 2017-05-05 2018-05-11 西北工业大学 一种具有叶尖间隙控制和叶顶流动控制的机匣结构
CN209761503U (zh) * 2019-01-22 2019-12-10 北京南方斯奈克玛涡轮技术有限公司 一种集成主动间隙控制装置的涡轮机匣及涡轮机

Also Published As

Publication number Publication date
CN209761503U (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
US7827798B2 (en) System for ventilating a combustion chamber wall in a turbomachine
US20240159151A1 (en) Airfoil for a turbine engine
JP5383973B2 (ja) ガスタービンエンジンアクティブクリアランス制御の使用済み冷却空気を排気するシステム及び方法
JP5264184B2 (ja) ガスタービンエンジンにおけるブリード通路用のブリード構造体
WO2020151578A1 (zh) 一种集成主动间隙控制装置的涡轮机匣及涡轮机
US10822973B2 (en) Shroud for a gas turbine engine
JP6766197B2 (ja) 航空機タービンエンジンのセパレータノーズを除氷するための装置
JP6450529B2 (ja) ディフューザ・ストラット・フェアリング
JP2007182874A (ja) アクティブクリアランス制御のためのガスタービンエンジンリングの熱制御
CN105715311A (zh) 安装有支柱的陶瓷基复合材料喷嘴及其概念
JP2007162698A5 (zh)
CA2647121A1 (en) Multi-source gas turbine cooling
BR102016027905A2 (pt) Turbofan exhaust nozzle machine
CN105401986A (zh) 航空发动机高压涡轮冷却气流路布置结构
US20180328188A1 (en) Turbine engine airfoil insert
GB1068280A (en) Aerofoil-shaped blade for use in a fluid flow machine such as a turbine
US10563518B2 (en) Gas turbine engine trailing edge ejection holes
JP4627889B2 (ja) センタボデー内の熱応力を最小化する方法と装置
US20180135514A1 (en) Sound attenuating system for gas turbine engine
CN106907741A (zh) 一种燃烧室结构
CN105351055B (zh) 发动机舱排气卷吸装置及优化方法
CN209990527U (zh) 基于伯努利定律的发动机尾气稀释降温装置
JPH0565802A (ja) ガスタービン
JPH1182038A (ja) 排気タービン過給機の構造
CN205533444U (zh) 用于废气涡轮增压器压气机出气侧的声品质调节器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20744464

Country of ref document: EP

Kind code of ref document: A1