WO2020151462A1 - 灯具的照射角度调节方法、系统和可调节照射角度的灯具 - Google Patents

灯具的照射角度调节方法、系统和可调节照射角度的灯具 Download PDF

Info

Publication number
WO2020151462A1
WO2020151462A1 PCT/CN2019/130138 CN2019130138W WO2020151462A1 WO 2020151462 A1 WO2020151462 A1 WO 2020151462A1 CN 2019130138 W CN2019130138 W CN 2019130138W WO 2020151462 A1 WO2020151462 A1 WO 2020151462A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
infrared
illumination angle
infrared signal
value
Prior art date
Application number
PCT/CN2019/130138
Other languages
English (en)
French (fr)
Inventor
李志军
武俊
张正华
Original Assignee
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910074698.4A external-priority patent/CN109640493A/zh
Priority claimed from CN201920138528.3U external-priority patent/CN210641116U/zh
Application filed by 欧普照明股份有限公司 filed Critical 欧普照明股份有限公司
Priority to EP19910946.3A priority Critical patent/EP3911122B1/en
Publication of WO2020151462A1 publication Critical patent/WO2020151462A1/zh
Priority to US17/402,266 priority patent/US11968760B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • H05B47/13Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings by using passive infrared detectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • H05B47/195Controlling the light source by remote control via wireless transmission the transmission using visible or infrared light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/14Adjustable mountings
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/04Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/14Adjustable mountings
    • F21V21/15Adjustable mountings specially adapted for power operation, e.g. by remote control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to the field of lighting technology, in particular to a method and system for adjusting the illumination angle of a lamp, and a lamp capable of adjusting the illumination angle.
  • the illumination angle of the lamps is generally fixed and cannot be adjusted at will.
  • the illumination range of the lamps is small, such as Track spotlights are generally installed on the track or directly on the ceiling or wall. Most track spotlights can only achieve fixed direction illumination. In actual applications, in order to make the lighting effect of the lamp better, it is often adjusted according to the specific situation. The illumination angle of the lamp.
  • the illumination angle of the lamp when the illumination angle of the lamp needs to be adjusted, the illumination angle of the lamp is generally adjusted by using a tool or manually, and the illumination angle cannot be adjusted intelligently according to personal wishes, which cannot meet the needs of users.
  • the present invention provides a method and system for adjusting the illumination angle of a lamp, and a lamp capable of adjusting the illumination angle to overcome the above-mentioned problems or at least partially solve the above-mentioned problems.
  • a method for adjusting the illumination angle of a lamp including a plurality of infrared receivers and a driving motor, and the method includes:
  • the illumination angle of the lamp is adjusted via the drive motor.
  • the luminaire includes 3 infrared receivers, and the 3 infrared receivers are installed on the extension of the plane where the luminaire is located, and in the XY Cartesian coordinates established with the luminaire as the origin, the 3 infrared receivers
  • the coordinates of each infrared receiver are normalized to (0, 1), (-0.5, -0.5) and (0.5, -0.5).
  • the illumination angle adjustment value includes X and Y axis adjustment values
  • the determining the illumination angle adjustment value of the lamp based on the multiple infrared signal intensity values of the multiple infrared receivers includes:
  • a proportional superposition algorithm is performed on the intensity values of the infrared signals respectively received by the three infrared receivers to respectively determine the X and Y axis adjustment values.
  • X axis adjustment value infrared signal intensity value 1*0+ infrared signal intensity value 2*(-0.5)+
  • Y-axis adjustment value infrared signal intensity value 1*1+ infrared signal intensity value 2*(-0.5)+
  • the infrared signal strength values 1, 2, and 3 are the infrared signal strength values received by the 3 infrared receivers.
  • the above method further includes:
  • the driving motor adjusts the illumination angle of the lamp
  • the X and Y axis adjustment values are updated in real time based on the infrared signal intensity value updated in real time, until the X and Y axis adjustment values are zero, the driving motor pair is stopped. Adjustment of the illumination angle of the lamp.
  • the above method further includes:
  • a lamp with an adjustable illumination angle comprising a plurality of infrared receivers, a driving motor and a processor, wherein:
  • the plurality of infrared receivers are adapted to receive infrared signals from the remote control, and transmit the plurality of infrared signal strength values of the infrared receivers to the processor;
  • the processor is adapted to determine the illumination angle adjustment value of the lamp based on the multiple infrared signal intensity values, and transmit the illumination angle adjustment value to the drive motor;
  • the driving motor is adapted to adjust the illumination angle of the lamp based on the illumination angle adjustment value.
  • the luminaire includes three infrared receivers, the three infrared receivers are installed on the extension of the plane where the luminaire is located, and in the XY Cartesian coordinates established with the luminaire as the origin, the three infrared receivers The coordinates of the infrared receiver are normalized to (0, 1), (-0.5, -0.5) and (0.5, -0.5).
  • the illumination angle adjustment value includes X and Y axis adjustment values
  • the processor is further adapted to:
  • a proportional superposition algorithm is performed on the intensity values of the infrared signals respectively received by the three infrared receivers to respectively determine the X and Y axis adjustment values.
  • X axis adjustment value infrared signal intensity value 1*0+ infrared signal intensity value 2*(-0.5)+
  • Y-axis adjustment value infrared signal intensity value 1*1+ infrared signal intensity value 2*(-0.5)+
  • the infrared signal strength values 1, 2, and 3 are the infrared signal strength values received by the 3 infrared receivers.
  • the processor is further adapted to update the X and Y axis adjustment values in real time based on the infrared signal intensity value updated in real time until the X and Y axis The adjustment value is zero, and the adjustment of the illumination angle of the lamp by the driving motor is stopped.
  • the processor is further adapted to stop the adjustment of the illumination angle of the lamp by the driving motor.
  • an illumination angle adjustment system of a lamp which includes a remote control and the lamp as described above, and the remote control is adapted to emit infrared signals to the lamp.
  • the remote control is also connected to the lamp in wireless communication, and
  • the remote controller is adapted to send an illumination angle adjustment start signal to the lamp, and simultaneously send the infrared signal to the lamp;
  • the lamp is adapted to turn on the infrared receiver, the processor and the driving motor after receiving the turn-on signal.
  • the remote control is further adapted to send an illumination angle adjustment stop signal to the lamp, and at the same time, turn off the infrared signal transmission;
  • the lamp is further adapted to stop the operation of the infrared receiver, the processor and the driving motor after receiving the stop signal.
  • the embodiment of the present invention provides a solution for adjusting the illumination angle of a lamp.
  • the lamp includes a plurality of infrared sensors and a driving motor.
  • the infrared signal from the remote control is received via a plurality of infrared receivers, and then based on the plurality of infrared receivers.
  • the multiple infrared signal intensity values received by the receiver determine the illumination angle adjustment value of the lamp, and then based on the illumination angle adjustment value, the illumination angle of the lamp is adjusted via the driving motor.
  • the technical solution provided by the embodiments of the present invention is based on multiple infrared receivers and driving motors to adjust the illumination angle of the lamp, which can achieve better lighting effects, thereby meeting the lighting requirements of users in practical applications.
  • the illumination angle of the lamp can be controlled only by manipulating the remote controller, so as to realize the intelligent adjustment of the illumination angle of the lamp and achieve a better lighting effect.
  • Figure 1 is a flow chart of a method for adjusting the illumination angle of a lamp according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the position coordinates of three infrared sensors according to a preferred embodiment of the present invention
  • Fig. 3 is a structural block diagram of a lamp with adjustable illumination angle according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a lamp with adjustable illumination angle according to a preferred embodiment of the present invention.
  • Fig. 5 is a block diagram of an illumination angle adjustment system of a lamp according to an embodiment of the present invention.
  • Fig. 1 is a flowchart of a method for adjusting the illumination angle of a lamp according to an embodiment of the present invention.
  • the lamp in this embodiment includes multiple infrared receivers and drive motors.
  • the method for adjusting the illumination angle of the lamp according to an embodiment of the present invention at least includes:
  • Step S102 receiving infrared signals from the remote control via multiple infrared receivers
  • Step S104 determining the illumination angle adjustment value of the lamp based on the multiple infrared signal intensity values of the multiple infrared receivers;
  • Step S106 based on the illumination angle adjustment value, adjust the illumination angle of the lamp via the driving motor.
  • the embodiment of the present invention provides a solution for adjusting the illumination angle of a lamp.
  • the lamp includes a plurality of infrared sensors and a driving motor.
  • the infrared signal from the remote control is received via a plurality of infrared receivers, and then based on the plurality of infrared receivers.
  • the multiple infrared signal intensity values received by the receiver determine the illumination angle adjustment value of the lamp, and then based on the illumination angle adjustment value, the illumination angle of the lamp is adjusted via the driving motor.
  • the technical solution provided by the embodiments of the present invention is based on multiple infrared receivers and driving motors to adjust the illumination angle of the lamp, which can achieve better lighting effects, thereby meeting the lighting requirements of users in practical applications.
  • the illumination angle of the lamp can be controlled only by manipulating the remote controller, so as to realize the intelligent adjustment of the illumination angle of the lamp and achieve a better lighting effect.
  • the luminaire includes 3 infrared receivers, and the 3 infrared receivers are installed on the extension of the plane where the luminaire is located, and in the XY rectangular coordinate system established with the luminaire as the origin, and Set the coordinates of the 3 infrared receivers to be normalized to (0, 1), (-0.5, -0.5) and (0.5, -0.5).
  • three infrared receivers are installed on the extension of the plane where the lamp is located, and then based on the XY axis plane rectangular coordinate system established on the plane where the lamp is located with the lamp as the coordinate origin, the installation positions of the three infrared receivers
  • the coordinates of is normalized to (0, 1), (-0.5, -0.5) and (0.5, -0.5).
  • the coordinates of the three infrared receivers are normalized to (0, 1), (-0.5, -0.5) and (0.5, -0.5), that is, the three points corresponding to the installation position are connected to each other to form an isosceles triangle, And the vector sum of these 3 points on the X axis and Y axis is zero.
  • a coordinate system that is easy to be calculated by the algorithm can be established, and the coordinates of the three infrared receivers can be normalized, thereby simplifying the calculation process.
  • the solution provided by the preferred embodiment simplifies the calculation complexity to the greatest extent and improves the product response speed.
  • a start button is provided on the remote control
  • a Bluetooth communication module is provided inside the remote control and the lamp, and the remote control and the lamp can perform signal interaction through the Bluetooth communication module.
  • it may further include: in response to pressing the start button on the remote control, sending an illumination angle adjustment start command; after the lamp receives the start command, the infrared signal reception is turned on.
  • the irradiation angle adjustment value includes X and Y axis adjustment values.
  • step S104 determines the illumination angle adjustment value of the lamp based on the multiple infrared signal intensity values of the multiple infrared receivers.
  • the embodiment of the present invention provides an optional solution. In this solution, three infrared receivers can be used. The received infrared signal intensity values are subjected to a proportional superposition algorithm to respectively determine the X and Y axis adjustment values.
  • the solution provided by the embodiment of the present invention can directly perform a proportional superposition algorithm on the three infrared signal intensity values respectively received by three infrared receivers, so that the X-axis and Y-axis adjustment values can be quickly determined.
  • X axis adjustment value infrared signal intensity value 1*0+ infrared signal intensity value 2*(-0.5)+
  • Y-axis adjustment value infrared signal intensity value 1*1+ infrared signal intensity value 2*(-0.5)+
  • the infrared signal strength values 1, 2, and 3 are the infrared signal strength values received by the three infrared receivers, respectively.
  • the proportional superposition algorithm is easy to calculate, the X-axis adjustment value and the Y-axis adjustment value can be easily calculated, thereby improving the adjustment efficiency.
  • the proportional superposition algorithm here can be interpreted as superimposing the three infrared signal intensity values received by three infrared receivers according to normalized coordinates, in other words, multiplying the three infrared signal intensity values by their corresponding coordinates to normalize.
  • the coefficients are added together.
  • the calculation of the Y-axis adjustment value is the same, so I won’t repeat it here.
  • the driving motor in step S106 includes a rotating motor in the X-axis direction and a rotating motor in the Y-axis direction.
  • the rotation motor in the X axis direction and/or the rotation motor in the Y axis direction is driven to adjust the illumination angle of the lamp. That is to say, in the embodiment of the present invention, on the one hand, the rotating motor in the X-axis direction can be driven separately to adjust the illumination angle of the lamp in the X-axis direction. On the other hand, the rotating motor in the Y-axis direction can also be driven separately to adjust the illumination angle of the lamp in the Y-axis direction. In addition, you can also drive the X-axis and Y-axis rotation motors to adjust the illumination angle of the lamp. The solution provided by the embodiment of the present invention adjusts the illumination angle of the lamp by driving the rotation of the motor.
  • the X-axis rotation motor is controlled to rotate in the negative direction of the X-axis. If the X-axis adjustment value is positive, then Control the rotating motor in the X-axis direction to rotate in the positive direction of the X-axis. If the Y-axis adjustment value is negative, control the Y-axis rotation motor to rotate in the negative direction of the Y-axis. If the Y-axis adjustment value is positive, control the Y-axis direction The rotating motor rotates in the positive direction of the X axis.
  • the above-mentioned method for adjusting the illumination angle of the lamp may further include: in the process of driving the motor to adjust the illumination angle of the lamp, real-time updating based on the real-time updated infrared signal intensity value X, Y axis adjustment value, until the X, Y axis adjustment value is zero, stop the driving motor to adjust the illumination angle of the lamp.
  • the intensity value of the infrared signal received by the infrared receiver also changes, and the X and Y adjustment values are also updated accordingly, and according to the updated X and Y axis adjustment values Control the rotation direction of the motor in real time until the X and Y axis adjustment values are zero, then stop the rotation of the motor and the adjustment ends.
  • the X and Y axis adjustment values can be updated in real time, thereby meeting the real-time requirements.
  • the above method for adjusting the illumination angle of the lamp may further include:
  • the illumination angle adjustment stop command from the remote control, and stop the driving motor to adjust the illumination angle of the lamp.
  • the rotation of the driving motor is stopped, thereby ending the adjustment of the illumination angle of the lamp.
  • the solution provided by the preferred embodiment can adjust the illumination angle of the lamp according to the user's wishes, and improve the product use experience.
  • FIG. 3 is a structural block diagram of a lamp with adjustable illumination according to an embodiment of the present invention.
  • the structural block diagram of the lamp with adjustable illumination angle according to the embodiment of the present invention includes at least:
  • a plurality of infrared receivers 202 are adapted to receive infrared signals from a remote control, and transmit multiple infrared signal strength values of the infrared receivers to the processor;
  • the processor 204 is adapted to determine the illumination angle adjustment value of the lamp based on the multiple infrared signal intensity values, and transmit the illumination angle adjustment value to the drive motor;
  • the driving motor 206 is adapted to adjust the illumination angle of the lamp based on the illumination angle adjustment value.
  • the luminaire includes 3 infrared receivers, and the 3 infrared receivers are installed on the extension of the plane where the luminaire is located, and in the XY rectangular coordinates established with the luminaire as the origin, 3
  • the coordinates of each infrared receiver are normalized to (0, 1), (-0.5, -0.5) and (0.5, -0.5).
  • the illumination angle adjustment value includes X and Y axis adjustment values
  • the processor 104 is further adapted to perform a proportional superposition algorithm with the infrared signal intensity values respectively received by the three infrared receivers to determine the X and Y axes respectively. Adjustment value.
  • X-axis adjustment value infrared signal intensity value 1*0+infrared signal intensity value 2*(-0.5)+infrared signal intensity value 3*0.5;
  • Y-axis adjustment value infrared signal intensity value 1* 1+Infrared signal intensity value 2*(-0.5)+Infrared signal intensity value 3*(-0.5);
  • the infrared signal intensity value 1, 2, and 3 are the infrared signal intensity values received by the 3 infrared receivers.
  • the processor 204 in the process of driving the motor 206 to adjust the illumination angle of the lamp, is further adapted to update the X and Y axis adjustment values in real time based on the infrared signal intensity value updated in real time, until the X and Y axis adjustment The value is zero, stop the driving motor to adjust the illumination angle of the lamp.
  • the processor 204 after receiving the illumination angle adjustment stop instruction from the remote control, the processor 204 is further adapted to stop the adjustment of the illumination angle of the lamp by the driving motor.
  • the embodiment of the present invention also provides an illumination angle adjustment system of the lamp.
  • the illumination angle adjustment system of a lamp may at least include a remote control 300 and any of the above-mentioned lamps, and the remote control 300 is suitable for emitting infrared signals to the lamps.
  • the remote control 300 is also wirelessly connected to the lamp, and
  • the remote controller 300 is adapted to send an illumination angle adjustment turn-on signal to the lamp, and simultaneously transmit an infrared signal to the lamp; the lamp is suitable to turn on the infrared receiver 202, the processor 204 and the driving motor 206 after receiving the turn-on signal.
  • the remote control 300 is further adapted to send a stop signal for adjusting the illumination angle to the lamp, and at the same time to turn off the infrared signal; the lamp is also adapted to stop the infrared receiver 202 and the processor 204 after receiving the stop signal And the work of the drive motor 206.
  • the embodiment of the present invention provides a solution for adjusting the illumination angle of a lamp.
  • the lamp includes a plurality of infrared sensors and a driving motor.
  • the infrared signal from the remote control is received via a plurality of infrared receivers, and then based on the plurality of infrared receivers.
  • the multiple infrared signal intensity values received by the receiver determine the illumination angle adjustment value of the lamp, and then based on the illumination angle adjustment value, the illumination angle of the lamp is adjusted via the driving motor.
  • the technical solution provided by the embodiment of the present invention can adjust the illumination angle of the lamp based on multiple infrared receivers and driving motors, and can achieve better lighting effects, thereby meeting the lighting needs of users in practical applications.
  • the illumination angle of the lamp can be controlled only by manipulating the remote controller, so as to realize the intelligent adjustment of the illumination angle of the lamp and achieve a better lighting effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Selective Calling Equipment (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明提供了灯具的照射角度调节方法、系统和可调节照射角度的灯具,上述灯具包括多个红外接收器和驱动电机,上述方法包括:经由多个红外接收器接收来自遥控器的红外信号;基于多个红外接收器的多个红外信号强度值确定灯具的照射角度调节值;基于照射角度调节值,经由驱动电机调节所述灯具的照射角度。本发明实施例提供的技术方案在需要调节灯具的照射角度时,只需操控遥控器就可以控制灯具的照射角度,从而实现对灯具的照射角度的智能调节,达到更好的照明效果,更好的满足使用者的需求。

Description

灯具的照射角度调节方法、系统和可调节照射角度的灯具 技术领域
本发明涉及照明技术领域,特别是涉及一种灯具的照射角度调节方法、系统和可调节照射角度的灯具。
背景技术
随着物联网、智能控制技术的飞速发展,各种智能产品如雨后春笋般出现了,但目前的灯具安装后,灯具照射角度一般都是单一固定的,不能随意调整,灯具的照射范围较小,比如导轨射灯,其一般是安装于轨道或直接安装于天花板或墙壁,大部分导轨射灯只能实现固定方向照射,而在实际应用中,为使灯具照射效果更好,经常会根据具体情况调整灯具的照射角度。
相关技术中,在需要调整灯具的照射角度时,一般是使用工具或手动调节灯具的照射角度,不能按照个人意愿智能调节照射角度,无法满足使用者的需求。
发明内容
本发明提供一种灯具的照射角度调节方法、系统和可调节照射角度的灯具以克服上述问题或者至少部分地解决上述问题。
根据本发明的一个方面,提供了一种灯具的照射角度调节方法,所述灯具包括多个红外接收器和驱动电机,所述方法包括:
经由所述多个红外接收器接收来自遥控器的红外信号;
基于所述多个红外接收器的多个红外信号强度值确定所述灯具的照射角度调节值;
基于所述照射角度调节值,经由所述驱动电机调节所述灯具的照射角度。
可选的,所述灯具包括3个红外接收器,并且所述3个红外接收器安装在所述灯具所在平面的外延,且在以所述灯具为原点建立的XY直角坐标中,所述3个红外接收器的坐标归一化为(0,1)、(-0.5,-0.5)和(0.5,-0.5)。
可选的,所述照射角度调节值包括X、Y轴调节值,且所述基于所述多个红外接收器的多个红外信号强度值确定所述灯具的照射角度调节值包括:
以所述3个红外接收器分别接收的红外信号强度值进行比例叠加算法以分别确定X、Y轴调节值。
可选的,
X轴调节值=红外信号强度值1*0+红外信号强度值2*(-0.5)+
红外信号强度值3*0.5;
Y轴调节值=红外信号强度值1*1+红外信号强度值2*(-0.5)+
红外信号强度值3*(-0.5);
其中,红外信号强度值1,2,3分别是3个红外接收器接收的红外信号强度值。
可选的,上述方法还包括:
在所述驱动电机调节所述灯具的照射角度的过程中,基于实时更新的红外信号强度值来实时更新X、Y轴调节值,直至X、Y轴调节值为零,停止所述驱动电机对所述灯具照射角度的调节。
可选的,上述方法,还包括:
接收来自遥控器的照射角度调节停止指令,并停止所述驱动电机对所述灯具照射角度的调节。
根据本发明的另一个方面,还提供了一种可调节照射角度的灯具,所述灯具包括多个红外接收器、驱动电机以及处理器,其中,
所述多个红外接收器,适于接收来自所述遥控器的红外信号,并将所述红外接收器的多个红外信号强度值传送至所述处理器;
所述处理器,适于基于所述多个红外信号强度值确定所述灯具的照射角度调节值,并将所述照射角度调节值传送至所述驱动电机;
所述驱动电机,适于基于所述照射角度调节值,调节所述灯具的照射角度。
可选的,所述灯具包括3个红外接收器,所述3个红外接收器安装在所述灯具所在平面的外延,且在以所述灯具为原点建立的XY直角坐标中,所述3个红外接收器的坐标归一化为(0,1)、(-0.5,-0.5)和(0.5,-0.5)。
可选的,所述照射角度调节值包括X、Y轴调节值,且所述处理 器还适于:
以所述3个红外接收器分别接收的红外信号强度值进行比例叠加算法以分别确定X、Y轴调节值。
可选的,
X轴调节值=红外信号强度值1*0+红外信号强度值2*(-0.5)+
红外信号强度值3*0.5;
Y轴调节值=红外信号强度值1*1+红外信号强度值2*(-0.5)+
红外信号强度值3*(-0.5);
其中,红外信号强度值1,2,3分别是3个红外接收器接收的红外信号强度值。
可选的,在所述驱动电机调节所述灯具的照射角度的过程中,所述处理器还适于基于实时更新的红外信号强度值来实时更新X、Y轴调节值,直至X、Y轴调节值为零,停止所述驱动电机对所述灯具照射角度的调节。
可选的,当接收到来自所述遥控器的照射角度调节停止指令后,所述处理器还适于停止所述驱动电机对所述灯具照射角度的调节。
根据本发明的另一个方面,还提供了一种灯具的照射角度调节系统,包括遥控器和如上述之任一所述的灯具,所述遥控器适于向所述灯具发射红外信号。
可选的,所述遥控器还与所述灯具无线通信连接,且
所述遥控器适于向所述灯具发送照射角度调节开启信号,并同时向所述灯具发射所述红外信号;
所述灯具适于在接收到所述开启信号之后,开启所述红外接收器、处理器和驱动电机工作。
可选的,所述遥控器还适于向所述灯具发送照射角度调节停止信号,并同时关闭发射所述红外信号;
所述灯具还适于在接收到所述停止信号之后,停止所述红外接收器、处理器和驱动电机的工作。
本发明实施例提供了一种灯具的照射角度调节方案,该实施例中灯具包括多个红外传感器和驱动电机,首先,经由多个红外接收器接收来自遥控器的红外信号,随后基于多个红外接收器接收的多个红外信号强度值确定灯具的照射角度调节值,进而基于照射角度调节值, 经由驱动电机调节灯具的照射角度。本发明实施例提供的技术方案基于多个红外接收器和驱动电机调节灯具的照射角度,能够实现更好的照明效果,从而满足实际应用中用户的照明需求。进一步的,本发明实施例提供的技术方案在需要调节灯具的照射角度时,只需操控遥控器就可以控制灯具的照射角度,从而实现对灯具的照射角度的智能调节,达到更好的照明效果。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1是根据本发明一个实施例的灯具的照射角度调节方法流程图;
图2是根据本发明一个优选实施例的3个红外传感器位置坐标示意图;
图3是根据本发明一个实施例的可调节照射角度的灯具的结构框图;
图4是根据本发明一优选实施例的可调节照射角度的灯具的结构框图;
图5是根据本发明一个实施例的灯具的照射角度调节系统框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整地传达给本领域的技术 人员。
需要说明的是,本发明实施例及优选实施例中的特征在不冲突的前提下可以相互结合。
图1是根据本发明一个实施例的灯具的照射角度调节方法流程图。该实施例中灯具包括多个红外接收器和驱动电机,如图1所示,根据本发明一个实施例的灯具的照射角度调节方法至少包括:
步骤S102,经由多个红外接收器接收来自遥控器的红外信号;
步骤S104,基于多个红外接收器的多个红外信号强度值确定灯具的照射角度调节值;
步骤S106,基于照射角度调节值,经由驱动电机调节灯具的照射角度。
本发明实施例提供了一种灯具的照射角度调节方案,该实施例中灯具包括多个红外传感器和驱动电机,首先,经由多个红外接收器接收来自遥控器的红外信号,随后基于多个红外接收器接收的多个红外信号强度值确定灯具的照射角度调节值,进而基于照射角度调节值,经由驱动电机调节灯具的照射角度。本发明实施例提供的技术方案基于多个红外接收器和驱动电机调节灯具的照射角度,能够实现更好的照明效果,从而满足实际应用中用户的照明需求。进一步的,本发明实施例提供的技术方案在需要调节灯具的照射角度时,只需操控遥控器就可以控制灯具的照射角度,从而实现对灯具的照射角度的智能调节,达到更好的照明效果。
上文步骤S102中的多个红外接收器,其在灯具上的安装位置和安装个数可以有多种选择。参见图2,在本发明一个优选实施例中,灯具包括3个红外接收器,并且3个红外接收器安装在灯具所在平面的外延,且在以灯具为原点建立的XY直角坐标系中,并且设定3个红外接收器的坐标归一化为(0,1)、(-0.5,-0.5)和(0.5,-0.5)。在本优选实施例中,在灯具所在平面的外延安装了3个红外接收器,随后基于在灯具所在平面以灯具为坐标原点建立的XY轴平面直角坐标系,将3个红外接收器的安装位置的坐标归一化为(0,1)、(-0.5,-0.5)和(0.5,-0.5)。这里将3个红外接收器器的坐标归一化为(0,1)、(-0.5,-0.5)和(0.5,-0.5),即安装位置对应的三个点相互连接形成等腰三角形,并且这3个点在X轴与Y轴上的矢 量和都为零。基于本优选实施例提供的方案,可以建立起易于算法计算的坐标系,进而能够将3个红外接收器的坐标进行归一化,从而简化计算过程。本优选实施例提供的方案最大程度简化了计算复杂度,提高了产品响应速度。
在本发明一实施例中,遥控器上设置有启动按键,遥控器和灯具内部都设置有蓝牙通信模块,遥控器和灯具可以通过蓝牙通信模块进行信号交互。上文步骤S102之前,还可以包括:响应于遥控器按下启动按键,发送照射角度调节启动命令;灯具接收到启动命令后开启红外信号接收。
对于上文步骤S104中提及的照射角度调节值,优选的,照射角度调节值包括X、Y轴调节值。
进一步,步骤S104基于多个红外接收器的多个红外信号强度值确定灯具的照射角度调节值,本发明实施例提供了一种可选的方案,在该方案中,可以以3个红外接收器分别接收的红外信号强度值进行比例叠加算法以分别确定X、Y轴调节值。本发明实施例提供的方案,可以直接将3个红外接收器分别接收的3个红外信号强度值进行比例叠加算法,从而能够快速地确定X轴、Y轴调节值。
上文的比例叠加算法,在本发明一个优选实施例中,
X轴调节值=红外信号强度值1*0+红外信号强度值2*(-0.5)+
红外信号强度值3*0.5;
Y轴调节值=红外信号强度值1*1+红外信号强度值2*(-0.5)+
红外信号强度值3*(-0.5);
在本优选实施例中,红外信号强度值1,2,3分别是3个红外接收器接收的红外信号强度值。本优选实施例提供的方案,由于比例叠加算法易于进行计算,使得X轴调节值和Y轴调节值很容易计算出来,从而提高了调节效率。
这里的比例叠加算法可以解释为将3个红外接收器接收到的3个红外信号强度值按照归一化坐标进行叠加,换言之,是将3个红外信号强度值分别乘以其对应的坐标归一化系数再相加。例如,计算X轴调节值为例,将3个红外信号强度值乘以其对应的X轴坐标归一化系数,即X轴调节值=红外信号强度值1*0+红外信号强度值2*(-0.5)+红外信号强度值 3*0.5。计算Y轴调节值与此同理,在此不再赘述。
在本发明一优选实施例中,步骤S106中的驱动电机包括X轴方向的转动电机和Y轴方向的转动电机。
进一步,对于步骤S106中经由驱动电机调节灯具的照射角度,优选的,基于照射角度调节值,驱动X轴方向的转动电机和/或Y轴方向的转动电机对灯具的照射角度进行调节。也就是说,在本发明实施例中,一方面可以单独驱动X轴方向的转动电机,进而调节灯具在X轴方向的照射角度。另一方面也可以单独驱动Y轴方向的转动电机,进而调节灯具在Y轴方向的照射角度。此外,还可以同时驱动X轴、Y轴方向转动电机对灯具的照射角度进行调节。本发明实施例提供的方案通过驱动电机的转动来调节灯具的照射角度。
具体调节过程,结合上文中的比例叠加算法进行说明,如果计算后获得的X轴调节值为负,则控制X轴方向的转动电机朝X轴负方向转动,如果X轴调节值为正,则控制X轴方向的转动电机朝X轴正方向转动,如果Y轴调节值为负,则控制Y轴方向的转动电机朝Y轴负方向转动,如果Y轴调节值为正,则控制Y轴方向的转动电机朝X轴正方向转动。
为了满足实时性的要求,在本发明一优选实施例中,上述灯具的照射角度调节方法还可以包括:在驱动电机调节灯具的照射角度的过程中,基于实时更新的红外信号强度值来实时更新X、Y轴调节值,直至X、Y轴调节值为零,停止驱动电机对灯具照射角度的调节。在该实施例中,随着灯具的照射角度的不断变化,红外接收器接收的红外信号强度值也随之改变,X、Y调节值也随之更新,并根据更新的X、Y轴调节值实时控制电机的转动方向,直至X、Y轴调节值为零,则停止电机的转动,调节结束。基于本优选实施例提供的方案,随着灯具照射角度的变化,X、Y轴调节值可以实时更新,从而满足实时性要求。
在本发明一优选实施例中,上述灯具的照射角度调节方法还可以包括:
接收来自遥控器的照射角度调节停止指令,并停止驱动电机对灯具照射角度的调节。在本优选实施例中,当接收到来自遥控器的照射角度调节停止指令时,则停止驱动电机的转动,从而结束对灯具的照射角度的调节。 本优选实施例提供的方案可以按照使用者的意愿对灯具的照射角度进行调节,提升产品使用体验。
基于同一发明构思,本发明实施例还提供了一种可调节照射角度的灯具,图3是根据本发明一个实施例的可调节照射角度的灯具的结构框图。如图3所示,根据本发明实施例的可调节照射角度的灯具的结构框图至少包括:
多个红外接收器202,适于接收来自遥控器的红外信号,并将红外接收器的多个红外信号强度值传送至处理器;
处理器204,适于基于多个红外信号强度值确定灯具的照射角度调节值,并将照射角度调节值传送至驱动电机;
驱动电机206,适于基于照射角度调节值,调节灯具的照射角度。
在一个优选实施例中,参见图2和图4,灯具包括3个红外接收器,并且3个红外接收器安装在灯具所在平面的外延,且在以灯具为原点建立的XY直角坐标中,3个红外接收器的坐标归一化为(0,1)、(-0.5,-0.5)和(0.5,-0.5)。
在一个优选实施例中,照射角度调节值包括X、Y轴调节值,且处理器104还适于以3个红外接收器分别接收的红外信号强度值进行比例叠加算法以分别确定X、Y轴调节值。
在一个优选实施例中,X轴调节值=红外信号强度值1*0+红外信号强度值2*(-0.5)+红外信号强度值3*0.5;Y轴调节值=红外信号强度值1*1+红外信号强度值2*(-0.5)+红外信号强度值3*(-0.5);其中,红外信号强度值1,2,3分别是3个红外接收器接收的红外信号强度值。
在一个优选实施例中,在驱动电机206调节灯具的照射角度的过程中,处理器204还适于基于实时更新的红外信号强度值来实时更新X、Y轴调节值,直至X、Y轴调节值为零,停止驱动电机对灯具照射角度的调节。
在一个优选实施例中,当接收到来自遥控器的照射角度调节停止指令后,处理器204还适于停止驱动电机对灯具照射角度的调节。
基于同一发明构思,本发明实施例还提供了一种灯具的照射角度调节系统。如图5所示,根据本发明实施例的灯具的照射角度调节系统至少可 以包括遥控器300和如上述之任一灯具,遥控器300适于向灯具发射红外信号。
在一个优选实施例中,遥控器300还与灯具无线通信连接,且
遥控器300适于向灯具发送照射角度调节开启信号,并同时向灯具发射红外信号;灯具适于在接收到开启信号之后,开启红外接收器202、处理器204和驱动电机206工作。
在一个优选实施例中,其中遥控器300还适于向灯具发送照射角度调节停止信号,并同时关闭发射红外信号;灯具还适于在接收到停止信号之后,停止红外接收器202、处理器204和驱动电机206的工作。
本发明实施例提供了一种灯具的照射角度调节方案,该实施例中灯具包括多个红外传感器和驱动电机,首先,经由多个红外接收器接收来自遥控器的红外信号,随后基于多个红外接收器接收的多个红外信号强度值确定灯具的照射角度调节值,进而基于照射角度调节值,经由驱动电机调节灯具的照射角度。本发明实施例提供的技术方案能够基于多个红外接收器和驱动电机调节灯具的照射角度,能够实现更好的照明效果,从而满足实际应用中用户的照明需求。进一步的,本发明实施例提供的技术方案在需要调节灯具的照射角度时,只需操控遥控器就可以控制灯具的照射角度,从而实现对灯具的照射角度的智能调节,达到更好的照明效果。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (15)

  1. 一种灯具的照射角度调节方法,所述灯具包括多个红外接收器和驱动电机,所述方法包括:
    经由所述多个红外接收器接收来自遥控器的红外信号;
    基于所述多个红外接收器的多个红外信号强度值确定所述灯具的照射角度调节值;
    基于所述照射角度调节值,经由所述驱动电机调节所述灯具的照射角度。
  2. 根据权利要求1所述的照射角度调节方法,其中,所述灯具包括3个红外接收器,所述3个红外接收器安装在所述灯具所在平面的外延,且在以所述灯具为原点建立的XY直角坐标中,所述3个红外接收器的坐标归一化为(0,1)、(-0.5,-0.5)和(0.5,-0.5)。
  3. 根据权利要求2所述的照射角度调节方法,其中所述照射角度调节值包括X、Y轴调节值,且所述基于所述多个红外接收器的多个红外信号强度值确定所述灯具的照射角度调节值包括:
    以所述3个红外接收器分别接收的红外信号强度值进行比例叠加算法以分别确定X、Y轴调节值。
  4. 根据权利要求3所述的照射角度调节方法,其中,
    X轴调节值=红外信号强度值1*0+红外信号强度值2*(-0.5)+红外信号强度值3*0.5;
    Y轴调节值=红外信号强度值1*1+红外信号强度值2*(-0.5)+红外信号强度值3*(-0.5)。
    其中,红外信号强度值1,2,3分别是3个红外接收器接收的红外信号强度值。
  5. 根据权利要求3或4所述的照射角度调节方法,还包括:
    在所述驱动电机调节所述灯具的照射角度的过程中,基于实时更新的红外信号强度值来实时更新X、Y轴调节值,直至X、Y轴调节值 为零,停止所述驱动电机对所述灯具照射角度的调节。
  6. 根据权利要求1-5之任一所述的照射角度调节方法,还包括:
    接收来自遥控器的照射角度调节停止指令,并停止所述驱动电机对所述灯具照射角度的调节。
  7. 一种可调节照射角度的灯具,所述灯具包括多个红外接收器、驱动电机以及处理器,其中,
    所述多个红外接收器,适于接收来自所述遥控器的红外信号,并将所述红外接收器的多个红外信号强度值传送至所述处理器;
    所述处理器,适于基于所述多个红外信号强度值确定所述灯具的照射角度调节值,并将所述照射角度调节值传送至所述驱动电机;
    所述驱动电机,适于基于所述照射角度调节值,调节所述灯具的照射角度。
  8. 根据权利要求7所述的灯具,其中,所述灯具包括3个红外接收器,并且所述3个红外接收器安装在所述灯具所在平面的外延,且在以所述灯具为原点建立的XY直角坐标中,所述3个红外接收器的坐标归一化为(0,1)、(-0.5,-0.5)和(0.5,-0.5)。
  9. 根据权利要求8所述的灯具,其中所述照射角度调节值包括X、Y轴调节值,且所述处理器还适于:
    以所述3个红外接收器分别接收的红外信号强度值进行比例叠加算法以分别确定X、Y轴调节值。
  10. 根据权利要求9所述的灯具,其中,
    X轴调节值=红外信号强度值1*0+红外信号强度值2*(-0.5)+红外信号强度值3*0.5;
    Y轴调节值=红外信号强度值1*1+红外信号强度值2*(-0.5)+红外信号强度值3*(-0.5);
    其中,红外信号强度值1,2,3分别是3个红外接收器接收的红外信号强度值。
  11. 根据权利要求9或10所述的灯具,其中,在所述驱动电机调节所述灯具的照射角度的过程中,所述处理器还适于:
    基于实时更新的红外信号强度值来实时更新X、Y轴调节值,直至X、Y轴调节值为零,停止所述驱动电机对所述灯具照射角度的调节。
  12. 根据权利要求7-10之任一所述的灯具,其中,当接收到来自所述遥控器的照射角度调节停止指令后,所述处理器还适于:
    停止所述驱动电机对所述灯具照射角度的调节。
  13. 一种灯具的照射角度调节系统,包括遥控器和如权利要求7-12之任一所述的灯具,所述遥控器适于向所述灯具发射红外信号。
  14. 根据权利要求13所述的照射角度调节系统,其中
    所述遥控器还与所述灯具无线通信连接,且
    所述遥控器适于向所述灯具发送照射角度调节开启信号,并同时向所述灯具发射所述红外信号;
    所述灯具适于在接收到所述开启信号之后,开启所述红外接收器、处理器和驱动电机工作。
  15. 根据权利要求13或14所述的照射角度调节系统,其中
    所述遥控器还适于向所述灯具发送照射角度调节停止信号,并同时关闭发射所述红外信号;
    所述灯具还适于在接收到所述停止信号之后,停止所述红外接收器、处理器和驱动电机的工作。
PCT/CN2019/130138 2019-01-25 2019-12-30 灯具的照射角度调节方法、系统和可调节照射角度的灯具 WO2020151462A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19910946.3A EP3911122B1 (en) 2019-01-25 2019-12-30 Method and system for adjusting beam angle of lamp, and lamp having adjustable beam angle
US17/402,266 US11968760B2 (en) 2019-01-25 2021-08-13 Irradiation angle adjustment method and system of lamp and lamp with adjustable irradiation angle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910074698.4 2019-01-25
CN201910074698.4A CN109640493A (zh) 2019-01-25 2019-01-25 灯具的照射角度调节方法、系统和可调节照射角度的灯具
CN201920138528.3 2019-01-25
CN201920138528.3U CN210641116U (zh) 2019-01-25 2019-01-25 可调节照射角度的灯具和灯具的照射角度调节系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/402,266 Continuation US11968760B2 (en) 2019-01-25 2021-08-13 Irradiation angle adjustment method and system of lamp and lamp with adjustable irradiation angle

Publications (1)

Publication Number Publication Date
WO2020151462A1 true WO2020151462A1 (zh) 2020-07-30

Family

ID=71736122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130138 WO2020151462A1 (zh) 2019-01-25 2019-12-30 灯具的照射角度调节方法、系统和可调节照射角度的灯具

Country Status (3)

Country Link
US (1) US11968760B2 (zh)
EP (1) EP3911122B1 (zh)
WO (1) WO2020151462A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100001654A1 (en) * 2008-07-07 2010-01-07 Edison Opto Corporation Illumination system capable of automatically adjusting illumination direction according to human body's signal
CN205014298U (zh) * 2015-10-20 2016-02-03 广州力铭光电科技有限公司 Led会议灯照射角度控制系统
CN206207070U (zh) * 2015-08-25 2017-05-31 上海本星电子科技有限公司 红外遥控灯
CN206918814U (zh) * 2017-07-14 2018-01-23 四川溯源科技有限公司 一种可调节照射角度的灯具
CN109640493A (zh) * 2019-01-25 2019-04-16 欧普照明股份有限公司 灯具的照射角度调节方法、系统和可调节照射角度的灯具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9955551B2 (en) * 2002-07-12 2018-04-24 Yechezkal Evan Spero Detector controlled illuminating system
EP1858179A1 (en) * 2002-10-24 2007-11-21 Nakagawa Laboratories, Inc. Illumination light communication device
CN100520304C (zh) * 2005-01-12 2009-07-29 皇家飞利浦电子股份有限公司 包括用于调节光束方向的装置的聚光灯单元
US8558465B2 (en) * 2007-11-08 2013-10-15 Lite-On It Corporation Light control system
US20150308642A1 (en) * 2014-04-23 2015-10-29 General Led, Inc. Self-Aiming Track Light Fixture System and Method
US11184967B2 (en) * 2018-05-07 2021-11-23 Zane Coleman Angularly varying light emitting device with an imager

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100001654A1 (en) * 2008-07-07 2010-01-07 Edison Opto Corporation Illumination system capable of automatically adjusting illumination direction according to human body's signal
CN206207070U (zh) * 2015-08-25 2017-05-31 上海本星电子科技有限公司 红外遥控灯
CN205014298U (zh) * 2015-10-20 2016-02-03 广州力铭光电科技有限公司 Led会议灯照射角度控制系统
CN206918814U (zh) * 2017-07-14 2018-01-23 四川溯源科技有限公司 一种可调节照射角度的灯具
CN109640493A (zh) * 2019-01-25 2019-04-16 欧普照明股份有限公司 灯具的照射角度调节方法、系统和可调节照射角度的灯具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3911122A4 *

Also Published As

Publication number Publication date
EP3911122B1 (en) 2024-03-20
US20210378075A1 (en) 2021-12-02
EP3911122A4 (en) 2022-02-23
US11968760B2 (en) 2024-04-23
EP3911122A1 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
US20150345762A1 (en) Directional lighting
CN106369753B (zh) 一种空调器及其控制方法和装置
JP2013250005A (ja) 自走式電子機器
CN103501560B (zh) Led照明设备的控制方法、装置及系统
CN109991870B (zh) 一种智能家居系统
US20210310643A1 (en) Human tracking to produce improved jobsite lighting
KR101698757B1 (ko) 무선 조명 및 스피커 기능을 갖는 조명 장치
JP6373364B2 (ja) 空間分布制御能力を持つ照明フィクスチャ用の制御技法
WO2020151462A1 (zh) 灯具的照射角度调节方法、系统和可调节照射角度的灯具
CN112483926A (zh) 一种机械臂智能交互台灯
CN107889322B (zh) 自动调整式方向控制系统及其方法
CN109640493A (zh) 灯具的照射角度调节方法、系统和可调节照射角度的灯具
WO2023015860A1 (zh) 一种风扇灯控制系统及方法
JPH0971386A (ja) 遠隔操作装置
US20220284893A1 (en) Wireless lighting control systems for intelligent luminaires
CN210641116U (zh) 可调节照射角度的灯具和灯具的照射角度调节系统
KR101573364B1 (ko) IoT 디바이스 제어용 UI 방법 및 이를 적용한 제어장치
CN105041701A (zh) 智能风扇的控制方法及装置、智能风扇
JP2002320283A (ja) ワイヤレスリモートコントローラ及び空気調和装置
JP2006236909A (ja) アームユニットおよび調光システム
JPH06203966A (ja) 照明装置
LU100116B1 (en) Intelligent air conditioner
CN110719679A (zh) 一种基于5g的景观灯控制方法
JPH06260004A (ja) スポットライト照射方向制御装置
JPH06260005A (ja) スポットライト照射方向制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019910946

Country of ref document: EP

Effective date: 20210809