WO2020151437A1 - 电控组件及电器设备 - Google Patents

电控组件及电器设备 Download PDF

Info

Publication number
WO2020151437A1
WO2020151437A1 PCT/CN2019/127430 CN2019127430W WO2020151437A1 WO 2020151437 A1 WO2020151437 A1 WO 2020151437A1 CN 2019127430 W CN2019127430 W CN 2019127430W WO 2020151437 A1 WO2020151437 A1 WO 2020151437A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
filter circuit
electromagnetic compatibility
magnetic bead
motor
Prior art date
Application number
PCT/CN2019/127430
Other languages
English (en)
French (fr)
Inventor
杨志龙
侯俊峰
胡建
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Priority to EP19911192.3A priority Critical patent/EP3876401B1/en
Publication of WO2020151437A1 publication Critical patent/WO2020151437A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0233Filters, inductors or a magnetic substance

Definitions

  • This application relates to the field of electric control technology, and in particular to an electric control component and electrical equipment.
  • Electromagnetic compatibility refers to the ability of a device or system to operate in compliance with the requirements in its electromagnetic environment and not produce intolerable electromagnetic interference to any device in its environment. Therefore, electromagnetic compatibility includes two requirements: on the one hand, the electromagnetic interference generated by the equipment to the environment during normal operation cannot exceed a certain limit; on the other hand, it refers to the electromagnetic interference of the appliance in the environment. Has a certain degree of immunity, namely electromagnetic sensitivity.
  • the motor is prone to generate noise with a very wide frequency spectrum during operation, and the noise is easily conducted to other circuit modules of the electrical equipment through the grounding wire, increasing the electromagnetic compatibility interference of the electrical equipment.
  • the main purpose of this application is to propose an electronic control component and electrical equipment, which aims to suppress the electromagnetic compatibility electromagnetic radiation generated during the operation of the motor and improve the overall electromagnetic compatibility and anti-interference performance of electrical equipment products.
  • an electric control assembly including:
  • An electric control board the electric control board is provided with a system protective ground, a power input terminal and a grounding wire terminal for accessing power, and a power output terminal and a motor grounding terminal for accessing the motor, wherein the ground The wire terminal is connected to the protection ground of the system;
  • a power supply filter circuit the input end of the power supply filter circuit is connected to the power input terminal, and the output end of the power supply filter circuit is connected to the power output terminal;
  • An electromagnetic compatibility filter circuit the input end of the electromagnetic compatibility filter circuit is respectively connected to the ground terminal of the motor and the ground end of the power filter circuit, and the output end of the power filter circuit is connected to the system reference ground.
  • both the ground wire terminal and the motor ground terminal have a plurality of plug-in ends, a plurality of printed circuit board traces are also provided on the electric control board, and one end of the plurality of printed circuit board traces Are connected in a one-to-one correspondence with the multiple plug-in ends of the ground wire terminal, and the other ends of the multiple printed circuit board traces are connected in a one-to-one correspondence with the multiple plug-in ends of the motor ground terminal;
  • the electromagnetic compatibility filter circuit includes a plurality of electromagnetic compatibility filter branches, and the plurality of electromagnetic compatibility filter branches are respectively arranged in series on each of the printed circuit board traces
  • both the ground wire terminal and the motor ground terminal have two plug-in ends;
  • the electric control board is further provided with a first printed circuit board wiring and a second printed circuit board wiring, and the first A printed circuit board trace connects the first plug end of the motor ground terminal and the first plug end of the ground wire terminal, and the second printed circuit board trace connects the second plug of the motor ground terminal.
  • the electromagnetic compatibility filter circuit includes two electromagnetic compatibility filter branches, and the two electromagnetic compatibility filter branches are respectively arranged in series on the first printed circuit board and the second printed circuit board. on-line.
  • the electromagnetic compatibility filter branch includes a first magnetic bead, a first end of the first magnetic bead is an input end of the electromagnetic compatibility filter circuit, and a second end of the first magnetic bead is The output terminal of the power supply filter circuit.
  • the number of the first magnetic beads is multiple, and the multiple first magnetic beads are sequentially arranged in series on the first printed wiring board trace and the second printed wiring board trace.
  • the electromagnetic compatibility filter circuit includes an inductor, the first end of the inductor is the input end of the electromagnetic compatibility filter circuit, and the second end of the inductor is the power supply filter circuit.
  • the output terminal is the first end of the inductor.
  • the power supply filter circuit includes a common mode inductor, a first Y capacitor, and a second Y capacitor.
  • Two input ends of the common mode inductor are respectively connected to the power input end, and two of the common mode inductor Output terminals are respectively connected to the first terminal of the first Y capacitor and the first terminal of the second Y capacitor; the second terminal of the first Y capacitor and the second terminal of the second Y capacitor are respectively connected Connected to the input end of the electromagnetic compatibility filter circuit.
  • the electromagnetic compatibility filter circuit further includes a second magnetic bead, the first end of the second magnetic bead is connected to the ground terminal of the motor, and the second end of the second magnetic bead is connected to the first end of the second magnetic bead. The first end of a magnetic bead is connected.
  • the electromagnetic compatibility filter circuit further includes a third magnetic bead, the first end of the third magnetic bead is interconnected with the first magnetic bead and the second end of the first Y capacitor, so The second end of the third magnetic bead is interconnected with the second end of the second magnetic bead and the motor connection terminal.
  • the electromagnetic compatibility filter circuit further includes a fourth magnetic bead, and the fourth magnetic bead is arranged in series between the first Y capacitor and the first magnetic bead;
  • the fourth magnetic bead is arranged in series between the second Y capacitor and the first magnetic bead
  • the fourth magnetic bead is arranged in series between the output terminal of the common mode inductor and the first Y capacitor;
  • the fourth magnetic bead is arranged in series between the output terminal of the common mode inductor and the second Y capacitor.
  • the electromagnetic compatibility filter circuit includes an inductor, the first end of the inductor is the input end of the electromagnetic compatibility filter circuit, and the second end of the inductor is the power supply filter circuit.
  • the output terminal is the first end of the inductor.
  • the application also proposes an electrical device, including a motor and the above-mentioned electronic control assembly, the power output terminal of the electronic control assembly is connected to the motor;
  • the electronic control assembly includes an electric control board, the electric control board A system protective ground, a power input terminal and a ground wire terminal for connecting to a power source, and a power output terminal and a motor ground terminal for connecting to a motor are provided, wherein the ground wire terminal is connected to the system protective ground;
  • a power supply filter circuit the input end of the power supply filter circuit is connected to the power input terminal, the output end of the power supply filter circuit is connected to the power output terminal;
  • an electromagnetic compatibility filter circuit the input of the electromagnetic compatibility filter circuit The terminals are respectively connected with the ground terminal of the motor and the ground terminal of the power filter circuit, and the output terminal of the power filter circuit is connected with the system reference ground.
  • an electromagnetic compatibility filter circuit is arranged in series between the ground wire of the motor housing and the system protection ground, one end of the electromagnetic compatibility filter circuit is electrically connected to the connected motor housing through the motor ground terminal, and the electromagnetic compatibility filter circuit is also Connect with the ground terminal of the power filter circuit, and connect the other end of the electromagnetic compatibility filter circuit with the system protection ground.
  • the electromagnetic compatibility filter circuit can provide high-frequency impedance. At this time, the electromagnetic compatibility filter circuit and the power filter circuit are equivalent to parallel connection.
  • the electromagnetic compatibility filter circuit is equivalent to a high-frequency impedance circuit, so the current flowing through the electromagnetic compatibility filter circuit is much smaller than the power filter circuit. In this way, a current loop is formed between the motor casing, the ground wire of the motor, the ground terminal of the motor, the ground terminal of the power filter circuit and the output terminal of the power filter circuit, the power output terminal, the power terminal of the motor and the motor winding.
  • the electromagnetic compatibility interference signal returns to the source of the electromagnetic compatibility interference signal through the motor shell, ground wire, ground terminal, power supply filter circuit and power output terminal, so as to prevent the electromagnetic compatibility interference signal from flowing out of the motor.
  • the electromagnetic compatibility interference signal will be gradually consumed in the form of heat in the current loop composed of the power filter circuit, the motor winding and the motor housing when passing through the above current loop, so as to avoid the electromagnetic compatibility of the motor.
  • sexual interference exceeds the standard.
  • an isolation filter circuit is set between the grounding wire of the motor and the system protection ground to increase the high frequency impedance of the loop by returning the common mode interference of the motor to the line impedance stabilization network path of the electronic control board through the system protection ground. Therefore, the power filter circuit arranged in parallel with it can divide a larger common mode current, and the electromagnetic compatibility interference signal can be attenuated by the power filter circuit, thereby inhibiting the electromagnetic compatibility interference signal from being transmitted to the system protection ground.
  • the application suppresses the electromagnetic compatibility electromagnetic radiation generated by the motor, and improves the overall electromagnetic compatibility and anti-interference performance of electrical equipment products.
  • FIG. 1 is a schematic diagram of functional modules of an embodiment of an electronic control component of this application
  • FIG. 2 is a schematic diagram of functional modules of another embodiment of the electronic control component of this application.
  • FIG. 3 is a schematic diagram of the circuit structure of the first embodiment of the electronic control component of this application.
  • FIG. 5 is a schematic diagram of the circuit structure of the third embodiment of the electronic control component of this application.
  • FIG. 6 is a schematic structural diagram of an embodiment of an electronic control component of this application.
  • FIG. 7 is a schematic diagram of the circuit structure of the fourth embodiment of the electronic control component of this application.
  • FIG. 8 is a schematic diagram of a circuit structure of a fifth embodiment of an electronic control component of this application.
  • FIG. 9 is a schematic diagram of the circuit structure of the sixth embodiment of the electronic control component of this application.
  • FIG. 10 is a schematic diagram of the circuit structure of the sixth embodiment of the electronic control component of this application.
  • Label name Label name 100 Electric control board CN11 Power input terminal GND System protection ground CN12 Ground wire terminal 10 Power filter circuit CN21 Power output terminal 20 Electromagnetic compatibility filter circuit CN22 Motor ground terminal 30 Rectifier circuit FB1 First bead 40 PFC circuit FB2 Second bead 50 IPM module FB3 Third bead L1 Common mode inductance FB4 Fourth magnetic bead L2 Inductor C1 First Y capacitor M1 Motor C2 Second Y capacitor
  • This application proposes an electrical control assembly suitable for electrical equipment, which can be air conditioners, washing machines and other household appliances, especially suitable for air conditioners.
  • the electronic control component includes:
  • An electric control board 100 which is provided with a system protective ground GND, a power input terminal CN11 and a ground wire terminal CN12 for accessing power, and a power output terminal CN21 for accessing the motor M1 and the motor ground
  • the terminal CN22 wherein the ground wire terminal CN12 is connected to the system protection ground GND;
  • the power supply filter circuit 10 the input terminal of the power supply filter circuit 10 is connected to the power supply input terminal, and the output terminal of the power supply filter circuit 10 is connected to the power supply output terminal CN21;
  • the electromagnetic compatibility filter circuit 20 the input end of the electromagnetic compatibility filter circuit 20 is respectively connected to the motor ground terminal CN22 and the ground end of the power filter circuit 10, and the output end of the power filter circuit 10 is connected to the System reference ground connection.
  • the electric control board 100 can be realized by adopting a single panel, or realized by adopting a double panel, which can be specifically set according to the installation space and installation position of the electrical equipment in actual application.
  • the electronic control component further includes a rectifier circuit 30, a PFC (power factor correction) circuit 40, and an IPM (intelligent power module) 50.
  • the power input terminal CN11 includes a neutral line AC-N and a live line AC-L, and the power output terminal CN21 may include a UVW three-phase output port.
  • the rectifier circuit 30 may be a rectifier bridge stack or a rectifier circuit 30 composed of four independent diodes.
  • the rectifier circuit 30 converts the connected AC power into DC power and outputs it to the PFC circuit 40 for power factor adjustment.
  • the PFC circuit 40 may be implemented by adopting a passive PFC circuit 40 to form a step-up PFC circuit 40, a step-down PFC circuit 40, or a step-up and step-down PFC circuit 40.
  • the PFC circuit 40 adjusts the power factor of the connected DC power, for example, increases the DC power voltage and stabilizes it at 380V, so that the input current follows the input voltage and ensures that the power factor of the DC power supply is above 0.9.
  • the adjusted DC is output to the subsequent circuit, such as the IPM module 50.
  • the adjusted DC power can also pass through a switching power supply circuit (not shown) to generate driving voltages of various values, such as 5V, 15V, etc., to supply power to other components such as the main controller on the circuit board.
  • the IPM module 50 is arranged on the electric control board 100, and integrates a driving circuit and a plurality of power switch tubes.
  • the plurality of power switch tubes form a driving inverter circuit.
  • six power switch tubes may form a three-phase inverter bridge circuit.
  • four power switch tubes form a two-phase inverter bridge circuit.
  • each power switch tube can be realized by MOS tube or IGBT.
  • the IPM module 50 is used to drive the compressor motor M1.
  • the IPM module 50 can also be used for frequency converters and various inverter power supplies for driving other motors M1, and can be applied to variable frequency speed regulation, metallurgical machinery, electric traction, servo drives, and variable frequency home appliances such as air conditioners. In the field.
  • the output terminal of the power filter circuit 10 is connected to the input terminal of the rectifier circuit 30, and the input terminal of the power filter circuit 10 is connected to the power input terminal CN11.
  • the power filter circuit 10 can Inhibit the common mode current in the input power supply, so as to achieve the suppression of the grid noise and high harmonics of the AC power supply and the noise and high frequency harmonics generated by the switching power supply. At the same time, it can also avoid the electromagnetic interference generated in the power circuit from radiating to other circuit modules .
  • the motor M1 may be a compressor motor M1, a fan motor M1, or other motors M1 in electrical equipment.
  • the shell of the motor M1, that is, the shell of the motor M1 is generally set as a metal shell, and the ground wire of the motor M1 is generally connected to the metal shell, and is connected to the ground wire on the electric control board 100 through a wire, so that the motor shell is also a ground protection wire.
  • All the circuit modules and AC power supply on the electric control board 100 are connected into an equipotential form to form a loop metal net, that is, the system protection reference ground to realize leakage protection and prevent static electricity from damaging electrical equipment.
  • the electrical equipment can be realized by using a brushed motor or a brushless motor.
  • an electromagnetic compatibility filter circuit 20 is arranged in series between the ground wire of the housing of the motor M1 and the system protection ground GND.
  • One end of the electromagnetic compatibility filter circuit 20 is connected to the connected motor through the motor ground terminal CN22.
  • the housing of M1 is electrically connected, and the electromagnetic compatibility filter circuit 20 is also connected to the ground terminal of the power filter circuit 10, and the other end of the electromagnetic compatibility filter circuit 20 is connected to the system protection ground GND.
  • the electromagnetic compatibility filter circuit 20 and the power supply The filter circuit 10 is equivalent to a parallel connection.
  • the electromagnetic compatibility filter circuit 20 is equivalent to a high-frequency impedance circuit, the current flowing through the electromagnetic compatibility filter circuit 20 is much smaller than the power filter circuit 10. This is formed between the motor M1 housing, the ground wire of the motor M1, the motor ground terminal CN22, the ground terminal of the power filter circuit 10 and the output terminal of the power filter circuit 10, the power output terminal, the power terminal of the motor M1, and the winding of the motor M1. Current loop.
  • the electromagnetic compatibility interference signal returns to the source of the electromagnetic compatibility interference signal through the motor M1 housing, ground wire, ground terminal, power filter circuit 10, and power output terminal CN21, thereby preventing the electromagnetic compatibility interference signal from flowing out of the motor M1.
  • the electromagnetic compatibility interference signal will be gradually consumed in the form of heat in the current loop composed of the power filter circuit 10, the motor M1 winding, and the motor M1 housing during the process of passing through the above-mentioned current loop, so as to avoid The electromagnetic compatibility interference of the motor M1 on the electronic control board 100 and other modules in the electrical equipment exceeds the standard.
  • an electromagnetic compatibility filter circuit 20 is provided between the ground wire of the motor M1 and the system protection ground GND, so that the common mode interference of the motor M1 flows back to the path of the line impedance stabilization network of the electric control board 100 through the system protection ground GND , Increase the high frequency impedance of the loop, so that the power filter circuit 10 set in parallel with it can divide a larger common mode current, and the electromagnetic compatibility interference signal can be attenuated by the power filter circuit 10, thereby suppressing electromagnetic compatibility interference signals, etc. Transmitted to the system protection ground GND.
  • This application suppresses the electromagnetic compatibility electromagnetic radiation generated by the motor M1, and improves the overall electromagnetic compatibility anti-interference performance of electrical equipment products.
  • the ground wire terminal CN12 and the motor ground terminal CN22 each have a plurality of plug-in terminals
  • the electric control board is also provided with a plurality of printed circuit board wiring, and a plurality of the printed circuit One end of the board wiring is connected to the multiple plug-in ends of the ground wire terminal CN12 one by one, and the other end of the multiple printed circuit board wiring is connected to the multiple plug-in ends of the motor ground terminal CN22 one by one.
  • the electromagnetic compatibility filter circuit 20 includes a plurality of electromagnetic compatibility filter branches, and the plurality of electromagnetic compatibility filter branches are respectively arranged in series on each of the printed circuit board traces.
  • the ground wire of the motor is usually directly connected to the reference ground GND of the electric control board 100 through the motor ground terminal CN22, and there is no need to set a printed circuit board wiring.
  • an electromagnetic compatibility filter circuit 20 is provided between the ground wire of the motor M1 and the system protection ground GND.
  • the ground wire of the motor M1 needs to be set on the electric control board 100 with printed circuit board wiring, and according to the national standard, usually Printed circuit board traces cannot be set between the ground wire of the motor M1 and the system protection ground GND, and cannot be used to provide grounding continuity to avoid the problem of not meeting the grounding continuity. For this reason, this application adopts multiple printed circuits
  • the board is routed to ensure low resistance on the ground wire, and the ground wire terminal CN12 with multiple plug-in ends and the motor ground terminal CN2 are used to set the electromagnetic compatibility filter circuit 20 as multiple electromagnetic compatibility filter branches.
  • a plurality of the electromagnetic compatibility filter branches are respectively arranged in series on the printed circuit board traces, which can increase the high frequency impedance of the printed circuit board traces, thereby increasing the high frequency impedance of the loop, and make the
  • the power filter circuit 10 can divide a larger common-mode current. This application can meet the requirements of the continuity of the ground of the printed circuit board, while suppressing the electromagnetic compatibility electromagnetic radiation generated by the motor M1, and improving the overall electromagnetic compatibility of electrical equipment products Anti-jamming performance.
  • the ground wire terminal CN12 and the motor ground terminal CN22 both have two plug-in ends; the electric control board 100 is also provided with a first printed circuit board wiring and a second printed circuit board wiring, so The first printed circuit board trace is connected to the first plug end of the motor ground terminal CN22 and the first plug end of the ground wire terminal CN12, and the second printed circuit board trace is connected to the motor ground terminal The second plug-in end of CN22 and the second plug-in end of the ground wire terminal CN12;
  • the electromagnetic compatibility filter circuit 20 includes two electromagnetic compatibility filter branches, and the two electromagnetic compatibility filter branches are respectively arranged in series on the first printed circuit board trace and the second printed circuit board. Go online.
  • the ground wire terminal CN12 and the motor ground terminal CN22 on the electric control board 100 are usually set to two, so that the AC power supply and the ground wire of the motor M1 can be connected to the electric control board 100
  • this application sets two printed circuit board traces, and connects the two ends of the printed circuit board wiring to the ground wire terminal CN12 and the motor ground terminal respectively.
  • the plug-in terminal of CN22 is connected to the pad, and the two electromagnetic compatibility filter branches are arranged in series on the printed circuit board, so as to meet the limited requirements of the continuity of the printed circuit board ground wire, and reduce the electronic control components. Process steps to reduce the production cost of electronic control components.
  • the electromagnetic compatibility filter circuit 20 includes a first magnetic bead FB1, and the first end of the first magnetic bead FB1 is the input terminal of the electromagnetic compatibility filter circuit 20, so The second end of the first magnetic bead FB1 is the output end of the power filter circuit 10.
  • the first magnetic bead FB1 can optionally be implemented by using a ferrite bead.
  • the electromagnetic compatibility filter circuit 20 can also be implemented by using a ferrite magnetic ring.
  • the first magnetic bead FB1 can suppress the high-frequency noise output by the motor M1 shell and some spike interference.
  • the first magnetic bead FB1 is connected in series between the motor M1 shell and the system protection ground GND to provide the motor M1 shell and the system protection ground.
  • the GND line provides high-frequency impedance to ensure that the common mode current flowing through the first magnetic bead FB1 is much smaller than the common mode current flowing through the power filter circuit 10, so most of the common mode current generated by the motor M1 is set in parallel with it
  • the power filter circuit 10 returns to the interference source, and the electromagnetic compatibility interference signal can be attenuated by the power filter circuit 10, thereby inhibiting the electromagnetic compatibility interference signal from being transmitted to the system protection ground GND.
  • the first magnetic bead FB1 has a small volume, a simple circuit structure, no need to install a heat sink, and can reduce the difficulty of circuit wiring of the electric control board 100, making the electric control assembly easier to implement. Compared with the through-core inductor, the magnetic bead is used in this application
  • the implementation of FB1 can also reduce the use of radiators and further reduce the production cost of electronic control components.
  • the ground wire terminal CN12 and the motor ground terminal CN22 both have multiple plug-in terminals;
  • the number of the first magnetic beads FB1 is multiple, the first ends of the multiple first magnetic beads FB1 are connected to the multiple plug-in ends of the motor ground terminal CN22 in a one-to-one correspondence, and the multiple first The second end of the magnetic bead FB1 is connected to the multiple plug-in ends of the ground wire terminal CN12 in a one-to-one correspondence.
  • the number of the first magnetic bead FB1 may be one or more, which may be specifically set according to the frequency of electromagnetic interference generated by the motor M1.
  • the electromagnetic interference generated between the brush and commutator of the motor M1 and the electromagnetic interference generated by other parts of the motor M1 can be detected, and the number of magnetic beads can be set according to the frequency of the electromagnetic interference to compare Good suppression of electromagnetic compatibility interference signals and other transmission to the system protection ground GND.
  • the number of the first magnetic beads FB1 can be selected as two.
  • the pins of the motor ground terminal CN22 can be set to two, and the pins of the ground wire terminal CN12 can also be set to two.
  • two ends of one first magnetic bead FB1 are respectively connected to a plug end of the motor ground terminal CN22 and a plug end of the ground wire terminal CN12.
  • Two ends of the other first magnetic bead FB1 are respectively connected to the other plug-in end of the motor ground terminal CN22 and the other plug-in end of the ground wire terminal CN12.
  • This arrangement allows two printed circuit board traces to be laid between the input end of the electromagnetic compatibility filter circuit 20, that is, the motor grounding terminal CN22, and the output end, that is, the grounding wire terminal CN12 when making a printed circuit board. Connect the ground wire, and install the first magnetic bead FB1 on the two ground wires to isolate and filter.
  • the number of the first magnetic beads FB1 is multiple, and a plurality of the first magnetic beads FB1 are sequentially arranged in series on the first printed circuit board trace and the second printed circuit board.
  • the printed circuit board is routed.
  • the first magnetic beads FB1 can be arranged in series or in parallel, and can be set according to the frequency of electromagnetic interference generated by the motor M1, which is not limited here.
  • the power filter circuit 10 includes a common mode inductor L1, a first Y capacitor C1, and a second Y capacitor C2.
  • Two input terminals of the common mode inductor L1 are connected to the power supply
  • the two output ends of the common mode inductor L1 are connected to the first end of the first Y capacitor C1 and the first end of the second Y capacitor C2, respectively; the first Y capacitor C1
  • the second terminal and the second terminal of the second Y capacitor C2 are respectively connected to the input terminal of the electromagnetic compatibility filter circuit 20.
  • the differential mode current flows through the two coils of the common mode coil, and the magnetic fields generated by the currents in the two coils are in opposite directions and cancel out.
  • the common-mode current since the common-mode current is in the same direction in the common-mode inductor L1, the two coils generate magnetic fields in the same direction, which can increase the coil inductance, that is, increase the coil’s resistance to the common-mode current.
  • Inductive reactance makes the common-mode current more suppressed, achieving the purpose of attenuating the common-mode current and suppressing common-mode interference noise.
  • the first Y capacitor C1 and the second Y capacitor C2 can filter the common mode interference noise, so that the common mode interference is significantly suppressed.
  • the first Y capacitor C1 and the second Y capacitor C2 may be Y capacitors whose specifications correspond to the electromagnetic compatibility interference frequency, so that the electromagnetic compatibility interference signal can pass through the Y capacitor more easily.
  • the electromagnetic compatibility interference signal flowing through can be returned to the motor M1, and at the same time, it can be gradually consumed in the form of heat, so as to prevent the electromagnetic compatibility interference of the motor M1 from exceeding the standard.
  • the electromagnetic compatibility filter circuit 20 further includes a second magnetic bead FB2, the first end of the second magnetic bead FB2 is connected to the motor ground terminal CN22, the second The second end of the magnetic bead FB2 is connected to the first end of the first magnetic bead FB1.
  • the second magnetic bead FB2 is arranged between the first magnetic bead FB1 and the motor ground terminal CN22, that is, one end of the second magnetic bead FB2 is connected to the motor ground terminal CN22, and the other end of the second magnetic bead FB2 is connected to the motor ground terminal CN22.
  • the first magnetic bead FB1 is connected to the ground terminals of the first Y capacitor C1 and the second Y capacitor C2.
  • the second magnetic bead FB2 can increase the impedance between the housing of the motor M1 and the system protection ground GND. Wherein, the impedances of the first magnetic bead FB1 and the second magnetic bead FB2 can be set to be the same or different.
  • the common mode current generated by the motor M1 can be suppressed by the second magnetic bead FB2 first, and then dissipated in the form of thermal energy, and then shunted by the first magnetic bead FB1 and the power filter circuit 10, and most of the common mode current is passed therethrough
  • the power filter circuit 10 arranged in parallel returns to the interference source, and the electromagnetic compatibility interference signal can be attenuated by the power filter circuit 10, thereby inhibiting the electromagnetic compatibility interference signal from being transmitted to the system protection ground GND.
  • the electromagnetic compatibility filter circuit 20 further includes a third magnetic bead FB3, the first end of the third magnetic bead FB3 and the first magnetic bead FB1 and the first The second end of the Y capacitor C1 is interconnected, and the second end of the third magnetic bead FB3 is interconnected with the second end of the second magnetic bead FB2 and the connecting terminal of the motor M1.
  • the first magnetic bead FB1, the second magnetic bead FB2, and the third magnetic bead FB3 can be set at the same time, or a combination of two of the first magnetic bead FB1, the second magnetic bead FB2 and the third magnetic bead FB3 can be selected.
  • the first magnetic bead FB1, the second magnetic bead FB2, and the third magnetic bead FB3 may be alternatively set, and there is no limitation here.
  • the first magnetic bead FB1, the second magnetic bead FB2, and the third magnetic bead FB3 can be arranged at the same time.
  • the first magnetic bead FB1 is arranged in parallel with the first Y capacitor C1
  • the third magnetic bead FB3 is arranged in parallel with the second Y capacitor.
  • the capacitor C2 is set in parallel, it is set in series with the second magnetic bead FB2.
  • the electromagnetic compatibility filter circuit 20 further includes a fourth magnetic bead FB4, the fourth magnetic bead FB4 is arranged in series between the first Y capacitor C1 and the first Y capacitor C1 Between a magnetic bead FB1;
  • the fourth magnetic bead FB4 is arranged in series between the second Y capacitor C2 and the first magnetic bead FB1;
  • the fourth magnetic bead FB4 is arranged in series between the output terminal of the common mode inductor L1 and the first Y capacitor C1;
  • the fourth magnetic bead FB4 is arranged in series between the output terminal of the common mode inductor L1 and the second Y capacitor C2.
  • the fourth magnetic bead FB4 When the fourth magnetic bead FB4 is set to one, the fourth magnetic bead FB4 may be set at any end of the first Y capacitor C1, or set at any end of the second Y capacitor C2.
  • the electromagnetic suppression effect of the power filter circuit 10 can be improved.
  • the plurality of fourth magnetic beads FB4 can consume electromagnetic interference signals in the form of heat, thereby improving the efficiency of suppressing electromagnetic interference signals.
  • the electromagnetic compatibility filter circuit 20 includes an inductor L2, the first end of the inductor L2 is the input end of the electromagnetic compatibility filter circuit 20, the inductor L2 The second end of is the output end of the power filter circuit 10.
  • the electromagnetic compatibility filter circuit 20 can also be implemented using an inductor L2, or a combination of a magnetic bead and an inductor L2, and the inductor L2 is used to increase the height between the motor M1 housing and the system protection ground GND. Frequency impedance, so that the common mode current can return to the interference source of the motor M1 through the power filter circuit 10.
  • the application also includes an electrical device, including a motor M1 and the above-mentioned electric control assembly, and the power output terminal of the electric control assembly is connected to the motor.
  • an electrical device including a motor M1 and the above-mentioned electric control assembly, and the power output terminal of the electric control assembly is connected to the motor.
  • the electrical control component please refer to the above-mentioned embodiment, which will not be repeated here; it is understandable that since the above-mentioned electrical control component is used in the electrical equipment of this application, the embodiment of the electrical equipment of this application includes the above-mentioned electrical equipment. All the technical solutions of all the embodiments of the control assembly, and the achieved technical effects are also completely the same, and will not be repeated here.
  • the electrical equipment may be an electrical equipment equipped with a motor, such as an air conditioner, a washing machine, and a refrigerator.
  • the air conditioner can optionally include an indoor unit and an outdoor unit.
  • the electric control component can be installed in the outdoor unit of the air conditioner.
  • a mounting part for installing the electric control component is provided in the casing of the outdoor unit.
  • the control component can be installed in the installation part of the outdoor unit by one or more combinations of screws, bolts, riveting, welding, clamping and plugging.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)

Abstract

一种电控组件,包括电控板(100),电控板(100)上设置有系统参考地(GND)、用于接入电源的电源输入端子(CN11)及接地线端子(CN12),以及用于接入电机的电源输出端子(CN21)及电机接地端子(CN22),其中,接地线端子(CN12)与系统参考地(GND)连接;电源滤波电路(10),电源滤波电路(10)输入端与电源输入端子(CN11)连接,电源滤波电路(10)的输出端与电源输出端子(CN21)连接;电磁兼容性滤波电路(20),电磁兼容性滤波电路(20)的输入端分别与电机接地端子(CN22)及电源滤波电路(10)的接地端连接,电源滤波电路(10)的输出端与系统参考地(GND)连接。该电控组件抑制了电机产生的电磁兼容性电磁辐射,提高了电器设备产品整体电磁兼容性抗干扰性能。

Description

电控组件及电器设备
本申请要求2019年01月25日,申请号为201910077807.8,申请名称为“电控组件及电器设备”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电控技术领域,特别涉及一种电控组件及电器设备。
背景技术
电磁兼容性是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,电磁兼容性包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。
目前,在设置有电机的电器设备中,电机在工作中容易产生频谱极宽的噪声,该噪声经接地导线容易传导至电器设备的其他电路模块,增加电器设备的电磁兼容性干扰。
技术解决方案
本申请的主要目的是提出一种电控组件及电器设备,旨在抑制电机工作中产生的电磁兼容性电磁辐射,提高电器设备产品整体电磁兼容性抗干扰性能。
为实现上述目的,本申请提出一种电控组件所述电控组件包括:
电控板,所述电控板上设置有系统保护地、用于接入电源的电源输入端子及接地线端子,以及用于接入电机的电源输出端子及电机接地端子,其中,所述接地线端子与所述系统保护地连接;
电源滤波电路,所述电源滤波电路输入端与所述电源输入端子连接,所述电源滤波电路的输出端与所述电源输出端子连接;
电磁兼容性滤波电路,所述电磁兼容性滤波电路的输入端分别与所述电机接地端子及所述电源滤波电路的接地端连接,所述电源滤波电路的输出端与所述系统参考地连接。
可选地,所述接地线端子和所述电机接地端子均具有多个插接端,所述电控板上还设置多条印刷线路板走线,多条所述印刷线路板走线的一端与所述接地线端子的多个插接端一一对应连接,多条所述印刷线路板走线的另一端与所述电机接地端子的多个插接端一一对应连接;
所述电磁兼容性滤波电路包括多个的电磁兼容性滤波支路,多个所述电磁兼容性滤波支路分别串联设置于各所述印刷线路板走线上
可选地,所述接地线端子和所述电机接地端子均具有两个插接端;所述电控板上还设置第一印刷线路板走线和第二印刷线路板走线,所述第一印刷线路板走线连接所述电机接地端子的第一插接端与所述接地线端子的第一插接端,所述第二印刷线路板走线连接所述电机接地端子的第二插接端与所述接地线端子的第二插接端;
所述电磁兼容性滤波电路包括两个的电磁兼容性滤波支路,两个所述电磁兼容性滤波支路分别串联设置于所述第一印刷线路板走线和所述第二印刷线路板走线上。
可选地,所述电磁兼容性滤波支包括第一磁珠,所述第一磁珠的第一端为所述电磁兼容性滤波电路的输入端,所述第一磁珠的第二端为所述电源滤波电路的输出端。
可选地,所述第一磁珠的数量为多个,多个所述第一磁珠依次串联设置于所述第一印刷线路板走线和所述第二印刷线路板走线上。
可选地,所述电磁兼容性滤波电路包括电感器,所述电感器的第一端为所述电磁兼容性滤波电路的输入端,所述电感器的第二端为所述电源滤波电路的输出端。
可选地,所述电源滤波电路包括共模电感、第一Y电容及第二Y电容,所述共模电感的两个输入端分别与所述电源输入端连接,所述共模电感的两个输出端分别与所述第一Y电容的第一端及所述第二Y电容的第一端连接;所述第一Y电容的第二端和所述第二Y电容的第二端分别与所述电磁兼容性滤波电路的输入端连接。
可选地,所述电磁兼容性滤波电路还包括第二磁珠,所述第二磁珠的第一端与所述电机接地端子连接,所述第二磁珠的第二端与所述第一磁珠的第一端连接。
可选地,所述电磁兼容性滤波电路还包括第三磁珠,所述第三磁珠的第一端与所述第一磁珠及所述第一Y电容的第二端互连,所述第三磁珠的第二端与所述第二磁珠的第二端及所述电机接线端子互连。
可选地,所述电磁兼容性滤波电路还包括第四磁珠,所述第四磁珠串联设置于所述第一Y电容与所述第一磁珠之间;
或者,所述第四磁珠串联设置于所述第二Y电容与所述第一磁珠之间;
或者,所述第四磁珠串联设置于所述共模电感的输出端与所述第一Y电容之间;
或者,所述第四磁珠串联设置于所述共模电感的输出端与所述第二Y电容之间。
可选地,所述电磁兼容性滤波电路包括电感器,所述电感器的第一端为所述电磁兼容性滤波电路的输入端,所述电感器的第二端为所述电源滤波电路的输出端。
本申请还提出一种电器设备,包括电机及如上所述的电控组件,所述电控组件的电源输出端子与所述电机连接;该电控组件包括电控板,所述电控板上设置有系统保护地、用于接入电源的电源输入端子及接地线端子,以及用于接入电机的电源输出端子及电机接地端子,其中,所述接地线端子与所述系统保护地连接;电源滤波电路,所述电源滤波电路输入端与所述电源输入端子连接,所述电源滤波电路的输出端与所述电源输出端子连接;电磁兼容性滤波电路,所述电磁兼容性滤波电路的输入端分别与所述电机接地端子及所述电源滤波电路的接地端连接,所述电源滤波电路的输出端与所述系统参考地连接。
本申请通过在电机外壳的接地线与系统保护地之间串联设置电磁兼容性滤波电路,电磁兼容性滤波电路的一端通过电机接地端子与接入的电机外壳电连接,并且电磁兼容性滤波电路还与电源滤波电路的接地端连接,电磁兼容性滤波电路的另一端与系统保护地连接。在电机产生频谱极宽的噪声经接地导线及电机接地端子流向电控板时,电磁兼容性滤波电路可以提供高频阻抗,此时电磁兼容性滤波电路与电源滤波电路相当于并联,此时由于电磁兼容性滤波电路相当于一高频阻抗电路,因此流经至电磁兼容性滤波电路的电流要远小于电源滤波电路。这样就在电机外壳、电机的接地线、电机接地端子、电源滤波电路的接地端及电源滤波电路的输出端、电源输出端、电机的电源端及电机绕组之间形成电流回路。电磁兼容性干扰信号通过电机外壳、接地线、接地端子、电源滤波电路及电源输出端子又回到电磁兼容性干扰信号的产生源,从而能够避免电磁兼容性干扰信号流出电机。并且,电磁兼容性干扰信号在经上述电流回路的过程中,也会在电源滤波电路、电机绕组及电机外壳等结构构成的电流回路流动中以发热的形式被逐渐消耗,从而能够避免电机电磁兼容性干扰超标。本申请通过在电机的接地线与系统保护地之间设置隔离滤波电路,以在电机共模干扰通过系统保护地回流到电控板的线路阻抗稳定网络的路径上,增加回路的高频阻抗,从而使与之并联设置的电源滤波电路可以分得较大的共模电流,电磁兼容性干扰信号可以经电源滤波电路衰减,从而抑制电磁兼容性干扰信号等传送给系统保护地。本申请抑制了电机产生的电磁兼容性电磁辐射,提高了电器设备产品整体电磁兼容性抗干扰性能。
附图说明
图1为本申请电控组件一实施例的功能模块示意图;
图2为本申请电控组件另一实施例的功能模块示意图;
图3为本申请电控组件第一实施例的电路结构示意图;
图4为本申请电控组件第二实施例的电路结构示意图;
图5为本申请电控组件第三实施例的电路结构示意图;
图6为本申请电控组件一实施例的结构示意图;
图7为本申请电控组件第四实施例的电路结构示意图;
图8为本申请电控组件第五实施例的电路结构示意图;
图9为本申请电控组件第六实施例的电路结构示意图;
图10为本申请电控组件第六实施例的电路结构示意图。
附图标号说明:
标号 名称 标号 名称
100 电控板 CN11 电源输入端子
GND 系统保护地 CN12 接地线端子
10 电源滤波电路 CN21 电源输出端子
20 电磁兼容性滤波电路 CN22 电机接地端子
30 整流电路 FB1 第一磁珠
40 PFC电路 FB2 第二磁珠
50 IPM模块 FB3 第三磁珠
L1 共模电感 FB4 第四磁珠
L2 电感器 C1 第一Y电容
M1 电机 C2 第二Y电容
本发明的实施方式
本申请提出一种电控组件,适用于电器设备中,该电器设备可以空调器、洗衣机等家用电器设备,尤其适用于空调器中。
参照图1和图2,在本申请一实施例中,该电控组件包括:
电控板100,所述电控板100上设置有系统保护地GND、用于接入电源的电源输入端子CN11及接地线端子CN12,以及用于接入电机M1的电源输出端子CN21及电机接地端子CN22,其中,所述接地线端子CN12与所述系统保护地GND连接;
电源滤波电路10,所述电源滤波电路10输入端与所述电源输入端子连接,所述电源滤波电路10的输出端与所述电源输出端子CN21连接;
电磁兼容性滤波电路20,所述电磁兼容性滤波电路20的输入端分别与所述电机接地端子CN22及所述电源滤波电路10的接地端连接,所述电源滤波电路10的输出端与所述系统参考地连接。
本实施例中,电控板100可以采用单面板来实现,或者采用双面板来实现,具体可以根据实际应用的电器设备的安装空间及安装位置进行设置。在一些实施例中,电控组件还包括整流电路30、PFC(功率因数校正)电路40及IPM(智能功率模块)50。所述电源输入端子CN11包括零线AC-N和火线AC-L,电源输出端子CN21可以包括UVW三相输出端口。
其中,整流电路30可以是整流桥堆,或者采用四个独立的二极管组成的整流电路30来实现。整流电路30将接入的交流电源转换为直流电后输出至PFC电路40,以进行功率因素调整。PFC电路40可以采用无源PFC电路40来实现,以构成升压型PFC电路40,或者降压型PFC电路40,或者升降压型PFC电路40。PFC电路40并将接入的直流电进行功率因素调整,例如将直流电电压升高并稳定在380V,以使输入电流跟随输入电压,保证直流电源的功率因素在0.9以上。调整后的直流输出至后级电路,例如IPM模块50。调整后的直流电还可以通过开关电源电路(图未示出),产生各种数值的驱动电压,例如产生5V、15V等电压,以为电路板上的主控制器等其他元器件供电。IPM模块50设置于电控板100上,且集成了驱动电路及多个功率开关管,多个功率开关管组成驱动逆变电路,例如可以由六个功率开关管组成三相逆变桥电路,或者由四个功率开关管组成两相逆变器桥电路。其中,各功率开关管可以采用MOS管或者IGBT来实现。IPM模块50用于驱动压缩机电机M1。当然在其他实施例中,IPM模块50还可以用于驱动其他电机M1的变频器和各种逆变电源,并应用于变频调速,冶金机械,电力牵引,伺服驱动,及空调等变频家电等领域中。
本实施例中,电源滤波电路10的输出端与整流电路30的输入端连接,电源滤波电路10的输入端与电源输入端子CN11连接,电源输入端子CN11接入交流电后,通过电源滤波电路10可以抑制输入电源中的共模电流,从而实现抑制交流电源的电网噪声和高谐波及开关电源所产生的噪声和高频谐波,同时还可以避免电源电路中产生的电磁干扰向其他电路模块辐射。
需要说明的是,电机M1可以是压缩机电机M1、风机电机M1,或者电器设备中其他电机M1。电机M1的外壳,也即电机M1外壳一般设置为金属外壳,电机M1的接地线一般与金属外壳连接,并通过导线与电控板100上的地线连接,使得电机外壳也是接地保护线,这样将所有的电控板100上的电路模块及交流电源连接成一个等电势,形成一个环路金属网,也即系统保护参考地,以实现漏电保护,同时还可以防止静电损坏电器设备。在电器设备可以采用有刷电机或者无刷电机来实现,电机在工作时,容易产生电测干扰,例如在采用有刷电机M1来实现时,电刷式电动机在转动时,有刷电机的电刷和换向片之间由于直流电阻增大等原因,容易产生火花放电,并产生频谱极宽的噪声(从中波到甚高频波段内是连续分布的)。无刷电机也会在工作中,产生高频噪音,这些噪音容易辐射至电机M1的外壳,并通过电机M1的外壳及地线传导至电控板100,再通过电控板100传导至其他电路模块,甚至可能增大空调、洗衣机等各种电子设备之间的电磁干扰,也即电磁兼容性干扰信号。
为了解决上述问题,本实施例在电机M1的外壳的接地线与系统保护地GND之间串联设置电磁兼容性滤波电路20,电磁兼容性滤波电路20的一端通过电机接地端子CN22与接入的电机M1的外壳电连接,并且电磁兼容性滤波电路20还与电源滤波电路10的接地端连接,电磁兼容性滤波电路20的另一端与系统保护地GND连接。在电机M1工作的过程中产生频谱极宽的噪声经接地导线及电机接地端子CN22流向电控板100时,电磁兼容性滤波电路20可以提供高频阻抗,此时电磁兼容性滤波电路20与电源滤波电路10相当于并联,此时由于电磁兼容性滤波电路20相当于一高频阻抗电路,因此流经至电磁兼容性滤波电路20的电流要远小于电源滤波电路10。这样就在电机M1外壳、电机M1的接地线、电机接地端子CN22、电源滤波电路10的接地端及电源滤波电路10的输出端、电源输出端、电机M1的电源端及电机M1绕组之间形成电流回路。电磁兼容性干扰信号通过电机M1外壳、接地线、接地端子、电源滤波电路10及电源输出端子CN21又回到电磁兼容性干扰信号的产生源,从而能够避免电磁兼容性干扰信号流出电机M1。并且,电磁兼容性干扰信号在经上述电流回路的过程中,也会在电源滤波电路10、电机M1绕组及电机M1外壳等结构构成的电流回路流动中以发热的形式被逐渐消耗,从而能够避免电机M1对电控板100及电器设备中的其他模块电磁兼容性干扰超标。本申请通过在电机M1的接地线与系统保护地GND之间设置电磁兼容性滤波电路20,以在电机M1共模干扰通过系统保护地GND回流到电控板100的线路阻抗稳定网络的路径上,增加回路的高频阻抗,从而使与之并联设置的电源滤波电路10可以分得较大的共模电流,电磁兼容性干扰信号可以经电源滤波电路10衰减,从而抑制电磁兼容性干扰信号等传送给系统保护地GND。本申请抑制了电机M1产生的电磁兼容性电磁辐射,提高了电器设备产品整体电磁兼容性抗干扰性能。
参照图4至图6,所述接地线端子CN12和所述电机接地端子CN22均具有多个插接端,所述电控板上还设置多条印刷线路板走线,多条所述印刷线路板走线的一端与所述接地线端子CN12的多个插接端一一对应连接,多条所述印刷线路板走线的另一端与所述电机接地端子CN22的多个插接端一一对应连接;
所述电磁兼容性滤波电路20包括多个的电磁兼容性滤波支路,多个所述电磁兼容性滤波支路分别串联设置于各所述印刷线路板走线上。
需要说明的是,目前,电机的接地线通常是通过电机接地端子CN22与电控板100的参考地GND直接连接,而无需设置印刷线路板走线。然而本实施例中为了抑制电机M1产生的电磁兼容性电磁辐射,提高电器设备产品整体电磁兼容性抗干扰性能,在电机M1的接地线与系统保护地GND之间设置电磁兼容性滤波电路20。
当在电机M1的接地线与系统保护地GND之间设置电磁兼容性滤波电路20时,会使得电机M1的接地线在电控板100上需要设置印刷线路板走线,而根据国标规定,通常电机M1的接地线与系统保护地GND之间不能设置印刷线路板走线,不能用于提供接地连续性的,以避免不能满足接地连续性的问题,为此,本申请通过设置多条印刷线路板走线,保证接地线上的低阻性,并且利用具有多个插接端的接地线端子CN12和所述电机接地端子CN2,从而将电磁兼容性滤波电路20设置为多条电磁兼容性滤波支路,并且多个所述电磁兼容性滤波支路分别串联设置于印刷线路板走线上,可以提高印刷线路板走线的高频阻抗,进而增加回路的高频阻抗,使与之并联设置的电源滤波电路10可以分得较大的共模电流,本申请可以在满足印刷线路板地线连续性的限制要求,同时抑制电机M1产生的电磁兼容性电磁辐射,提高电器设备产品整体电磁兼容性抗干扰性能。
进一步地,所述接地线端子CN12和所述电机接地端子CN22均具有两个插接端;所述电控板100上还设置第一印刷线路板走线和第二印刷线路板走线,所述第一印刷线路板走线连接所述电机接地端子CN22的第一插接端与所述接地线端子CN12的第一插接端,所述第二印刷线路板走线连接所述电机接地端子CN22的第二插接端与所述接地线端子CN12的第二插接端;
所述电磁兼容性滤波电路20包括两个的电磁兼容性滤波支路,两个所述电磁兼容性滤波支路分别串联设置于所述第一印刷线路板走线和所述第二印刷线路板走线上。
可以理解的是,在实际应用时,电控板100上的接地线端子CN12和所述电机接地端子CN22通常设置为两个,从而可以将交流电源、电机M1的接地线连接至电控板100上,本申请根据接地线端子CN12和所述电机接地端子CN22的数量,设置两条印刷线路板走线,并且将印刷线路板走线的两端分别与接地线端子CN12和所述电机接地端子CN22的插接端焊盘连接,并将两个的电磁兼容性滤波支路串联设置于印刷线路板走线,从而在满足印刷线路板地线连续性的限制要求的同时,可以减少电控组件的工艺步骤,降低电控组件的生产成本。
参照图3,在一实施例中,所述电磁兼容性滤波电路20包括第一磁珠FB1,所述第一磁珠FB1的第一端为所述电磁兼容性滤波电路20的输入端,所述第一磁珠FB1的第二端为所述电源滤波电路10的输出端。
本实施例中,第一磁珠FB1可选采用铁氧体磁珠来实现,在一些实施例中电磁兼容性滤波电路20也可以采用铁氧体磁环来实现。通过第一磁珠FB1可以抑制电机M1的外壳输出的高频噪声以及一些尖峰干扰,第一磁珠FB1串联在电机M1的外壳与系统保护地GND之间,以为电机M1的外壳与系统保护地GND的线路提供高频阻抗,以保证流经第一磁珠FB1的共模电流远小于流经电源滤波电路10的共模电流,从而电机M1产生的共模电流大部分经与之并联设置的电源滤波电路10而回到干扰源,并且电磁兼容性干扰信号可以经电源滤波电路10衰减,从而抑制电磁兼容性干扰信号等传送给系统保护地GND。
可以理解的是,在对电控组件的电磁兼容性进行抑制时,通常会在电机的电源线上串联穿心电感,成本较高,且穿心电感的体积较大,在设置于电控板100上时,电控板100设计复杂,并且电感发热较严重,还需要设置散热器为其散热,这对电控组件的生产制造带来极大的不方便,而本申请实施例通过在接地线端子CN12和所述电机接地端子CN22的两个插接端之间设置两条印刷线路板走线,再将第一磁珠FB1串联设置于具有独立焊点的两条印刷线路板走线上,第一磁珠FB1的体积小,电路结构简单,无需设置散热器,且可以降低电控板100电路布线的难度,使得电控组件易于实现,相较于穿心电感,本申请采用磁珠FB1来实现,还可以减少散热器的使用,可以进一步降低电控组件的生产成本。
参照图6,上述实施例中,在一实施例中,所述接地线端子CN12和所述电机接地端子CN22均具有多个插接端;
所述第一磁珠FB1的数量为多个,多个所述第一磁珠FB1的第一端与所述电机接地端子CN22的多个插接端一一对应连接,多个所述第一磁珠FB1的第二端与所述接地线端子CN12的多个插接端一一对应连接。
本实施例中,第一磁珠FB1的数量可以是一个也可以是多个,具体可以根据电机M1产生的电磁干扰的频率进行设置。在实际应用时,可以对电机M1的电刷和换向片之间产生的电磁干扰,以及电机M1其他部件产生电磁干扰进行检测,并根据电磁干扰的频率对磁珠的数量进行设置,以较好的抑制电磁兼容性干扰信号等传送给系统保护地GND。
第一磁珠FB1的数量可选为两个,对应的,电机接地端子CN22的插接脚可以设置为两个,接地线端子CN12的引脚也可以设置为两个。两个并联设置的第一磁珠FB1中,一个第一磁珠FB1的两端分别与电机接地端子CN22的一个插接端以及接地线端子CN12的插接端连接。另一个第一磁珠FB1的两端分别与电机接地端子CN22的另一个插接端以及接地线端子CN12的另一个插接端连接。如此设置可以在制作印刷线路板时,在电磁兼容性滤波电路20的输入端,也即电机接地端子CN22,以及输出端,也即接地线端子CN12之间布设两条印刷线路板走线,作为地线连接,并在两条地线走线上安装第一磁珠FB1起到隔离滤波作用。
参照图4,在一些实施例中,所述第一磁珠FB1的数量为多个,多个所述第一磁珠FB1依次串联设置于所述第一印刷线路板走线和所述第二印刷线路板走线上。在第一磁珠FB1设置为多个时,第一磁珠FB1可以串联设置,也可以并联设置,具体可以根据电机M1产生的电磁干扰的频率进行设置,此处不做限制。
参照图7,在一实施例中,所述电源滤波电路10包括共模电感L1、第一Y电容C1及第二Y电容C2,所述共模电感L1的两个输入端分别与所述电源输入端连接,所述共模电感L1的两个输出端分别与所述第一Y电容C1的第一端及所述第二Y电容C2的第一端连接;所述第一Y电容C1的第二端和所述第二Y电容C2的第二端分别与所述电磁兼容性滤波电路20的输入端连接。
本实施例中,当电源接入端子接入的交流电源中存在差模干扰信号时,差模电流流过共模线圈的两线圈,两个线圈中的电流产生的磁场方向相反而抵消。当存在共模干扰信号时,由于共模电流在共模电感L1器中的同方向,两个线圈内产生同方向的磁场,可以增大线圈电感量,也就是增大线圈对共模电流的感抗,使共模电流受到了更大的抑制,达到衰减共模电流的目的,起到了抑制共模干扰噪声的作用。第一Y电容C1和第二Y电容C2可以对共模干扰噪声的滤波作用,使共模干扰得到了明显的抑制。其中,第一Y电容C1和第二Y电容C2可以是规格参数与电磁兼容性干扰频率相对应的Y电容,从而使电磁兼容性干扰信号更容易通过Y电容。通过第一Y电容C1和第二Y电容C2,可以将流经的电磁兼容性干扰信号回流至电机M1,同时也可以以发热的形式被逐渐消耗,从而能够避免电机M1电磁兼容性干扰超标。
参照图7,在一实施例中,所述电磁兼容性滤波电路20还包括第二磁珠FB2,所述第二磁珠FB2的第一端与所述电机接地端子CN22连接,所述第二磁珠FB2的第二端与所述第一磁珠FB1的第一端连接。
本实施例中,第二磁珠FB2设置于第一磁珠FB1与电机接地端子CN22之间,也即第二磁珠FB2的一端与电机接地端子CN22连接,第二磁珠FB2的另一端与第一磁珠FB1与第一Y电容C1和第二Y电容C2的接地端连接。第二磁珠FB2可以增加电机M1外壳与系统保护地GND之间的阻抗。其中,第一磁珠FB1和第二磁珠FB2的阻抗可以设置为相同,也可以设置为不同。电机M1产生的共模电流可以先经第二磁珠FB2进行抑制,并以热能的方式进行消耗后,再经第一磁珠FB1与电源滤波电路10分流,并且共模电流大部分经与之并联设置的电源滤波电路10而回到干扰源,并且电磁兼容性干扰信号可以经电源滤波电路10衰减,从而抑制电磁兼容性干扰信号等传送给系统保护地GND。
参照图7,在一实施例中,所述电磁兼容性滤波电路20还包括第三磁珠FB3,所述第三磁珠FB3的第一端与所述第一磁珠FB1及所述第一Y电容C1的第二端互连,所述第三磁珠FB3的第二端与所述第二磁珠FB2的第二端及所述电机M1接线端子互连。
本实施例中,可以同时设置第一磁珠FB1、第二磁珠FB2及第三磁珠FB3,或者选取第一磁珠FB1、第二磁珠FB2及第三磁珠FB3中的两两组合进行设置,当然在其他实施例中,还可以是第一磁珠FB1、第二磁珠FB2及第三磁珠FB3择一设置,此处不做限制。本实施可选为第一磁珠FB1、第二磁珠FB2及第三磁珠FB3同时设置,其中,第一磁珠FB1与第一Y电容C1并联设置,第三磁珠FB3与第二Y电容C2并联设置之后,再与第二磁珠FB2串联设置。通过设置三个位置的磁珠,可以分别与第一Y电容C1和第二Y电容C2形成不同的共模干扰信号的电流回路,从而提高共模干扰信号回到干扰源的速度。同时,设置三个位置的磁珠,还可以分别以发热的形式将电磁干扰信号进行消耗,从而提高对电磁干扰信号的抑制效率。
参照图7至图9,在一实施例中,所述电磁兼容性滤波电路20还包括第四磁珠FB4,所述第四磁珠FB4串联设置于所述第一Y电容C1与所述第一磁珠FB1之间;
或者,所述第四磁珠FB4串联设置于所述第二Y电容C2与所述第一磁珠FB1之间;
或者,所述第四磁珠FB4串联设置于所述共模电感L1的输出端与所述第一Y电容C1之间;
或者,所述第四磁珠FB4串联设置于所述共模电感L1的输出端与所述第二Y电容C2之间。
本实施例中,第四磁珠FB4可以是一个,当设置为一个时第四磁珠FB4可以设置于第一Y电容C1的任意一端,或者设置于第二Y电容C2的任意一端。通过在上述位置设置第四磁珠FB4,可以提高电源滤波电路10的电磁抑制效果。当然在其他实施例中,也可以是多个,多个第四磁珠FB4可以分设于第一Y电容C1的两端和第二Y电容C2的两端,从而提高电源滤波电路10的电磁抑制效果,并且多个第四磁珠FB4可以以发热的形式将电磁干扰信号进行消耗,从而提高对电磁干扰信号的抑制效率。
参照图10,在一实施例中,所述电磁兼容性滤波电路20包括电感器L2,所述电感器L2的第一端为所述电磁兼容性滤波电路20的输入端,所述电感器L2的第二端为所述电源滤波电路10的输出端。
本实施例中,电磁兼容性滤波电路20还可以采用电感器L2来实现,或者采用磁珠和电感器L2的组合,通过电感器L2以增大电机M1外壳与系统保护地GND之间的高频阻抗,从而使共模电流能经电源滤波电路10回到电机M1的干扰源。
本申请还包括一种电器设备,包括电机M1及如上所述的电控组件,所述电控组件的电源输出端子与所述电机连接。该电控组件的详细结构可参照上述实施例,此处不再赘述;可以理解的是,由于在本申请电器设备中使用了上述电控组件,因此,本申请电器设备的实施例包括上述电控组件全部实施例的全部技术方案,且所达到的技术效果也完全相同,在此不再赘述。
本实施例中,该电器设备可以是空调器、洗衣机、冰箱等设置有电机的电器设备。本实施例可选为空调器可以包括室内机和室外机,该电控组件可以安装于空调器的室外机内,在室外机的机壳内设置有用于安装该电控组件的安装部,电控组件可以通过螺钉、螺栓、铆接、焊接、卡接和插接方式中一种或多种组合设置在室外机的安装部内。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (16)

  1. 一种电控组件,其中,所述电控组件包括:
    电控板,所述电控板上设置有系统保护地、用于接入电源的电源输入端子及接地线端子,以及用于接入电机的电源输出端子及电机接地端子,其中,所述接地线端子与所述系统保护地连接;
    电源滤波电路,所述电源滤波电路输入端与所述电源输入端子连接,所述电源滤波电路的输出端与所述电源输出端子连接;
    电磁兼容性滤波电路,所述电磁兼容性滤波电路的输入端分别与所述电机接地端子及所述电源滤波电路的接地端连接,所述电源滤波电路的输出端与所述系统参考地连接。
  2. 如权利要求1所述的电控组件,其中,所述接地线端子和所述电机接地端子均具有多个插接端,所述电控板上还设置多条印刷线路板走线,多条所述印刷线路板走线的一端与所述接地线端子的多个插接端一一对应连接,多条所述印刷线路板走线的另一端与所述电机接地端子的多个插接端一一对应连接;
    所述电磁兼容性滤波电路包括多个的电磁兼容性滤波支路,多个所述电磁兼容性滤波支路分别串联设置于各所述印刷线路板走线上。
  3. 如权利要求2所述的电控组件,其中,所述接地线端子和所述电机接地端子均具有两个插接端;所述电控板上还设置第一印刷线路板走线和第二印刷线路板走线,所述第一印刷线路板走线连接所述电机接地端子的第一插接端与所述接地线端子的第一插接端,所述第二印刷线路板走线连接所述电机接地端子的第二插接端与所述接地线端子的第二插接端;
    所述电磁兼容性滤波电路包括两个的电磁兼容性滤波支路,两个所述电磁兼容性滤波支路分别串联设置于所述第一印刷线路板走线和所述第二印刷线路板走线上。
  4. 如权利要求3所述的电控组件,其中,所述电磁兼容性滤波支包括第一磁珠,所述第一磁珠的第一端为所述电磁兼容性滤波电路的输入端,所述第一磁珠的第二端为所述电源滤波电路的输出端。
  5. 如权利要求3所述的电控组件,其中,所述第一磁珠的数量为多个,多个所述第一磁珠依次串联设置于所述第一印刷线路板走线和所述第二印刷线路板走线上。
  6. 如权利要求3所述的电控组件,其中,所述电磁兼容性滤波电路包括电感器,所述电感器的第一端为所述电磁兼容性滤波电路的输入端,所述电感器的第二端为所述电源滤波电路的输出端。
  7. 如权利要求4所述的电控组件,其中,所述电源滤波电路包括共模电感、第一Y电容及第二Y电容,所述共模电感的两个输入端分别与所述电源输入端连接,所述共模电感的两个输出端分别与所述第一Y电容的第一端及所述第二Y电容的第一端连接;所述第一Y电容的第二端和所述第二Y电容的第二端分别与所述电磁兼容性滤波电路的输入端连接。
  8. 如权利要求7所述的电控组件,其中,所述电磁兼容性滤波电路还包括第二磁珠,所述第二磁珠的第一端与所述电机接地端子连接,所述第二磁珠的第二端与所述第一磁珠的第一端连接。
  9. 如权利要求7所述的电控组件,其中,所述电磁兼容性滤波电路还包括第三磁珠,所述第三磁珠的第一端与所述第一磁珠及所述第一Y电容的第二端互连,所述第三磁珠的第二端与所述第二磁珠的第二端及所述电机接线端子互连。
  10. 如权利要求7所述的电控组件,其中,所述电磁兼容性滤波电路还包括第四磁珠,所述第四磁珠串联设置于所述第一Y电容与所述第一磁珠之间。
  11. 如权利要求7所述的电控组件,其中,所述第四磁珠串联设置于所述第二Y电容与所述第一磁珠之间。
  12. 如权利要求7所述的电控组件,其中,所述第四磁珠串联设置于所述共模电感的输出端与所述第一Y电容之间。
  13. 如权利要求7所述的电控组件,其中,所述第四磁珠串联设置于所述共模电感的输出端与所述第二Y电容之间。
  14. 如权利要求5所述的电控组件,其中,所述电源滤波电路包括共模电感、第一Y电容及第二Y电容,所述共模电感的两个输入端分别与所述电源输入端连接,所述共模电感的两个输出端分别与所述第一Y电容的第一端及所述第二Y电容的第一端连接;所述第一Y电容的第二端和所述第二Y电容的第二端分别与所述电磁兼容性滤波电路的输入端连接。
  15. 如权利要求1所述的电控组件,其中,所述电控组件还包括与所述电源滤波电路依次连接的整流电路、功率因素电路及智能功率模块。
  16. 一种电器设备,其中,包括电机及如权利要求1所述的电控组件,所述电控组件的电源输出端子与所述电机连接。
PCT/CN2019/127430 2019-01-25 2019-12-23 电控组件及电器设备 WO2020151437A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19911192.3A EP3876401B1 (en) 2019-01-25 2019-12-23 Electronic control assembly and electric appliance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910077807.8 2019-01-25
CN201910077807.8A CN111490638B (zh) 2019-01-25 2019-01-25 电控组件及电器设备

Publications (1)

Publication Number Publication Date
WO2020151437A1 true WO2020151437A1 (zh) 2020-07-30

Family

ID=71736699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127430 WO2020151437A1 (zh) 2019-01-25 2019-12-23 电控组件及电器设备

Country Status (3)

Country Link
EP (1) EP3876401B1 (zh)
CN (1) CN111490638B (zh)
WO (1) WO2020151437A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166479A (zh) * 2022-06-29 2022-10-11 珠海视熙科技有限公司 D类功放电路的仿真测试方法、装置及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114598108B (zh) * 2022-03-30 2024-06-28 东风商用车有限公司 一种emc滤波电路、雨刷电机及汽车
CN116726312A (zh) * 2023-06-07 2023-09-12 湖南比扬医疗科技有限公司 注射进度检测电路及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2254249Y (zh) * 1995-12-13 1997-05-14 王名宪 直流马达之抗辐射装置
CN101582607A (zh) * 2009-03-02 2009-11-18 无锡江南微电机厂 永磁直流电动机的抑制电磁骚扰滤波电路
JP2011250545A (ja) * 2010-05-25 2011-12-08 Mitsubishi Electric Corp Dcモータおよび換気扇
CN102751863A (zh) * 2012-07-25 2012-10-24 大连西赛德门控有限公司 直流电机电磁兼容抗干扰系统
CN202840844U (zh) * 2012-08-24 2013-03-27 宁波恒特汽车零部件有限公司 一种电机的emc防护装置
CN107742956A (zh) * 2017-11-28 2018-02-27 奥克斯空调股份有限公司 一种电机工作电路与空调

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690230B2 (en) * 2001-05-17 2004-02-10 International Rectifier Corporation Active common mode filter connected in A-C line
CN100407550C (zh) * 2006-08-01 2008-07-30 陈年忠 汽车永磁发电机
CN202384923U (zh) * 2011-12-28 2012-08-15 厦门蒙发利科技(集团)股份有限公司 一种直流马达滤波电路
CN103346755B (zh) * 2013-07-02 2015-08-26 天津精通控制仪表技术有限公司 一种滤波模块
CN203423588U (zh) * 2013-08-30 2014-02-05 武汉为腾科技有限公司 用于微电机多点接地宽频emc的pcb板滤波电路
KR102165613B1 (ko) * 2013-12-11 2020-10-14 엘지이노텍 주식회사 모터
CN105207416B (zh) * 2014-06-23 2019-03-15 德昌电机(深圳)有限公司 电机接地连接装置
US10177674B2 (en) * 2015-03-16 2019-01-08 Mitsubishi Electric Corporation Power circuit device
CN205319862U (zh) * 2015-12-09 2016-06-15 西安庆安电气控制有限责任公司 一种电磁兼容永磁直流电机
CN206585433U (zh) * 2017-03-15 2017-10-24 深圳市力辉电机有限公司 基于单相串激电动机在接地线上加非晶磁环电感的结构
CN206743047U (zh) * 2017-05-02 2017-12-12 广东美的制冷设备有限公司 空调器及空调器中变频压缩机的电磁干扰抑制电路
CN206959856U (zh) * 2017-06-14 2018-02-02 广州视源电子科技股份有限公司 一种抗干扰电路及应用该抗干扰电路的车载导航装置
CN206894235U (zh) * 2017-07-05 2018-01-16 广东安迅防雷科技股份有限公司 用于控制总线的无源隔离型浪涌保护器
CN108631582A (zh) * 2018-06-15 2018-10-09 北京新能源汽车股份有限公司 一种电源滤波电路、电池管理系统及汽车
CN111064321A (zh) * 2018-10-17 2020-04-24 广东美的白色家电技术创新中心有限公司 电控组件及电器设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2254249Y (zh) * 1995-12-13 1997-05-14 王名宪 直流马达之抗辐射装置
CN101582607A (zh) * 2009-03-02 2009-11-18 无锡江南微电机厂 永磁直流电动机的抑制电磁骚扰滤波电路
JP2011250545A (ja) * 2010-05-25 2011-12-08 Mitsubishi Electric Corp Dcモータおよび換気扇
CN102751863A (zh) * 2012-07-25 2012-10-24 大连西赛德门控有限公司 直流电机电磁兼容抗干扰系统
CN202840844U (zh) * 2012-08-24 2013-03-27 宁波恒特汽车零部件有限公司 一种电机的emc防护装置
CN107742956A (zh) * 2017-11-28 2018-02-27 奥克斯空调股份有限公司 一种电机工作电路与空调

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3876401A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166479A (zh) * 2022-06-29 2022-10-11 珠海视熙科技有限公司 D类功放电路的仿真测试方法、装置及存储介质
CN115166479B (zh) * 2022-06-29 2024-05-28 珠海视熙科技有限公司 D类功放电路的仿真测试方法、装置及存储介质

Also Published As

Publication number Publication date
EP3876401A4 (en) 2021-12-22
CN111490638B (zh) 2021-11-23
EP3876401A1 (en) 2021-09-08
CN111490638A (zh) 2020-08-04
EP3876401B1 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
WO2020151437A1 (zh) 电控组件及电器设备
US10177702B2 (en) Conduction noise filtering circuit, inverting device, and compressor
US5646498A (en) Conducted emission radiation suppression in inverter drives
CN109779892B (zh) 电控组件及空调器
US11601047B2 (en) Electrical control assembly and electrical device
JP6821031B2 (ja) 電動機の駆動装置及び空気調和機
KR20050078537A (ko) 전도성 전자파 억제 필터
CN208623578U (zh) 改善共模干扰的变频驱动系统
CN110798123A (zh) 改善共模干扰的变频驱动系统及方法
WO2020124937A1 (zh) 一种伺服驱动器共模噪声抑制电路
WO2020103276A1 (zh) 抑制冷媒散热器的电磁干扰的系统及家用电器
CN209516921U (zh) 空调的共模干扰抑制电路
JP7204894B2 (ja) 電力変換装置および空気調和機
JP7394196B2 (ja) 電気回路体及び冷凍サイクル装置
WO2021022778A1 (zh) 一种共模干扰抑制装置、变频电器及其共模干扰抑制方法
CN209267447U (zh) 电控组件及空调器
CN208797779U (zh) 电控组件及电器设备
CN209402407U (zh) 抑制共模干扰的空调变频系统
CN102170222A (zh) 开关电源电磁干扰的抑制装置
CN109873553A (zh) 空调的共模干扰抑制电路
CN213948068U (zh) 车载电控组件、车载空调器直流供电系统及车载空调器
JP2012010500A (ja) 冷凍装置
CN204013209U (zh) 一种空调压缩机电磁干扰抑制电路及空调器
CN204179666U (zh) 一种用于空调直流风机的电磁干扰抑制电路及空调器
CN110957947A (zh) 电机的驱动控制电路、电机、家电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019911192

Country of ref document: EP

Effective date: 20210604

NENP Non-entry into the national phase

Ref country code: DE