WO2020124937A1 - 一种伺服驱动器共模噪声抑制电路 - Google Patents

一种伺服驱动器共模噪声抑制电路 Download PDF

Info

Publication number
WO2020124937A1
WO2020124937A1 PCT/CN2019/086550 CN2019086550W WO2020124937A1 WO 2020124937 A1 WO2020124937 A1 WO 2020124937A1 CN 2019086550 W CN2019086550 W CN 2019086550W WO 2020124937 A1 WO2020124937 A1 WO 2020124937A1
Authority
WO
WIPO (PCT)
Prior art keywords
common
noise
mode
filtering
common mode
Prior art date
Application number
PCT/CN2019/086550
Other languages
English (en)
French (fr)
Inventor
曲乐成
徐小军
高原
鲁锋龙
钱巍
Original Assignee
南京埃斯顿自动化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京埃斯顿自动化股份有限公司 filed Critical 南京埃斯顿自动化股份有限公司
Publication of WO2020124937A1 publication Critical patent/WO2020124937A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current

Definitions

  • the invention relates to a common mode interference noise suppression technology of a servo driver, in particular to a common mode noise suppression circuit of a servo driver.
  • the servo driver using pulse width modulation (PWM) method is the main control method of the current servo drive.
  • PWM pulse width modulation
  • the use of high-speed semiconductor switching devices, such as IGBT, IPM, etc., can obtain better dynamic response.
  • the power supply is a high voltage and strong power
  • Semiconductor switches produce large dv/dt, di/dt, and form strong electromagnetic noise.
  • the frequency can be from KHZ to several MHZ.
  • These interferences can be conducted to other devices or distribution through power supply, ground wire or other interface wiring.
  • the electrical network affects the normal operation of other equipment.
  • common mode interference noise is the least easy to monitor and deal with due to the presence of distributed capacitance.
  • the traditional common mode interference noise suppression technology is a filter, but the traditional filter design has some defects and limitations that make the filter The effect is greatly reduced.
  • Commonly used common-mode interference processing technology is to use common-mode inductance L, common-mode filter capacitor C, or a combination of the two to form an LC filter, or an external filter.
  • the filter capacitor is generally selected from Y capacitor, which is installed on a strong power line. , So the common mode filter capacitor's capacitance value should not be too large due to leakage current, and the main noise of the servo driver is below 2MHZ, most of the energy is below several hundred KHZ, the capacitance value is too small Y capacitor, in At a lower noise frequency, the impedance of the capacitor will be very large, which may reach several hundred ohms, and it will not have a good filtering effect on the noise.
  • the common mode interference suppression circuit considers conductive noise, and has no filtering effect on the space radiated noise generated by the long power line.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a common mode noise suppression circuit for a servo driver.
  • the common mode noise suppression circuit of the servo driver proposed by the present invention the DC bus (P, N) is connected to the inverter, and the characteristic is that the suppression circuit is divided into three filter units;
  • the first filter unit is a three-wire common mode inductor.
  • the two wires of the three-wire common-mode inductor are respectively connected to the DC bus (P, N), and the other is used as a secondary coil to become a common-mode transformer.
  • a resistor R1 is connected in series with the coil to absorb the common-mode current and increase the common-mode current. Of loss.
  • the three-wire common-mode inductor uses an amorphous core.
  • Amorphous materials have a higher permeability than other ferrite cores, and a larger common-mode inductance can be obtained for the same number of winding turns.
  • the second filter unit is composed of two common-mode filter Y capacitors (C1, C2) and inductor L2.
  • Two common-mode filter Y capacitors (C1, C2) are respectively connected to the DC buses P and N, and connected to the inductor L2.
  • the inductor L2 is grounded to provide a return path for common mode noise.
  • the third filter unit is composed of three safety regulations Y capacitors (C3, C4, C5) and two safety regulations X capacitors (C6, C7).
  • Three safety regulations Y capacitors (C3, C4, C5) are connected to the inverter three-phase output power line (U, V, W), two safety regulations X capacitors (C6, C7) are connected to the DC bus P On N, three safety regulations Y capacitors (C3, C4, C5) and two safety regulations X capacitors (C6, C7) are connected in parallel.
  • the technical features of the technical solution for realizing the object of the present invention are: (1) the characteristics of the LC series resonance, using the characteristics of the minimum impedance near the LC series resonance frequency, so that the impedance of the filter capacitor can be effectively reduced in a specific frequency band, and a comparison can be obtained Good filtering effect; (2) is to connect the common mode transformer between the DC bus and the inverter switch to suppress the common mode current.
  • the common mode transformer is based on the common mode inductance, adding a secondary coil, passing a Resistor R is short-circuited, and the common mode current can be effectively suppressed after the common mode transformer is inserted to prevent the new resonance caused by the insertion of the common mode inductance.
  • the common mode current is consumed in the resistor, which can effectively reduce the common mode noise back to the grid.
  • the LC can be dynamically adjusted according to the results of the experimental test to effectively target Filtering is performed on the noisier frequency band.
  • FIG. 1 is a circuit diagram of the common mode noise suppression circuit of the servo driver of the present invention.
  • the three-phase power supply is rectified by a rectifier to become a two-phase DC bus (P, N).
  • the DC bus (P, N) is connected to the inverter, and the three-phase output power line (U, V) of the inverter , W) Connect the motor.
  • the common mode noise suppression circuit is divided into three filtering units.
  • the first filter unit is a common-mode filter unit, which is a common-mode transformer composed of a three-wire common-mode inductor L1.
  • the magnetic core of the three-wire common-mode inductor L1 is made of amorphous material. Amorphous materials have a higher permeability than other ferrite cores, and a larger common-mode inductance can be obtained for the same number of winding turns.
  • the impedance of the LISN in the CE test in the EMC test is 50 ohms
  • the larger the impedance of the inductor the greater the voltage division of the common-mode inductor, and the lower the noise voltage on the LISN.
  • the impedance of the common-mode inductor is also the same.
  • the greater the suppression of the common-mode current the smaller the current flowing through the LISN and the smaller the measured noise voltage.
  • Common mode inductance is the key component of the filtering scheme.
  • the entire return path of common mode current noise can be equivalent to an LCR circuit. When the common mode inductance is inserted, the L and R of the entire return path are increased, which will lower the resonance frequency band.
  • the change of the resonance frequency caused by the mode inductance adds another path to the common mode inductance as a secondary coil, which becomes a common mode transformer.
  • the resistor R1 is connected in series with the coil to absorb the common mode current and increase the loss of the common mode current. .
  • the second filter unit is composed of two common-mode filter Y capacitors (C1, C2) and inductor L2.
  • Two common-mode filtering Y capacitors (C1, C2) are respectively connected to the DC bus (P, N), and are connected to the inductor L2, and the inductor L2 is grounded as the PE terminal to provide a return path for common mode noise.
  • the common mode noise of the servo driver is due to the switching of the inverter module of the driver. Since there is a voltage of 300V or higher 530V on the bus, dv/dt is generated during the switching process. This rapid voltage switching will give the module or cable. Motors, etc. charge and discharge the heat dissipation structure and the distributed capacitance of the metal shell, resulting in common mode noise.
  • the noise After the noise is generated, it needs to be returned to the source. It can be used to provide a return path to the bus through the Y capacitor. This reduces the number of LISN to The current on the bus.
  • the capacitance of the Y capacitor cannot be too large, which will cause a large leakage current and have an impact on safety.
  • the noise frequency of the servo equipment is very low, generally below 2MHz, so the impedance of the Y capacitor will be relatively large, which will have a great impact on the filtering effect.
  • This design uses the characteristics of LC series resonance to directly connect an inductor L2 in series between the common mode filter Y capacitor (C1, C2) and the earth FG.
  • the impedance of the Y capacitor can be effectively reduced.
  • the selection of the inductance inductance value should be adjusted according to the frequency point of the CE test in the EMC test process, and the specific values of the inductance and capacitance needed to be calculated according to the formula of the LC series resonance resonance frequency point. Because the common mode noise of the servo drive is generally below 2MHz, because the basic frequency of the inverter module is only 10KHz, the noise of the high frequency part of the high frequency multiplier is greatly attenuated, so the test result will not exceed the standard of 2MHz. Therefore, the main solution frequency of this filter unit is 150KHz-2MHz.
  • the impedance of the high-frequency part will be significantly increased due to the series inductance, resulting in the deterioration of the high-frequency filtering effect, but in actual work, the servo drive produces The high frequency noise itself is very small, so the high frequency impedance has no effect on the servo products.
  • the third filter unit is composed of three safety regulations Y capacitors (C3, C4, C5) and two safety regulations X capacitors (C6, C7).
  • Three safety regulations Y capacitors (C3, C4, C5) are connected to the inverter three-phase output power line (U, V, W), two safety regulations X capacitors (C6, C7) are connected to the DC bus P On N, three safety regulations Y capacitors (C3, C4, C5) and two safety regulations X capacitors (C6, C7) are connected in parallel.
  • the power switching device When the servo driver is working, the power switching device will continuously switch at a frequency of about 10KHz. With the change of voltage during the switching process, a PWM waveform is generated to drive the motor to rotate. The abrupt change of voltage in the switching circuit can reach 10KV/us. At the same time, there are direct or indirect distributed capacitances in the inverter module, rectifier module, power line, motor coil and earth on the circuit. For safety, the metal radiator is directly connected to the ground. At the same time, for the overheating failure of the power module, the power module and the metal radiator are closely attached to each other. The thermal grease on the middle picture makes the collector of the switch tube and the radiator.
  • the second path is the flow direction output measurement.
  • the load of the driver is the motor.
  • the motor will be connected to the reference ground.
  • the stator winding of the motor has a large parasitic capacitance to the motor casing. Due to the three-phase output power line (U, V, W )
  • the PWM waveform on the power line will produce a du/dt voltage change, which will charge and discharge the parasitic capacitance here, resulting in a large common mode noise current.
  • the present invention is a filtering design for the above two paths.
  • the first is to artificially create a return path, so that the noise current does not return according to the two paths described above, reducing the amount of common mode current flowing through the test equipment LISN, three Safety Y capacitors (C3, C4, C5) are connected to the three-phase output power lines (U, V, W), and then connected to the reference point composed of safety X capacitors (C6, C7), safety X capacitors (C6, C7) are respectively connected to the DC bus (P, N), the center point of the safety X capacitor (C6, C7) is the reference point, so that the common mode noise on the three-phase output power line (U, V, W) is The reflow can be performed through this reflow path.
  • the design of the three-wire common-mode inductance L1 is to increase the impedance of the return path, and form a filter design with safety X capacitors (C6, C7) on the DC bus (P, N).
  • the design must first consider the source and load impedance issues. Different sources and auxiliary impedances require different types of filter structures. In the conducted disturbance test of EMC, the impedance of LISN is 50 ohms, and the impedance of our noise source is greater than 50 ohms, so the common mode inductance of the filter design should be placed close to the LISN, and the Y capacitor should be placed close to the inverter module.
  • the requirement for common mode inductance is 2 ⁇ fL >> 50 ohms, and the requirement for common mode filter capacitors Ohm, so the current obtained by LISN will be smaller, the partial voltage will be smaller, and the filtering effect will be better.
  • the common-mode inductance also needs to satisfy 2 ⁇ fL >> 50 ohms, assuming that we need to create 20dBuV attenuation at 200KHz, and the common-mode inductance must satisfy 2 ⁇ fL >> 50*10, ie L>0.4ml, the greater the inductance value, the better the filtering effect, but after inserting the common mode inductor, increasing the inductance and resistance of the reflow will still produce a resonant frequency band, adding another way as a secondary to the common mode inductor L1,
  • the variation common mode transformer has a 500 ohm resistor connected in series with the secondary to absorb the common mode current, and at the same time prevent the generation of a new resonance frequency band after increasing the common mode inductance L1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种伺服驱动器共模噪声抑制电路,其第一滤波单元为三线共模电感,进行共模电流的吸收,增加共模电流的损耗。第二滤波单元是在直流母线与大地间串接共模滤波Y电容和电感,给共模噪声提供一条回流路径。第三滤波单元是在母线中点通过母线间的电容制造电压参考点,动力线上噪声通过Y电容提供的通路回流到母线,减少流经动力线和电机分布电容的噪声。本发明在不增加滤波电容容值,满足漏电流要求的情况下,让较小的滤波电容在伺服的主要噪声频段产生更好的滤波效果,同时能有效针对噪声更大的频段进行滤波处理。增加了共模电流的吸收效果,改变了主要噪声点处共模电流的回流路径,减少传导和辐射的环路噪声电流。

Description

一种伺服驱动器共模噪声抑制电路 技术领域
本发明涉及一种伺服驱动器共模干扰噪声抑制技术,具体说是一种伺服驱动器共模噪声抑制电路。
背景技术
采用脉冲宽度调制(PWM)方式的伺服驱动器是目前伺服驱动的主要控制方式,采用高速的半导体开关器件,例如IGBT、IPM等,可以获得更好的动态响应,由于供电电源是高电压强电,半导体开关工作时产生很大的dv/dt、di/dt,形成很强的电磁噪声,频率可以从KHZ到数MHZ,这些干扰可以通过电源、地线或者其他接口走线传导到其他设备或配电网络,影响到其他设备的正常工作。产生的干扰中,共模干扰噪声因为分布电容的存在,最不容易监控和处理,而传统的共模干扰噪声抑制技术就是滤波器,但是传统滤波器设计又存在一些缺陷和限制,使滤波器的作用大打折扣。
目前常用的共模干扰处理技术就是使用共模电感L、共模滤波电容C,或者两者的组合成LC滤波,或者外置滤波器,滤波电容一般选取Y电容,安装在强电走线上,所以共模滤波电容因为漏电流的原因,电容的容值不能太大,而伺服驱动器的主要噪声都是在2MHZ以下,大部分能量在几百KHZ以下,容值太小的Y电容,在较低的噪声频率下会使电容阻抗很大,可能达到几百欧姆,对噪声起不到很好的滤波效果。
目前滤波设计中的共模电感的选取也比较困难,在插入共模电感后,相当于在整个噪声电流回流的环路中增加的电感量,由于环路等效LCR电流,增加L可能会增加其他的谐振频点,导致共模噪声超标频段的改变。
目前共模干扰抑制电路都是考虑传导性的噪声,对于由长动力线产生的空间辐射噪声没有任何滤波效果。
发明内容
本发明目的在于,克服现有技术存在的缺陷,提供一种伺服驱动器共模噪声抑制电路。
本发明提出的伺服驱动器共模噪声抑制电路,直流母线(P、N)连接逆变器,其特征是:抑制电路分为三个滤波单元;
第一滤波单元为三线共模电感。所述三线共模电感两线分别与直流母线(P,N)相连,另外一路作为次级线圈,变成共模变压器,在线圈上串联电阻R1,进行共模电流的吸收,增加共模电流的损耗。
为了在更小减少体积获得更大感量,所述三线共模电感选用非晶材质磁芯。非晶材料相对比其他铁氧体磁芯,具有更高的磁导率,相同的绕线匝数上可以获得更大的共模电感感量。
第二滤波单元由两颗共模滤波Y电容(C1,C2)和电感L2组成。两颗共模滤波Y电容(C1,C2),分别接在直流母线P、N上,并与所述电感L2连接,电感L2接地,给共模噪声提供一条回 流路径。
第三滤波单元由三个安规Y电容(C3,C4,C5)和两个安规X电容(C6,C7)组成。三个安规Y电容(C3,C4,C5)分别接在逆变器三相输出动力线(U,V,W)上,两个安规X电容(C6,C7)分别接在直流母线P、N上,三个安规Y电容(C3,C4,C5)与两个安规X电容(C6,C7)并线连接。
本发明实现发明目的技术方案的技术特点是:(1)LC串联的谐振特点,利用LC串联谐振频率附近阻抗最小的特点,从而在特定的频率段可以有效减少滤波电容的阻抗,可以得到一个比较好的滤波效果;(2)是将共模变压器接在直流母线和逆变开关之间用于抑制共模电流,共模变压器是在共模电感的基础上,加入一个次级线圈,通过一个电阻R短接,插入共模变压器后可以有效抑制共模电流,防止共模电感插入产生的新的谐振,让共模电流消耗在电阻上,能有效地减少共模噪声传回电网。(3)是利用共模噪声的回流特性,主动提供一条LRC可控的回流路径,让电机动力线(U,V,W)上的共模噪声直接导回到直流母线上,减少了动力线传导和辐射环路的噪声电流。
本发明伺服驱动器共模噪声抑制电路,相对于现有技术具有以下有益效果:
1、在不增加滤波电容容值,满足漏电流要求的情况下,让较小的滤波电容在伺服的主要噪声频段产生更好的滤波效果,同时可以根据实验测试的结果动态调整LC,有效针对噪声更大的频段进行滤波处理。
2、减少插入共模电感导致的谐振问题,增加共模电流的吸收效果。
3、改变主要噪声点处共模电流的回流路径,减少传导和辐射的环路噪声电流。
附图说明
图1是本发明伺服驱动器共模噪声抑制电路电路图。
具体实施方式
下面结合附图和实施例,对本发明作进一步详细说明。
如图1所示,三相电源经整流器整流,变为两相直流母线(P、N),直流母线(P、N)连接逆变器,逆变器的三相输出动力线(U,V,W)连接电机。
本实施例设计方案中,共模噪声抑制电路一共分为三个滤波单元。
第一滤波单元是一个共模滤波单元,为三线共模电感L1组成的共模变压器,为了在更小减少体积获得更大感量,三线共模电感L1的磁芯选用非晶材质。非晶材料相对比其他铁氧体磁芯,具有更高的磁导率,相同的绕线匝数上可以获得更大的共模电感感量。所述三线共模电感L1的两线与直流母线P和N相连,利用电感阻抗特性R=2πfL,对共模噪声做分压处理,由于EMC测试中CE测试中的LISN的阻抗为50欧姆,在噪声一定情况下,电感的阻抗越大,共模电感的分压就也大,LISN上的噪声电压就越低,从共模电流角度来讲,同样的,共模电感的阻抗也大,对共模电流的抑制就越大,流经LISN的电流也就越小,测得的噪声电压也就越小。共模电感是滤波方案的关键器件。但是共模电流噪声的整条回流路径可以等效为LCR电路,当插入共模电感后就增加了整条回流路径上的L和R,会使谐振频段变低,为了有效的抑制由于插入共模电感而引起的谐振频点的变化,在共模电感上增加另外一路作为次级线圈,变成共模变压器,在线圈上串联电阻R1,进行共模电流的吸收,增加共模电流的损耗。
第二滤波单元由两颗共模滤波Y电容(C1,C2)和电感L2组成。为两颗共模滤波Y电容(C1,C2)分别接在直流母线(P,N)上,并与所述电感L2连接,电感L2作为PE端接地,给共模噪声提供一条回流路径。伺服驱动器的共模噪声是由于驱动器的逆变模块开关切换,由于母线上有300V或者更高530V电压,在开关过程中产生dv/dt,这种快速的电压切换,会给模块或者线缆,电机等对散热结构,金属外壳的分布电容进行充放电,产生了共模的噪声,噪声产生后,需要回流到源头,可以同过Y电容提供回流路径回流到母线上,这样就减少通过LISN到母线上的电流。但是由于漏电流的限制,Y电容容值不能太大,会产生较大的漏电流,对安全有影响,根据电容阻抗
Figure PCTCN2019086550-appb-000001
伺服设备噪声频率很低,一般在2MHz以下,所以Y电容的阻抗会比较大,对滤波效果会产生很大的影响。本设计就利用LC串联谐振的特点,在共模滤波Y电容(C1,C2)到大地FG间直接串联一个电感L2,利用串联谐振点阻抗最低的特点,可以有效的减小Y电容的阻抗。电感感值的选取要根据EMC测试过程中CE测试超标频点进行调整,根据LC串联谐振谐振频点的公式计算出需要的电感和电容具体数值
Figure PCTCN2019086550-appb-000002
由于伺服驱动器的共模噪声一般都在2MHz以下,因为逆变模块基础频率只有10KHz,所以高倍频的高频部分的噪声就衰减很大,所以测试结果2MHz以上不会出现超标的现象。所以本滤波单元主要的解决频点就是150KHz-2MHz,在增加电感L2后,虽然高频部分由于串联电感,阻抗会明显变大,导致高频的滤波效果变差,但是实际工作中伺服驱动器产生的高频噪声本身就很小,所以高频阻抗变大对伺服产品没有影响。
第三滤波单元由三个安规Y电容(C3,C4,C5)和两个安规X电容(C6,C7)组成。三个安规Y电容(C3,C4,C5)分别接在逆变器三相输出动力线(U,V,W)上,两个安规X电容(C6,C7)分别接在直流母线P、N上,三个安规Y电容(C3,C4,C5)与两个安规X电容(C6,C7)并线连接。
三相输出动力线(U,V,W)主要的共模噪声点,在母线中点通过母线间的电容制造电压参考点,三相输出动力线(U,V,W)上噪声会通过三个安规Y电容(C3,C4,C5)提供的通路进行回流到母线,减少通过三相输出动力线(U,V,W)流经动力线和电机分布电容的噪声。主动减少三相输出动力线(U,V,W)及传递到电机定子线圈通过分布电容传导到大地的噪声电流,这样通过LISN回流的的噪声就会大大减少,也可以减少动力线通过空间回流导致的空间辐射的噪声。
当伺服驱动器进行工作时,功率开关器件会在基频10KHz左右频率进行不断切换,切换的过程中伴随着电压的变化,产生PWM波形驱动电机转动。开关电路中电压的突变很快,可以达到10KV/us,同时电路上逆变模块,整流模块,动力线,电机线圈和大地都存在直接或间接的分布电容。为了安全,金属散热器与大地直接相连,同时为了功率模块过热失效,功率模块和金属散热器紧紧的贴在一起,中间图上导热硅脂,这就使开关管的集电极与散热器之间形成了一个很大的寄生电容,共模电压的dv/dt不断对该寄生电容进行充放电,产生共模电流。同时电机的定子上的线圈和电机金属外壳结构也存在很大的分布电容,也是共模噪声回流的一条路径。所以共模噪声有两条路径,一条是因为开关管和散热器之间的寄生电容,流到参考地,通过测试的阻抗稳定网络(LISN)或者我们设计的Y电容回流到直流母线上,在通过直流输入测留下逆变电路。
第二条路径是,流向输出测,驱动器的负载为电机,电机会和参考地进行相连,电 机定子绕组对电机机壳有较大的寄生电容,由于三相输出动力线(U,V,W)动力线上的PWM波形,会产生du/dt的电压变化,就会对这里的寄生电容进行充放电,产生很大共模噪声电流。
本发明就是针对上面两组路径进行的滤波设计,首先是人为制造一条回流路径,使噪声电流不按照上面所描述的两条路径回流,减少流经测试设备LISN上的共模电流量,三个安规Y电容(C3,C4,C5)分别和三相输出动力线(U,V,W)相连,然后连接到有安规X电容(C6,C7)组成的参考点上,安规X电容(C6,C7)分别和直流母线(P,N)相连,安规X电容(C6,C7)的中心点就是参考点,这样三相输出动力线(U,V,W)上共模噪声就可以通过该回流路径进行回流。三线共模电感L1的设计是增加回流路径的阻抗方法,和直流母线(P,N)上安规X电容(C6,C7)组成滤波器设计,设计首先要考虑源和负载阻抗的问题,对于不同的源和辅助阻抗,要选用不同的形式的滤波器结构。在EMC的传导骚扰测试中,LISN的阻抗为50欧姆,而我们噪声源的阻抗是要大于50欧姆的,所以滤波器设计时共模电感要靠近LISN放置,Y电容要靠近逆变模块放置。要想使滤波器达到好的效果,对共模电感的要求2πfL>>50欧姆,对共模滤波电容要求
Figure PCTCN2019086550-appb-000003
欧姆,这样LISN得到的电流就会更小,分压就会更小,滤波效果才会更好。假如噪声频点为200KHZ,那么对电容的要求C>>1/100πf,要求C>>16nF,在我们设计中有漏电流要求,C一般取值为4.7nF,无法满足要求,就利用LC串联谐振处阻抗最低的特点,利用共模滤波Y电容(C1,C2)和电感L2阻抗串联LC电路,在谐振频点处把阻抗变低,根据谐振频率公式可以算的在200KHz附近串联的L1=0.14mh。同理,为了获得更好的滤波效率共模电感也需要满足2πfL>>50欧姆,假设我们需要在200KHz处共模电感创造20dBuV的衰减,及共模电感要满足2πfL>>50*10,即L>0.4ml,电感感值越大,滤波效果越好,但是插入共模电感后,增加回流的电感和电阻,仍然会产生谐振的频段,在共模电感L1上增加另外一路作为次级,变差共模变压器,在次级上串联500欧姆电阻,对共模电流进行吸收,同时防止增加共模电感L1后产生新的谐振频段。

Claims (2)

  1. 一种伺服驱动器共模噪声抑制电路,直流母线(P、N)连接逆变器,其特征是:抑制电路分为二个滤波单元;
    第一滤波单元为三线共模电感,所述三线共模电感两线分别与直流母线(P,N)相连,另外一路作为次级线圈,变成共模变压器,在线圈上串联电阻R1;
    第二滤波单元由两颗共模滤波Y电容(C1,C2)和电感L2组成;两颗共模滤波Y电容(C1,C2),分别接在直流母线P、N上,并与所述电感L2连接,电感L2接地,给共模噪声提供一条回流路径;
    第三滤波单元由三个安规Y电容(C3,C4,C5)和两个安规X电容(C6,C7)组成;三个安规Y电容(C3,C4,C5)分别接在逆变器三相输出动力线(U,V,W)上,两个安规X电容(C6,C7)分别接在直流母线P、N上,三个安规Y电容(C3,C4,C5)与两个安规X电容(C6,C7)并线连接。
  2. 根据权利要求1所述的伺服驱动器共模噪声抑制电路,其特征是:所述三线共模电感选用非晶材质磁芯。
PCT/CN2019/086550 2018-12-19 2019-05-13 一种伺服驱动器共模噪声抑制电路 WO2020124937A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811557804.6 2018-12-19
CN201811557804.6A CN109412499A (zh) 2018-12-19 2018-12-19 一种伺服驱动器共模噪声抑制电路

Publications (1)

Publication Number Publication Date
WO2020124937A1 true WO2020124937A1 (zh) 2020-06-25

Family

ID=65459985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086550 WO2020124937A1 (zh) 2018-12-19 2019-05-13 一种伺服驱动器共模噪声抑制电路

Country Status (2)

Country Link
CN (1) CN109412499A (zh)
WO (1) WO2020124937A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412499A (zh) * 2018-12-19 2019-03-01 南京埃斯顿自动化股份有限公司 一种伺服驱动器共模噪声抑制电路
CN110098753B (zh) * 2019-04-29 2021-02-12 中南大学 一种多输出的无变压器对称型混合变换器及其调制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825474A (zh) * 2012-11-16 2014-05-28 台达电子工业股份有限公司 低共模噪声的电源变换装置及其应用系统
EP2876794A1 (en) * 2013-11-22 2015-05-27 Hamilton Sundstrand Corporation Input EMI filter and method for motor drive including an active rectifier
CN104901521A (zh) * 2014-03-04 2015-09-09 株式会社丰田自动织机 噪声滤波器
CN109412499A (zh) * 2018-12-19 2019-03-01 南京埃斯顿自动化股份有限公司 一种伺服驱动器共模噪声抑制电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2249431A1 (fr) * 2009-04-30 2010-11-10 STMicroelectronics (Tours) SAS Filtre de mode commun
CN101710719A (zh) * 2009-12-16 2010-05-19 上海永大吉亿电机有限公司 应用在能量回馈器中的带阻尼电阻的共模电感电路结构
CN201590665U (zh) * 2009-12-16 2010-09-22 上海永大吉亿电机有限公司 应用在能量回馈器中的带阻尼电阻的共模电感电路结构
TWI460918B (zh) * 2010-07-30 2014-11-11 Univ Nat Taiwan 共模雜訊抑制電路
CN202940726U (zh) * 2012-11-28 2013-05-15 余姚亿威电子科技有限公司 一种共模电流抑制电路
CN104638891B (zh) * 2015-02-15 2018-02-13 上能电气股份有限公司 一种用于光伏并网逆变器的共模电压抑制系统
CN209170267U (zh) * 2018-12-19 2019-07-26 南京埃斯顿自动化股份有限公司 一种伺服驱动器共模噪声抑制电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825474A (zh) * 2012-11-16 2014-05-28 台达电子工业股份有限公司 低共模噪声的电源变换装置及其应用系统
EP2876794A1 (en) * 2013-11-22 2015-05-27 Hamilton Sundstrand Corporation Input EMI filter and method for motor drive including an active rectifier
CN104901521A (zh) * 2014-03-04 2015-09-09 株式会社丰田自动织机 噪声滤波器
CN109412499A (zh) * 2018-12-19 2019-03-01 南京埃斯顿自动化股份有限公司 一种伺服驱动器共模噪声抑制电路

Also Published As

Publication number Publication date
CN109412499A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
US5646498A (en) Conducted emission radiation suppression in inverter drives
CN104270002B (zh) Pwm功率变换器传导电磁干扰无源抑制方法
CN107852087A (zh) 高功率密度逆变器(i)
US20120044029A1 (en) Noise filter and an emc filter using the same
JP6806280B1 (ja) ノイズフィルタ及び電力変換装置
JP2001268890A (ja) 電力変換システム
WO2020124937A1 (zh) 一种伺服驱动器共模噪声抑制电路
Yang EMI noise reduction techniques for high frequency power converters
WO2016027374A1 (ja) 電力変換装置
EP3876401B1 (en) Electronic control assembly and electric appliance
KR20050078537A (ko) 전도성 전자파 억제 필터
Son et al. Conducted EMI in PWM inverter for household electric appliance
CN209170267U (zh) 一种伺服驱动器共模噪声抑制电路
JP2002281765A (ja) 電力変換設備
Hızarcı et al. Reducing electromagnetic interference in three-level T-type isolated bidirectional DC-DC converter using a snubber circuit
JP6239468B2 (ja) 医療装置
Jettanasen Passive common-mode EMI filter adapted to an adjustable-speed AC motor drive
Ali et al. Improvement of EMI filter attenuation using shielding
Anagha et al. Design of an active EMI filter for bearing current elimination in VFD
Jeong et al. A terminal ground filter between cable and chassis for reduction of conducted emissions at a home appliance
Gao et al. Common-Mode Noise Modeling and Reduction for Multi-Output Flyback Converters
Ashritha et al. Low conducted EMI in NUPF converters
Jettanasen et al. Attenuation of high-frequency electromagnetic noise in a single-phase AC motor drive
Sun et al. A new method to mitigate the adverse effects of PWM inverter
Sulaeman et al. Source and Load Impedance Mismatch Analysis of a Power Line Filter in Microgrid Application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900752

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19900752

Country of ref document: EP

Kind code of ref document: A1