WO2020151327A1 - 全过渡金属氮化物集流体/电极超级电容器及其制备方法 - Google Patents

全过渡金属氮化物集流体/电极超级电容器及其制备方法 Download PDF

Info

Publication number
WO2020151327A1
WO2020151327A1 PCT/CN2019/118045 CN2019118045W WO2020151327A1 WO 2020151327 A1 WO2020151327 A1 WO 2020151327A1 CN 2019118045 W CN2019118045 W CN 2019118045W WO 2020151327 A1 WO2020151327 A1 WO 2020151327A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
electrode
supercapacitor
materials
substrate
Prior art date
Application number
PCT/CN2019/118045
Other languages
English (en)
French (fr)
Inventor
周大雨
孙纳纳
刘文文
史淑艳
于凤云
侯晓多
高晓霞
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910056548.0A external-priority patent/CN109712820B/zh
Priority claimed from CN201910056547.6A external-priority patent/CN109659156B/zh
Priority claimed from CN201910060755.3A external-priority patent/CN109659157B/zh
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/980,278 priority Critical patent/US20210193401A1/en
Publication of WO2020151327A1 publication Critical patent/WO2020151327A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0042Controlling partial pressure or flow rate of reactive or inert gases with feedback of measurements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention belongs to the technical field of electronic functional materials and devices, and relates to a full transition metal nitride current collector/electrode supercapacitor and a preparation method thereof.
  • Supercapacitors have significant advantages such as high energy and power density, long charge-discharge cycle life, wide operating temperature range, maintenance-free, environmental protection and pollution-free, etc. They have attracted widespread attention as a new type of green energy storage.
  • the research and popularization of various sensor systems in the wireless Internet of Things, as well as wearable and implantable medical devices have developed rapidly.
  • These low-power electronic devices have proposed miniature, lightweight and thin-film supercapacitors for the research and development of supercapacitors And the urgent need for full monolithic integration with other electronic components.
  • Supercapacitors are mainly composed of electrode materials, current collectors and electrolytes. Among them, electrode materials and current collectors are important factors that determine the pros and cons of their electrochemical performance.
  • the electrode materials used for supercapacitors mainly include carbon-based materials, silicon-based materials, metal oxides, and conductive polymers. These materials are generally deposited directly or mixed with conductive agents, adhesives, etc., and then coated on metal current collectors such as gold, copper or foamed nickel.
  • the function of the electrode material is to use the electric double layer or pseudocapacitance effect to realize the storage and release of charge, and the function of the current collector is to transport electrons and connect the charge and discharge circuit. Since electrodes and current collectors are different kinds of materials, the adhesion between dissimilar materials is poor, and the lattice mismatch and the difference in thermal expansion coefficient will cause delamination and cracking and large contact resistance. These problems severely limit the power density and heat of supercapacitors.
  • the transition metal nitride film has excellent physical and chemical properties such as high melting point, high hardness, wear resistance, oxidation resistance, and corrosion resistance, especially its electrical conductivity has a very wide distribution control range.
  • TiN by changing the deposition process parameters to control the stoichiometric ratio and microstructure of the film, the resistivity of the film can be controlled from tens to thousands of ⁇ cm.
  • high-conductivity TiN and TaN films are the most commonly used transistor gate electrode and DRAM storage capacitor electrode materials.
  • the present invention proposes a new supercapacitor and its new preparation technology: firstly, high conductivity ( ⁇ 500 ⁇ .cm) transition metal nitrogen is deposited on the substrate.
  • the compound film is used as the electron transport current collector, and then by simply adjusting the deposition process parameters, the porous structure, high resistivity ( ⁇ >1000 ⁇ cm) transition metal nitride film is directly grown on the current collector as the electrode material.
  • the technical invention has the following advantages: the current collector and the electrode are both continuous growth of transition metal nitrides, the performance of the material can be tailored by simply changing the film deposition process parameters, the process is simple and easy, the cost is low, and there are many types of film deposition technologies.
  • the process has strong applicability and solves the problems of poor adhesion between heterogeneous current collectors and electrode materials, lattice mismatch and difference in thermal expansion coefficients that cause delamination and cracking and large contact resistance, which will greatly improve the power density and thermal stability of supercapacitors And long-term service reliability.
  • the purpose of the present invention is to provide a supercapacitor with a full transition metal nitride current collector/electrode material supercapacitor and a new preparation technology thereof.
  • the current collector and the electrode are both transition metal nitride continuous growth, by simply changing the film deposition process parameters Tailor the properties of the material.
  • the technology is simple and easy to implement, low cost, and has a wide selection of thin film deposition technologies and strong process applicability. It provides a realistic and feasible new solution for improving the comprehensive performance indicators of supercapacitors such as energy density, power density and reliability.
  • a full transition metal nitride (MN) current collector/electrode supercapacitor is a sandwich structure, a planar interdigital structure or a 3D nanostructure.
  • the positive and negative ends of the supercapacitor can be symmetrical or Adopt an asymmetric structure.
  • the symmetrical structure is that the positive and negative ends of the capacitor use full transition metal nitride (MN) current collector/electrode materials; the asymmetric structure is that the positive and negative ends of the capacitor use different current collectors/electrode materials.
  • MN transition metal nitride
  • One end uses transition metal nitride (MN) current collector/electrode material, and the other end can use other commonly used supercapacitor electrodes and current collector materials.
  • the commonly used supercapacitor electrode materials are carbon materials, silicon-based materials, metal oxide materials, and Conductive polymers, etc.; commonly used current collectors are gold, copper, titanium, platinum or foamed nickel, etc.
  • the M in the MN is one or more of Ti, V, Ta, Mo or other transition metals.
  • the M is preferably V or Ti.
  • the M is V, the symmetrical structure is that the positive and negative ends of the capacitor are all VN current collector/electrode materials; the asymmetrical structure is that the positive and negative ends of the capacitor are made of different materials, and one end is full VN current collector / Electrode material, the other end uses other commonly used supercapacitor electrode and current collector materials.
  • the M is Ti, the symmetrical structure is that the positive and negative ends of the capacitor are all TiN current collector/electrode materials; the asymmetrical structure is that the positive and negative ends of the capacitor are made of different materials, and one end is all TiN current collector / Electrode material, the other end uses other commonly used supercapacitor electrode and current collector materials.
  • a preparation method of a full transition metal nitride current collector/electrode supercapacitor first cleans and removes impurities and dirt on the surface of the substrate; then deposits a layer of transition with high density and high conductivity on the surface of the substrate
  • the metal nitride film is used as an electron transport current collector material; finally, by adjusting the deposition process parameters to change the film surface atomic diffusion and nucleation growth mechanisms, directly continue to grow a layer of porous, low-conductivity transition metal nitride on the current collector
  • the thin film serves as the electrode material. Specifically include the following steps:
  • Step 1 Use a standard cleaning process to clean the substrate to remove impurities and dirt on the surface of the substrate.
  • the substrate uses Si, Ge, one of the other three-five group semiconductor materials, glass or a polymer flexible substrate, the three-five group semiconductor is gallium arsenide, etc.; the flexible substrate is polyterephthalic acid Ethylene glycol ester (PET), polyimide (PI), etc.
  • PET polyterephthalic acid Ethylene glycol ester
  • PI polyimide
  • Step 2 Depositing all transition metal nitride (MN) current collector/electrode materials:
  • the traditional thin film deposition process is adopted to achieve effective control of atomic diffusion and nucleation growth mechanisms by adjusting the process parameters: First, deposit a layer on the substrate after step (1) cleaning with a smooth surface, high density, and high conductivity ( Low resistivity) MN film is used as the current collector material; then by adjusting the deposition process parameters, changing the film surface atomic diffusion and nucleation growth mechanism, continue to grow a layer of rough surface, porous, low conductivity (resistance) on the current collector material High efficiency) MN film is used as the electrode material, and the full MN current collector/electrode material is deposited on the surface of the substrate.
  • the thickness of the MN film as the current collector material is 10-5000nm, and the resistivity is less than 500 ⁇ cm.
  • the thickness of the MN film used as the electrode material is 10-5000nm, and the resistivity is more than 1000 ⁇ cm.
  • the process parameters include multiple process parameters such as target base distance, ratio of argon gas to nitrogen gas, sputtering power, substrate temperature, working pressure, substrate bias voltage and so on.
  • the M in the MN is one or more of Ti, V, Ta, Mo and other transition metals; the composition of the MN is affected by factors such as the preparation conditions of the film, the gas, the target material, and the purity of the precursor. In addition to the presence of M and N elements, it may contain O, Cl and other impurity elements.
  • the atomic percentage of low resistivity current collector film materials M and N accounted for more than 80% of the total number of atoms of the film; the atomic percentage of high resistivity electrode materials M and N accounted for more than 50% of the total number of atoms of the film.
  • the traditional thin film deposition process includes physical vapor deposition (PVD), including vacuum evaporation, sputtering coating, and arc plasma coating.
  • PVD physical vapor deposition
  • the present invention can also adopt chemical vapor deposition (CVD) or atomic layer deposition (ALD) method to deposit full MN current collector/electrode material on the surface of the cleaned substrate.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • Step 3 Prepare the super capacitor:
  • the full MN current collector/electrode material prepared in step 2 is used as the positive electrode, negative electrode or positive and negative electrode of the supercapacitor, and electrolyte materials are added to prepare a symmetrical or asymmetrical supercapacitor.
  • the supercapacitor structure is a sandwich structure, a planar interdigital structure or a 3D nanostructure.
  • the electrochemical test platform is used for electrochemical performance testing.
  • the electrolyte material can be water-based, organic, ionic liquid, gel, etc.
  • a full transition metal nitride current collector/electrode material and its new preparation technology have very good application value in the field of supercapacitors. Compared with other manufacturing technologies, this technology has the advantages of simple process, low cost, wide selection of thin film deposition technology, and strong process applicability.
  • the present invention provides a full transition metal nitride current collector/electrode material supercapacitor and its new preparation technology for supercapacitors.
  • This technology overcomes the shortcomings of traditional preparation technology such as complicated operation and high cost;
  • the poor adhesion between the current collector and the electrode material, lattice mismatch and thermal expansion coefficient difference lead to delamination cracking and large contact resistance.
  • Fig. 1 is a preparation flow chart of the transition metal nitride current collector/electrode of the present invention.
  • Figure 2 (a) is the cyclic voltammetry curve of the TiN single electrode prepared in Comparative Example 1; (b) is the cyclic voltammetry of the all-TiN current collector/electrode prepared by the reactive magnetron sputtering method in Example 1 of the method of the present invention curve. (c) Comparison of the specific capacitance results of two different electrodes at different scan rates obtained from (a) and (b).
  • Figure 3 (a) is the cyclic voltammetry curve of the VN single electrode prepared in Comparative Example 2; (b) is the cyclic voltammetry of the full VN current collector and electrode prepared by the reactive magnetron sputtering method in Example 7 of the method of the present invention curve. (c) is a comparison chart of the specific capacitance results of two different electrodes at different scan rates obtained from (a) and (b).
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.
  • a layer of TiN electrode with a thickness of 240nm, porous and resistivity of 2800 ⁇ cm was grown under 30min conditions.
  • the working electrode is TiN
  • the counter electrode is a platinum electrode
  • the reference electrode is Ag ⁇ AgCl
  • the electrolyte is a KCl solution.
  • the cyclic voltammetry curve is tested with an electrochemical workstation.
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.
  • target material is vanadium metal
  • target base distance is 40mm
  • Ar:N 2 15:1sccm
  • substrate temperature is 300°C
  • working pressure is 0.4Pa
  • sputtering A layer of porous VN electrode with a thickness of 280nm and a resistivity of 3000 ⁇ cm was grown under the condition of time 30min.
  • the working electrode is a VN
  • the counter electrode is a platinum electrode
  • the reference electrode is Ag ⁇ AgCl
  • the electrolyte is a KOH solution.
  • the cyclic voltammetry curve is tested with an electrochemical workstation.
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.
  • the curve has good rectangularity at high scanning speed, indicating that the TiN electrode has low internal resistance and good rate characteristics.
  • the specific capacitance of the prepared TiN current collector/electrode material has been increased from the original 7.1mF/cm 2 to 14.2mF/cm 2 ; the highest scanning rate that maintains the characteristics of the capacitive CV curve From the original 100mV/s to 2000mV/s.
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.
  • the working electrode is TiN
  • the counter electrode is a platinum electrode
  • the reference electrode is Ag ⁇ AgCl
  • the electrolyte is a KCl solution.
  • the cyclic voltammetry curve is tested with an electrochemical workstation.
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.
  • target material is vanadium metal
  • target base distance is 50mm
  • Ar:N 2 20:3sccm
  • sputtering power 150W
  • substrate temperature is 200°C
  • working pressure is 0.6Pa
  • substrate bias voltage -150V sputtering time: 100min
  • the target base distance is 50mm
  • Ar:N 2 20:3sccm
  • sputtering power 150W
  • substrate temperature of 200°C working pressure of 0.6Pa
  • sputtering time 100min to grow a layer of porous VN film with a thickness of 970nm and resistivity of 6600 ⁇ cm as electrode material.
  • the working electrode is a VN
  • the counter electrode is a platinum electrode
  • the reference electrode is Ag ⁇ AgCl
  • the electrolyte is a KOH solution.
  • the cyclic voltammetry curve is tested with an electrochemical workstation.
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.
  • the working electrode is a VN
  • the counter electrode is a platinum electrode
  • the reference electrode is Ag ⁇ AgCl
  • the electrolyte is a KOH solution.
  • the cyclic voltammetry curve is tested with an electrochemical workstation.
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.
  • target material is titanium
  • target base distance is 30mm
  • Ar:N 2 30:2sccm
  • sputtering power 300W
  • substrate temperature is room temperature
  • working pressure is 1.5Pa
  • substrate bias is -400V
  • sputtering time 300min
  • the target base distance is 100mm
  • Ar:N 2 30 : 2sccm
  • sputtering power 300W
  • substrate temperature at room temperature working pressure at 1.5Pa
  • sputtering time 1min to grow a layer of TiN film with thickness of 44nm and resistivity of 1010 ⁇ cm as electrode material.
  • the working electrode is TiN
  • the counter electrode is a platinum electrode
  • the reference electrode is Ag ⁇ AgCl
  • the electrolyte is NaCl solution.
  • the cyclic voltammetry curve is tested with an electrochemical workstation.
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.
  • target material is titanium
  • target base distance is 100mm
  • Ar:N 2 60:10sccm
  • sputtering power 200W
  • substrate temperature is room temperature
  • working pressure is 1.5Pa
  • substrate bias is -400V
  • sputtering time 500min
  • the working electrode is a TiN current collector/VN electrode
  • the counter electrode is a platinum electrode
  • the reference electrode is Ag ⁇ AgCl
  • the electrolyte is NaCl solution.
  • the cyclic voltammetry curve is tested with an electrochemical workstation.
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.
  • the target base distance is 40mm
  • Ar:N 2 15:1sccm
  • sputtering power 200W
  • substrate temperature 300°C
  • working pressure is 0.4Pa
  • sputtering time 30min
  • resistivity It is 3000 ⁇ cm
  • the porous VN film is used as the electrode material.
  • the working electrode is a VN
  • the counter electrode is a platinum electrode
  • the reference electrode is Ag ⁇ AgCl
  • the electrolyte is a KOH solution.
  • the cyclic voltammetry curve is tested with an electrochemical workstation.
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.
  • the precursors are TiCl 4 and NH 3 , the substrate temperature is 400 °C, the carrier gas is N 2 , the deposition is 500 cycles, and a layer of TiN with a thickness of 10 nm and a resistivity of 120 ⁇ cm is grown. The surface is smooth and dense. The film serves as the current collector material.
  • the precursors are TiCl 4 and NH 3 , the carrier gas is N 2 , and continue to deposit 5000 cycles to grow a porous TiN film with a thickness of 100 nm and a resistivity of 1500 ⁇ cm.
  • PVA/KCl gel electrolyte and TiN current collector/electrode materials are used to prepare sandwich structure capacitors. The cyclic voltammetry curve was tested using the two-electrode test system of the electrochemical workstation.
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.
  • the precursor is Ta(NEt 2 ) 5
  • the reaction gas is NH 3
  • the substrate temperature is 400 °C
  • the carrier gas is N 2
  • the deposition time is 5 min
  • the thickness of the growth layer is 116 nm
  • the resistivity is 140 ⁇ cm
  • the smooth and dense TaN film is used as the current collector material. Then lower the temperature to 250° C., continue to deposit for 20 min, and grow a layer of porous TaN film with a thickness of 402 nm and a resistivity of 6000 ⁇ cm as the electrode material.
  • the working electrode is TaN
  • the counter electrode is a platinum electrode
  • the reference electrode is Ag ⁇ AgCl
  • the electrolyte is NaCl solution.
  • the cyclic voltammetry curve is tested with an electrochemical workstation.
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.
  • the working electrode is MoN
  • the counter electrode is a platinum electrode
  • the reference electrode is Ag ⁇ AgCl
  • the electrolyte is NaCl solution.
  • the cyclic voltammetry curve is tested with an electrochemical workstation.
  • a single crystal silicon substrate is selected as the substrate, and the semiconductor industry standard RCA cleaning process is used for cleaning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Physical Vapour Deposition (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种全过渡金属氮化物(MN)集流体/电极超级电容器及其制备方法,属于电子功能材料与器件技术领域。首先,清洗去除衬底材料表面的杂质;然后在衬底表面先沉积一层具有高致密度、高导电性的过渡金属氮化物薄膜作为电子输运集流体材料,再通过调控沉积工艺参数在集流体上直接继续生长一层表面粗糙、多孔、低导电性的过渡金属氮化物薄膜作为电极材料。集流体和电极同为过渡金属氮化物(MN)连续生长,通过简单地改变薄膜沉积工艺参数对材料的性能进行剪裁,工艺简便易行、成本低,薄膜沉积技术选择种类多、工艺适用性强,解决了异类集流体和电极材料间附着力差、晶格失配和热膨胀系数差异导致分层开裂以及接触电阻大的问题,将极大提高超级电容器的功率密度、热稳定性和长期服役可靠性。

Description

全过渡金属氮化物集流体/电极超级电容器及其制备方法 技术领域
本发明属于电子功能材料与器件技术领域,涉及一种全过渡金属氮化物集流体/电极超级电容器及其制备方法。
背景技术
超级电容器具有能量和功率密度高、充放电循环寿命长、工作温度范围宽、免维修和环保无污染等显著优点,作为新型的绿色电能存储方式得到人们的广泛关注。近年来,无线物联网中的各种传感器系统、以及可穿戴式和植入式医学器件的研究和普及应用迅猛发展,这些低功耗电子设备对超级电容器的研发提出了微型轻量化、薄膜化以及与其他电子元器件全单片集成化的迫切需求。超级电容器主要由电极材料、集流体和电解质组成,其中,电极材料和集流体是决定其电化学性能优劣的重要因素。目前,用于超级电容器的电极材料主要有碳基材料、硅基材料、金属氧化物和导电聚合物等。这些材料一般采用直接沉积或与导电剂、粘结剂等混合后涂覆到金、铜或泡沫镍等金属集流体上。电极材料的功能是利用双电层或者赝电容效应实现电荷的存储和释放,而集流体的功能是输运电子以及连接充放电电路。由于电极与集流体为不同种类的材料,异类材料间附着力差,同时晶格失配和热膨胀系数差异会导致分层开裂以及大的接触电阻,这些问题严重限制了超级电容器的功率密度、热稳定性和长期服役可靠性等性能的提升。过渡金属氮化物薄膜具有熔点高、硬度大、耐磨损,抗氧化、耐腐蚀等优秀的理化性质,特别是其导电性能具有极宽的分布调控范围。以TiN为例,通过改变沉积工艺参数调控薄膜的成分化学计量比和微观组织结构,可以实现电阻率从几十到几千μΩ.cm薄膜的可控制备。在当前的微电子工业中,高导电性的TiN和TaN薄膜是最为普遍应用的晶体管栅电极和DRAM存储电容器电极材料。近年来,法国学者报道了多孔结构的高电阻率(ρ>1000μΩ.cm)TiN和VN薄膜具有与碳基、石墨烯基、和过渡金属氧化物电极材料相媲美的高比电容值,但在所制备的超级电容器中上述薄膜既作为电极材料又同时作为集流体,由于薄膜具有较高的电阻率,同样导致了频率响应(倍率)特性较差的问题。
基于过渡金属氮化物薄膜的导电性能灵活可控的独特性质,本发明提出一种全新的超级电容器及其制备新技术:首先在衬底上沉积高导电性(ρ<500μΩ.cm)过渡金属氮化物薄膜作为电子输运集流体,随后通过简单调整沉积工艺参数在集流体上直接继续生长多孔结构、高电阻率(ρ>1000μΩ.cm)过渡金属氮化物薄膜作为电极材料。本技术发明具有以下优点:集流体和电极同为过渡金属氮化物连续生长,通过简单地改变薄膜沉积工艺参数对材料的性能进行剪裁,工艺简便易行、成本低,薄膜沉积技术选择种类多、工艺适用性强,解决了异类集流体和电极材料间附着力差、晶格失配和热膨胀系数差异导致分层开裂以及接触电阻大 的问题,将极大提高超级电容器的功率密度、热稳定性和长期服役可靠性。
发明内容
本发明的目的在于为超级电容器提供一种全过渡金属氮化物集流体/电极材料超级电容器及其制备新技术,集流体和电极同为过渡金属氮化物连续生长,通过简单地改变薄膜沉积工艺参数对材料的性能进行剪裁。该技术工艺简便易行、成本低,薄膜沉积技术选择种类多、工艺适用性强,为提升超级电容器的能量密度、功率密度和可靠性等综合性能指标提供了现实可行的全新解决方案。
为了达到上述目的,本发明的技术方案为:
一种全过渡金属氮化物(MN)集流体/电极超级电容器,所述的超级电容器结构为三明治结构、平面叉指结构或3D纳米结构,超级电容器的正、负两端可以采用对称式也可以采用非对称式结构。所述的对称式结构为电容器正、负两端均采用全过渡金属氮化物(MN)集流体/电极材料;非对称式结构为电容器正、负两端采用不同的集流体/电极材料,其中一端采用过渡金属氮化物(MN)集流体/电极材料,另一端可以采用其它常用的超级电容器电极和集流体材料,其中常用的超级电容器电极材料为碳材料、硅基材料、金属氧化物材料和导电聚合物等;常用的集流体为金、铜、钛、铂或泡沫镍等。所述MN中的M为Ti、V、Ta、Mo或其他过渡金属中的一种或几种。
进一步的,所述的M优选为V或Ti。所述的M为V,对称式结构为电容器正、负两端均采用全VN集流体/电极材料;非对称式结构为电容器正、负两端采用不同的材料,其中一端采用全VN集流体/电极材料,另一端采用其它常用的超级电容器电极和集流体材料。所述的M为Ti,对称式结构为电容器正、负两端均采用全TiN集流体/电极材料;非对称式结构为电容器正、负两端采用不同的材料,其中一端采用全TiN集流体/电极材料,另一端采用其它常用的超级电容器电极和集流体材料。
一种全过渡金属氮化物集流体/电极超级电容器的制备方法,该制备方法首先清洗去除衬底表面的杂质和脏污;然后在衬底表面沉积一层具有高致密度、高导电性的过渡金属氮化物薄膜作为电子输运集流体材料;最后再通过调控沉积工艺参数改变薄膜表面原子扩散和形核生长等机制,在集流体上直接继续生长一层多孔、低导电性的过渡金属氮化物薄膜作为电极材料。具体包括以下步骤:
步骤一:使用标准的清洗工艺清洗衬底,除去衬底表面的杂质和脏污。
所述的衬底采用Si、Ge、其它三五族半导体材料中的一种、玻璃或聚合物柔性基底,所述三五族半导体为砷化镓等;所述柔性基底为聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)等。
步骤二:沉积全过渡金属氮化物(MN)集流体/电极材料:
采用传统薄膜沉积工艺,通过调控工艺参数实现原子扩散和形核生长等机制的有效调控:首先,在步骤(一)清洗后的衬底上沉积一层表面平滑、致密度高、高导电性(电阻率低)的MN薄膜作为集流体材料;再通过调整沉积工艺参数,改变薄膜表面原子扩散和形核生长等机制,在集流体材料上继续生长一层表面粗糙、多孔、低导电性(电阻率高)的MN薄膜作为电极材料,在衬底表面沉积全MN集流体/电极材料。
所述的作为集流体材料的MN薄膜厚度为10~5000nm,电阻率<500μΩ·cm。
所述的作为电极材料的MN薄膜厚度为10~5000nm,电阻率>1000μΩ·cm。
所述的工艺参数包括靶基距、氩气与氮气的比例、溅射功率、基底温度、工作气压、基底偏压等多项工艺参数。
沉积集流体材料的工艺参数具体为:靶基距为10~100mm;Ar:N 2=(10-60):(1-10)sccm;溅射功率:100-400W;基底温度为室温~400℃;工作气压为0.2~1.5Pa;基底偏压为-50~-400V;溅射时间:1-500min。
沉积电极材料的工艺参数具体为:靶基距为10~100mm;Ar:N 2=(10-60):(1-10)sccm;溅射功率:100-400W;基底温度为室温~400℃;工作气压为0.4~1.5Pa;溅射时间:1-500min。
所述MN中的M为Ti、V、Ta、Mo等其他过渡金属中的一种或几种;所述MN的成分受薄膜的制备条件、气体、靶材和前驱体纯度等因素影响,薄膜中除了存在M和N元素外,可能含有O、Cl等杂质元素。低电阻率的集流体薄膜材料M和N的原子百分数占薄膜总原子数的比例大于80%;高电阻率的电极材料M和N的原子百分比占薄膜总原子数的比例大于50%。
所述的传统薄膜沉积工艺包括物理气相沉积(PVD),包括真空蒸镀、溅射镀膜、电弧等离子体镀。
本发明还可以采用化学气相沉积(CVD)或原子层沉积(ALD)法,在清洗后的衬底表面沉积全MN集流体/电极材料。
步骤三:制备超级电容器:
将步骤二制备得到的全MN集流体/电极材料作为超级电容器正极、负极或正负极,并添加电解质材料,制备对称式或非对称式的超级电容器。所述的超级电容器结构为三明治结构、平面叉指结构或3D纳米结构。采用电化学测试平台进行电化学性能测试。
所述的电解质材料可以采用水基、有机、离子液体和凝胶等。
一种全过渡金属氮化物集流体/电极材料及其制备新技术在超级电容器领域具有非常好的应用价值。相比于其他制造技术,该技术具有工艺简便易行、成本低,薄膜沉积技术选择 种类多、工艺适用性强等优点。
本发明的有益效果是:本发明为超级电容器提供一种全过渡金属氮化物集流体/电极材料超级电容器及其制备新技术,该技术克服了传统制备技术操作复杂、成本高等缺点;解决了异类集流体和电极材料间附着力差、晶格失配和热膨胀系数差异导致分层开裂、以及接触电阻大的问题。
附图说明
图1为本发明过渡金属氮化物集流体/电极的制备流程图。
图2(a)为对比例1制备的TiN单电极的循环伏安曲线;(b)为本发明方法中实施案例1采用反应磁控溅射法制备的全TiN集流体/电极的循环伏安曲线。(c)由(a)和(b)得到的两种不同电极在不同扫描速率下的比电容结果对比图。
图3(a)为对比例2制备的VN单电极的循环伏安曲线;(b)为本发明方法中实施案例7采用反应磁控溅射法制备的全VN集流体和电极的循环伏安曲线。(c)是由(a)和(b)得到的两种不同电极在不同扫描速率下的比电容结果对比图。
具体实施方式
为使本发明的目的、技术方案及优点更加清晰明了,以下结合附图和具体实例对本发明的操作过程作进一步详细说明。需说明,此处所描述的具体实例仅用于解释本发明,其中图示为示意性质,并不用于限定本发明的范围。
对比例1
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用直流反应磁控溅射,靶材为钛金属,靶基距为20mm,Ar:N 2=10:1sccm,溅射功率:100W,基底温度为400℃,工作气压为0.4Pa,溅射时间30min条件下生长一层厚度为240nm,多孔、电阻率为2800μΩ·cm的TiN电极。利用三电极测试体系,工作电极为TiN,对电极为铂电极,参比电极为Ag\AgCl,电解质为KCl溶液,采用电化学工作站测试了其循环伏安曲线。
对比例2
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用直流反应磁控溅射法,靶材为钒金属,靶基距为40mm,Ar:N 2=15:1sccm,溅射功率:200W,基底温度为300℃,工作气压为0.4Pa,溅射时间30min条件下生长一层厚度为280nm,电阻率为3000μΩ·cm,多孔的VN电极。利用三电极测试体系,工作电极为VN,对电极为铂电极,参比电极为Ag\AgCl,电解质为KOH溶液,采用电化学工作站测试了其循环伏安曲线。
实施案例1:
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用直流反应磁控溅射,靶材为钛金属,靶基距为20mm,Ar:N 2=10:1sccm,溅射功率:100W,基底温度为400℃,工作气压为0.2Pa,基底偏压为-50V,溅射时间:10min,先沉积一层厚度为38nm,电阻率为108μΩ·cm,表面平滑、致密的TiN薄膜作为集流体材料。然后在靶基距为20mm,Ar:N 2=10:1sccm,溅射功率:100W,基底温度为400℃,工作气压为0.4Pa,溅射时间30min条件下生长一层厚度为240nm,电阻率为2800μΩ·cm,多孔的TiN薄膜作为电极材料。利用三电极测试体系,工作电极为TiN,对电极为铂电极,参比电极为Ag\AgCl,电解质为KCl溶液,采用电化学工作站测试了其循环伏安曲线。从图2(b)中可以看到曲线在高扫速下矩形度良好,说明TiN电极内阻小,具有较好的倍率特性。相比于对比例1中高电阻率的TiN电极材料,制备的TiN集流体/电极材料比电容由原来的7.1mF/cm 2提升到14.2mF/cm 2;保持电容性C-V曲线特征的最高扫描速率由原来的100mV/s提升到2000mV/s。
实施案例2:
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用直流反应磁控溅射,靶材为钛金属,靶基距为10mm,Ar:N 2=20:1sccm,溅射功率:200W,基底温度为300℃,工作气压为0.2Pa,基底偏压为-100V,溅射时间:1min,先沉积一层厚度为30nm,电阻率为28μΩ·cm,表面平滑、致密的TiN薄膜作为集流体材料,然后在靶基距为10mm,Ar:N 2=20:1sccm,溅射功率:100W,基底温度为400℃,工作气压为0.4Pa,溅射时间10min条件下生长一层厚度为240nm,电阻率为2800μΩ·cm,多孔的TiN薄膜作为电极材料。利用三电极测试体系,工作电极为TiN,对电极为铂电极,参比电极为Ag\AgCl,电解质为KCl溶液,采用电化学工作站测试了其循环伏安曲线。
实施案例3:
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用射频反应磁控溅射,靶材为钒金属,靶基距为50mm,Ar:N 2=20:3sccm,溅射功率:150W,基底温度为200℃,工作气压为0.6Pa,基底偏压为-150V,溅射时间:100min,先沉积一层厚度为790nm,电阻率为188μΩ·cm,表面平滑、致密的VN薄膜作为集流体材料,然后在靶基距为50mm,Ar:N 2=20:3sccm,溅射功率:150W,基底温度为200℃,工作气压为0.6Pa,溅射时间100min条件下生长一层厚度为970nm,电阻率为6600μΩ·cm,多孔的VN薄膜作为电极材料。利用三电极测试体系,工作电极为VN,对电极为铂电极,参比电极为Ag\AgCl,电解质为KOH溶液,采用电化学工作站测试了其循环伏安曲线。
实施案例4:
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用射频反应磁控溅射,靶材为钒金属,靶基距为50mm,Ar:N 2=50:8sccm,溅射功率:400W,基底温度为200℃,工作气压为0.9Pa,基底偏压为-250V,溅射时间:200min,先沉积一层厚度为1490nm,电阻率为258μΩ·cm,表面平滑、致密的VN薄膜作为集流体材料,然后在靶基距为60mm,Ar:N 2=20:1.5sccm,溅射功率:400W,基底温度为100℃,工作气压为0.8Pa,溅射时间200min条件下生长一层厚度为1840nm,电阻率为9500μΩ·cm,多孔的VN薄膜作为电极材料。利用三电极测试体系,工作电极为VN,对电极为铂电极,参比电极为Ag\AgCl,电解质为KOH溶液,采用电化学工作站测试了其循环伏安曲线。
实施案例5:
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用射频反应磁控溅射,靶材为钛金属,靶基距为30mm,Ar:N 2=30:2sccm,溅射功率:300W,基底温度为室温,工作气压为1.5Pa,基底偏压为-400V,溅射时间:300min,先沉积一层厚度为5000nm,电阻率为328μΩ·cm,表面平滑、致密的TiN薄膜作为集流体材料,然后在靶基距为100mm,Ar:N 2=30:2sccm,溅射功率:300W,基底温度为室温,工作气压为1.5Pa,溅射时间1min条件下生长一层厚度为44nm,电阻率为1010μΩ·cm的TiN薄膜作为电极材料。利用三电极测试体系,工作电极为TiN,对电极为铂电极,参比电极为Ag\AgCl,电解质为NaCl溶液,采用电化学工作站测试了其循环伏安曲线。
实施案例6:
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用射频反应磁控溅射,靶材为钛金属,靶基距为100mm,Ar:N 2=60:10sccm,溅射功率:200W,基底温度为室温,工作气压为1.5Pa,基底偏压为-400V,溅射时间:500min,先沉积一层厚度为2400nm,电阻率为88μΩ·cm,表面平滑、致密的TiN薄膜作为集流体材料。采用射频反应磁控溅射,靶材为钒金属,靶基距为20mm,Ar:N 2=60:10sccm,溅射功率:300W,基底温度为300℃,工作气压为0.5Pa,溅射时间500min条件下生长一层厚度为5000nm,电阻率为6200μΩ·cm,多孔的3D纳米结构VN薄膜作为电极材料。利用三电极测试体系,工作电极为TiN集流体/VN电极,对电极为铂电极,参比电极为Ag\AgCl,电解质为NaCl溶液,采用电化学工作站测试了其循环伏安曲线。
实施案例7
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用直流反应磁控溅射,靶材为钒金属,靶基距为30mm,Ar:N 2=10:1sccm,溅射功率:100 W,基底温度为400℃,工作气压为0.2Pa,基底偏压为-50V,溅射时间:10min,先沉积一层厚度为25nm,电阻率为100μΩ·cm,表面平滑、致密的VN薄膜作为集流体材料。然后在靶基距为40mm,Ar:N 2=15:1sccm,溅射功率:200W,基底温度为300℃,工作气压为0.4Pa,溅射时间30min条件下生长一层厚度为280nm,电阻率为3000μΩ·cm,多孔的VN薄膜作为电极材料。利用三电极测试体系,工作电极为VN,对电极为铂电极,参比电极为Ag\AgCl,电解质为KOH溶液,采用电化学工作站测试了其循环伏安曲线。从图中3中可以看到曲线在高扫速下矩形度良好,说明VN电极内阻小,具有较好的倍率特性。相比于对比例2中高电阻率的VN电极材料,制备的VN集流体/电极材料比电容由原来的8.7mF/cm 2提升到14.5mF/cm 2;保持电容性C-V曲线特征的最高扫描速率由原来的100mV/s提升到10000mV/s。
实施案例8:
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用原子层沉积,前驱体为TiCl 4和NH 3,基底温度为400℃,载气为N 2,沉积500循环,生长一层厚度为10nm,电阻率为120μΩ·cm,表面平滑、致密的TiN薄膜作为集流体材料。然后调整基底温度为300℃,前驱体为TiCl 4和NH 3,载气为N 2,继续沉积5000循环生长一层厚度为100nm,电阻率为1500μΩ·cm,多孔的TiN薄膜。采用PVA/KCl凝胶电解质和TiN集流体/电极材料制备三明治结构电容器。利用电化学工作站二电极测试体系测试其循环伏安曲线。
实施案例9
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用化学气相沉积,前驱体为Ta(NEt 2) 5,反应气体为NH 3,基底温度为400℃,载气为N 2,沉积时间为5min,生长一层厚度为116nm,电阻率为140μΩ·cm,表面平滑、致密的TaN薄膜作为集流体材料。然后降低温度至250℃,继续沉积20min,生长一层厚度为402nm,电阻率为6000μΩ·cm,多孔的TaN薄膜作为电极材料。利用三电极测试体系,工作电极为TaN,对电极为铂电极,参比电极为Ag\AgCl,电解质为NaCl溶液,采用电化学工作站测试了其循环伏安曲线。
实施案例10
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用直流反应磁控溅射,靶材为钼金属,靶基距为60mm,Ar:N 2=40:4sccm,溅射功率:200W,基底温度为室温,工作气压为1.1Pa,基底偏压为-100V,溅射时间:20min,先沉积一层厚度为86nm,电阻率为120μΩ·cm,表面平滑、致密的MoN薄膜作为集流体材料,然后 在靶基距为60mm,Ar:N 2=20:1sccm,溅射功率:200W,基底温度为200℃,工作气压为0.6Pa,溅射时间60min条件下生长一层厚度为462nm,电阻率为5000μΩ·cm,多孔的MoN薄膜作为电极材料。利用三电极测试体系,工作电极为MoN,对电极为铂电极,参比电极为Ag\AgCl,电解质为NaCl溶液,采用电化学工作站测试了其循环伏安曲线。
实施案例11
本实施例中,选用单晶硅基片作为衬底,采用半导体行业标准的RCA清洗工艺进行清洗。采用直流反应磁控溅射,靶材为铪金属,靶基距为70mm,Ar:N 2=50:6sccm,溅射功率:200W,基底温度为室温,工作气压为0.5Pa,基底偏压为-100V,溅射时间:10min,先沉积一层厚度为46nm,电阻率为110μΩ·cm,表面平滑、致密的HfN薄膜作为集流体材料,然后在靶基距为60mm,Ar:N 2=20:2sccm,溅射功率:200W,基底温度为100℃,工作气压为0.9Pa,溅射时间60min条件下生长一层厚度为562nm,电阻率为5500μΩ·cm,多孔的HfN薄膜作为电极材料。利用半导体光刻技术制备HfN平面叉指结构电容器,电解质为NaCl溶液。采用电化学工作站的两电极测试体系测试其循环伏安曲线。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (9)

  1. 一种全过渡金属氮化物集流体/电极超级电容器,其特征在于,所述的超级电容器结构为三明治结构、平面叉指结构或3D纳米结构,超级电容器的正、负两端可以采用对称式也可以采用非对称式结构;所述的对称式结构为电容器正、负两端均采用全过渡金属氮化物MN集流体/电极材料;非对称式结构为电容器正、负两端采用不同的材料,其中一端采用过渡金属氮化物集流体/电极材料,另一端采用其它常用的超级电容器电极和集流体材料;所述MN中的M为Ti、V、Ta、Mo或其他过渡金属中的一种或几种。
  2. 根据权利要求1所述的一种全过渡金属氮化物集流体/电极超级电容器,其特征在于,所述的常用的超级电容器电极材料为碳材料、硅基材料、金属氧化物材料或导电聚合物;常用的集流体为金、铜、钛、铂或泡沫镍。
  3. 根据权利要求1所述的一种全过渡金属氮化物集流体/电极超级电容器,其特征在于,所述的M为V,所述对称式结构为电容器正、负两端均采用全VN集流体/电极材料,所述非对称式结构为电容器正、负两端采用不同的材料,其中一端采用全VN集流体/电极材料,另一端采用其它常用的超级电容器电极和集流体材料。
  4. 根据权利要求1所述的一种全过渡金属氮化物集流体/电极超级电容器,其特征在于,所述的M为Ti,所述对称式结构为电容器正、负两端均采用全TiN集流体/电极材料,所述非对称式结构为电容器正、负两端采用不同的材料,其中一端采用全TiN集流体/电极材料,另一端采用其它常用的超级电容器电极和集流体材料。
  5. 一种权利要求1-4任一所述的全过渡金属氮化物集流体/电极超级电容器的制备方法,其特征在于,该制备方法包括以下步骤:
    步骤一:清洗衬底,除去表面的有机物、金属颗粒和其他杂质;所述的衬底采用Si、Ge、其它三五族半导体材料中的一种、玻璃或聚合物柔性基底;
    步骤二:采用薄膜沉积工艺在衬底表面沉积全过渡金属氮化物MN集流体/电极材料:
    采用物理气相沉积法在步骤一清洗后的衬底上沉积一层表面平滑、致密度高、电阻率低的MN薄膜作为集流体材料;再通过调整沉积工艺参数,改变薄膜表面原子扩散和形核生长等机制,在集流体材料上继续生长一层表面粗糙、多孔、电阻率高的MN薄膜作为电极材料,在衬底表面沉积全MN集流体/电极材料;
    所述的作为集流体材料的MN薄膜厚度为10~5000nm,电阻率<500μΩ·cm;所述的作为电极材料的MN薄膜厚度为10~5000nm,电阻率>1000μΩ·cm;
    沉积集流体材料的工艺参数为:靶基距为10~100mm;Ar:N 2=(10-60):(1-10)sccm;溅射功率:100-400W;基底温度为室温~400℃;工作气压为0.2~1.5Pa;基底偏压为-50~-400V;溅射时间:1-500min;
    沉积电极材料的工艺参数为:靶基距为10~100mm;Ar:N 2=(10-60):(1-10)sccm;溅射功率:100-400W;基底温度为室温~400℃;工作气压为0.4~1.5Pa;溅射时间:1-500min;
    步骤三:制备超级电容器:
    将步骤二制备得到的全MN集流体/电极材料作为超级电容器正极、负极或正负极,并添加电解质材料,制备对称式或非对称式的超级电容器;所述的超级电容器结构为三明治结构、平面叉指结构或3D纳米结构。
  6. 根据权利要求5所述的一种全过渡金属氮化物集流体/电极超级电容器的制备方法,其特征在于,所述的第二步还可以采用化学气相沉积CVD或原子层沉积ALD法,在清洗后的衬底表面沉积全MN集流体/电极材料。
  7. 根据权利要求5所述的一种全过渡金属氮化物集流体/电极超级电容器的制备方法,其特征在于,所述的全MN集流体/电极材料中除了存在M和N元素外,还可能含有O、Cl或其它杂质元素;低电阻率的集流体薄膜材料M和N的原子百分数占薄膜总原子数的比例大于80%,高电阻率的电极材料M和N的原子百分比占薄膜总原子数的比例大于50%。
  8. 根据权利要求5所述的一种全过渡金属氮化物集流体/电极超级电容器的制备方法,其特征在于,所述的物理气相沉积法包括真空蒸镀、溅射镀膜、电弧等离子体镀。
  9. 根据权利要求5所述的一种全过渡金属氮化物集流体/电极超级电容器的制备方法,其特征在于,所述三五族半导体为砷化镓;所述柔性基底为聚对苯二甲酸乙二醇酯PET、聚酰亚胺PI。
PCT/CN2019/118045 2019-01-22 2019-11-13 全过渡金属氮化物集流体/电极超级电容器及其制备方法 WO2020151327A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/980,278 US20210193401A1 (en) 2019-01-22 2019-11-13 Supercapacitor with both current collector and electrode based on transition metal nitride and the preparation method therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910056547.6 2019-01-22
CN201910056548.0A CN109712820B (zh) 2019-01-22 2019-01-22 全过渡金属氮化物集流体/电极超级电容器及其制备方法
CN201910056547.6A CN109659156B (zh) 2019-01-22 2019-01-22 全氮化钛集流体/电极超级电容器及其制备方法
CN201910060755.3 2019-01-22
CN201910060755.3A CN109659157B (zh) 2019-01-22 2019-01-22 全氮化钒集流体/电极超级电容器及其制备方法
CN201910056548.0 2019-01-22

Publications (1)

Publication Number Publication Date
WO2020151327A1 true WO2020151327A1 (zh) 2020-07-30

Family

ID=71736481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118045 WO2020151327A1 (zh) 2019-01-22 2019-11-13 全过渡金属氮化物集流体/电极超级电容器及其制备方法

Country Status (2)

Country Link
US (1) US20210193401A1 (zh)
WO (1) WO2020151327A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3210420A1 (de) * 1982-03-22 1983-09-22 Siemens AG, 1000 Berlin und 8000 München Elektrochemischer doppelschichtkondensator
WO2008068677A1 (en) * 2006-12-04 2008-06-12 Koninklijke Philips Electronics N.V. Solid-state structure comprising a battery and a variable capacitor having a capacitance which is controlled by the state-of charge of the battery
CN108010742A (zh) * 2017-12-04 2018-05-08 攀钢集团攀枝花钢铁研究院有限公司 一种含钛的超级电容器的电极材料及超级电容器
CN109659156A (zh) * 2019-01-22 2019-04-19 大连理工大学 全氮化钛集流体/电极超级电容器及其制备方法
CN109659157A (zh) * 2019-01-22 2019-04-19 大连理工大学 全氮化钒集流体/电极超级电容器及其制备方法
CN109712820A (zh) * 2019-01-22 2019-05-03 大连理工大学 全过渡金属氮化物集流体/电极超级电容器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3210420A1 (de) * 1982-03-22 1983-09-22 Siemens AG, 1000 Berlin und 8000 München Elektrochemischer doppelschichtkondensator
WO2008068677A1 (en) * 2006-12-04 2008-06-12 Koninklijke Philips Electronics N.V. Solid-state structure comprising a battery and a variable capacitor having a capacitance which is controlled by the state-of charge of the battery
CN108010742A (zh) * 2017-12-04 2018-05-08 攀钢集团攀枝花钢铁研究院有限公司 一种含钛的超级电容器的电极材料及超级电容器
CN109659156A (zh) * 2019-01-22 2019-04-19 大连理工大学 全氮化钛集流体/电极超级电容器及其制备方法
CN109659157A (zh) * 2019-01-22 2019-04-19 大连理工大学 全氮化钒集流体/电极超级电容器及其制备方法
CN109712820A (zh) * 2019-01-22 2019-05-03 大连理工大学 全过渡金属氮化物集流体/电极超级电容器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ETIENNE EUSTACHE, FRAPPIER RENAUD, PORTO RAŪL LUCIO, BOUHTIYYA SAÏD, PIERSON JEAN-FRANÇOIS, BROUSSE THIERRY: "Asymmetric Electrochemical Capacitor Microdevice Designed with Vanadium Nitride and Nickel Oxide Thin Film Electrodes", ELECTROCHEMISTRY COMMUNICATIONS, vol. 28, 31 March 2013 (2013-03-31), pages 104 - 106, XP055723692, ISSN: 1388-2481, DOI: 10.1016/j.elecom.2012.12.015 *
R. LUCIO-PORTO, BOUHTIYYA S., PIERSON J.F., MOREL A., CAPON F., BOULET P., BROUSSE T.: "VN Thin Films as Electrode Materials for Electrochemical Capacitors", ELECTROCHIMICA ACTA, vol. 141, 20 September 2014 (2014-09-20), pages 203 - 211, XP055723690, ISSN: 0013-4686, DOI: 10.1016/j.electacta.2014.07.056 *

Also Published As

Publication number Publication date
US20210193401A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
CN109712820B (zh) 全过渡金属氮化物集流体/电极超级电容器及其制备方法
CN109659156B (zh) 全氮化钛集流体/电极超级电容器及其制备方法
WO2020042535A1 (zh) 一种燃料电池金属双极板用导电耐蚀涂层
Wei et al. Porous CrN thin films by selectively etching CrCuN for symmetric supercapacitors
Shen et al. Magnetron sputtered NbN thin film electrodes for supercapacitors
CN110551975B (zh) 一种复合多层疏水耐蚀薄膜及其制备方法和应用
CN105226258B (zh) 一种锂离子电池负极复合薄膜材料及其制备方法
CN110137525A (zh) 一种燃料电池金属双极板涂层及制备技术
CN104388902A (zh) 一种基体表面高导电性的碳基涂层及其制备方法
CN106971864A (zh) 一种基于纳米多孔掺硼金刚石电极的超级电容器的制备方法
CN110284102A (zh) 一种金属碳化物晶体复合涂层及其制备方法
Qi et al. Nanostructured porous CrN thin films by oblique angle magnetron sputtering for symmetric supercapacitors
WO2023000913A1 (zh) 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用
Wei et al. Construction of 3D Si@ Ti@ TiN thin film arrays for aqueous symmetric supercapacitors
CN214203777U (zh) 全固态石墨烯基薄膜锂电池
CN109659157B (zh) 全氮化钒集流体/电极超级电容器及其制备方法
Zhang et al. Freestanding Co3N thin film for high performance supercapacitors
WO2020151327A1 (zh) 全过渡金属氮化物集流体/电极超级电容器及其制备方法
Bae et al. Electrochemical properties of the Si thin-film anode deposited on Ti-Nb-Zr shape memory alloy in Li-ion batteries
Sun et al. Energy storage performance of in-situ grown titanium nitride current collector/titanium oxynitride laminated thin film electrodes
CN115652255A (zh) 一种Ti基耐蚀导电非晶结构涂层及其制备方法和应用
CN115044869A (zh) 一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用
CN114050272A (zh) 石墨烯基底以及具有其的薄膜锂电池
CN109637822B (zh) 一种高比表面积的TiN电极、制备方法及其应用
WO2021115436A1 (zh) 基因测序芯片的微电极及其制备方法、基因测序芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911381

Country of ref document: EP

Kind code of ref document: A1