WO2020151290A1 - 片上集成半导体激光器结构及其制备方法 - Google Patents

片上集成半导体激光器结构及其制备方法 Download PDF

Info

Publication number
WO2020151290A1
WO2020151290A1 PCT/CN2019/114740 CN2019114740W WO2020151290A1 WO 2020151290 A1 WO2020151290 A1 WO 2020151290A1 CN 2019114740 W CN2019114740 W CN 2019114740W WO 2020151290 A1 WO2020151290 A1 WO 2020151290A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
current injection
layer
contact layer
waveguide
Prior art date
Application number
PCT/CN2019/114740
Other languages
English (en)
French (fr)
Inventor
杨成奥
牛智川
张宇
徐应强
谢圣文
张一�
尚金铭
Original Assignee
中国科学院半导体研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院半导体研究所 filed Critical 中国科学院半导体研究所
Priority to US17/253,747 priority Critical patent/US11489315B2/en
Publication of WO2020151290A1 publication Critical patent/WO2020151290A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0205Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth during growth of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0203Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1237Lateral grating, i.e. grating only adjacent ridge or mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1231Grating growth or overgrowth details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • the present disclosure relates to the field of monolithic integrated semiconductor lasers, and in particular to an on-chip integrated semiconductor laser structure and a method for preparing the on-chip integrated semiconductor laser structure.
  • Semiconductor lasers have the advantages of high output power, small size, light weight, and high photoelectric conversion efficiency.
  • semiconductor edge-emitting lasers have great advantages in terms of high efficiency, high power, and gas detection.
  • a common semiconductor laser is a PN junction structure or a PIN junction structure.
  • the lasing wavelength is directly affected by the material and structure of the active region.
  • the gas monitoring is a special application requirement. Due to the different characteristic absorption peaks of the gas itself, it is aimed at different Gas detection needs to configure single-mode lasers of different wavelengths to achieve gas detection, which is not only expensive, but the configuration of multiple separately packaged semiconductor lasers will greatly increase the volume and weight of the entire system.
  • the embodiments of the present disclosure provide an on-chip integrated semiconductor laser structure and a manufacturing method thereof, wherein the laser structure includes:
  • the first N contact layer, the first N confinement layer, the first active region, the first P confinement layer, the first P contact layer, the isolation layer, the second N contact layer, and the second N confinement layer sequentially deposited on the substrate Layer, second active region, second P confinement layer and second P contact layer as the epitaxial structure;
  • Waveguide structure the waveguide structure of the first laser is etched from the second P contact layer to the interface of the second active area, and the waveguide structure of the second laser is etched from the first P contact layer to the interface of the first active area ;
  • Gratings are respectively arranged on both sides of the waveguide structure of the first laser and on both sides of the waveguide structure of the second laser to realize the screening of laser modes;
  • the first N-side current injection window of the first laser is prepared on the second N-contact layer
  • the second N-side current injection window of the first laser is prepared on the first N-contact layer
  • the P-side of the first laser is prepared on the waveguide structure of the first laser
  • the P-side current injection window of the second laser is prepared on the waveguide of the second laser.
  • the laser structure has a galvanic isolation zone, including a first galvanic isolation zone and a second galvanic isolation zone, wherein:
  • the first current isolation region is arranged between the P-side current injection window of the first laser and the P-side current injection window of the second laser to form electrical isolation;
  • the second current isolation region is arranged between the P-side current injection window of the first laser and the first N-side current injection window of the first laser to form electrical isolation.
  • the laser structure has a current injection slot, a first current injection slot, a second current injection slot, and a third current injection slot, wherein:
  • the first current injection groove is etched to the first P contact layer
  • the second current injection groove is etched to the second N contact layer
  • the third current injection groove is etched to the first N contact layer
  • the third current injection slot is located in the second current injection slot, and the waveguide structure of the second laser is located in the first current injection slot.
  • the laser epitaxial structure includes:
  • the substrate is an N-type GaSb substrate
  • the first N contact layer is N-type doped, the material composition is GaSb, the doping concentration is 1 ⁇ 10 17 -1 ⁇ 10 19 cm -3 , and the thickness is 200 nm-700 nm;
  • the first N confinement layer the material is AlGaAaSb, the Al composition is 0.4-0.9, the doping concentration is 1 ⁇ 10 18 -8 ⁇ 10 18 cm -3 , and the thickness is 600 nm-3000 nm;
  • the first active region is not intentionally doped, the material is AlGaAsSb ⁇ InGaAsSb ⁇ AlGaAsSb, the Al composition is 0.1-0.3, the In composition is 0.25-0.4, and the thickness is 100nm-700nm;
  • the first P confinement layer is P-type doped, the material is AlGaAaSb, the Al composition is 0.4-0.9, the doping concentration is 1 ⁇ 10 18 -8 ⁇ 10 18 cm -3 , and the thickness is 600 nm-3000 nm;
  • the first P contact layer is P-type doped, the material is GaSb, the doping concentration is 1 ⁇ 10 17 -1 ⁇ 10 19 cm -3 , and the thickness is 50 nm-300 nm;
  • the material is Al 0.1 Ga 0.9 Sb ⁇ Al 0.6 Ga 0.4 AsSb ⁇ Al 0.1 Ga 0.9 AsSb, the Al composition linearly changes from Al 0.1 Ga 0.9 Sb to Al 0.6 Ga 0.4 AsSb, and then linearly changes to Al 0.1 Ga 0.9 AsSb, the thickness of the gradient zone is 300nm-900nm;
  • the second N contact layer is heavily doped with N, the material is GaSb, the doping concentration is 1 ⁇ 10 17 -1 ⁇ 10 19 cm -3 , and the thickness is 300 nm-900 nm;
  • the second N confinement layer the material is AlGaAsSb, the Al composition is 0.5-0.85, the doping concentration is 1 ⁇ 10 18 -8 ⁇ 10 18 cm -3 , and the thickness is 600 nm-3000 nm;
  • the second active region is not intentionally doped, the material is AlGaAsSb ⁇ InGaAsSb ⁇ AlGaAsSb, the Al composition is 0.15-0.35, the In composition is 0.1-0.3, and the thickness is 100nm-600nm;
  • the second P confinement layer is P-type doped, the material is AlGaAsSb, the Al composition is 0.5-0.85, the doping concentration is 1 ⁇ 10 18 -8 ⁇ 10 18 cm -3 , and the thickness is 600 nm-3000 nm;
  • the second P contact layer is heavily doped with P type, the material is GaSb, the doping concentration is 1 ⁇ 10 17 -1 ⁇ 10 19 cm -3 , and the thickness is 50 nm-500 nm;
  • the waveguide structures of the first laser and the second laser are strip waveguides with a width of 1 ⁇ m-6 ⁇ m.
  • the waveguide structures of the first laser and the second laser are etched and prepared into waveguide structures of the same height or prepared into different heights respectively.
  • the waveguide structure is etched and prepared into waveguide structures of the same height or prepared into different heights respectively.
  • first N-side current injection window and the second N-side current injection window of the first laser realize electrical conduction between the second N contact layer doped by the first laser and the substrate.
  • the width of the first current isolation region and the second current isolation region is 30 ⁇ m-300 ⁇ m.
  • the present disclosure also provides a method for preparing an on-chip integrated semiconductor laser, including:
  • first N contact layer Deposits the first N contact layer, the first N confinement layer, the first active region, the first P confinement layer, the first P contact layer, the isolation layer, the second N contact layer, and the second N contact layer in sequence on the N type substrate.
  • the waveguide structure and current injection groove are lithographically etched on the epitaxial structure, including:
  • a third current injection groove is formed by photolithography and etching inside the second current injection groove.
  • the substrate is thinned and polished, and the back electrode is made on the back of the substrate;
  • FIG. 1 is a schematic cross-sectional view of a laser structure of an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for manufacturing a laser structure according to an embodiment of the present disclosure
  • FIG. 3 is a simulation diagram of light field mode distribution of a laser according to an embodiment of the present disclosure
  • FIG. 4 is a single-mode lasing spectrum diagram of the laser 1 in an embodiment of the present disclosure when it works alone;
  • FIG. 5 is a single-mode lasing spectrum diagram of the laser 2 in an embodiment of the present disclosure when it works alone.
  • First active area 4 first P confinement layer 5 first P contact layer 6
  • Second active region 10 second P confinement layer 11 second P contact layer 12
  • Waveguide of the second laser 13 Strip waveguide of the first laser 14
  • An embodiment of the present disclosure provides an on-chip integrated semiconductor laser structure, please refer to FIG. 1, including:
  • the first N contact layer 2, the first N confinement layer 3, the first active region 4, the first P confinement layer 5, the first P contact layer 6, the isolation layer 7, and the second N contact layer 2 are sequentially deposited on the substrate 1.
  • the contact layer 8, the second N confinement layer 9, the second active region 10, the second P confinement layer 11 and the second P contact layer 12 are used as an epitaxial structure, and the epitaxial structure is etched by photolithography to realize the fabrication of a dual-wavelength laser.
  • the integrated dual-wavelength semiconductor laser structure provided by the embodiments of the present disclosure utilizes special energy band engineering and epitaxial structure design to realize the epitaxial material growth of semiconductor lasers of different wavelengths on the same epitaxial film, and realizes the on-chip integration of the dual-wavelength laser and has a compact structure.
  • Two lasers are used for independent waveguide structure and grating structure, can work separately to generate single-mode laser, lasing two different wavelength lasers on the same laser, to achieve different types of gas detection.
  • the substrate 1 is an N-type GaSb substrate
  • the epitaxial structure includes:
  • the first N contact layer 2 is N-type doped, the material composition is GaSb, the doping concentration is 1 ⁇ 10 17 -1 ⁇ 10 19 cm -3 , and the thickness is 200 nm-700 nm;
  • the first N confinement layer 3 the material is AlGaAaSb, the Al composition is 0.4-0.9, the doping concentration is 1 ⁇ 10 18 -8 ⁇ 10 18 cm -3 , and the thickness is 600 nm-3000 nm;
  • the first active region 4 is not intentionally doped, the material is AlGaAsSb ⁇ InGaAsSb ⁇ AlGaAsSb, the Al composition is 0.1-0.3, the In composition is 0.25-0.4, and the thickness is 100nm-700nm;
  • the first P confinement layer 5 is P-type doped, the material is AlGaAaSb, the Al composition is 0.4-0.9, the doping concentration is 1 ⁇ 10 18 -8 ⁇ 10 18 cm -3 , and the thickness is 600 nm-3000 nm;
  • the first P contact layer 6 is P-type doped, the material is GaSb, the doping concentration is 1 ⁇ 10 17 -1 ⁇ 10 19 cm -3 , and the thickness is 50 nm-300 nm;
  • the material is Al 0.1 Ga 0.9 Sb ⁇ Al 0.6 Ga 0.4 AsSb ⁇ Al 0.1 Ga 0.9 AsSb
  • the Al composition is linearly graded from Al 0.1 Ga 0.9 Sb to Al 0.6 Ga 0.4 AsSb, and then linearly graded To Al 0.1 Ga 0.9 AsSb, the thickness of the gradient zone is 300nm-900nm;
  • the second N contact layer 8 is heavily doped with N, the material is GaSb, the doping concentration is 1 ⁇ 10 17 -1 ⁇ 10 19 cm -3 , and the thickness is 300 nm-900 nm;
  • the second N confinement layer 9 the material is AlGaAsSb, the Al composition is 0.5-0.85, the doping concentration is 1 ⁇ 10 18 -8 ⁇ 10 18 cm -3 , and the thickness is 600 nm-3000 nm;
  • the second active region 10 is not intentionally doped, the material is AlGaAsSb ⁇ InGaAsSb ⁇ AlGaAsSb, the Al composition is 0.15-0.35, the In composition is 0.1-0.3, and the thickness is 100nm-600nm;
  • the second P confinement layer 11 is P-type doped, the material is AlGaAsSb, the Al composition is 0.5-0.85, the doping concentration is 1 ⁇ 10 18 -8 ⁇ 10 18 cm -3 , and the thickness is 600 nm-3000 nm;
  • the second P contact layer 12 is heavily doped with P type, the material is GaSb, the doping concentration is 1 ⁇ 10 17 -1 ⁇ 10 19 cm -3 , and the thickness is 50 nm-500 nm.
  • the waveguide structure of the first laser is etched from the second P contact layer 12 to the interface of the second active region 10, and the waveguide structure 13 of the second laser is etched from the first P contact layer 6 to the first On the interface of active area 4;
  • the waveguide structures of the first laser and the second laser are strip waveguides with a width of 1 ⁇ m-6 ⁇ m, and the waveguide structures of the first laser and the second laser are etched into waveguide structures of the same height or are fabricated separately Waveguide structures of different heights.
  • the grating, the grating 15 of the first laser is arranged on both sides of the waveguide structure 14 of the first laser, and the grating 16 of the second laser is arranged on both sides of the waveguide structure 13 of the second laser, so as to realize the screening of laser modes;
  • is the laser lasing wavelength
  • Neff is the effective waveguide structure
  • the refractive index, ⁇ is the grating period
  • m is the grating order.
  • the first N-side current injection window 18 of the first laser is prepared on the second N-contact layer 8
  • the second N-side current injection window 17 of the first laser is prepared on the first N-contact layer 2.
  • the P-side current injection window 19 of the laser is prepared on the waveguide structure 14 of the first laser
  • the P-side current injection window 20 of the second laser is prepared on the waveguide 13 of the second laser.
  • the first N-side current injection window 18 and the second N-side current injection window 17 of the first laser realize electrical conduction between the second N-contact layer 8 doped by the first laser and the substrate 1.
  • the laser structure has a galvanic isolation zone, including a first galvanic isolation zone 22 and a second galvanic isolation zone 21, wherein:
  • the first current isolation region 22 is arranged between the P-side current injection window 19 of the first laser and the P-side current injection window 20 of the second laser to form electrical isolation;
  • the second current isolation region 21 is arranged between the P-side current injection window 19 of the first laser and the first N-side current injection window 18 of the first laser to form electrical isolation.
  • the width of the first current isolation region 22 and the second current isolation region 21 is 30 ⁇ m-300 ⁇ m.
  • the laser structure has a current injection slot, a first current injection slot 23, a second current injection slot 25, and a third current injection slot 24, wherein:
  • the first current injection groove 23 is etched to the first P contact layer 6;
  • the second current injection groove 25 is etched to the second N contact layer 8;
  • the third current injection groove 24 is etched to the first N contact layer 2;
  • the third current injection slot 24 is located in the second current injection slot 25, and the waveguide structure 13 of the second laser is located in the first current injection slot 23.
  • Another embodiment of the present disclosure provides a method for fabricating an on-chip integrated semiconductor laser structure. Please refer to FIG. 2 for detailed description of each part of the method for fabricating an on-chip integrated dual-wavelength semiconductor laser structure in this embodiment.
  • Step 1 Take an N-type GaSb substrate 1;
  • Step 2 Depositing the first N contact layer 2, the first N confinement layer 3, the first active region 4, the first P confinement layer 5, the first P contact layer 6, the isolation layer 7 in sequence on the N-type substrate
  • the second N contact layer 8 the second N confinement layer 9, the second active region 10, the second P confinement layer 11 and the second P contact layer 12;
  • the first N contact layer 2 deposited on the N-type substrate 1 is made of GaSb with a thickness of 500 nm, a doping concentration of 2 ⁇ 10 18 cm -3 , and the first N confinement layer 3, which is made of Al 0.6 Ga 0.4 As 0.02 Sb 0.98 , thickness 2 ⁇ m, doping concentration 4 ⁇ 10 17 cm -3 , first active region 4, thickness 120nm/10nm/120nm respectively, material is Al 0.28 Ga 0.81 As 0.02 Sb 0.98 ⁇ In 0.3 Ga 0.85 Sb ⁇ Al 0.28 Ga 0.81 As 0.02 Sb 0.98 , the first P confinement layer 5, thickness 2 ⁇ m, material is Al 0.6 Ga 0.4 As 0.02 Sb 0.98 , doping concentration 5 ⁇ 10 18 cm -3 , first P contact Layer 6, the thickness is 200nm, the material is GaSb, the doping concentration is 9 ⁇ 10 18 cm -3 , the graded insulating isolation layer 7, the material is Al 0.1 Ga 0.9 As 0.02 Sb 0.98 ⁇ A
  • Step 3 Photoetching the waveguide structure and the current injection groove on the epitaxial structure
  • this step includes:
  • a third current injection groove is formed by photolithography and etching inside the second current injection groove.
  • the strip waveguide 14 of the first laser is formed by photolithography and etching, the waveguide width is 3 ⁇ m, and the etching depth is 1.92 ⁇ m, and then the current injection groove 23 of the second laser is formed by photolithography and etching, and the depth is 5.378 ⁇ m.
  • Step 4 Prepare grating mask patterns on both sides of the waveguide structure
  • grating mask patterns are prepared on both sides of the strip waveguide 14 of the first laser, the grating period is 555nm, the duty cycle is 0.3, and the grating is etched down 200nm to form a uniform period grating 15;
  • a grating mask pattern is prepared on both sides of the waveguide 13 with a grating period of 688 nm and a duty ratio of 0.4, and a uniform periodic grating 16 is formed by etching down 200 nm.
  • Step 5 Deposit an insulating dielectric layer in the current injection groove and photoetch the insulating dielectric layer to form a current injection window;
  • the insulating dielectric layer 26 is deposited, the material is Si 3 N 4, and the thickness is 300 nm;
  • the strip waveguide 14 of the first laser, the strip waveguide 13 of the second laser, the current injection slot 25, and the current injection slot 24 are lithographically formed with a 2 ⁇ m current injection window mask, and 300nm Si 3 N 4 is dry-etched,
  • the P-side current injection window 19, the N-side current injection window 18, and the N-side current injection window 17 of the first laser and the P-side current injection window 20 of the second laser are formed.
  • Step 6 forming electrode patterns by photolithography, depositing P-side metal electrodes, and preparing the first current isolation region and the second current isolation region by stripping or etching;
  • the electrode pattern is formed by photolithography
  • the P-side metal electrode TiPtAu50 ⁇ 50 ⁇ 300nm is magnetron sputtered in the isolation groove
  • the first galvanic isolation zone 22 with a width of 50 ⁇ m and the second galvanic isolation zone 21 are prepared by stripping with glue. , 50 ⁇ m wide.
  • Step 7 The substrate is thinned and polished, and a back electrode is made on the back of the substrate;
  • Step 8 Anneal, cleave into rectangular chips, and complete the preparation
  • Dry etching can be replaced by wet etching
  • the SiN x insulating layer can be replaced by SiO 2 .
  • the present disclosure provides an on-chip integrated dual-wavelength semiconductor laser structure and a preparation method thereof.
  • a NIPINP type structure is prepared on the same laser epitaxial wafer, and the intermediate I layer adopts a non-doped graded insulating layer material Realize the good electrical isolation of the epitaxial material, take advantage of the wide coverage of the lasing wavelength of the semiconductor material, and realize the on-chip dual-wavelength laser by changing the material composition of the active area on the same epitaxy.
  • the two lasers have their own independent waveguides.
  • the structure and grating are used for the mode screening of the target wavelength.
  • different current injection grooves and isolation grooves are designed to realize the separate control and injection of the two PIN junction currents, that is, the dual-wavelength laser lasing is realized on the same epitaxy.
  • Each laser has an independent epitaxial layer structure and a waveguide structure, and they share an N-side electrode.
  • the current can be adjusted separately for the two semiconductor lasers with a strip waveguide structure to realize the separate operation of the two lasers.
  • the lasers are prepared on the same epitaxial wafer and the distance is very close. In the subsequent fiber coupling and optical shaping, a set of optical paths can be shared.
  • two single-mode lasers can be lased on the same laser.
  • the integrated structure reduces the volume of the external pump source and cooling device, and reduces the cost of production and preparation.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种片上集成半导体激光器结构及其制备方法,结构包括:依次沉积在衬底(1)上的第一N接触层(2)、第一N限制层(3)、第一有源区(4)、第一P限制层(5)、第一P接触层(6)、隔离层(7),第二N接触层(8)、第二N限制层(9)、第二有源区(10)、第二P限制层(11)和第二P接触层(12)作为外延结构;以及波导结构,包括第一激光器的波导结构(14)和第二激光器的波导结构(13);光栅(15,16),设置于第一激光器的波导结构(14)和第二激光器的波导结构(13)两侧,实现激光模式的筛选;和电流注入窗口(17,18,19,20)。通过在同一片外延上实现不同波段半导体激光器外延材料生长,实现了不同波长激光器的片上集成,达到在同一激光器上激射不同波长的激光的目的。

Description

片上集成半导体激光器结构及其制备方法 技术领域
本公开涉及单片集成半导体激光器领域,尤其涉及一种片上集成半导体激光器结构,以及该片上集成半导体激光器结构的制备方法。
背景技术
半导体激光器具有输出功率高、体积小、重量轻、光电转换效率高等优点,尤其是半导体边发射激光器在高效率、大功率和气体检测等方面具有极大的优势。
常见的半导体激光器为一个PN结结构或PIN结结构,其激射波长受有源区材料和结构直接影响,对其气体监测这一特殊应用要求,由于气体本身的特征吸收峰不同,针对不同的气体的检测需要分别配置不同波长的单模激光器实现气体的检测,不仅价格昂贵,而且配置多个单独封装的半导体激光器会使得整套系统的体积和重量会大幅增加。
发明内容
本公开实施例提供一种片上集成半导体激光器结构及其制备方法,其中,该激光器结构包括:
依次沉积在衬底上的第一N接触层、第一N限制层、第一有源区、第一P限制层、第一P接触层、隔离层、第二N接触层、第二N限制层、第二有源区、第二P限制层和第二P接触层作为外延结构;
波导结构,第一激光器的波导结构为从第二P接触层刻蚀到第二有源区界面上,第二激光器的波导结构为从第一P接触层刻蚀到第一有源区界面上;
光栅,分别设置于第一激光器的波导结构的两侧和第二激光器的波导结构的两侧,实现激光模式的筛选;
电流注入窗口,第一激光器的第一N面电流注入窗口制备在第二N接触层上,第一激光器的第二N面电流注入窗口制备在第一N接触层上,第一激光器的P面电流注入窗口制备在第一激光器的波导结构上,第二激光器的P面电流注入窗口制备在第二激光器的波导上。
进一步的,该激光器结构具有电流隔离区,包括第一电流隔离区和第二电流隔离区,其中:
第一电流隔离区设置于第一激光器的P面电流注入窗口和第二激光器的P面电流注入窗口之间,形成电学隔离;
第二电流隔离区设置于第一激光器的P面电流注入窗口和第一激光器的第一N面电流注入窗口之间,形成电学隔离。进一步的,该激光器结构具有电流注入槽,第一电流注入槽、第二电流注入槽和第三电流注入槽,其中:
第一电流注入槽刻蚀到第一P接触层;
第二电流注入槽刻蚀到第二N接触层;
第三电流注入槽刻蚀到第一N接触层;
且,第三电流注入槽位于第二电流注入槽内,第二激光器的波导结构位于第一电流注入槽内。
进一步的,该激光器外延结构包括:
衬底为N型GaSb衬底;
第一N接触层,N型掺杂,材料组分为GaSb,掺杂浓度为1×10 17-1×10 19cm -3,厚度200nm-700nm;
第一N限制层,材料为AlGaAaSb,Al组分0.4-0.9,掺杂浓度为1×10 18-8×10 18cm -3,厚度600nm-3000nm;
第一有源区,非故意掺杂,材料为AlGaAsSb\InGaAsSb\AlGaAsSb,Al组分0.1-0.3,In组分0.25-0.4,厚度100nm-700nm;
第一P限制层,P型掺杂,材料为AlGaAaSb,Al组分0.4-0.9,掺杂浓度为1×10 18-8×10 18cm -3,厚度600nm-3000nm;
第一P接触层,P型掺杂,材料为GaSb,掺杂浓度为1×10 17-1×10 19cm -3,厚度50nm-300nm;
隔离层,非故意掺杂,材料为Al 0.1Ga 0.9Sb\Al 0.6Ga 0.4AsSb\Al 0.1Ga 0.9AsSb,Al组分从Al 0.1Ga 0.9Sb线性渐变到Al 0.6Ga 0.4AsSb,再线性渐变到Al 0.1Ga 0.9AsSb,渐变区厚度300nm-900nm;
第二N接触层,N重掺杂,材料为GaSb,掺杂浓度为1×10 17-1×10 19cm -3,厚度300nm-900nm;
第二N限制层,材料为AlGaAsSb,Al组分0.5-0.85,掺杂浓度为1×10 18-8×10 18cm -3,厚度600nm-3000nm;
第二有源区,非故意掺杂,材料为AlGaAsSb\InGaAsSb\AlGaAsSb,Al组分0.15-0.35,In组分0.1-0.3,厚度100nm-600nm;
第二P限制层,P型掺杂,材料为AlGaAsSb,Al组分0.5-0.85,掺杂浓度为1×10 18-8×10 18cm -3,厚度600nm-3000nm;
第二P接触层,P型重掺杂,材料为GaSb,掺杂浓度为1×10 17-1×10 19cm -3,厚度50nm-500nm;
进一步的,第一激光器和第二激光器的波导结构为条形波导,宽度为1μm-6μm,该第一激光器和第二激光器的波导结构刻蚀制备成相同高度的波导结构或者分别制备成不同高度的波导结构。
进一步的,光栅为周期性光栅,在波导两侧均匀分布,与波导延伸方向上垂直,光栅周期满足λ=Λ×Neff/m,其中λ是激光器激射波长,Neff是波导结构的有效折射率,Λ是光栅周期,m是光栅阶数。
进一步的,第一激光器的第一N面电流注入窗口和第二N面电流注入窗口,实现第一激光器掺杂的第二N接触层与衬底的电学导通。
进一步的,第一电流隔离区和第二电流隔离区的宽度为30μm-300μm。
本公开还提供了一种片上集成半导体激光器的制备方法,包括:
准备一N型衬底;
在N型衬底上依次沉积第一N接触层、第一N限制层、第一有源区、第一P限制层、第一P接触层、隔离层,第二N接触层、第二N限制层、第二有源区、第二P限制层和第二P接触层;
在外延结构上光刻刻蚀波导结构及电流注入槽,包括:
光刻并刻蚀形成第一激光器的波导结构;
光刻并刻蚀形成第二激光器的第一电流注入槽;
光刻并在第一电流注入槽内刻蚀形成第二激光器的波导结构;
光刻并刻蚀形成第二电流注入槽;
在第二电流注入槽内部光刻刻蚀形成第三电流注入槽。
在波导结构的两侧制备光栅掩膜图形;
在电流注入槽沉积绝缘介质层并光刻刻蚀绝缘介质层,形成电流注入窗口;
光刻形成电极图形,沉积P面金属电极,采用剥离或刻蚀的方法制备第一电流隔离区和第二电流隔离区;
衬底减薄抛光,在衬底背面制作背电极;
退火,解理成矩形芯片,完成制备。
附图说明
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开实施例进一步详细说明,其中:
图1是本公开实施例的激光器结构的剖面示意图;
图2是本公开实施例的激光器结构的制备方法流程图;
图3是本公开实施例的激光器的光场模式分布仿真图;
图4是本公开实施例的激光器1单独工作时的单模激射谱图;
图5是本公开实施例的激光器2单独工作时的单模激射谱图。
图中:
衬底1 第一N接触层2 第一N限制层3
第一有源区4 第一P限制层5 第一P接触层6
隔离层7 第二N接触层8 第二N限制层9
第二有源区10 第二P限制层11 第二P接触层12
第二激光器的波导13 第一激光器的条形波导14
光栅15、16 电流注入窗口17、18、19、20
电流隔离区21、22 电流注入槽23、24、25
此外,各附图并不一定按比例来绘制,而是仅以不影响读者理解的示意性方式示出。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开作进一步的详细说明。
本公开一实施例提供了一种片上集成半导体激光器结构,请参见图1,包括:
依次沉积在衬底1上的第一N接触层2、第一N限制层3、第一有源区4、第一P限制层5、第一P接触层6、隔离层7、第二N接触层8、第二N限制层9、第二有源区10、第二P限制层11和第二P接触层12作为外延结构,通过光刻刻蚀该外延结构实现双波长激光器的制作。本公开实施例提供的这种集成双波长半导体激光器结构,利用特殊的能带工程和外延结构设计,在同一片外延上实现不同波段半导体激光器外延材料生长,实现双波长激光器的片上集成,结构紧凑,两个激光器用于独立的波导结构和光栅结构,可以分别工作产生单模激光,在同一激光器上激射两种不同波长的激光,实现不同种类气体检测。
一些实施例中,衬底1为N型GaSb衬底,外延结构包括:
第一N接触层2,N型掺杂,材料组分为GaSb,掺杂浓度为1×10 17-1×10 19cm -3,厚度200nm-700nm;
第一N限制层3,材料为AlGaAaSb,Al组分0.4-0.9,掺杂浓度为1×10 18-8×10 18cm -3,厚度600nm-3000nm;
第一有源区4,非故意掺杂,材料为AlGaAsSb\InGaAsSb\AlGaAsSb,Al组分0.1-0.3,In组分0.25-0.4,厚度100nm-700nm;
第一P限制层5,P型掺杂,材料为AlGaAaSb,Al组分0.4-0.9,掺杂浓度为1×10 18-8×10 18cm -3,厚度600nm-3000nm;
第一P接触层6,P型掺杂,材料为GaSb,掺杂浓度为1×10 17-1×10 19cm -3,厚度50nm-300nm;
隔离层7,非故意掺杂,材料为Al 0.1Ga 0.9Sb\Al 0.6Ga 0.4AsSb\Al 0.1Ga 0.9AsSb,Al组分从Al 0.1Ga 0.9Sb线性渐变到Al 0.6Ga 0.4AsSb,再线性渐变到Al 0.1Ga 0.9AsSb,渐变区厚度300nm-900nm;
第二N接触层8,N重掺杂,材料为GaSb,掺杂浓度为1×10 17-1×10 19cm -3,厚度300nm-900nm;
第二N限制层9,材料为AlGaAsSb,Al组分0.5-0.85,掺杂浓度为1×10 18-8×10 18cm -3,厚度600nm-3000nm;
第二有源区10,非故意掺杂,材料为AlGaAsSb\InGaAsSb\AlGaAsSb,Al组分0.15-0.35,In组分0.1-0.3,厚度100nm-600nm;
第二P限制层11,P型掺杂,材料为AlGaAsSb,Al组分0.5-0.85,掺杂浓度为1×10 18-8×10 18cm -3,厚度600nm-3000nm;
第二P接触层12,P型重掺杂,材料为GaSb,掺杂浓度为1×10 17-1×10 19cm -3,厚度50nm-500nm。
波导结构,第一激光器的波导结构14为从第二P接触层12刻蚀到第二有源区10界面上,第二激光器的波导结构13为从第一P接触层6刻蚀到第一有源区4界面上;
一些实施例中,第一激光器和第二激光器的波导结构为条形波导,宽度为1μm-6μm,该第一激光器和第二激光器的波导结构刻蚀制备成相同高度的波导结构或者分别制备成不同高度的波导结构。
光栅,第一激光器的光栅15设置于第一激光器的波导结构14两侧,第二激光器的光栅16设置于第二激光器的波导结构13两侧,实现激光模式的筛选;
一些实施例中,光栅为周期性光栅,在波导两侧均匀分布,与波导延伸方向上垂直,光栅周期满足λ=Λ×Neff/m,其中λ是激光器激射波长,Neff是波导结构的有效折射率,Λ是光栅周期,m是光栅阶数。
电流注入窗口,第一激光器的第一N面电流注入窗口18制备在第二N接触层8上,第一激光器的第二N面电流注入窗口17制备在第一N接触层2上,第一激光器的P面电流注入窗口19制备在第一激光器的波导结构14上,第二激光器的P面电流注入窗口20制备在第二激光器的波导13上。
一些实施例中,第一激光器的第一N面电流注入窗口18和第二N面电流注入窗口17,实现第一激光器掺杂的第二N接触层8与衬底1的电学导通。
一些实施例中,该激光器结构具有电流隔离区,包括第一电流隔离区22和第二电流隔离区21,其中:
第一电流隔离区22设置于第一激光器的P面电流注入窗口19和第二激光器的P面电流注入窗口20之间,形成电学隔离;
第二电流隔离区21设置于第一激光器的P面电流注入窗口19和第一激光器的第一N面电流注入窗口18之间,形成电学隔离。
一些实施例中,第一电流隔离区22和第二电流隔离区21的宽度为30μm-300μm。
一些实施例中,该激光器结构具有电流注入槽,第一电流注入槽23、第二电流 注入槽25和第三电流注入槽24,其中:
第一电流注入槽23刻蚀到第一P接触层6;
第二电流注入槽25刻蚀到第二N接触层8;
第三电流注入槽24刻蚀到第一N接触层2;
且,第三电流注入槽24位于第二电流注入槽25内,第二激光器的波导结构13位于第一电流注入槽23内。通过电流注入槽和隔离槽的特殊设计,实现了两个激光器驱动电极的集成性制备,同时也实现了两个激光器分别电注入和电隔离,两个激光器可以分别单独驱动,工艺成熟度高,两个激光器分别制备有独立的光栅区结构,针对不同波长激光完成模式筛选,实现两种波长的单模激光的分别工作。
本公开另一实施例提供了一种片上集成半导体激光器结构的制备方法,以下请参照图2,分别对本实施例的片上集成双波长半导体激光器结构的制备方法的各个部分进行详细的说明。
步骤1:取一N型GaSb衬底1;
步骤2:在N型衬底上依次沉积第一N接触层2、第一N限制层3、第一有源区4、第一P限制层5、第一P接触层6、隔离层7、第二N接触层8、第二N限制层9、第二有源区10、第二P限制层11和第二P接触层12;
本实施例中,依次沉积在N型衬底1上的第一N接触层2,材料为GaSb,厚度500nm,掺杂浓度2×10 18cm -3、第一N限制层3,材料为Al 0.6Ga 0.4As 0.02Sb 0.98,厚度2μm,掺杂浓度4×10 17cm -3、第一有源区4,厚度分别为120nm/10nm/120nm,材料为Al 0.28Ga 0.81As 0.02Sb 0.98\In 0.3Ga 0.85Sb\Al 0.28Ga 0.81As 0.02Sb 0.98、第一P限制层5,厚度2μm,材料为Al 0.6Ga 0.4As 0.02Sb 0.98,掺杂浓度5×10 18cm -3、第一P接触层6,厚度为200nm,材料为GaSb,掺杂浓度9×10 18cm -3、渐变绝缘隔离层7,材料为Al 0.1Ga 0.9As 0.02Sb 0.98\Al 0.6Ga 0.4As 0.02Sb 0.98\Al 0.1Ga 0.9As 0.02Sb 0.98,厚度为500nm,第二N接触层8,厚度400nm,材料为GaSb,掺杂浓度8×10 18cm -3、第二N限制层9,厚度1.8μm,材料为Al 0.55Ga 0.4As 0.02Sb 0.98,掺杂浓度5×10 18cm -3、第二有源区10,厚度分别为300nm/8nm/300nm,材料分别为Al 0.28Ga 0.81As 0.02Sb 0.98\In 0.18Ga 0.85Sb\Al 0.28Ga 0.81As 0.02Sb 0.98、第二P限制层11,材料为1.8μm Al 0.55Ga 0.4As 0.02Sb 0.98、第二P接触层12,材料为270nm GaSb,铍掺杂浓度1×10 19cm -3
步骤3:在外延结构上光刻刻蚀波导结构及电流注入槽;
一些实施例中,该步骤包括:
光刻并刻蚀形成第一激光器的波导结构;
光刻并刻蚀形成第二激光器的第一电流注入槽;
光刻并在第一电流注入槽内刻蚀形成第二激光器的波导结构;
光刻并刻蚀形成第二电流注入槽;
在第二电流注入槽内部光刻刻蚀形成第三电流注入槽。
本实施例中,首先光刻并刻蚀形成第一激光器的条形波导14,波导宽3μm,刻蚀深度1.92μm,然后光刻并刻蚀形成第二激光器的电流注入槽23,深5.378μm,宽100nm,然后光刻并在电流注入槽23内刻蚀形成第二激光器的波导13,宽4.5μm,深2.05μm;然后光刻并刻蚀形成电流注入槽25,宽250μm,深4.478μm,并在电流注入槽25内部光刻刻蚀形成电流注入槽24,宽100μm,深5.35μm。
步骤4:在波导结构的两侧制备光栅掩膜图形;
本实施例中,在第一激光器的条形波导14的两侧制备光栅掩膜图形,光栅周期555nm,占空比0.3,并向下刻蚀200nm,形成均匀周期光栅15;在第二激光器的波导13的两侧制备光栅掩膜图形,光栅周期688nm,占空比0.4,并向下刻蚀200nm形成均匀的周期光栅16。
步骤5:在电流注入槽沉积绝缘介质层并光刻刻蚀绝缘介质层,形成电流注入窗口;
本实施例中,沉积绝缘介质层26,材料为Si 3N 4,厚度300nm;
在第一激光器的条形波导14、第二激光器的条形波导13、电流注入槽25、电流注入槽24上光刻形成2μm的电流注入窗口掩膜,干法刻蚀300nm Si 3N 4,形成第一激光器的P面电流注入窗口19、N面电流注入窗口18和N面电流注入窗口17和第二激光器的P面电流注入窗口20。
步骤6:光刻形成电极图形,沉积P面金属电极,采用剥离或刻蚀的方法制备第一电流隔离区和第二电流隔离区;
本实施例中,光刻形成电极图形,隔离槽磁控溅射P面金属电极TiPtAu50\50\300nm,并采用带胶剥离制备第一电流隔离区22,宽50μm,和第二电流隔离区21,宽50μm。
步骤7:衬底减薄抛光,在衬底背面制作背电极;
本实施例中,衬底减薄至100μm并抛光,在衬底背面制作背电极Ni\AuGe\Au=5\50\300nm。
步骤8:退火,解理成矩形芯片,完成制备;
本实施例中,退火,解理成1000μmX1.5mm的矩形芯片,完成制备。
至此,本实施例一种片上集成双波长半导体激光器的制备方法介绍完毕。
此外,上述对各元件和方法的定义并不仅限于实施方式中提到的各种具体结构或者形状,本领域的普通技术人员可对其进行简单地熟知的替换,例如:
(1)干法刻蚀可以用湿法腐蚀替代;
(2)SiN x绝缘层可以用SiO 2作替代。
综上所述,本公开提供了一种片上集成双波长半导体激光器结构及其制备方法,本公开实施例在同一激光器外延片上制备了NIPINP型结构,中间I层采用非掺杂的渐变绝缘层材料实现了外延材料良好的电隔离,利用半导体材料激射波长覆盖范围广的优势,在同一片外延上通过改变有源区材料组分,实现片上双波长激光,两个激光器分别有自己独立的波导结构和光栅用于对目标波长的模式筛选,同时设计了不同的电流注入槽和隔离槽,实现了两个PIN结电流的分别控制和注入,即在同一片外延上实现了双波长激光激射,每个激光器具有独立的外延层结构和波导结构,它们公用一个N面电极,可以分别对两个条形波导结构的半导体激光器进行电流的单独调整,实现两个激光器的分别工作,由于两个激光器制备在同一个外延片上,且距离很近,在后续的光纤耦合和光学整形时可以共用一套光路,通过控制两个激光器分别工作实现同一激光器上激射两种单模激光,这种片上集成结构降低了外置泵浦源和冷却装置的体积,降低了生产和制备的成本。
尽管已经参照本公开的特定示例性实施例示出并描述了本公开,但是本领域技术人员应该理解,在不背离所附权利要求及其等同物限定的本公开的精神和范围的情况下,可以对本公开进行形式和细节上的多种改变。因此,本公开的范围不应该限于上述实施例,而是应该不仅由所附权利要求来进行确定,还由所附权利要求的等同物来进行限定。

Claims (10)

  1. 一种片上集成半导体激光器结构,其特征在于,包括:
    依次沉积在衬底上的第一N接触层、第一N限制层、第一有源区、第一P限制层、第一P接触层、隔离层、第二N接触层、第二N限制层、第二有源区、第二P限制层和第二P接触层作为外延结构;
    波导结构,第一激光器的波导结构为从第二P接触层刻蚀到第二有源区界面上,第二激光器的波导结构为从第一P接触层刻蚀到第一有源区界面上;
    光栅,分别设置于第一激光器的波导结构的两侧和第二激光器的波导结构的两侧,实现激光模式的筛选;
    电流注入窗口,第一激光器的第一N面电流注入窗口制备在第二N接触层上,第一激光器的第二N面电流注入窗口制备在第一N接触层上,第一激光器的P面电流注入窗口制备在第一激光器的波导结构上,第二激光器的P面电流注入窗口制备在第二激光器的波导上。
  2. 根据权利要求1所述的片上集成半导体激光器结构,其特征在于,具有电流隔离区,包括第一电流隔离区和第二电流隔离区,其中:
    第一电流隔离区设置于第一激光器的P面电流注入窗口和第二激光器的P面电流注入窗口之间,形成电学隔离;
    第二电流隔离区设置于第一激光器的P面电流注入窗口和第一激光器的第一N面电流注入窗口之间,形成电学隔离。
  3. 根据权利要求1所述的片上集成半导体激光器结构,其特征在于,具有电流注入槽,包括第一电流注入槽、第二电流注入槽和第三电流注入槽,其中:
    第一电流注入槽刻蚀到第一P接触层;
    第二电流注入槽刻蚀到第二N接触层;
    第三电流注入槽刻蚀到第一N接触层;
    且,第三电流注入槽位于第二电流注入槽内,第二激光器的波导结构位于第一电流注入槽内。
  4. 根据权利要求1所述的片上集成半导体激光器结构,其特征在于:
    所述衬底为N型GaSb衬底;
    所述第一N接触层,N型掺杂,材料组分为GaSb,掺杂浓度为1×10 17-1×10 19cm -3,厚度200nm-700nm;
    所述第一N限制层,材料为AlGaAaSb,Al组分0.4-0.9,掺杂浓度为1×10 18-8×10 18cm -3,厚度600nm-3000nm;
    所述第一有源区,非故意掺杂,材料为AlGaAsSb\InGaAsSb\AlGaAsSb,Al组分0.1-0.3,In组分0.25-0.4,厚度100nm-700nm;
    所述第一P限制层,P型掺杂,材料为AlGaAaSb,Al组分0.4-0.9,掺杂浓度为1×10 18-8×10 18cm -3,厚度600nm-3000nm;
    所述第一P接触层,P型掺杂,材料为GaSb,掺杂浓度为1×10 17-1×10 19cm -3,厚度50nm-300nm;
    所述隔离层,非故意掺杂,材料为Al 0.1Ga 0.9Sb\Al 0.6Ga 0.4AsSb\Al 0.1Ga 0.9AsSb,Al组分从Al 0.1Ga 0.9Sb线性渐变到Al 0.6Ga 0.4AsSb,再线性渐变到Al 0.1Ga 0.9AsSb,渐变区厚度300nm-900nm;
    所述第二N接触层,N型掺杂,材料为GaSb,掺杂浓度为1×10 17-1×10 19cm -3,厚度300nm-900nm;
    所述第二N限制层,材料为AlGaAsSb,Al组分0.5-0.85,掺杂浓度为1×10 18-8×10 18cm -3,厚度600nm-3000nm;
    所述第二有源区,非故意掺杂,材料为AlGaAsSb\InGaAsSb\AlGaAsSb,Al组分0.15-0.35,In组分0.1-0.3,厚度100nm-600nm;
    所述第二P限制层,P型掺杂,材料为AlGaAsSb,Al组分0.5-0.85,掺杂浓度为1×10 18-8×10 18cm -3,厚度600nm-3000nm;
    所述第二P接触层,P型重掺杂,材料为GaSb,掺杂浓度为1×10 17-1×10 19cm -3,厚度50nm-500nm。
  5. 根据权利要求1所述的片上集成半导体激光器结构,其特征在于,所述第一激光器和第二激光器的波导结构为条形波导,宽度为1μm-6μm,所述第一激光器和第二激光器的波导结构刻蚀制备成相同高度的波导结构或者分别刻蚀制备成不同高度的波导结构。
  6. 根据权利要求1所述的片上集成半导体激光器结构,其特征在于,所述光栅为周期性光栅,在波导两侧均匀分布,与波导延伸方向上垂直,光栅周期满足 λ=Λ×Neff/m,其中λ是激光器激射波长,Neff是波导结构的有效折射率,Λ是光栅周期,m是光栅阶数。
  7. 根据权利要求1所述的片上集成半导体激光器结构,其特征在于,所述第一激光器的第一N面电流注入窗口和第二N面电流注入窗口,实现第一激光器掺杂的第二N接触层与衬底的电学导通。
  8. 根据权利要求2所述的片上集成半导体激光器结构,其特征在于,所述第一电流隔离区和第二电流隔离区的宽度为30μm-300μm。
  9. 一种片上集成半导体激光器的制备方法,其特征在于,包括:
    准备一衬底;
    在衬底上沉积外延结构;
    在外延结构上光刻刻蚀波导结构及电流注入槽;
    在波导结构的两侧制备光栅掩膜图形;
    在电流注入槽沉积绝缘介质层并光刻刻蚀绝缘介质层,形成电流注入窗口;
    光刻形成电极图形,沉积P面金属电极,采用剥离或刻蚀的方法制备第一电流隔离区和第二电流隔离区;
    衬底减薄抛光,在衬底背面制作背电极;
    退火,解理成矩形芯片,完成制备。
  10. 根据权利要求9所述的片上集成半导体激光器的制备方法,其特征在于,所述在外延结构上光刻刻蚀波导结构及电流注入槽,包括:
    光刻并刻蚀形成第一激光器的波导结构;
    光刻并刻蚀形成第二激光器的第一电流注入槽;
    光刻并在第一电流注入槽内刻蚀形成第二激光器的波导结构;
    光刻并刻蚀形成第二电流注入槽;
    在第二电流注入槽内部光刻刻蚀形成第三电流注入槽。
PCT/CN2019/114740 2019-01-22 2019-10-31 片上集成半导体激光器结构及其制备方法 WO2020151290A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/253,747 US11489315B2 (en) 2019-01-22 2019-10-31 On-chip integrated semiconductor laser structure and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910061317.9A CN109586159B (zh) 2019-01-22 2019-01-22 片上集成半导体激光器结构及其制备方法
CN201910061317.9 2019-01-22

Publications (1)

Publication Number Publication Date
WO2020151290A1 true WO2020151290A1 (zh) 2020-07-30

Family

ID=65917017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114740 WO2020151290A1 (zh) 2019-01-22 2019-10-31 片上集成半导体激光器结构及其制备方法

Country Status (3)

Country Link
US (1) US11489315B2 (zh)
CN (1) CN109586159B (zh)
WO (1) WO2020151290A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586159B (zh) * 2019-01-22 2020-05-12 中国科学院半导体研究所 片上集成半导体激光器结构及其制备方法
CN110854673B (zh) * 2019-11-15 2021-02-26 浙江大学 基于片上集成波导与半导体纳米线的复合结构单纵模激光器
CN114976870B (zh) * 2022-08-03 2023-10-13 日照市艾锐光电科技有限公司 一种层叠式双波长集成半导体激光器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333141A (en) * 1992-07-08 1994-07-26 Siemens Aktiengesellschaft Modulatable laser diode for high frequencies
US5436193A (en) * 1993-11-02 1995-07-25 Xerox Corporation Method of fabricating a stacked active region laser array
US6144683A (en) * 1998-01-07 2000-11-07 Xerox Corporation Red, infrared, and blue stacked laser diode array by wafer fusion
CN104917052A (zh) * 2015-07-06 2015-09-16 中国科学院半导体研究所 变周期倾斜光栅激光器及制备方法
CN106953235A (zh) * 2016-03-17 2017-07-14 中国科学院半导体研究所 单模GaSb基半导体激光器及其制备方法
CN108832483A (zh) * 2018-06-27 2018-11-16 潍坊华光光电子有限公司 一种脊形半导体激光二极管的制备方法
CN109586159A (zh) * 2019-01-22 2019-04-05 中国科学院半导体研究所 片上集成半导体激光器结构及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585957A (en) * 1993-03-25 1996-12-17 Nippon Telegraph And Telephone Corporation Method for producing various semiconductor optical devices of differing optical characteristics
US20030034538A1 (en) * 2001-08-15 2003-02-20 Motorola, Inc. Tunable laser array in composite integrated circuitry
JP2006080307A (ja) * 2004-09-09 2006-03-23 Toshiba Corp 半導体レーザアレイ及びその製造方法、多波長半導体レーザ装置
JP2006310413A (ja) * 2005-04-26 2006-11-09 Matsushita Electric Ind Co Ltd 半導体レーザ装置
DE102009054564A1 (de) * 2009-12-11 2011-06-16 Osram Opto Semiconductors Gmbh Laserdiodenanordnung und Verfahren zum Herstellen einer Laserdiodenanordnung
DE102010002966B4 (de) * 2010-03-17 2020-07-30 Osram Opto Semiconductors Gmbh Laserdiodenanordnung und Verfahren zum Herstellen einer Laserdiodenanordnung
CN104409966A (zh) * 2014-12-11 2015-03-11 北京工业大学 一种双波长镓氮基半导体激光芯片结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333141A (en) * 1992-07-08 1994-07-26 Siemens Aktiengesellschaft Modulatable laser diode for high frequencies
US5436193A (en) * 1993-11-02 1995-07-25 Xerox Corporation Method of fabricating a stacked active region laser array
US6144683A (en) * 1998-01-07 2000-11-07 Xerox Corporation Red, infrared, and blue stacked laser diode array by wafer fusion
CN104917052A (zh) * 2015-07-06 2015-09-16 中国科学院半导体研究所 变周期倾斜光栅激光器及制备方法
CN106953235A (zh) * 2016-03-17 2017-07-14 中国科学院半导体研究所 单模GaSb基半导体激光器及其制备方法
CN108832483A (zh) * 2018-06-27 2018-11-16 潍坊华光光电子有限公司 一种脊形半导体激光二极管的制备方法
CN109586159A (zh) * 2019-01-22 2019-04-05 中国科学院半导体研究所 片上集成半导体激光器结构及其制备方法

Also Published As

Publication number Publication date
CN109586159A (zh) 2019-04-05
US11489315B2 (en) 2022-11-01
CN109586159B (zh) 2020-05-12
US20210296849A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
JP2959902B2 (ja) 半導体レーザとそれを有する装置とその製造方法
JP5717726B2 (ja) 大出力パワー用の横結合を持つdfbレーザダイオード
WO2020151290A1 (zh) 片上集成半导体激光器结构及其制备方法
JP2000151015A (ja) 整合された酸化物開口と介在層への接点を備えた半導体デバイス
WO2021102722A1 (zh) 侧面光栅氧化限制结构单纵模边发射激光器及其制备方法
CN104051957A (zh) 一种1550nm长波长垂直腔面发射激光器的制备方法及其应用
CN105161976A (zh) 一种半导体激光器及其制备方法
JPH11135893A (ja) エッジエミッティングレーザアレイ
US6621843B2 (en) Long wavelength surface-emitting semiconductor laser device and method for manufacturing the same
CN103199435B (zh) 超低发散角倾斜光束的单纵模人工微结构激光器
WO2019072185A1 (zh) 一种增益耦合分布反馈半导体激光器及其制作方法
JP5190038B2 (ja) 面発光レーザ
CN113708214B (zh) 一种基于选区外延技术的双波长vcsel结构及其制备方法
JPS5940592A (ja) 半導体レ−ザ素子
CN212011600U (zh) 侧面光栅氧化限制结构单纵模边发射激光器
US20070127533A1 (en) Long-wavelength vertical cavity surface emitting lasers having oxide aperture and method for manufacturing the same
US20230006421A1 (en) Vertical cavity surface emitting laser element, vertical cavity surface emitting laser element array, vertical cavity surface emitting laser module, and method of producing vertical cavity surface emitting laser element
JP2002057409A (ja) 半導体レーザ及びその製造方法
JP2008103483A (ja) 半導体発光素子および半導体発光素子の製造方法
CN111916999B (zh) 具有槽结构的分布式反馈激光器及制备方法
KR101466703B1 (ko) 광대역 파장조절 표면방출 레이저
CN112366518A (zh) 一种分布式反馈激光器及其制备方法
CN215771900U (zh) 一种多结分布反馈半导体激光器
CN111276867B (zh) 单片集成双波长半导体激光器及其制备方法
CN115021073B (zh) 一种基于切趾光栅的高功率硅基半导体激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910994

Country of ref document: EP

Kind code of ref document: A1